1
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, Driver JP. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs. Vaccines (Basel) 2024; 12:1068. [PMID: 39340098 PMCID: PMC11435877 DOI: 10.3390/vaccines12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
Collapse
Affiliation(s)
- Bianca L. Artiaga
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip Meade
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
Pankhurst TE, Montgomerie I, Marshall A, Draper SL, Bilbrough T, Button KR, Palmer OR, Hermans IF, Painter GF, Connor LM, Compton BJ. A Glycolipid-Peptide-Hapten Tricomponent Conjugate Vaccine Generates Durable Antihapten Antibody Responses in Mice. ACS Chem Biol 2024; 19:1366-1375. [PMID: 38829263 DOI: 10.1021/acschembio.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Eliciting an antihapten antibody response to vaccination typically requires the use of constructs where multiple copies of the hapten are covalently attached to a larger carrier molecule. The carrier is required to elicit T cell help via presentation of peptide epitopes on major histocompatibility complex (MHC) class II molecules; as such, attachment to full-sized proteins, alone or in a complex, is generally used to account for the significant MHC diversity in humans. While such carrier-based vaccines have proven extremely successful, particularly in protecting against bacterial diseases, they can be challenging to manufacture, and repeated use can be compromised by pre-existing immunity against the carrier. One approach to reducing these complications is to recruit help from type I natural killer T (NKT) cells, which exhibit limited diversity in their antigen receptors and respond to glycolipid antigens presented by the highly conserved presenting molecule CD1d. Synthetic vaccines for universal use can, therefore, be prepared by conjugating haptens to an NKT cell agonist such as α-galactosylceramide (αGalCer, KRN7000). An additional advantage is that the quality of NKT cell help is sufficient to overcome the need for an extra immune adjuvant. However, while initial studies with αGalCer-hapten conjugate vaccines report strong and rapid antihapten antibody responses, they can fail to generate lasting memory. Here, we show that antibody responses to the hapten 4-hydoxy-3-nitrophenyl acetyl (NP) can be improved through additional attachment of a fusion peptide containing a promiscuous helper T cell epitope (Pan DR epitope, PADRE) that binds diverse MHC class II molecules. Such αGalCer-hapten-peptide tricomponent vaccines generate strong and sustained anti-NP antibody titers with increased hapten affinity compared to vaccines without the helper epitope. The tricomponent vaccine platform is therefore suitable for further exploration in the pursuit of efficacious antihapten immunotherapies.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Tim Bilbrough
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| |
Collapse
|
6
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
8
|
Zamorano B, Atik H, Brooks WH, Milhes J, Renaudineau Y. Infections and B1 Cells. INFECTION AND AUTOIMMUNITY 2024:91-114. [DOI: 10.1016/b978-0-323-99130-8.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quiñones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T FH cell differentiation and induce humoral immunity. Cell Rep 2023; 42:112310. [PMID: 36989114 PMCID: PMC10045373 DOI: 10.1016/j.celrep.2023.112310] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kaitlin H Buick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joshua L Lange
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kathryn J Farrand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ngarangi C Mason
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
| |
Collapse
|
10
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022; 12:14899. [PMID: 36050343 PMCID: PMC9437038 DOI: 10.1038/s41598-022-18876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7– developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive μκ transgenic (ATAμκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAμκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.
Collapse
Affiliation(s)
- Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | | | - Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| |
Collapse
|
12
|
Johnson DN, Ruan Z, Petley EV, Devi S, Holz LE, Uldrich AP, Mak JYW, Hor JL, Mueller SN, McCluskey J, Fairlie DP, Darcy PK, Beavis PA, Heath WR, Godfrey DI. Differential location of NKT and MAIT cells within lymphoid tissue. Sci Rep 2022; 12:4034. [PMID: 35260653 PMCID: PMC8904549 DOI: 10.1038/s41598-022-07704-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natural Killer T (NKT) cells and Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells that express semi-invariant αβ T cell receptors (TCRs) through which they recognise CD1d and MR1 molecules, respectively, in complex with specific ligands. These cells play important roles in health and disease in many organs, but their precise intra-organ location is not well established. Here, using CD1d and MR1 tetramer staining techniques, we describe the precise location of NKT and MAIT cells in lymphoid and peripheral organs. Within the thymus, NKT cells were concentrated in the medullary side of the corticomedullary junction. In spleen and lymph nodes, NKT cells were mainly localised within T cell zones, although following in vivo activation with the potent NKT-cell ligand α-GalCer, they expanded throughout the spleen. MAIT cells were clearly detectable in Vα19 TCR transgenic mice and were rare but detectable in lymphoid tissue of non-transgenic mice. In contrast to NKT cells, MAIT cells were more closely associated with the B cell zone and red pulp of the spleen. Accordingly, we have provided an extensive analysis of the in situ localisation of NKT and MAIT cells and suggest differences between the intra-organ location of these two cell types.
Collapse
Affiliation(s)
- Darryl N Johnson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zheng Ruan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jeffrey Y W Mak
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jyh Liang Hor
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Wang J, Wen Y, Zhou SH, Zhang HW, Peng XQ, Zhang RY, Yin XG, Qiu H, Gong R, Yang GF, Guo J. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. J Med Chem 2022; 65:2558-2570. [PMID: 35073081 PMCID: PMC8806000 DOI: 10.1021/acs.jmedchem.1c02000] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/therapy
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/therapeutic use
- Female
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/therapeutic use
- Immunity, Humoral/drug effects
- Immunity, Innate/drug effects
- Interferon-gamma/metabolism
- Liposomes/chemistry
- Liposomes/immunology
- Liposomes/therapeutic use
- Mice, Inbred BALB C
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Protein Domains
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/therapeutic use
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
- Mice
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hai-Wei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Xiao-Qian Peng
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Qiu
- State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences,
Shanghai 201203, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
14
|
Jensen O, Trivedi S, Meier JD, Fairfax KC, Hale JS, Leung DT. A subset of follicular helper-like MAIT cells can provide B cell help and support antibody production in the mucosa. Sci Immunol 2022; 7:eabe8931. [PMID: 35030034 DOI: 10.1126/sciimmunol.abe8931] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT ,USA
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeremy D Meier
- Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.,Primary Children's Hospital, Salt Lake City, UT, USA
| | - Keke C Fairfax
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT ,USA
| | - J Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT ,USA
| | - Daniel T Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT ,USA
| |
Collapse
|
15
|
Murray MP, Crosby CM, Marcovecchio P, Hartmann N, Chandra S, Zhao M, Khurana A, Zahner SP, Clausen BE, Coleman FT, Mizgerd JP, Mikulski Z, Kronenberg M. Stimulation of a subset of natural killer T cells by CD103 + DC is required for GM-CSF and protection from pneumococcal infection. Cell Rep 2022; 38:110209. [PMID: 35021099 DOI: 10.1016/j.celrep.2021.110209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.
Collapse
Affiliation(s)
- Mallory Paynich Murray
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine M Crosby
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sonja P Zahner
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fadie T Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Tsubata T. Role of inhibitory B cell co-receptors in B cell self-tolerance to non-protein antigens. Immunol Rev 2022; 307:53-65. [PMID: 34989000 DOI: 10.1111/imr.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Antibodies to non-protein antigens such as nucleic acids, polysaccharides, and glycolipids play important roles in both host defense against microbes and development of autoimmune diseases. Although non-protein antigens are not recognized by T cells, antibody production to non-protein antigens involve T cell-independent mechanisms such as signaling through TLR7 and TLR9 in antibody production to nucleic acids. Although self-reactive B cells are tolerized by various mechanisms including deletion, anergy, and receptor editing, T cell tolerance is also crucial in self-tolerance of B cells to protein self-antigen because self-reactive T cells induce autoantibody production to these self-antigens. However, presence of T cell-independent mechanism suggests that T cell tolerance is not able to maintain B cell tolerance to non-protein self-antigens. Lines of evidence suggest that B cell response to non-protein self-antigens such as nucleic acids and gangliosides, sialic acid-containing glycolipids, are suppressed by inhibitory B cell co-receptors CD72 and Siglec-G, respectively. These inhibitory co-receptors recognize non-protein self-antigens and suppress BCR signaling induced by these antigens, thereby inhibiting B cell response to these self-antigens. Inhibitory B cell co-receptors appear to be involved in B cell self-tolerance to non-protein self-antigens that can activate B cells by T cell-independent mechanisms.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Courey-Ghaouzi A, Gaya M. Identification of Non-classical Follicular T Cells. Methods Mol Biol 2022; 2380:77-84. [PMID: 34802123 DOI: 10.1007/978-1-0716-1736-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonclassical T cells are a heterogeneous group of T lymphocytes that are activated during the early stages of infection and act as a bridge between the innate and adaptive immune system. Among them, Natural Killer T (NKT) cells have been extensively studied in the last two decades due to their unique ability to recognize foreign/self-lipid antigens in the context of CD1d, a nonclassical major histocompatibility complex molecule. In this chapter, we describe our protocols to track murine NKT cells in lymph nodes by flow cytometry and confocal microscopy.
Collapse
Affiliation(s)
- Alan Courey-Ghaouzi
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Mauro Gaya
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France.
| |
Collapse
|
18
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Wang X, Lin X, Zheng Z, Lu B, Wang J, Tan AHM, Zhao M, Loh JT, Ng SW, Chen Q, Xiao F, Huang E, Ko KH, Huang Z, Li J, Kok KH, Lu G, Liu X, Lam KP, Liu W, Zhang Y, Yuen KY, Mak TW, Lu L. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Nat Commun 2021; 12:1914. [PMID: 33772013 PMCID: PMC7997921 DOI: 10.1038/s41467-021-22242-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/06/2021] [Indexed: 01/01/2023] Open
Abstract
Innate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lipids/immunology
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Mice
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Zihan Zheng
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bingtai Lu
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Meng Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Tong Loh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sze Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Qian Chen
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - King-Hung Ko
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Zhong Huang
- Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jingyi Li
- Chongqing International Institute for Immunology, Chongqing, China
| | - Kin-Hang Kok
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Gen Lu
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Liu
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxia Zhang
- Department of Respiratory Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kwok-Yung Yuen
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Tak Wah Mak
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
21
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Joyce S, Okoye GD, Van Kaer L. Natural Killer T Lymphocytes Integrate Innate Sensory Information and Relay Context to Effector Immune Responses. Crit Rev Immunol 2021; 41:55-88. [PMID: 35381143 PMCID: PMC11078124 DOI: 10.1615/critrevimmunol.2021040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
24
|
Reading the room: iNKT cells influence B cell responses. Mol Immunol 2020; 130:49-54. [PMID: 33360376 DOI: 10.1016/j.molimm.2020.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Rapid immune responses regulated by invariant Natural Killer T (iNKT) cells bridge the gap between innate and adaptive responses to pathogens, while also providing key regulation to maintain immune homeostasis. iNKT immune protection and immune regulation are both mediated through interactions with innate and adaptive B cell populations that express CD1d. Recent studies have expanded our understanding of the position of iNKT cells at the fulcrum between regulating inflammatory and autoreactive B cells. Environmental signals influence iNKT cells to set the tone for subsequent adaptive responses, ranging from maintaining homeostasis as an iNKT regulatory cell (iNKTreg) or supporting pathogen-specific effector B cells as an iNKT follicular helper (iNKTFH). Here we review recent advances in iNKT and B cell cooperation during autoimmunity and sterile inflammation. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, across a range of indications.
Collapse
|
25
|
Driver JP, de Carvalho Madrid DM, Gu W, Artiaga BL, Richt JA. Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Front Immunol 2020; 11:2172. [PMID: 33193296 PMCID: PMC7606973 DOI: 10.3389/fimmu.2020.02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV prevention and control. However, the efficacy of IAV vaccines is often suboptimal because of insufficient cross-protection among different IAV genotypes and subtypes as well as the inability to keep up with the rapid molecular evolution of IAV strains. Much attention is focused on improving IAV vaccine efficiency using adjuvants, which are substances that can modulate and enhance immune responses to co-administered antigens. The current review is focused on a non-traditional approach of adjuvanting IAV vaccines by therapeutically targeting the immunomodulatory functions of a rare population of innate-like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the innate and adaptive immune systems and are capable of stimulating a wide array of immune cells that enhance vaccine-mediated immune responses. Here we discuss the factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well as the obstacles that must be overcome before this novel adjuvant approach can be considered for human or veterinary use.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L Artiaga
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jürgen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
26
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
27
|
Ioannidis M, Cerundolo V, Salio M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Front Immunol 2020; 11:1556. [PMID: 32903532 PMCID: PMC7438542 DOI: 10.3389/fimmu.2020.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.
Collapse
Affiliation(s)
- Melina Ioannidis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, Hruby M, Gileadi U, Cerundolo V, Figdor CG. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 2020; 9:1738813. [PMID: 33457086 PMCID: PMC7790498 DOI: 10.1080/2162402x.2020.1738813] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanovaccines, co-delivering antigen and invariant natural killer T (iNKT) cell agonists, proved to be very effective in inducing anti-tumor T cell responses due to their exceptional helper function. However, it is known that iNKT cells are not equally present in all lymphoid organs and nanoparticles do not get evenly distributed to all immune compartments. In this study, we evaluated the effect of the vaccination route on iNKT cell help to T and B cell responses for the first time in an antigen and agonist co-delivery setting. Intravenous administration of PLGA nanoparticles was mainly targeting liver and spleen where iNKT1 cells are abundant and induced the highest serum IFN-y levels, T cell cytotoxicity, and Th-1 type antibody responses. In comparison, after subcutaneous or intranodal injections, nanoparticles mostly drained or remained in regional lymph nodes where iNKT17 cells were abundant. After subcutaneous and intranodal injections, antigen-specific IgG2 c production was hampered and IFN-y production, as well as cytotoxic T cell responses, depended on sporadic systemic drainage. Therapeutic anti-tumor experiments also demonstrated a clear advantage of intravenous injection over intranodal or subcutaneous vaccinations. Moreover, tumor control could be further improved by PD-1 immune checkpoint blockade after intravenous vaccination, but not by intranodal vaccination. Anti PD-1 antibody combination mainly exerts its effect by prolonging the cytotoxicity of T cells. Nanovaccines also demonstrated synergism with anti-4-1BB agonistic antibody treatment in controlling tumor growth. We conclude that nanovaccines containing iNKT cell agonists shall be preferentially administered intravenously, to optimally reach cellular partners for inducing effective anti-tumor immune responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Michael Valente
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| | - Martin Hruby
- Institute of Macromolecular Chemistry V.v.i., Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center & Oncode Institute, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Brailey PM, Lebrusant‐Fernandez M, Barral P. NKT cells and the regulation of intestinal immunity: a two‐way street. FEBS J 2020; 287:1686-1699. [PMID: 32022989 DOI: 10.1111/febs.15238] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
The mammalian gastrointestinal compartment is colonised by millions of microorganisms that have a central influence on human health. Intestinal homeostasis requires a continuous dialogue between the commensal bacteria and intestinal immune cells. While interactions between host and commensal bacteria are normally beneficial, allowing training and functional tuning of immune cells, dysregulated immune system-microbiota crosstalk can favour the development of chronic inflammatory diseases, as it is the case for inflammatory bowel disease (IBD). Natural killer T (NKT) cells, which recognise CD1-restricted microbial and self-lipids, contribute to the regulation of mucosal immunity by controlling intestinal homeostasis and participating in the development of IBD. Here, we provide an overview of the recently identified pathways underlying the crosstalk between commensal bacteria and NKT cells and discuss the effect of these interactions in intestinal health and disease.
Collapse
Affiliation(s)
- Phillip M. Brailey
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| | - Marta Lebrusant‐Fernandez
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| |
Collapse
|
30
|
Sanjuan Nandin I, Fong C, Deantonio C, Torreno-Pina JA, Pecetta S, Maldonado P, Gasparrini F, Ordovas-Montanes J, Kazer SW, Kjaer S, Borley DW, Nair U, Coleman JA, Lingwood D, Shalek AK, Meffre E, Poignard P, Burton DR, Batista FD. Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies. J Exp Med 2020; 214:2471-2490. [PMID: 28739603 PMCID: PMC5551578 DOI: 10.1084/jem.20170633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non-HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development.
Collapse
Affiliation(s)
| | - Carol Fong
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Cecilia Deantonio
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Juan A Torreno-Pina
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Simone Pecetta
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Paula Maldonado
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | | | - Jose Ordovas-Montanes
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA
| | - Samuel W Kazer
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA.,Department of Chemistry, MIT, Cambridge, MA
| | - Svend Kjaer
- Protein Purification and Structural Biology, Francis Crick Institute, London, England, UK
| | - Daryl W Borley
- Diagnostic and Molecular Development, hLAB Division, hVIVO PLC, Queen Mary BioEnterprises Innovation Centre, London, England, UK
| | - Usha Nair
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Julia A Coleman
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Alex K Shalek
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA.,Department of Chemistry, MIT, Cambridge, MA.,Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pascal Poignard
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Dennis R Burton
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
31
|
The Traditional Chinese Medicine Fufang Shatai Heji (STHJ) Enhances Immune Function in Cyclophosphamide-Treated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3849847. [PMID: 32063984 PMCID: PMC6998758 DOI: 10.1155/2020/3849847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
Fufang Shatai Heji (STHJ) is a mixture of traditional Chinese medicines, such as Radix Adenophorae, Radix Pseudostellariae, and Radix Astragali. STHJ is commonly used to treat diseases caused by low immune function, for example, Sjögren's syndrome (SS). The primary objective of this study was to assess the immunopotentiating effect of STHJ using an immunosuppressive mouse model receiving cyclophosphamide (CTX). Following CTX treatment, STHJ was administered by oral gavage for 30 consecutive days. The percentage of specific lymphocyte subpopulations in the spleen was measured by flow cytometry. Levels of inflammatory factors in serum were detected by enzyme-linked immunosorbent assays (ELISAs). The administration of STHJ significantly elevated thymus and spleen indices, increased B cell and natural killer (NK) cell activities, and decreased CD8+ T, CD8+CD122+ T, NKT, and γδT cell activities in the CTX-treated mice. In addition, STHJ upregulated the expression of interleukin- (IL-) 2, IL-6, and tumor necrosis factor-α (TNF-α) and downregulated IL-10 expression in CTX-treated mice. In conclusion, STHJ effectively remitted CTX-induced immunosuppression by modulating the balance of lymphocyte subsets and cytokines. Our results suggest STHJ treatment could be used as an effective therapeutic approach to improve immune function in patients with low immunity.
Collapse
|
32
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Bedard M, Shrestha D, Priestman DA, Wang Y, Schneider F, Matute JD, Iyer SS, Gileadi U, Prota G, Kandasamy M, Veerapen N, Besra G, Fritzsche M, Zeissig S, Shevchenko A, Christianson JC, Platt FM, Eggeling C, Blumberg RS, Salio M, Cerundolo V. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 2019; 116:23671-23681. [PMID: 31690657 PMCID: PMC6876220 DOI: 10.1073/pnas.1910097116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Collapse
Affiliation(s)
- Melissa Bedard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David A Priestman
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Yuting Wang
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Shankar S Iyer
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Gennaro Prota
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Medicine I, University Medical Center Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, OX3 7LD Oxford, United Kingdom
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics and Biophysics, 07743 Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745 Jena, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
34
|
Landoni E, Smith CC, Fucá G, Chen Y, Sun C, Vincent BG, Metelitsa LS, Dotti G, Savoldo B. A High-Avidity T-cell Receptor Redirects Natural Killer T-cell Specificity and Outcompetes the Endogenous Invariant T-cell Receptor. Cancer Immunol Res 2019; 8:57-69. [PMID: 31719055 DOI: 10.1158/2326-6066.cir-19-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
T-cell receptor (TCR) gene transfer redirects T cells to target intracellular antigens. However, the potential autoreactivity generated by TCR mispairing and occurrence of graft-versus-host disease in the allogenic setting due to the retention of native TCRs remain major concerns. Natural killer T cells (NKT) have shown promise as a platform for adoptive T-cell therapy in cancer patients. Here, we showed their utility for TCR gene transfer. We successfully engineered and expanded NKTs expressing a functional TCR (TCR NKTs), showing HLA-restricted antitumor activity in xenogeneic mouse models in the absence of graft-versus-mouse reactions. We found that TCR NKTs downregulated the invariant TCR (iTCR), leading to iTCR+TCR+ and iTCR-TCR+ populations. In-depth analyses of these subsets revealed that in iTCR-TCR+ NKTs, the iTCR, although expressed at the mRNA and protein levels, was retained in the cytoplasm. This effect resulted from a competition for binding to CD3 molecules for cell-surface expression by the transgenic TCR. Overall, our results highlight the feasibility and advantages of using NKTs for TCR expression for adoptive cell immunotherapies. NKT-low intrinsic alloreactivity that associated with the observed iTCR displacement by the engineered TCR represents ideal characteristics for "off-the-shelf" products without further TCR gene editing.
Collapse
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christof C Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giovanni Fucá
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Shirshev SV. Mechanisms of Antiphospholipid Syndrome Induction: Role of NKT Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:992-1007. [PMID: 31693459 DOI: 10.1134/s0006297919090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review discusses the mechanisms of participation of natural killer T cells (NKT cells) in the induction of antiphospholipid antibodies (APA) that play a major pathogenetic role in the formation of antiphospholipid syndrome (APS), summarizes the data on APS pathogenesis, and presents modern concepts on the antibody formation involving follicular helper type II NK cells.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
36
|
Clancy‐Thompson E, Chen GZ, LaMarche NM, Ali LR, Jeong H, Crowley SJ, Boelaars K, Brenner MB, Lynch L, Dougan SK. Transnuclear mice reveal Peyer's patch iNKT cells that regulate B-cell class switching to IgG1. EMBO J 2019; 38:e101260. [PMID: 31304630 PMCID: PMC6627243 DOI: 10.15252/embj.2018101260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022] Open
Abstract
Tissue-resident iNKT cells maintain tissue homeostasis and peripheral surveillance against pathogens; however, studying these cells is challenging due to their low abundance and poor recovery from tissues. We here show that iNKT transnuclear mice, generated by somatic cell nuclear transfer, have increased tissue resident iNKT cells. We examined expression of PLZF, T-bet, and RORγt, as well as cytokine/chemokine profiles, and found that both monoclonal and polyclonal iNKT cells differentiated into functional subsets that faithfully replicated those seen in wild-type mice. We detected iNKT cells from tissues in which they are rare, including adipose, lung, skin-draining lymph nodes, and a previously undescribed population in Peyer's patches (PP). PP-NKT cells produce the majority of the IL-4 in Peyer's patches and provide indirect help for B-cell class switching to IgG1 in both transnuclear and wild-type mice. Oral vaccination with α-galactosylceramide shows enhanced fecal IgG1 titers in iNKT cell-sufficient mice. Transcriptional profiling reveals a unique signature of PP-NKT cells, characterized by tissue residency. We thus define PP-NKT as potentially important for surveillance for mucosal pathogens.
Collapse
Affiliation(s)
| | - Gui Zhen Chen
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Nelson M LaMarche
- Department of RheumatologyBrigham and Women's HospitalBostonMAUSA
- Program in ImmunologyHarvard Medical SchoolBostonMAUSA
| | - Lestat R Ali
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Hee‐Jin Jeong
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Present address:
Hongik UniversitySeoulKorea
| | - Stephanie J Crowley
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Kelly Boelaars
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- VU University AmsterdamAmsterdamThe Netherlands
| | - Michael B Brenner
- Department of RheumatologyBrigham and Women's HospitalBostonMAUSA
- Program in ImmunologyHarvard Medical SchoolBostonMAUSA
| | - Lydia Lynch
- Department of RheumatologyBrigham and Women's HospitalBostonMAUSA
- Program in ImmunologyHarvard Medical SchoolBostonMAUSA
| | - Stephanie K Dougan
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Program in ImmunologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
37
|
Yip KH, Papadopoulos M, Pant H, Tumes DJ. The role of invariant T cells in inflammation of the skin and airways. Semin Immunopathol 2019; 41:401-410. [PMID: 30989319 DOI: 10.1007/s00281-019-00740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Invariant and semi-invariant T cells are emerging as important regulators of host environment interactions at barrier tissues such as the airway and skin. In contrast to conventional T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells express T cell receptors of very limited diversity. iNKT and MAIT cells recognise antigens presented by the MHC class 1-like monomorphic molecules CD1d and MR1, respectively. Both iNKT cells and MAIT cells have been identified in the skin and airways and can rapidly produce cytokines after activation. Numerous studies have implicated iNKT cells in the pathology of both skin and airway disease, but conflicting evidence in human disease means that more studies are necessary to resolve the exact roles of iNKT in inflammation. The functions of MAIT cells in skin and lung inflammation are even less well defined. We herein describe the current literature on iNKT and MAIT cells in allergic and non-allergic skin diseases (dermatitis and psoriasis) and airway diseases (asthma, chronic obstructive pulmonary disease, rhinitis, and chronic rhinosinusitis).
Collapse
Affiliation(s)
- Kwok Ho Yip
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia
| | - Magdalene Papadopoulos
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan
| | - Harshita Pant
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia.,Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia. .,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan. .,South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
38
|
Ezh2 controls development of natural killer T cells, which cause spontaneous asthma-like pathology. J Allergy Clin Immunol 2019; 144:549-560.e10. [PMID: 30851295 DOI: 10.1016/j.jaci.2019.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 01/10/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells express a T-cell receptor that recognizes endogenous and environmental glycolipid antigens. Several subsets of NKT cells have been identified, including IFN-γ-producing NKT1 cells, IL-4-producing NKT2 cells, and IL-17-producing NKT17 cells. However, little is known about the factors that regulate their differentiation and respective functions within the immune system. OBJECTIVE We sought to determine whether the polycomb repressive complex 2 protein enhancer of zeste homolog 2 (Ezh2) restrains pathogenicity of NKT cells in the context of asthma-like lung disease. METHODS Numbers of invariant natural killer T (iNKT) 1, iNKT2, and iNKT17 cells and tissue distribution, cytokine production, lymphoid tissue localization, and transcriptional profiles of iNKT cells from wild-type and Ezh2 knockout (KO) iNKT mice were determined. The contribution of NKT cells to development of spontaneous and house dust mite-induced airways pathology, including airways hyperreactivity (AHR) to methacholine, was also assessed in wild-type, Ezh2 KO, and Ezh2 KO mice lacking NKT cells. RESULTS Ezh2 restrains development of pathogenic NKT cells, which induce spontaneous asthma-like disease in mice. Deletion of Ezh2 increased production of IL-4 and IL-13 and induced spontaneous AHR, lung inflammation, mucus production, and IgE. Increased IL-4 and IL-13 levels, AHR, lung inflammation, and IgE levels were all dependent on iNKT cells. In house dust mite-exposed animals Ezh2 KO resulted in enhanced AHR that was also dependent on iNKT cells. CONCLUSION Ezh2 is a central regulator of iNKT pathogenicity and suppresses the ability of iNKT cells to induce asthma-like pathology.
Collapse
|
39
|
A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nat Commun 2019; 10:56. [PMID: 30610190 PMCID: PMC6320368 DOI: 10.1038/s41467-018-07898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
CD1 proteins are expressed on dendritic cells, where they display lipid antigens to T-cell receptors (TCRs). Here we describe T-cell autoreactivity towards ubiquitous human membrane phospholipids presented by CD1b. These T-cells discriminate between two major types of lipids, sphingolipids and phospholipids, but were broadly cross-reactive towards diverse phospholipids including phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. The crystal structure of a representative TCR bound to CD1b-phosphatidylcholine provides a molecular mechanism for this promiscuous recognition. We observe a lateral escape channel in the TCR, which shunted phospholipid head groups sideways along the CD1b-TCR interface, without contacting the TCR. Instead the TCR recognition site involved the neck region phosphate that is common to all major self-phospholipids but absent in sphingolipids. Whereas prior studies have focused on foreign lipids or rare self-lipids, we define a new molecular mechanism of promiscuous recognition of common self-phospholipids including those that are known targets in human autoimmune disease.
Collapse
|
40
|
Grywalska E, Siwicka-Gieroba D, Mielnik M, Podgajna M, Gosik K, Dąbrowski W, Roliński J. Effectiveness of Haemophilus influenzae type b vaccination after splenectomy - impact on selected immunological parameters. Hum Vaccin Immunother 2018; 15:339-348. [PMID: 30352001 PMCID: PMC6422483 DOI: 10.1080/21645515.2018.1537744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Splenectomy is a surgery indicated in case of splenic rupture after injury, when there are tumors in the spleen, or as a treatment for certain diseases, such as idiopathic thrombocytopenic purpura and spherocytosis. The aims of the study were to assess the immunological response to the Haemophilus influenzae type b (Hib) vaccine and the post-vaccination changes in lymphocyte subsets and cell activation markers in splenectomized patients and healthy volunteers. Blood samples were collected from 25 patients that had undergone splenectomy and from 15 healthy, non-splenectomized volunteers. All participants received a single dose of Hib vaccine. The concentration of specific Hib antibodies was assessed by an enzyme-linked immunosorbent assay. Selected immune cell populations were evaluated using flow cytometry. The analysis of the antibody titers against Hib showed statistically significant differences in both groups. There was a significantly higher percentage (p = 0.0012) and absolute value (p = 0.0003) of natural killer T (NKT)-like cells (CD3+/CD16+ CD56+) in the study group, compared to the control group. The levels of natural killer (NK) and NKT cells did not change relative to the cause and age of splenectomy. The quantity and percentage of regulatory T (Treg) cells were higher in the study group compared to the control group (p < 0.0001). No significant correlations were found between the time elapsed since splenectomy, the age of the patients, and the Treg levels. Our study showed that spleen resection results in an important deterioration of Treg cells and Th17 cell balance which may contribute to an incomplete immunological response.
Collapse
Affiliation(s)
- Ewelina Grywalska
- a Department of Clinical Immunology and Immunotherapy , Medical University of Lublin , Lublin , Poland
| | - Dorota Siwicka-Gieroba
- b Department of Anesthesiology and Intensive Care , Medical University of Lublin , Lublin , Poland
| | - Michał Mielnik
- a Department of Clinical Immunology and Immunotherapy , Medical University of Lublin , Lublin , Poland
| | - Martyna Podgajna
- a Department of Clinical Immunology and Immunotherapy , Medical University of Lublin , Lublin , Poland
| | - Krzysztof Gosik
- a Department of Clinical Immunology and Immunotherapy , Medical University of Lublin , Lublin , Poland
| | - Wojciech Dąbrowski
- b Department of Anesthesiology and Intensive Care , Medical University of Lublin , Lublin , Poland
| | - Jacek Roliński
- a Department of Clinical Immunology and Immunotherapy , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
41
|
Park C, Kim TJ. Expansion and Sub-Classification of T Cell-Dependent Antibody Responses to Encompass the Role of Innate-Like T Cells in Antibody Responses. Immune Netw 2018; 18:e34. [PMID: 30402329 PMCID: PMC6215906 DOI: 10.4110/in.2018.18.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to T cell-dependent (TD) Ab responses, T cells can also regulate T cell-independent (TI) B cell responses in the absence of a specific major histocompatibility complex (MHC) class II and antigenic peptide-based interaction between T and B cells. The elucidation of T cells capable of supporting TI Ab responses is important for understanding the cellular mechanism of different types of TI Ab responses. Natural killer T (NKT) cells represent 1 type of helper T cells involved in TI Ab responses and more candidate helper T cells responsible for TI Ab responses may also include γδ T cells and recently reported B-1 helper CD4+ T cells. Marginal zone (MZ) B and B-1 cells, 2 major innate-like B cell subsets considered to function independently of T cells, interact with innate-like T cells. Whereas MZ B and NKT cells interact mutually for a rapid response to blood-borne infection, peritoneal memory phenotype CD49dhighCD4+ T cells support natural Ab secretion by B-1 cells. Here the role of innate-like T cells in the so-called TI Ab response is discussed. To accommodate the involvement of T cells in the TI Ab responses, we suggest an expanded classification of TD Ab responses that incorporate cognate and non-cognate B cell help by innate-like T cells.
Collapse
Affiliation(s)
- Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
42
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Zou F, Wang X, Han X, Rothschild G, Zheng SG, Basu U, Sun J. Expression and Function of Tetraspanins and Their Interacting Partners in B Cells. Front Immunol 2018; 9:1606. [PMID: 30072987 PMCID: PMC6058033 DOI: 10.3389/fimmu.2018.01606] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
Tetraspanins are transmembrane proteins that modulate multiple diverse biological processes, including signal transduction, cell–cell communication, immunoregulation, tumorigenesis, cell adhesion, migration, and growth and differentiation. Here, we provide a systematic review of the involvement of tetraspanins and their partners in the regulation and function of B cells, including mechanisms associated with antigen presentation, antibody production, cytokine secretion, co-stimulator expression, and immunosuppression. Finally, we direct our focus to the signaling mechanisms, evolutionary conservation aspects, expression, and potential therapeutic strategies that could be based on tetraspanins and their interacting partners.
Collapse
Affiliation(s)
- Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xu Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinxin Han
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center at Penn State University, Pennsylvania, PA, United States.,Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
44
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
45
|
Doherty DG, Melo AM, Moreno-Olivera A, Solomos AC. Activation and Regulation of B Cell Responses by Invariant Natural Killer T Cells. Front Immunol 2018; 9:1360. [PMID: 29967611 PMCID: PMC6015876 DOI: 10.3389/fimmu.2018.01360] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells play central roles in the activation and regulation of innate and adaptive immunity. Cytokine-mediated and CD1d-dependent interactions between iNKT cells and myeloid and lymphoid cells enable iNKT cells to contribute to the activation of multiple cell types, with important impacts on host immunity to infection and tumors and on the prevention of autoimmunity. Here, we review the mechanisms by which iNKT cells contribute to B cell maturation, antibody and cytokine production, and antigen presentation. Cognate interactions with B cells contribute to the rapid production of antibodies directed against conserved non-protein antigens resulting in rapid but short-lived innate humoral immunity. iNKT cells can also provide non-cognate help for the generation of antibodies directed against protein antigens, by promoting the activation of follicular helper T cells, resulting in long-lasting adaptive humoral immunity and B cell memory. iNKT cells can also regulate humoral immunity by promoting the development of autoreactive B cells into regulatory B cells. Depletions and functional impairments of iNKT cells are found in patients with infectious, autoimmune and malignant diseases associated with altered B cell function and in murine models of these conditions. The adjuvant and regulatory activities that iNKT cells have for B cells makes them attractive therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Derek G Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ana Moreno-Olivera
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Andreas C Solomos
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Shahine A, Van Rhijn I, Cheng TY, Iwany S, Gras S, Moody DB, Rossjohn J. A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Sci Immunol 2018; 2:2/16/eaao1384. [PMID: 29054999 PMCID: PMC6649662 DOI: 10.1126/sciimmunol.aao1384] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Human T cell autoreactivity toward lipid antigens presented by CD1 proteins can manifest in numerous diseases, including psoriasis, contact hypersensitivities, and allergies. However, the molecular mechanisms for regulating T cell autoreactivity toward lipid antigens remain unclear. We determined the basis for T cell receptor (TCR) autoreactivity toward CD1b bound to self-phospholipids. The spectrum of self-antigens captured by CD1b skews toward abundant membrane phospholipids such as phosphatidylcholine and phosphatidylethanolamine. However, TCRs can specifically recognize rare phospholipids, including phosphatidylglycerol (PG). The structure of an autoreactive TCR bound to CD1b-PG shows that discrimination occurs through a marked induced fit movement of PG so that its polar head group fits snugly into the cationic cup of the TCR. Conversely, TCR binding toward ubiquitous self-phospholipids was sterically or electrostatically repelled. Accordingly, we describe a mechanism of TCR autoreactivity toward rare phospholipids and avoidance of autoreactivity to the most abundant self-phospholipids.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Iwany
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
47
|
Fujii SI, Yamasaki S, Sato Y, Shimizu K. Vaccine Designs Utilizing Invariant NKT-Licensed Antigen-Presenting Cells Provide NKT or T Cell Help for B Cell Responses. Front Immunol 2018; 9:1267. [PMID: 29915600 PMCID: PMC5995044 DOI: 10.3389/fimmu.2018.01267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Vaccines against a variety of infectious diseases have been developed and tested. Although there have been some notable successes, most are less than optimal or have failed outright. There has been discussion about whether either B cells or dendritic cells (DCs) could be useful for the development of antimicrobial vaccines with the production of high titers of antibodies. Invariant (i)NKT cells have direct antimicrobial effects as well as adjuvant activity, and iNKT-stimulated antigen-presenting cells (APCs) can determine the form of the ensuing humoral and cellular immune responses. In fact, upon activation by ligand, iNKT cells can stimulate both B cells and DCs as via either cognate or non-cognate help. iNKT-licensed DCs generate antigen-specific follicular helper CD4+ T cells, which in turn stimulate B cells, thus leading to long-term antigen-specific antibody production. Follicular helper iNKT cell-licensed B cells generally produce rapid, but short-term antibody. However, under some conditions in the presence of Th cells, the antibody production can be prolonged. With regards to humoral immunity, the quality and quantity of Ab produced depends on the APC type and the form of the vaccine. In terms of cellular immunity and, in particular, the induction of cytotoxic CD8+ T cells, iNKT-licensed DCs show prominent activity. In this review, we discuss differences in iNKT-stimulated APC types and the quality of the ensuing immune response, and also discuss their application in vaccine models to develop successful preventive immunotherapy against infectious diseases.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yusuke Sato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
48
|
Chen Z, Zhu S, Wang L, Xie D, Zhang H, Li X, Zheng X, Du Z, Li J, Bai L. Memory Follicular Helper Invariant NKT Cells Recognize Lipid Antigens on Memory B Cells and Elicit Antibody Recall Responses. THE JOURNAL OF IMMUNOLOGY 2018; 200:3117-3127. [DOI: 10.4049/jimmunol.1701026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
49
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Krijgsman D, Hokland M, Kuppen PJK. The Role of Natural Killer T Cells in Cancer-A Phenotypical and Functional Approach. Front Immunol 2018. [PMID: 29535734 PMCID: PMC5835336 DOI: 10.3389/fimmu.2018.00367] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|