1
|
Lee E, Song SG, Moon H, Shong M, Chung DH. Mitochondrial Regulator CRIF1 Plays a Critical Role in the Development and Homeostasis of Alveolar Macrophages via Maintaining Metabolic Fitness. Immune Netw 2025; 25:e9. [PMID: 40078782 PMCID: PMC11896662 DOI: 10.4110/in.2025.25.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
The importance of mitochondrial function in macrophages is well established. Alveolar macrophages (AMs), the tissue-resident macrophages (TRMs) of the lung, are particularly dependent on mitochondria-driven oxidative phosphorylation (OXPHOS) to support their functions and maintain homeostasis. However, the specific genes and pathways that regulate OXPHOS in AMs remain unclear. In this study, we investigated the role of CR6-interacting factor 1 (CRIF1), a mitochondrial regulator, as a key factor that specifically modulates the metabolic fitness and maintenance of AMs. Using single-cell RNA sequencing and transcriptomic analyses, we found CRIF1 to be highly expressed in AMs compared to TRMs from other tissues, correlating with enhanced OXPHOS activity. Genetic ablation of Crif1 in macrophages resulted in a marked reduction in AM populations exclusively in the lung, while other TRM populations were unaffected. CRIF1-deficient AMs exhibited an altered metabolic profile, including impaired mitochondrial function, increased glycolysis, and aberrant lipid accumulation. These findings underscore the essential role of CRIF1 in regulating mitochondrial functions and metabolic fitness in AMs, distinguishing it from broader mitochondrial regulators like mitochondrial transcription factor A, which operates across multiple TRM populations. Our study provides critical insights into the tissue-specific regulation of macrophage metabolism and suggests potential therapeutic avenues for lung diseases associated with AM dysfunction.
Collapse
Affiliation(s)
- Ein Lee
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Geun Song
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Haaun Moon
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
2
|
Piao S, Kim S, Vu GH, Kim M, Lee EO, Jeon BH, Kim CS. The Downregulation of CRIF1 Exerts Antitumor Effects Partially via TP53-Induced Glycolysis and Apoptosis Regulator Induction in BT549 Breast Cancer Cells. Cancers (Basel) 2024; 16:4081. [PMID: 39682267 DOI: 10.3390/cancers16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial oxidative phosphorylation (OXPHOS) has been exploited as a therapeutic target in cancer treatments because of its crucial role in tumorigenesis. CR6-interacting factor 1 (CRIF1), a mitochondrial ribosomal subunit protein, is essential for the regulation of mitochondrial OXPHOS capacity. However, the mechanism of CRIF1 in triple-negative breast cancer (TNBC) cells remains unclear. METHODS/RESULTS We showed that the downregulation of CRIF1 reduced cell proliferation in the TNBC cell lines MDA-MB-468, MDA-MB-231, and, especially, BT549. In addition, wound scratch and Transwell assays showed that CRIF1 deficiency inhibited the migration and invasion of BT549 cells. CRIF1 downregulation resulted in the suppression of mitochondrial bioenergetics in BT549 cells, specifically affecting the inhibition of OXPHOS complexes I and II. This was evidenced by a decrease in the mitochondrial oxygen consumption rate and the depolarization of the mitochondrial membrane potential. Damage to mitochondria resulted in a lower adenosine triphosphate level and an elevated production of mitochondrial reactive oxygen species. In addition, CRIF1 deficiency decreased hypoxia-inducible factor 1α accumulation, NADPH synthesis, and TP53-induced glycolysis and apoptosis regulator (TIGAR) expression in BT549 cells. These events contributed to G0/G1-phase cell cycle inhibition and the upregulation of the cell cycle protein markers p53, p21, and p16. Transfection with a TIGAR overexpression plasmid reversed these effects and prevented CRIF1 downregulation-induced proliferation and migration reduction. CONCLUSIONS These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Seonhee Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Giang-Huong Vu
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Minsoo Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Eun-Ok Lee
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| |
Collapse
|
3
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
4
|
Jiang Y, Xiang Y, Lin C, Zhang W, Yang Z, Xiang L, Xiao Y, Chen L, Ran Q, Li Z. Multifunctions of CRIF1 in cancers and mitochondrial dysfunction. Front Oncol 2022; 12:1009948. [PMID: 36263222 PMCID: PMC9574215 DOI: 10.3389/fonc.2022.1009948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.
Collapse
Affiliation(s)
- Yangzhou Jiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chuanchuan Lin
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Lixin Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Hong HJ, Joung KH, Kim YK, Choi MJ, Kang SG, Kim JT, Kang YE, Chang JY, Moon JH, Jun S, Ro HJ, Lee Y, Kim H, Park JH, Kang BE, Jo Y, Choi H, Ryu D, Lee CH, Kim H, Park KS, Kim HJ, Shong M. Mitoribosome insufficiency in β cells is associated with type 2 diabetes-like islet failure. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:932-945. [PMID: 35804190 PMCID: PMC9355985 DOI: 10.1038/s12276-022-00797-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022]
Abstract
Genetic variations in mitoribosomal subunits and mitochondrial transcription factors are related to type 2 diabetes. However, the role of islet mitoribosomes in the development of type 2 diabetes has not been determined. We investigated the effects of the mitoribosomal gene on β-cell function and glucose homeostasis. Mitoribosomal gene expression was analyzed in datasets from the NCBI GEO website (GSE25724, GSE76894, and GSE76895) and the European Nucleotide Archive (ERP017126), which contain the transcriptomes of type 2 diabetic and nondiabetic organ donors. We found deregulation of most mitoribosomal genes in islets from individuals with type 2 diabetes, including partial downregulation of CRIF1. The phenotypes of haploinsufficiency in a single mitoribosomal gene were examined using β-cell-specific Crif1 (Mrpl59) heterozygous-deficient mice. Crif1beta+/− mice had normal glucose tolerance, but their islets showed a loss of first-phase glucose-stimulated insulin secretion. They also showed increased β-cell mass associated with higher expression of Reg family genes. However, Crif1beta+/− mice showed earlier islet failure in response to high-fat feeding, which was exacerbated by aging. Haploinsufficiency of a single mitoribosomal gene predisposes rodents to glucose intolerance, which resembles the early stages of type 2 diabetes in humans. Disruptions in the mitochondrial protein synthesis machinery give rise to metabolic disturbances that lay the foundation for type 2 diabetes. As physiological glucose levels rise, the energy-generating machinery of the mitochondria responds with increased activity, which stimulates insulin secretion. Many proteins responsible for mitochondrial metabolism are produced by ribosomes within this cellular organelle. Researchers led by Hyun Jin Kim and Minho Shong at Chungnam National University, Daejon, South Korea, have determined that mutations affecting a mitochondrial ribosomal protein called CRIF1 can lead to impaired insulin release. Mice with reduced CRIF1 were initially healthy, but as they aged, exhibited signs of impaired pancreatic function similar to those seen in patients with early-stage diabetes. This process was accelerated by consumption of a high-fat diet, and the researchers propose that this mechanism may be directly relevant to human disease.
Collapse
Affiliation(s)
- Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Yujeong Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyeongseok Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Jae-Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, 704-200, Korea
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Heejung Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
6
|
Park JS, Yang S, Hwang SH, Choi J, Kwok SK, Kong YY, Youn J, Cho ML, Park SH. B cell-specific deletion of Crif1 drives lupus-like autoimmunity by activation of IL-17, IL-6, and pathogenic Tfh cells. Arthritis Rheumatol 2022; 74:1211-1222. [PMID: 35166061 DOI: 10.1002/art.42091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE CR6-interacting factor 1 (Crif1) is a nuclear transcriptional regulator and a mitochondrial inner membrane protein; however, its functions in B lymphocytes have been poorly defined. In this study, we investigated the effects of Crif1 on B-cell metabolic regulation, cell function, and autoimmune diseases. METHODS Using mice with B cell-specific deletion of Crif1 (Crif1ΔCD19 ), we assessed the relevance of Crif1 function for lupus disease parameters including anti-double-stranded DNA, cytokines, and kidney pathology. RNA sequencing was performed on B cells from Crif1ΔCD19 mice. The phenotypic and metabolic changes in immune cells were evaluated in Crif1ΔCD19 mice. Roquinsan/+ mice crossed with Crif1ΔCD19 mice were monitored to assess the functionality of Crif1-deficient B cells in lupus development. RESULTS Crif1ΔCD19 mice showed an autoimmune lupus-like phenotype, including high levels of autoantibodies to double-stranded DNA and severe lupus nephritis with increased mesangial hypercellularity. While loss of Crif1 in B cells showed impaired mitochondrial oxidative function, Crif1-deficient B cells promoted the production of IL-17 and IL-6 and was more potent in helping T cells develop into T follicular helper cells. In an autoimmune lupus mouse model, depletion of Crif1 in B cells exacerbated lupus severity and Crif1 overexpression prevented lupus development in Roquinsan/san mice. CONCLUSION These results showed that Crif1 was negatively correlated with disease severity, and overexpression of Crif1 ameliorated disease development. Our findings suggest that Crif1 is essential for preventing lupus development by maintaining B cell self-tolerance.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Nagar H, Kim S, Lee I, Choi SJ, Piao S, Jeon BH, Shong M, Kim CS. CRIF1 deficiency suppresses endothelial cell migration via upregulation of RhoGDI2. PLoS One 2021; 16:e0256646. [PMID: 34437633 PMCID: PMC8389428 DOI: 10.1371/journal.pone.0256646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Na KR, Jeong JY, Shin JA, Chang YK, Suh KS, Lee KW, Choi DE. Mitochondrial Dysfunction in Podocytes Caused by CRIF1 Deficiency Leads to Progressive Albuminuria and Glomerular Sclerosis in Mice. Int J Mol Sci 2021; 22:ijms22094827. [PMID: 34063207 PMCID: PMC8124436 DOI: 10.3390/ijms22094827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies have implicated mitochondrial disruption in podocyte dysfunction, which is a characteristic feature of primary and diabetic glomerular diseases. However, the mechanisms by which primary mitochondrial dysfunction in podocytes affects glomerular renal diseases are currently unknown. To investigate the role of mitochondrial oxidative phosphorylation (OxPhos) in podocyte dysfunction, glomerular function was examined in mice carrying a loss of function mutation of the gene encoding CR6-interacting factor-1 (CRIF1), which is essential for intramitochondrial production and the subsequent insertion of OxPhos polypeptides into the inner mitochondrial membrane. Homozygotic deficiency of CRIF1 in podocytes resulted in profound and progressive albuminuria from 3 weeks of age; the CRIF1-deficient mice also developed glomerular and tubulointerstitial lesions by 10 weeks of age. Furthermore, marked glomerular sclerosis and interstitial fibrosis were observed in homozygous CRIF1-deficient mice at 20 weeks of age. In cultured mouse podocytes, loss of CRIF1 resulted in OxPhos dysfunction and marked loss or abnormal aggregation of F-actin. These findings indicate that the OxPhos status determines the integrity of podocytes and their ability to maintain a tight barrier and control albuminuria. Analyses of the glomerular function of the podocyte-specific primary OxPhos dysfunction model mice demonstrate a link between podocyte mitochondrial dysfunction, progressive glomerular sclerosis, and tubulointerstitial diseases.
Collapse
Affiliation(s)
- Ki Ryang Na
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.R.N.); (J.Y.J.); (J.A.S.)
| | - Jin Young Jeong
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.R.N.); (J.Y.J.); (J.A.S.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jin Ah Shin
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.R.N.); (J.Y.J.); (J.A.S.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yoon-Kyung Chang
- Department of Nephrology, Daejeon St. Mary’s Hospital, Catholic University of Korea, Daejeon 34572, Korea;
| | - Kwang-Sun Suh
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
| | - Kang Wook Lee
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.R.N.); (J.Y.J.); (J.A.S.)
- Correspondence: (K.W.L.); (D.E.C.)
| | - Dae Eun Choi
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.R.N.); (J.Y.J.); (J.A.S.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: (K.W.L.); (D.E.C.)
| |
Collapse
|
9
|
Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, Jung SB, Park JW, Kim S, Park CB, Dugu H, Choi JH, Jang WH, Park SE, Cho YM, Kim JG, Kim KG, Choi CS, Kim YB, Lee C, Shong M, Kim MS. Mitohormesis in Hypothalamic POMC Neurons Mediates Regular Exercise-Induced High-Turnover Metabolism. Cell Metab 2021; 33:334-349.e6. [PMID: 33535098 PMCID: PMC7959183 DOI: 10.1016/j.cmet.2021.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Low-grade mitochondrial stress can promote health and longevity, a phenomenon termed mitohormesis. Here, we demonstrate the opposing metabolic effects of low-level and high-level mitochondrial ribosomal (mitoribosomal) stress in hypothalamic proopiomelanocortin (POMC) neurons. POMC neuron-specific severe mitoribosomal stress due to Crif1 homodeficiency causes obesity in mice. By contrast, mild mitoribosomal stress caused by Crif1 heterodeficiency in POMC neurons leads to high-turnover metabolism and resistance to obesity. These metabolic benefits are mediated by enhanced thermogenesis and mitochondrial unfolded protein responses (UPRmt) in distal adipose tissues. In POMC neurons, partial Crif1 deficiency increases the expression of β-endorphin (β-END) and mitochondrial DNA-encoded peptide MOTS-c. Central administration of MOTS-c or β-END recapitulates the adipose phenotype of Crif1 heterodeficient mice, suggesting these factors as potential mediators. Consistently, regular running exercise at moderate intensity stimulates hypothalamic MOTS-c/β-END expression and induces adipose tissue UPRmt and thermogenesis. Our findings indicate that POMC neuronal mitohormesis may underlie exercise-induced high-turnover metabolism.
Collapse
Affiliation(s)
- Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Ye Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seongjun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hong Dugu
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Kyung-Gon Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Metabolic Phenotyping Center, Gachon University, Inchon 21999, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea; Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
10
|
Nagar H, Kim S, Lee I, Kim S, Choi SJ, Piao S, Jeon BH, Oh SH, Kim CS. Downregulation of CR6-interacting factor 1 suppresses keloid fibroblast growth via the TGF-β/Smad signaling pathway. Sci Rep 2021; 11:500. [PMID: 33436666 PMCID: PMC7804403 DOI: 10.1038/s41598-020-79785-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Keloids are a type of aberrant skin scarring characterized by excessive accumulation of collagen and extracellular matrix (ECM), arising from uncontrolled wound healing responses. While typically non-pathogenic, keloids are occasionally regarded as a form of benign tumor. CR6-interacting factor 1 (CRIF1) is a well-known CR6/GADD45-interacting protein, that has both nuclear and mitochondrial functions, and also exerts regulatory effects on cell growth and apoptosis. In this study, cell proliferation, cell migration, collagen production and TGF-β signaling was compared between normal fibroblasts (NFs) and keloid fibroblasts (KFs). Subsequently, the effects of CRIF1 deficiency were investigated in both NFs and KFs. Cell proliferation, cell migration, collagen production and protein expressions of TGF-β, phosphorylation of Smad2 and Smad3 were all found to be higher in KFs compared to NFs. CRIF1 deficiency in NFs and KFs inhibited cell proliferation, migration, and collagen production. In addition, phosphorylation of Smad2 and Smad3, which are transcription factors of collagen, was decreased. In contrast, mRNA expression levels of Smad7 and SMURF2, two important inhibitory proteins of Smad2/3, were increased, suggesting that CRIF1 may regulate collagen production. CRIF1 deficiency decreases the proliferation and migration of KFs, thereby inhibiting their overgrowth via the transforming growth factor-β (TGF-β)/Smad pathway. CRIF1 may therefore represent a potential therapeutic target in keloid pathogenesis.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sungmin Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-Gu, Daejeon, 35015, Republic of Korea. .,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea. .,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea. .,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Immunity 2020; 54:53-67.e7. [PMID: 33058782 PMCID: PMC7840524 DOI: 10.1016/j.immuni.2020.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance. Doxycycline protects from sepsis beyond its direct antibacterial activity Doxycycline protection from infection is microbiome-independent Inhibition of mitochondrial protein synthesis induces disease tolerance Mild and transient perturbations of the mitochondrial ETC induce disease tolerance
Collapse
Affiliation(s)
- Henrique G Colaço
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Barros
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Velho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Katharina L Willmann
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Pedro Faisca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Vladimir Benes
- EMBL Genomics Core Facilities, D-69117 Heidelberg, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria
| | - Luís F Moita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
12
|
Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr Patterns 2020; 38:119147. [PMID: 32987154 DOI: 10.1016/j.gep.2020.119147] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components for the structural and functional integrity of the mitoribosome complex. Throughout evolution, the mammalian mitoribosome has acquired new Mrp genes to compensate for loss of ribosomal RNA. More than 80 MRPs have been identified in mammals. Here we document expression pattern of 79 Mrp genes during mouse development and adult tissues and find that these genes are consistently expressed throughout early embryogenesis with little stage or tissue specificity. Further investigation of the amino acid sequence reveals that this group of proteins has little to no protein similarity. Recent work has shown that the majority of Mrp genes are essential resulting in early embryonic lethality, suggesting no functional redundancy among the group. Taken together, these results indicate that the Mrp genes are not a gene family descended from a single ancestral gene, and that each MRP has unique and essential role in the mitoribosome complex. The lack of functional redundancy is surprising given the importance of the mitoribosome for cellular and organismal viability. Further, these data suggest that genomic variants in Mrp genes may be causative for early pregnancy loss and should be evaluated as clinically.
Collapse
|
13
|
Shin JM, Ko JW, Choi CW, Lee Y, Seo YJ, Lee JH, Kim CD. Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice. PLoS One 2020; 15:e0232206. [PMID: 32330194 PMCID: PMC7182249 DOI: 10.1371/journal.pone.0232206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hair growth is the cyclically regulated process that is characterized by growing phase (anagen), regression phase (catagen) and resting phase (telogen). Hair follicle stem cells (HFSCs) play pivotal role in the control of hair growth cycle. It has been notified that stem cells have the distinguished metabolic signature compared to differentiated cells, such as the preference to glycolysis rather than mitochondrial respiration. Crif1 is a mitochondrial protein that regulates the synthesis and insertion of oxidative phosphorylation (OXPHOS) polypeptides to inner membrane of mitochondria. Several studies demonstrate that tissue-specific knockout of Crif1 leads to mitochondrial dysfunction. In this study, we investigated the effect of mitochondrial dysfunction in terms of Crif1 deficiency on the hair growth cycle of adult mice. We created two kinds of inducible conditional knockout (icKO) mice. In epidermal specific icKO mice (Crif1 K14icKO), hair growth cycle was significantly retarded compared to wild type mice. Similarly, HFSC specific icKO mice (Crif1 K15icKO) showed significant retardation of hair growth cycle in depilation-induced anagen model. Interestingly, flow cytometry revealed that HFSC populations were maintained in Crif1 K15icKO mice. These results suggest that mitochondrial function in HFSCs is important for the progression of hair growth cycle, but not for maintenance of HFSCs.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Woo Ko
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chong-Won Choi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
14
|
Li X, Turanli B, Juszczak K, Kim W, Arif M, Sato Y, Ogawa S, Turkez H, Nielsen J, Boren J, Uhlen M, Zhang C, Mardinoglu A. Classification of clear cell renal cell carcinoma based on PKM alternative splicing. Heliyon 2020; 6:e03440. [PMID: 32095654 PMCID: PMC7033363 DOI: 10.1016/j.heliyon.2020.e03440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/17/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 70-80% of kidney cancer diagnoses and displays high molecular and histologic heterogeneity. Hence, it is necessary to reveal the underlying molecular mechanisms involved in progression of ccRCC to better stratify the patients and design effective treatment strategies. Here, we analyzed the survival outcome of ccRCC patients as a consequence of the differential expression of four transcript isoforms of the pyruvate kinase muscle type (PKM). We first extracted a classification biomarker consisting of eight gene pairs whose within-sample relative expression orderings (REOs) could be used to robustly classify the patients into two groups with distinct molecular characteristics and survival outcomes. Next, we validated our findings in a validation cohort and an independent Japanese ccRCC cohort. We finally performed drug repositioning analysis based on transcriptomic expression profiles of drug-perturbed cancer cell lines and proposed that paracetamol, nizatidine, dimethadione and conessine can be repurposed to treat the patients in one of the subtype of ccRCC whereas chenodeoxycholic acid, fenoterol and hexylcaine can be repurposed to treat the patients in the other subtype.
Collapse
Affiliation(s)
- Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Beste Turanli
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Kajetan Juszczak
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25240, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host–Microbiome Interactions, Dental Institute, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
15
|
Park J, Choi S, Hwang S, Kim S, Choi J, Jung K, Kwon JY, Kong Y, Cho M, Park S. CR6-interacting factor 1 controls autoimmune arthritis by regulation of signal transducer and activator of transcription 3 pathway and T helper type 17 cells. Immunology 2019; 156:413-421. [PMID: 30585643 PMCID: PMC6418438 DOI: 10.1111/imm.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
CR6-interacting factor 1 (CRIF1) is a nuclear protein that interacts with other nuclear factors and androgen receptors, and is implicated in the regulation of cell cycle progression and cell growth. In this study, we examined whether CRIF1 exerts an immunoregulatory effect by modulating the differentiation and function of pathogenic T cells. To this end, the role of CRIF1 in rheumatoid arthritis, a systemic autoimmune disease characterized by hyperplasia of synovial tissue and progressive destruction of articular cartilage structure by pathogenic immune cells [such as T helper type 17 (Th17) cells], was investigated. p3XFLAG-CMV-10-CRIF1 was administered to mice with collagen-induced arthritis 8 days after collagen type II immunization and the disease severity and histologic evaluation, and osteoclastogenesis were assessed. CRIF1 over-expression in mice with collagen-induced arthritis attenuated the clinical and histological signs of inflammatory arthritis. Furthermore, over-expression of CRIF1 in mice with arthritis significantly reduced the number of signal transducer and activator of transcription 3-mediated Th17 cells in the spleen as well as osteoclast differentiation from bone marrow cells. To investigate the impact of loss of CRIF1 in T cells, we generated a conditional CRIF1 gene ablation model using CD4-cre transgenic mice and examined the frequency of Th17 cells and regulatory T cells. Deficiency of CRIF1 in CD4+ cells promoted the production of interleukin-17 and reduced the frequency of regulatory T cells. These results suggest a role for CRIF1 in modulating the activities of Th17 cells and osteoclasts in rheumatoid arthritis.
Collapse
Affiliation(s)
- Jin‐Sil Park
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Si‐Young Choi
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Sun‐Hee Hwang
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Sung‐Min Kim
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - JeongWon Choi
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Kyung‐Ah Jung
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Ji Ye Kwon
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
| | - Young‐Yun Kong
- School of Biological SciencesSeoul National UniversitySeoulSouth Korea
| | - Mi‐La Cho
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
- Department of Medical Life ScienceCollege of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine & Health Sciences, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Sung‐Hwan Park
- The Rheumatism Research CenterCatholic Research Institute of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
- Divison of RheumatologyDepartment of Internal MedicineThe Catholic University of KoreaSeoulSouth Korea
| |
Collapse
|
16
|
Kim MS, Lee HS, Kim YJ, Lee DY, Kang SG, Jin W. MEST induces Twist-1-mediated EMT through STAT3 activation in breast cancers. Cell Death Differ 2019; 26:2594-2606. [PMID: 30903102 DOI: 10.1038/s41418-019-0322-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 01/03/2023] Open
Abstract
The loss of imprinting of MEST has been linked to certain types of cancer by promoter switching. However, MEST-mediated regulation of tumorigenicity and metastasis are yet to be understood. Herein, we reported that MEST is a key regulator of IL-6/JAK/STAT3/Twist-1 signal pathway-mediated tumor metastasis. Enhanced MEST expression is significantly associated with pathogenesis of breast cancer patients. Also, MEST induces metastatic potential of breast cancer through induction of the EMT-TFs-mediated EMT program. Moreover, MEST leads to Twist-1 induction by STAT3 activation and subsequently enables the induction of activation of the EMT program via the induction of STAT3 nuclear translocation. Furthermore, the c-terminal region of MEST was essential for STAT3 activation via the induction of JAK2/STAT3 complex formation. Finally, MEST is required for metastasis in an experimental metastasis model. These observations suggest that MEST is a promising target for intervention to prevent tumor metastasis.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 406-840, Korea
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Haeyang-ro 385, Yeongdo-gu, Busan, 49111, Republic of Korea.,Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yun Jae Kim
- Korea Institute of Ocean Science and Technology, Haeyang-ro 385, Yeongdo-gu, Busan, 49111, Republic of Korea.,Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Haeyang-ro 385, Yeongdo-gu, Busan, 49111, Republic of Korea. .,Department of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 406-840, Korea.
| |
Collapse
|
17
|
Ran Q, Xiang Y, Stephen P, Wu C, Li T, Lin SX, Li Z. CRIF1-CDK2 Interface Inhibitors: An Unprecedented Strategy for Modulation of Cell Radiosensitivity. J Am Chem Soc 2019; 141:1420-1424. [PMID: 30653304 DOI: 10.1021/jacs.8b10207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclin-dependent kinases (CDKs) are historic therapeutic targets implicated in tumorigenic events due to their critical involvement in the cell cycle phase. However, selectivity has proven to be a bottleneck, causing repeated failures. Previously, we reported CR6-interacting factor 1 (CRIF1), acting as a cell cycle negative regulator through interaction with CDK2. In the current report, we identified the CRIF1-CDK2 interaction interface by in silico studies and shortlisted interface inhibitors through virtual screening on CRIF1 using 40 678 drug-like compounds. These compounds were tested by cell proliferation assay, and four of these molecules were found to selectively inhibit the proliferation of osteosarcoma (OS) cell lines, but do not affect normal bone mesenchymal stem cells (BMSC). A binding study reveals significant affinities of the inhibitors on CRIF1. More importantly, treatment of the OS cells with a combination of ionizing radiation (IR) and the best-performing inhibitors remarkably increased IR inhibition potential from 19.9% to 59.6%. This occurred by selectively promoting G2/M arrest and apoptosis related to CDK2 overactivation in OS cells but not in BMSC and was supported by significant CDK2 phosphorylation modifications. Knocking down of CRIF1 by siRNA treatment showed similar effects to the interface inhibitors. Together we substantiate the identification of novel lead molecules, which may provide a new treatment to overcome selectivity issues and enhance the radiosensitivity of tumor cells, opening a conceptually novel strategy of CDK-targeting for different cancer types.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Yang Xiang
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Chun Wu
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Tang Li
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Zhongjun Li
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| |
Collapse
|
18
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19061787. [PMID: 29914167 PMCID: PMC6032216 DOI: 10.3390/ijms19061787] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signaling pathways in different biological processes, including immune responses, hematopoiesis, and neurogenesis. Among the STAT members, STAT3 plays crucial roles in cell proliferation, survival, and differentiation. While STAT3 activation is transient in physiological conditions, STAT3 becomes persistently activated in a high percentage of solid and hematopoietic malignancies (e.g., melanoma, multiple myeloma, breast, prostate, ovarian, and colon cancers), thus contributing to malignant transformation and progression. This makes STAT3 an attractive therapeutic target for cancers. Initial strategies aimed at inhibiting STAT3 functions have focused on blocking the action of its activating kinases or sequestering its DNA binding ability. More recently, the diffusion of proteomic-based techniques, which have allowed for the identification and characterization of novel STAT3-interacting proteins able to modulate STAT3 activity via its subcellular localization, interact with upstream kinases, and recruit transcriptional machinery, has raised the possibility to target such cofactors to specifically restrain STAT3 oncogenic functions. In this article, we summarize the available data about the function of STAT3 interactors in malignant cells and discuss their role as potential therapeutic targets for cancer treatment.
Collapse
|
20
|
Zhang Y, Ding H, Wang X, Ye SD. Modulation of STAT3 phosphorylation by PTPN2 inhibits naïve pluripotency of embryonic stem cells. FEBS Lett 2018; 592:2227-2237. [PMID: 29797458 DOI: 10.1002/1873-3468.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 01/18/2023]
Abstract
STAT3 phosphorylation at tyrosine 705 (STAT3pY705 ), triggered by the addition of the leukemia inhibitory factor (LIF), can maintain mouse embryonic stem cell (mESC) self-renewal and reprogram mouse epiblast stem cells (EpiSCs) to enter a naïve pluripotent state. The activation of STAT3pY705 occurs mainly through Janus kinases. However, it remains unclear how STAT3pY705 levels are decreased in mESCs. Our study shows that upregulation of the protein tyrosine phosphatase (PTPN2) inhibits STAT3 activity by reducing its phosphorylation level and promotes mESC differentiation, whereas PTPN2 knockout by CRISPR/CAS9 delays mESC differentiation. Consistently, PTPN2 knockdown facilitates the generation of mESC-like colonies in STAT3-overexpressing EpiSCs. PTPN2-mediated STAT3 activity, thus, contributes to the exit of ESCs from the pluripotent ground state. These findings expand the current understanding of the regulatory network of naïve pluripotency.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Huiwen Ding
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Xiaohu Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
21
|
Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, Chung HK, Kim YK, Kang SG, Lee JH, Kim KS, Kim HJ, Kim CS, Lee CH, Williams RW, Kim H, Lee HK, Auwerx J, Shong M. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9:1551. [PMID: 29674655 PMCID: PMC5908799 DOI: 10.1038/s41467-018-03998-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages. M1-like polarization of macrophages is thought to control adipose inflammation and associated insulin resistance and metabolic syndrome. Here the authors show that macrophage-specific deletion of the OxPhos-related gene Crif1 results in an M1-like phenotype in mice, and that the effects can be reversed by recombinant GDF15.
Collapse
Affiliation(s)
- Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Laboratory of Molecular and Integrative Biology, Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34051, Korea
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, Korea.
| |
Collapse
|
22
|
CR6-interacting factor 1 inhibits invasiveness by suppressing TGF-β-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2017; 8:94759-94768. [PMID: 29212264 PMCID: PMC5706910 DOI: 10.18632/oncotarget.21925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
CR6-interacting factor 1 (CRIF1) regulates cell cycle progression and the DNA damage response. Here, we show that CRIF1 expression is decreased in hepatocellular carcinoma (HCC) tissues and positively correlates with patients’ survival. In vitro, down-regulation of CRIF1 promotes HCC cell proliferation and invasiveness, while over-expression has the opposite effect. in vivo, CRIF1 knockdown enhances growth of HCC xenografts. Analysis of mRNA microarrays showed that CRIF1 knockdown activates genes involved in TGF-β RI/Smad2/3 signaling, leading to epithelial-mesenchymal transition (EMT) and increased matrix metalloproteinase-3 (MMP3) expression. However, cell invasion and EMT are abrogated in HCC cells treated with SB525334, a specific TGF-β RI inhibitor, which indicates the inhibitory effect of CRIF1 on HCC tumor growth is mediated by TGF-β signaling. These results demonstrate that CRIF1 benefits patient survival by inhibiting HCC cell invasiveness through suppression of TGF-β-mediated EMT and MMP3 expression. This suggests CRIF1 may serve as a novel target for inhibiting HCC metastasis.
Collapse
|
23
|
Nagar H, Jung SB, Ryu MJ, Choi SJ, Piao S, Song HJ, Kang SK, Shin N, Kim DW, Jin SA, Jeong JO, Irani K, Jeon BH, Shong M, Kweon GR, Kim CS. CR6-Interacting Factor 1 Deficiency Impairs Vascular Function by Inhibiting the Sirt1-Endothelial Nitric Oxide Synthase Pathway. Antioxid Redox Signal 2017; 27:234-249. [PMID: 28117598 DOI: 10.1089/ars.2016.6719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Mitochondrial dysfunction has emerged as a major contributing factor to endothelial dysfunction and vascular disease, but the key mechanisms underlying mitochondrial dysfunction-induced endothelial dysfunction remain to be elucidated. In this study, we aim at determining whether mitochondrial dysfunction in endothelial cells plays a key role in vascular disease, by examining the phenotype of endothelial-specific CR6-interacting factor 1 (CRIF1) knockout mice. We also used siRNA-mediated downregulation of CRIF1 gene in the endothelial cells to study about the in vitro pathophysiological underlying mechanisms. RESULTS Downregulation of CRIF1 in endothelial cells caused disturbances of mitochondrial oxidative phosphorylation complexes and membrane potential, leading to enhanced mitochondrial reactive oxygen species production. Gene silencing of CRIF1 results in decreased SIRT1 expression along with increased endothelial nitric oxide synthase (eNOS) acetylation, leading to reduced nitric oxide production both in vitro and in vivo. Endothelium-dependent vasorelaxation of aortic rings from CRIF1 knockout (KO) mice was considerably less than in wild-type mice, and it was partially recovered by Sirt1 overexpression in CRIF1 KO mice. INNOVATION Our results show for the first time a relationship between mitochondrial dysfunction and impaired vascular function induced in CRIF1 deficiency conditions and also the possible underlying pathway involved. CONCLUSION These findings indicate that CRIF1 plays an important role in maintaining mitochondrial and endothelial function through its effects on the SIRT1-eNOS pathway. Antioxid. Redox Signal. 27, 234-249.
Collapse
Affiliation(s)
- Harsha Nagar
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Saet-Byel Jung
- 3 Department of Endocrinology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Min Jeong Ryu
- 4 Department of Biochemistry, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Su-Jung Choi
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Shuyu Piao
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Hee-Jung Song
- 5 Department of Neurology, Chungnam National University Hospital , Daejeon, Republic of Korea
| | - Shin Kwang Kang
- 6 Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital , Daejeon, Republic of Korea
| | - Nara Shin
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,7 Department of Anatomy, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Dong Woon Kim
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,7 Department of Anatomy, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Seon-Ah Jin
- 8 Division of Cardiology, Department of Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine , Daejeon, Republic of Korea
| | - Jin-Ok Jeong
- 8 Division of Cardiology, Department of Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine , Daejeon, Republic of Korea
| | - Kaikobad Irani
- 9 Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Byeong Hwa Jeon
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Minho Shong
- 3 Department of Endocrinology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Gi Ryang Kweon
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,4 Department of Biochemistry, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| |
Collapse
|
24
|
Chen L, Ran Q, Xiang Y, Xiang L, Chen L, Li F, Wu J, Wu C, Li Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017; 7:2634-2648. [PMID: 28819452 PMCID: PMC5558558 DOI: 10.7150/thno.17853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of irradiation-induced elevation of protein levels of CR6-interacting factor 1(CRIF1) and nuclear factor E2-related factor 2(NRF2). Crif1-knockdown BMMSCs presented increased oxidative stress and apoptosis after irradiation, which were partially due to a suppressed antioxidant response mediated by decreased NRF2 nuclear translocation. Co-immunoprecipitation (Co-IP) experiments indicated that CRIF1 interacted with protein kinase C-δ (PKC-δ). NRF2 Ser40 phosphorylation was inhibited in Crif1-deficient BMMSCs even in the presence of three kinds of PKC agonists, suggesting that CRIF1 might co-activate PKC-δ to phosphorylate NRF2 Ser40. After radiative injury, the supporting effect of BMMSCs for the colony forming ability of HSCs in vitro was reduced, and the deficiency of CRIF1 aggravated such damage. Thus, CRIF1 plays an essential role in PKC-δ/NRF2 pathway modulation to alleviate oxidative stress in BMMSCs after irradiative injury, and at some level it may maintain the HSCs-supporting effect of BMMSCs after radiative injuries.
Collapse
|
25
|
Yan Q, Ahn SH, Medie FM, Sharma-Kuinkel BK, Park LP, Scott WK, Deshmukh H, Tsalik EL, Cyr DD, Woods CW, Yu CHA, Adams C, Qi R, Hansen B, Fowler VG. Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans. PLoS One 2017; 12:e0179033. [PMID: 28594911 PMCID: PMC5464679 DOI: 10.1371/journal.pone.0179033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
We previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780–88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus.
Collapse
Affiliation(s)
- Qin Yan
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Department of Biochemistry School of Dentistry, Chonnam National University, Bukgu, Gwangju, Korea
| | - Felix Mba Medie
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Batu K. Sharma-Kuinkel
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lawrence P. Park
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - William K. Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ephraim L. Tsalik
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Emergency Medicine Service, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Section on Infectious Diseases, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
| | - Chen-Hsin Albert Yu
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carlton Adams
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Qi
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Brenda Hansen
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Vance G. Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yan HX, Zhang YJ, Zhang Y, Ren X, Shen YF, Cheng MB, Zhang Y. CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:516-522. [DOI: 10.1016/j.bbagrm.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/28/2022]
|
27
|
Kang SG, Yi HS, Choi MJ, Ryu MJ, Jung S, Chung HK, Chang JY, Kim YK, Lee SE, Kim HW, Choi H, Kim DS, Lee JH, Kim KS, Kim HJ, Lee CH, Oike Y, Shong M. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol 2017; 233:105-118. [PMID: 28184000 DOI: 10.1530/joe-16-0549] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | | | - Saetbyel Jung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hoil Choi
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Dong Seok Kim
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Chul-Ho Lee
- Animal Model CenterKorea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
28
|
Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep 2017; 7:44828. [PMID: 28317864 PMCID: PMC5357846 DOI: 10.1038/srep44828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
The epidermis, which consists mainly of keratinocytes, acts as a physical barrier to infections by regulating keratinocyte proliferation and differentiation. Hair follicles undergo continuous cycling to produce new one. Therefore, optimum supply of energy from the mitochondria is essential for maintaining skin homeostasis and hair growth. CRIF1 is a mitochondrial protein that regulates mitoribosome-mediated synthesis and insertion of mitochondrial oxidative phosphorylation polypeptides into the mitochondrial membrane in mammals. Recent studies reveal that conditional knockout (cKO) of Crif1 in specific tissues of mice induced mitochondrial dysfunction. To determine whether the mitochondrial function of keratinocytes affects skin homeostasis and hair morphogenesis, we generated epidermis-specific Crif1 cKO mice. Deletion of Crif1 in epidermis resulted in impaired mitochondrial function and Crif1 cKO mice died within a week. Keratinocyte proliferation and differentiation were markedly inhibited in Crif1 cKO mice. Furthermore, hair follicle morphogenesis of Crif1 cKO mice was disrupted by down-regulation of Wnt/β-catenin signaling. These results demonstrate that mitochondrial function in keratinocytes is essential for maintaining epidermal homeostasis and hair follicle morphogenesis.
Collapse
|
29
|
Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ, Kim SJ, Kweon GR, Kim H, Hwang JH, Lee CH, Lee SJ, Wall CE, Downes M, Evans RM, Auwerx J, Shong M. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 2017; 216:149-165. [PMID: 27986797 PMCID: PMC5223607 DOI: 10.1083/jcb.201607110] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/09/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and -non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle-specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell-non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Min Jeong Ryu
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338, South Korea
| | - Jung Hwan Hwang
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-764, South Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-764, South Korea
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| |
Collapse
|
30
|
Yeh JE, Frank DA. STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy. ChemMedChem 2015; 11:795-801. [DOI: 10.1002/cmdc.201500482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer E. Yeh
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| | - David A. Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| |
Collapse
|
31
|
Lim SJ, Scott A, Xiong XP, Vahidpour S, Karijolich J, Guo D, Pei S, Yu YT, Zhou R, Li WX. Requirement for CRIF1 in RNA interference and Dicer-2 stability. RNA Biol 2015; 11:1171-9. [PMID: 25483042 DOI: 10.4161/rna.34381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway.
Collapse
Affiliation(s)
- Su Jun Lim
- a Department of Medicine ; University of California San Diego ; La Jolla , CA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Okoye I, Wang L, Pallmer K, Richter K, Ichimura T, Haas R, Crouse J, Choi O, Heathcote D, Lovo E, Mauro C, Abdi R, Oxenius A, Rutschmann S, Ashton-Rickardt PG. RETRACTED: T cell metabolism. The protein LEM promotes CD8⁺ T cell immunity through effects on mitochondrial respiration. Science 2015; 348:995-1001. [PMID: 25883318 DOI: 10.1126/science.aaa7516] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/06/2015] [Indexed: 12/11/2022]
Abstract
Protective CD8(+) T cell-mediated immunity requires a massive expansion in cell number and the development of long-lived memory cells. Using forward genetics in mice, we identified an orphan protein named lymphocyte expansion molecule (LEM) that promoted antigen-dependent CD8(+) T cell proliferation, effector function, and memory cell generation in response to infection with lymphocytic choriomeningitis virus. Generation of LEM-deficient mice confirmed these results. Through interaction with CR6 interacting factor (CRIF1), LEM controlled the levels of oxidative phosphorylation (OXPHOS) complexes and respiration, resulting in the production of pro-proliferative mitochondrial reactive oxygen species (mROS). LEM provides a link between immune activation and the expansion of protective CD8(+) T cells driven by OXPHOS and represents a pathway for the restoration of long-term protective immunity based on metabolically modified cytotoxic CD8(+) T cells.
Collapse
Affiliation(s)
- Isobel Okoye
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Lihui Wang
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Katharina Pallmer
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich (ETHZ), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Kirsten Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich (ETHZ), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Takahuru Ichimura
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA
| | - Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Josh Crouse
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich (ETHZ), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Onjee Choi
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Dean Heathcote
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Elena Lovo
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich (ETHZ), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sophie Rutschmann
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK. Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Yeh JE, Kreimer S, Walker SR, Emori MM, Krystal H, Richardson A, Ivanov AR, Frank DA. Granulin, a novel STAT3-interacting protein, enhances STAT3 transcriptional function and correlates with poorer prognosis in breast cancer. Genes Cancer 2015; 6:153-68. [PMID: 26000098 PMCID: PMC4426952 DOI: 10.18632/genesandcancer.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 11/25/2022] Open
Abstract
Since the neoplastic phenotype of a cell is largely driven by aberrant gene expression patterns, increasing attention has been focused on transcription factors that regulate critical mediators of tumorigenesis such as signal transducer and activator of transcription 3 (STAT3). As proteins that interact with STAT3 may be key in addressing how STAT3 contributes to cancer pathogenesis, we took a proteomics approach to identify novel STAT3-interacting proteins. We performed mass spectrometry-based profiling of STAT3-containing complexes from breast cancer cells that have constitutively active STAT3 and are dependent on STAT3 function for survival. We identified granulin (GRN) as a novel STAT3-interacting protein that was necessary for both constitutive and maximal leukemia inhibitory factor (LIF)induced STAT3 transcriptional activity. GRN enhanced STAT3 DNA binding and also increased the time-integrated amount of LIF-induced STAT3 activation in breast cancer cells. Furthermore, silencing GRN neutralized STAT3-mediated tumorigenic phenotypes including viability, clonogenesis, and migratory capacity. In primary breast cancer samples, GRN mRNA levels were positively correlated with STAT3 gene expression signatures and with reduced patient survival. These studies identify GRN as a functionally important STAT3-interacting protein that may serve as an important prognostic biomarker and potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Simion Kreimer
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA ; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Megan M Emori
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hannah Krystal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Andrea Richardson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA ; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Kim YK, Joung KH, Ryu MJ, Kim SJ, Kim H, Chung HK, Lee MH, Lee SE, Choi MJ, Chang JY, Hong HJ, Kim KS, Lee SH, Kweon GR, Kim H, Lee CH, Kim HJ, Shong M. Disruption of CR6-interacting factor-1 (CRIF1) in mouse islet beta cells leads to mitochondrial diabetes with progressive beta cell failure. Diabetologia 2015; 58:771-80. [PMID: 25660120 DOI: 10.1007/s00125-015-3506-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/30/2014] [Indexed: 12/25/2022]
Abstract
AIM/HYPOTHESIS Although mitochondrial oxidative phosphorylation (OxPhos) dysfunction is believed to be responsible for beta cell dysfunction in insulin resistance and mitochondrial diabetes, the mechanisms underlying progressive beta cell failure caused by defective mitochondrial OxPhos are largely unknown. METHODS We examined the in vivo phenotypes of beta cell dysfunction in beta cell-specific Crif1 (also known as Gadd45gip1)-deficient mice. CR6-interacting factor-1 (CRIF1) is a mitochondrial protein essential for the synthesis and formation of the OxPhos complex in the inner mitochondrial membrane. RESULTS Crif1(beta-/-) mice exhibited impaired glucose tolerance with defective insulin secretion as early as 4 weeks of age without defects in islet structure. At 11 weeks of age, Crif1(beta-/-) mice displayed characteristic ultrastructural mitochondrial abnormalities as well as severe glucose intolerance. Furthermore, islet area and insulin content was decreased by approximately 50% compared with wild-type mice. Treatment with the glucoregulatory drug exenatide, a glucagon-like peptide-1 (GLP-1) agonist, was not sufficient to preserve beta cell function in Crif1(beta-/-) mice. CONCLUSIONS/INTERPRETATION Our results indicate that mitochondrial OxPhos dysfunction triggers progressive beta cell failure that is not halted by treatment with a GLP-1 agonist. The Crif1(beta-/-) mouse is a useful model for the study of beta cell failure caused by mitochondrial OxPhos dysfunction.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. Structure of the large ribosomal subunit from human mitochondria. Science 2014; 346:718-722. [PMID: 25278503 DOI: 10.1126/science.1258026] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Yoichiro Sugimoto
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Patricia C Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
36
|
Ran Q, Hao P, Xiao Y, Xiang L, Ye X, Deng X, Zhao J, Li Z. CRIF1 interacting with CDK2 regulates bone marrow microenvironment-induced G0/G1 arrest of leukemia cells. PLoS One 2014; 9:e85328. [PMID: 24520316 PMCID: PMC3919709 DOI: 10.1371/journal.pone.0085328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Background To assess the level of CR6-interacting factor 1 (CRIF1), a cell cycle negative regulator, in patients with leukemia and investigate the role of CRIF1 in regulating leukemia cell cycle. Methods We compared the CRIF1 level in bone marrow (BM) samples from healthy and acute myeloid leukemia (AML), iron deficiency anemia (IDA) and AML-complete remission (AML-CR) subjects. We also manipulated CRIF1 level in the Jurkat cells using lentivirus-mediated overexpression or siRNA-mediated depletion. Co-culture with the BM stromal cells (BMSCs) was used to induce leukemia cell cycle arrest and mimic the BM microenvironment. Results We found significant decreases of CRIF1 mRNA and protein in the AML group. CRIF1 overexpression increased the proportion of Jurkat cells arrested in G0/G1, while depletion of endogenous CRIF1 decreased cell cycle arrest. Depletion of CRIF1 reversed BMSCs induced cell cycle arrest in leukemia cells. Co-immunoprecipitation showed a specific binding of CDK2 to CRIF1 in Jurkat cells during cell cycle arrest. Co-localization of two proteins in both nucleus and cytoplasm was also observed with immunofluorescent staining. Conclusion CRIF1 may play a regulatory role in the BM microenvironment-induced leukemia cell cycle arrest possibly through interacting with CDK2 and acting as a cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Ping Hao
- Oncologic Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixing Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xingde Ye
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaojun Deng
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
37
|
Tan JA, Bai S, Grossman G, Titus MA, Harris Ford O, Pop EA, Smith GJ, Mohler JL, Wilson EM, French FS. Mechanism of androgen receptor corepression by CKβBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer. Mol Cell Endocrinol 2014; 382:302-313. [PMID: 24103312 PMCID: PMC3880566 DOI: 10.1016/j.mce.2013.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/12/2023]
Abstract
The transcription factor coregulator Casein kinase IIβ-binding protein 2 or CR6-interacting factor 1 (CKβBP2/CRIF1) binds the androgen receptor (AR) in prostate cancer cells and in response to dihydrotestosterone localizes with AR on the prostate-specific antigen gene enhancer, but does not bind DNA suggesting CKβBP2/CRIF1 localization in chromatin is determined by AR. In this study we show also that CKβBP2/CRIF1 inhibits wild-type AR and AR N-terminal transcriptional activity, binds to the AR C-terminal region, inhibits interaction of the AR N- and C-terminal domains (N/C interaction) and competes with p160 coactivator binding to the AR C-terminal domain, suggesting CKβBP2/CRIF1 interferes with AR activation functions 1 and 2. CKβBP2/CRIF1 is expressed mainly in stromal cells of benign prostatic hyperplasia and in stroma and epithelium of prostate cancer. CKβBP2/CRIF1 protein is increased in epithelium of androgen-dependent prostate cancer compared to benign prostatic hyperplasia and decreased slightly in castration recurrent epithelium compared to androgen-dependent prostate cancer. The multifunctional CKβBP2/CRIF1 is a STAT3 interacting protein and reported to be a coactivator of STAT3. CKβBP2/CRIF1 is expressed with STAT3 in prostate cancer where STAT3 may help to offset the AR repressor effect of CKβBP2/CRIF1 and allow AR regulation of prostate cancer growth.
Collapse
Affiliation(s)
- Jiann-An Tan
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Suxia Bai
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Gail Grossman
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Mark A Titus
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - O Harris Ford
- Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Elena A Pop
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Urology, University of Buffalo, School of Medicine and Biotechnology, Buffalo, NY, United States
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Frank S French
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
38
|
Shaposhnikov AV, Komar’kov IF, Lebedeva LA, Shidlovskii YV. Molecular components of JAK/STAT signaling pathway and its interaction with transcription machinery. Mol Biol 2013. [DOI: 10.1134/s0026893313030126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ryu MJ, Kim SJ, Kim YK, Choi MJ, Tadi S, Lee MH, Lee SE, Chung HK, Jung SB, Kim HJ, Jo YS, Kim KS, Lee SH, Kim JM, Kweon GR, Park KC, Lee JU, Kong YY, Lee CH, Chung J, Shong M. Crif1 deficiency reduces adipose OXPHOS capacity and triggers inflammation and insulin resistance in mice. PLoS Genet 2013; 9:e1003356. [PMID: 23516375 PMCID: PMC3597503 DOI: 10.1371/journal.pgen.1003356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/17/2013] [Indexed: 12/19/2022] Open
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS-deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA-encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Min Jeong Ryu
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Surendar Tadi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun-Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Suk Jo
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Hee Lee
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki Cheol Park
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Korea
| | - Jung Uee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Korea
| | - Young Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- * E-mail:
| |
Collapse
|
40
|
Ryu MJ, Kim SJ, Choi MJ, Kim YK, Lee MH, Lee SE, Chung HK, Jung SB, Kim HJ, Kim KS, Jo YS, Kweon GR, Lee CH, Shong M. Mitochondrial oxidative phosphorylation reserve is required for hormone- and PPARγ agonist-induced adipogenesis. Mol Cells 2013; 35:134-41. [PMID: 23456335 PMCID: PMC3887907 DOI: 10.1007/s10059-012-2257-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 01/27/2023] Open
Abstract
Adipocyte differentiation requires the coordinated activities of several nuclear transcription factors. Recently, mitochondria biogenesis was reported to occur during adipocyte differentiation and following treatment with thiazolidinediones in vitro and in vivo. Crif1 is a translational factor for mitochondrial DNA (mtDNA) and is important for transcription of the mitochondrial oxidative phosphorylation (OXPHOS) complex. To investigate the role of OXPHOS in adipogenesis, we analyzed adipocyte differentiation following disruption of Crif1 in vitro and in vivo. The adipose-specific Crif1 knockout mouse had a lower body weight and less fat mass than wild-type mice. Furthermore, adipocytes were smaller and had a dysplastic morphology in the adipose-specific Crif1 knockout mouse. 3T3-L1 adipocytes or adipose-derived stem cells (ADSCs) that lacked Crif1 expressed lower levels of mtDNA-encoded OXPHOS subunits, and adipocyte differentiation was disrupted. Rosiglitazone treatment did not induce adipogenesis or mitochondria biogenesis in Crif1 knockout ADSCs. These results show that mitochondrial OXPHOS and Crif1 are required for rosiglitazone- and hormone-induced adipogenesis.
Collapse
Affiliation(s)
- Min Jeong Ryu
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Saet Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Hyun-Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | - Young Suk Jo
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| | | | | | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon,
Korea
| |
Collapse
|
41
|
Tadi S, Kim SJ, Ryu MJ, Park T, Jeong JS, Kim YH, Kweon GR, Shong M, Yim YH. Metabolic Rebalancing of CR6 Interaction Factor 1-Deficient Mouse Embryonic Fibroblasts: A Mass Spectrometry-Based Metabolic Analysis. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.1.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Shin J, Lee SH, Kwon MC, Yang DK, Seo HR, Kim J, Kim YY, Im SK, Abel ED, Kim KT, Park WJ, Kong YY. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice. PLoS One 2013; 8:e53577. [PMID: 23308255 PMCID: PMC3537664 DOI: 10.1371/journal.pone.0053577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f) mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.
Collapse
Affiliation(s)
- Juhee Shin
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Min-Chul Kwon
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Dong Kwon Yang
- Global Research Laboratory and Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ha-Rim Seo
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yoon-Young Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Sun-Kyoung Im
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Evan Dale Abel
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Woo Jin Park
- Global Research Laboratory and Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young-Yun Kong
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
43
|
Wei J, Yuan Y, Jin C, Chen H, Leng L, He F, Wang J. The ubiquitin ligase TRAF6 negatively regulates the JAK-STAT signaling pathway by binding to STAT3 and mediating its ubiquitination. PLoS One 2012. [PMID: 23185365 PMCID: PMC3501508 DOI: 10.1371/journal.pone.0049567] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STAT3 is a key transcription factor that mediates various cellular and organismal processes, such as cell growth, apoptosis, immune response and cancer. However, the molecular mechanisms of STAT3 regulation remain poorly understood. Here, we identified TRAF6 as a new STAT3 interactor. TRAF6 augmented the ubiquitination of STAT3 and deactivated its transcriptional activity induced by IFNα stimulation or overexpressed with JAK2. Both the RING domain and the TRAF-type zinc finger domain of TRAF6 were indispensable for STAT3 deactivation. Accordingly, TRAF6 also down-regulated the expression of two known STAT3 target genes, CRP and ACT. Therefore, we showed that TRAF6 is a new regulator of JAK/STAT signaling and provide a new mechanistic explanation for the crosstalk between the NF-κB and the JAK-STAT pathways.
Collapse
Affiliation(s)
- Juncheng Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ling Leng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (J. Wang); (FH)
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (J. Wang); (FH)
| |
Collapse
|
44
|
Kim SJ, Kwon MC, Ryu MJ, Chung HK, Tadi S, Kim YK, Kim JM, Lee SH, Park JH, Kweon GR, Ryu SW, Jo YS, Lee CH, Hatakeyama H, Goto YI, Yim YH, Chung J, Kong YY, Shong M. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab 2012; 16:274-83. [PMID: 22819524 DOI: 10.1016/j.cmet.2012.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/10/2012] [Accepted: 06/22/2012] [Indexed: 11/27/2022]
Abstract
Although substantial progress has been made in understanding the mechanisms underlying the expression of mtDNA-encoded polypeptides, the regulatory factors involved in mitoribosome-mediated synthesis and simultaneous insertion of mitochondrial oxidative phosphorylation (OXPHOS) polypeptides into the inner membrane of mitochondria are still unclear. In the present study, disruption of the mouse Crif1 gene, which encodes a mitochondrial protein, resulted in a profound deficiency in OXPHOS caused by the disappearance of OXPHOS subunits and complexes in vivo. CRIF1 was associated with large mitoribosomal subunits that were located close to the polypeptide exit tunnel, and the elimination of CRIF1 led to both aberrant synthesis and defective insertion of mtDNA-encoded nascent OXPHOS polypeptides into the inner membrane. CRIF1 interacted with nascent OXPHOS polypeptides and molecular chaperones, e.g., Tid1. Taken together, these results suggest that CRIF1 plays a critical role in the integration of OXPHOS polypeptides into the mitochondrial membrane in mammals.
Collapse
Affiliation(s)
- Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation. Mol Cell Biol 2011; 32:717-28. [PMID: 22124155 DOI: 10.1128/mcb.06177-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mouse PERIOD1 (mPER1) protein, along with other clock proteins, plays a crucial role in the maintenance of circadian rhythms. mPER1 also provides an important link between the circadian system and the cell cycle system. Here we show that the circadian expression of mPER1 is regulated by rhythmic translational control of mPer1 mRNA together with transcriptional modulation. This time-dependent translation was controlled by an internal ribosomal entry site (IRES) element in the 5' untranslated region (5'-UTR) of mPer1 mRNA along with the trans-acting factor mouse heterogeneous nuclear ribonucleoprotein Q (mhnRNP Q). Knockdown of mhnRNP Q caused a decrease in mPER1 levels and a slight delay in mPER1 expression without changing mRNA levels. The rate of IRES-mediated translation exhibits phase-dependent characteristics through rhythmic interactions between mPer1 mRNA and mhnRNP Q. Here, we demonstrate 5'-UTR-mediated rhythmic mPer1 translation and provide evidence for posttranscriptional regulation of the circadian rhythmicity of core clock genes.
Collapse
|
46
|
Zhang WN, Wang L, Wang Q, Luo X, Fang DF, Chen Y, Pan X, Man JH, Xia Q, Jin BF, Li WH, Li T, Liang B, Chen L, Gong WL, Yu M, Li AL, Zhou T, Li HY. CUEDC2 (CUE domain-containing 2) and SOCS3 (suppressors of cytokine signaling 3) cooperate to negatively regulate Janus kinase 1/signal transducers and activators of transcription 3 signaling. J Biol Chem 2011; 287:382-392. [PMID: 22084247 DOI: 10.1074/jbc.m111.276832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Janus kinase 1/signal transducers and activators of transcription 3 (JAK1/STAT3) pathway is one of the recognized oncogenic signaling pathways that frequently overactivated in a variety of human tumors. Despite rapid progress in elucidating the molecular mechanisms of activation of JAK/STAT pathway, the processes that regulate JAK/STAT deactivation need to be further clarified. Here we demonstrate that CUE domain-containing 2 (CUEDC2) inhibits cytokine-induced phosphorylation of JAK1 and STAT3 and the subsequent STAT3 transcriptional activity. Further analysis by a yeast two-hybrid assay showed that CUEDC2 could engage in a specific interaction with a key JAK/STAT inhibitor, SOCS3 (suppressors of cytokine signaling 3). The interaction between CUEDC2 and SOCS3 is required for the inhibitory effect of CUEDC2 on JAK1 and STAT3 activity. Additionally, we found CUEDC2 functions collaboratively with SOCS3 to inhibit JAK1/STAT3 signaling by increasing SOCS3 stability via enhancing its association with Elongin C. Therefore, our findings revealed a new biological activity for CUEDC2 as the regulator of JAK1/STAT3 signaling and paved the way to a better understanding of the mechanisms by which SOCS3 has been linked to suppression of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Wei-Na Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Li Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qiong Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xue Luo
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Di-Feng Fang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Yuan Chen
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jiang-Hong Man
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Qing Xia
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Bao-Feng Jin
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wei-Hua Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Bing Liang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Liang Chen
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wei-Li Gong
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Ming Yu
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Ai-Ling Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Zhou
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China.
| | - Hui-Yan Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China.
| |
Collapse
|
47
|
Woo KC, Kim TD, Lee KH, Kim DY, Kim S, Lee HR, Kang HJ, Chung SJ, Senju S, Nishimura Y, Kim KT. Modulation of exosome-mediated mRNA turnover by interaction of GTP-binding protein 1 (GTPBP1) with its target mRNAs. FASEB J 2011; 25:2757-69. [PMID: 21515746 DOI: 10.1096/fj.10-178715] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eukaryotic mRNA turnover is among most critical mechanisms that affect mRNA abundance and are regulated by mRNA-binding proteins and the cytoplasmic exosome. A functional protein, guanosine-triphosphate-binding protein 1 (GTPBP1), which associates with both the exosome and target mRNAs, was identified. The overexpression of GTPBP1 accelerated the target mRNA decay, whereas the reduction of the GTPBP1 expression with RNA interference stabilized the target mRNA. GTPBP1 has a putative guanosine-triphosphate (GTP)-binding domain, which is found in members of the G-protein family and Ski7p, a well-known core factor of the exosome-mediated mRNA turnover pathway in yeast. Analyses of protein interactions and mRNA decay demonstrated that GTPBP1 modulates mRNA degradation via GTP-binding-dependent target loading. Moreover, GTPBP1-knockout models displayed multiple mRNA decay defects, including elevated nocturnal levels of Aanat mRNA in pineal glands, and retarded degradation of TNF-α mRNA in lipopolysaccharide-treated splenocytes. The results of this study suggest that GTPBP1 is a regulator and adaptor of the exosome-mediated mRNA turnover pathway.
Collapse
Affiliation(s)
- Kyung-Chul Woo
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kang HJ, Hong YB, Kim HJ, Bae I. CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation. J Biol Chem 2010; 285:21258-68. [PMID: 20427290 PMCID: PMC2898415 DOI: 10.1074/jbc.m109.084590] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Free radicals generated by oxidative stress cause damage that can contribute to numerous chronic diseases. Mammalian cells respond to this damage by increased transcription of cytoprotective phase II genes, which are regulated by NRF2. Previously, it has been shown that NRF2 protein levels increase after oxidative stress because its negative regulator, KEAP1, loses its ability to bind NRF2 and cause its proteasome-mediated degradation during oxidative stress. Here, we show that CRIF1, a protein previously known as cell cycle regulator and transcription cofactor, is also able to negatively regulate NRF2 protein stability. However, in contrast to KEAP1, which regulates NRF2 stability only under normal reducing conditions, CRIF1 regulates NRF2 stability and its target gene expression under both reducing and oxidative stress conditions. Thus, CRIF1-NRF2 interactions and their consequences are redox-independent. In addition, we found that CRIF1, unlike KEAP1 (which only interacts with N-terminal region of NRF2), physically interacts with both N- and C-terminal regions of NRF2 and promotes NRF2 ubiquitination and subsequent proteasome-mediated NRF2 protein degradation.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Departments of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS, Lough J. Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 2010; 238:2912-21. [PMID: 19842187 DOI: 10.1002/dvdy.22110] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tat-interactive protein 60 (Tip60) is a member of the MYST family, proteins of which are related by an atypical histone acetyltransferase (HAT) domain. Although Tip60 has been implicated in cellular activities including DNA repair, apoptosis, and transcriptional regulation, its function during embryonic development is unknown. We ablated the Tip60 gene (Htatip) from the mouse by replacing exons 1-9 with a neomycin resistance cassette. Development and reproduction of wild-type and heterozygous animals were normal. However, homozygous ablation of the Tip60 gene caused embryolethality near the blastocyst stage of development, as evidenced by inability of cells in Tip60-null blastocysts to hatch and survive in culture. Monitoring cell proliferation and death by detecting EdU-substituted DNA and TUNEL labeling revealed suppression of cell proliferation concomitant with increased cell death as Tip60-null cells attempted to hatch from blastocysts. These findings indicate that Tip60 is essential for cellular survival during the blastocyst-gastrula transition of embryogenesis.
Collapse
Affiliation(s)
- Yaofei Hu
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|