1
|
Valentin C, Brito Rodrigues P, Verce M, Delbauve S, La Palombara L, Demaret F, Allard J, Salmon I, Cani PD, Köhler A, Everard A, Flamand V. Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection. Gut Microbes 2025; 17:2442526. [PMID: 39710590 DOI: 10.1080/19490976.2024.2442526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to Lacticaseibacillus rhamnosus (L.rh) or Bifidobacterium animalis subsp. lactis (B.lac) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to L.rh supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal L.rh or B.lac supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.
Collapse
Affiliation(s)
- Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Patricia Brito Rodrigues
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Léa La Palombara
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Florine Demaret
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
2
|
Yong L, Hutchings C, Barnes E, Klenerman P, Provine NM. Distinct Requirements for CD4 + T Cell Help for Immune Responses Induced by mRNA and Adenovirus-Vector SARS-CoV-2 Vaccines. Eur J Immunol 2025; 55:e202451142. [PMID: 39604225 PMCID: PMC11739681 DOI: 10.1002/eji.202451142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
CD4+ T cells have been established as central orchestrators of cellular and humoral immune responses to infection or vaccination. However, the need for CD4+ T cell help to generate primary CD8+ T cell responses is variable depending on the infectious agent or vaccine and yet consistently required for the recall of CD8+ T cell memory responses or antibody responses. Given the deployment of new vaccine platforms such as nucleoside-modified mRNA vaccines, we sought to elucidate the requirement for CD4+ T cell help in the induction of cellular and antibody responses to mRNA and adenovirus (Ad)-vectored vaccines against SARS-CoV-2. Using antibody-mediated depletion of CD4+ T cells in a mouse immunization model, we observed that CD4+ T cell help was dispensable for both primary and secondary CD8+ T cell responses to the BNT162b2 and mRNA-1273 mRNA vaccines but required for the AZD1222 Ad-vectored vaccine. Nonetheless, CD4+ T cell help was needed by both mRNA and Ad-vectored vaccine platforms for the generation of antibodies, demonstrating the centrality of CD4+ T cells in vaccine-induced protective immunity against SARS-CoV-2. Ultimately, this highlights the shared and distinct regulation of humoral and cellular responses induced by these vaccine platforms.
Collapse
Affiliation(s)
- Lyn Yong
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Paul Klenerman
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine–Experimental MedicineUniversity of OxfordOxfordUK
- Peter Medawar Building for Pathogen Research, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Nicholas M. Provine
- Pandemic Sciences InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Centre for Human GeneticsNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Zong Y, Li H, Chang Y, Li J, He L, Shi W, Guo J. Global research trends in the relationship between influenza and CD4 + T/CD8 + T cells: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2435644. [PMID: 39680034 DOI: 10.1080/21645515.2024.2435644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza pathogens cause many illnesses and deaths yearly, posing a serious threat to global public health. As a result, most studies are increasingly focusing on the role of specific CD4+ T/CD8+ T cells in combating influenza. This study examines the key themes and trends in this field using bibliometric analysis. Literature on influenza and CD4+ T/CD8+ T cells were searched (from 1985 to 2023) in the Web of Science Core Collection (WoSCC) database. Eligible articles were screened according to the inclusion and exclusion criteria for bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." A total of 1,071 publications from 47 countries or regions and 1,148 institutions associated with 5,728 authors in the disciplines of immunology, virology, biochemistry, and molecular biology were included. The findings indicate a yearly increase in publications related to influenza and CD4+ T/CD8+ T cells, with the United States, Australia, and China leading in publication volume. The University of Melbourne had the highest volume of publications. Only a few researchers collaborated, and the collaborations were mostly concentrated in the same countries/regions. Professor Katherine Kedzierska, associated with The Peter Doherty Institute for Infection and Immunity, was the most productive academic in this field. According to the analysis of highly cited literature and keywords, the application of cellular immunity in formulating pioneering influenza vaccines is a key direction for future research.The role of CD4+ T/CD8+ T cells in combating the influenza virus has emerged as a significant focus within influenza research literature. This article summarizes the research institutions, authors, journals, hotspots, and application trends of CD4+ T/CD8+ T cells in influenza.
Collapse
Affiliation(s)
- Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiajie Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei He
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Kafle S, Montoya B, Tang L, Tam YK, Muramatsu H, Pardi N, Sigal LJ. The roles of CD4 + T cell help, sex, and dose in the induction of protective CD8 + T cells against a lethal poxvirus by mRNA-LNP vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102279. [PMID: 39188304 PMCID: PMC11345529 DOI: 10.1016/j.omtn.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
The role of CD4+ T cells in the induction of protective CD8+ T cells by mRNA lipid nanoparticle (LNP) vaccines is unknown. We used B6 or Tlr9 -/- mice depleted or not of CD4+ T cells and LNP vaccines loaded with mRNAs encoding the ectromelia virus (ECTV) MHC class I H-2 Kb-restricted immunodominant CD8+ T cell epitope TSYKFESV (TSYKFESV mRNA-LNPs) or the ECTV EVM158 protein, which contains TSYKFESV (EVM-158 mRNA-LNPs). Following prime and boost with 10 μg of either vaccine, Kb-TSYKFESV-specific CD8+ T cells fully protected male and female mice from ECTV at 29 (both mRNA-LNPs) or 90 days (EVM158 mRNA-LNPs) post boost (dpb) independently of CD4+ T cells. However, at 29 dpb with 1 μg mRNA-LNPs, males had lower frequencies of Kb-TSYKFESV-specific CD8+ T cells and were much less well protected than females from ECTV, also independently of CD4+ T cells. At 90 dpb with 1 μg EVM158 mRNA-LNPs, the frequencies of Kb-TSYKFESV-specific CD8+ T cells in males and females were similar, and both were similarly partially protected from ECTV, independently of CD4+ T cells. Therefore, at optimal or suboptimal doses of mRNA-LNP vaccines, CD4+ T cell help is unnecessary to induce protective anti-poxvirus CD8+ T cells specific to a dominant epitope. At suboptimal doses, protection of males requires more time to develop.
Collapse
Affiliation(s)
- Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Lu S, He S, Yue K, Mi J, Huang Y, Song L, Yang T, Ren Z, Ren L, Xu J. Lactobacillus plantarum GUANKE modulate anti-viral function of dendritic cells in mice. Int Immunopharmacol 2024; 134:112169. [PMID: 38728879 DOI: 10.1016/j.intimp.2024.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
GUANKE is a Lactobacillus plantarum isolated from the feces of healthy volunteer. We have previously shown that GUANKE enhances the efficacy of the SARS-CoV-2 vaccine and prolongs the duration of vaccine protection by upregulating the IFN pathway and T and B lymphocyte functions of the host. The purpose of this study was to evaluate the protective effects and mechanism of oral administration of Lactobacillus plantarum GUANKE in the influenza (A virus A/Puerto Rico/8/34) infection mouse model. In our experiment, oral administration of GUANKE significantly decreased viral load and increased tight junction proteins expression in lung tissues of influenza-infected mice. After GUANKE was co-cultured with mBMDCs in vitro, mBMDCs' maturity and antiviral ability were enhanced, and matured mBMDCs induced polarization of naïve CD4+ T cells into T helper (Th) 1 cells. Adoptive transfer of GUANKE-treated mBMDCs could protect mice from influenza infections. This study suggests that oral administration of Lactobacillus plantarum GUANKE could provide protection against influenza infection in mice, and this protective effect may be mediated, at least in part, by dendritic cells.
Collapse
Affiliation(s)
- Simin Lu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siqin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kun Yue
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jielan Mi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China
| | - Yuanming Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Lili Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianguo Xu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
8
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
9
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
10
|
Zhou J, Liu J, Wang B, Li N, Liu J, Han Y, Cao X. Eosinophils promote CD8 + T cell memory generation to potentiate anti-bacterial immunity. Signal Transduct Target Ther 2024; 9:43. [PMID: 38413575 PMCID: PMC10899176 DOI: 10.1038/s41392-024-01752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Memory CD8+ T cell generation is crucial for pathogen elimination and effective vaccination against infection. The cellular and molecular circuitry that underlies the generation of memory CD8+ T cells remains elusive. Eosinophils can modulate inflammatory allergic responses and interact with lymphocytes to regulate their functions in immune defense. Here we report that eosinophils are required for the generation of memory CD8+ T cells by inhibiting CD8+ T cell apoptosis. Eosinophil-deficient mice display significantly impaired memory CD8+ T cell response and weakened resistance against Listeria monocytogenes (L.m.) infection. Mechanistically, eosinophils secrete interleukin-4 (IL-4) to inhibit JNK/Caspase-3 dependent apoptosis of CD8+ T cells upon L.m. infection in vitro. Furthermore, active eosinophils are recruited into the spleen and secrete more IL-4 to suppress CD8+ T cell apoptosis during early stage of L.m. infection in vivo. Adoptive transfer of wild-type (WT) eosinophils but not IL-4-deficient eosinophils into eosinophil-deficient mice could rescue the impaired CD8+ T cell memory responses. Together, our findings suggest that eosinophil-derived IL-4 promotes the generation of CD8+ T cell memory and enhances immune defense against L.m. infection. Our study reveals a new adjuvant role of eosinophils in memory T cell generation and provides clues for enhancing the vaccine potency via targeting eosinophils and related cytokines.
Collapse
Affiliation(s)
- Jun Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yanmei Han
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
12
|
Haach V, Bastos APA, Gava D, da Fonseca FN, Morés MAZ, Coldebella A, Franco AC, Schaefer R. A polyvalent virosomal influenza vaccine induces broad cellular and humoral immunity in pigs. Virol J 2023; 20:181. [PMID: 37587490 PMCID: PMC10428566 DOI: 10.1186/s12985-023-02153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is endemic in pigs globally and co-circulation of genetically and antigenically diverse virus lineages of subtypes H1N1, H1N2 and H3N2 is a challenge for the development of effective vaccines. Virosomes are virus-like particles that mimic virus infection and have proven to be a successful vaccine platform against several animal and human viruses. METHODS This study evaluated the immunogenicity of a virosome-based influenza vaccine containing the surface glycoproteins of H1N1 pandemic, H1N2 and H3N2 in pigs. RESULTS A robust humoral and cellular immune response was induced against the three IAV subtypes in pigs after two vaccine doses. The influenza virosome vaccine elicited hemagglutinin-specific antibodies and virus-neutralizing activity. Furthermore, it induced a significant maturation of macrophages, and proliferation of B lymphocytes, effector and central memory CD4+ and CD8+ T cells, and CD8+ T lymphocytes producing interferon-γ. Also, the vaccine demonstrated potential to confer long-lasting immunity until the market age of pigs and proved to be safe and non-cytotoxic to pigs. CONCLUSIONS This virosome platform allows flexibility to adjust the vaccine content to reflect the diversity of circulating IAVs in swine in Brazil. The vaccination of pigs may reduce the impact of the disease on swine production and the risk of swine-to-human transmission.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | | | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Francisco Noé da Fonseca
- Embrapa Sede, Parque Estação Biológica, Brasília, Distrito Federal, CEP 70770-901, Brazil
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
13
|
Heng WT, Lim HX, Tan KO, Poh CL. Validation of Multi-epitope Peptides Encapsulated in PLGA Nanoparticles Against Influenza A Virus. Pharm Res 2023; 40:1999-2025. [PMID: 37344603 DOI: 10.1007/s11095-023-03540-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Influenza is a highly contagious respiratory disease which poses a serious threat to public health globally, causing severe diseases in 3-5 million humans and resulting in 650,000 deaths annually. The current licensed seasonal influenza vaccines lacked cross-reactivity against novel emerging influenza strains as they conferred limited neutralising capabilities. To address the issue, we designed a multi-epitope peptide-based vaccine delivered by the self-adjuvanting PLGA nanoparticles against influenza infections. METHODS A total of six conserved peptides representing B- and T-cell epitopes of Influenza A were identified and they were formulated in either incomplete Freund's adjuvant containing CpG ODN 1826 or being encapsulated in PLGA nanoparticles for the evaluation of immunogenicity in BALB/c mice. RESULTS The self-adjuvanting PLGA nanoparticles encapsulating the six conserved peptides were capable of eliciting the highest levels of IgG and IFN- γ producing cells. In addition, the immunogenicity of the six peptides encapsulated in PLGA nanoparticles showed greater humoral and cellular mediated immune responses elicited by the mixture of six naked peptides formulated in incomplete Freund's adjuvant containing CpG ODN 1826 in the immunized mice. Peptide 3 from the mixture of six peptides was found to exert necrotic effect on CD3+ T-cells and this finding indicated that peptide 3 should be removed from the nanovaccine formulation. CONCLUSION The study demonstrated the self-adjuvanting properties of the PLGA nanoparticles as a delivery system without the need for incorporation of toxic and costly conventional adjuvants in multi-epitope peptide-based vaccines.
Collapse
Affiliation(s)
- Wen Tzuen Heng
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Cao J, Liao S, Zeng F, Liao Q, Luo G, Zhou Y. Effects of altered glycolysis levels on CD8 + T cell activation and function. Cell Death Dis 2023; 14:407. [PMID: 37422501 PMCID: PMC10329707 DOI: 10.1038/s41419-023-05937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
CD8+ T cells are an important component of the body's adaptive immune response. During viral or intracellular bacterial infections, CD8+ T cells are rapidly activated and differentiated to exert their immune function by producing cytokines. Alterations in the glycolysis of CD8+ T cells have an important effect on their activation and function, while glycolysis is important for CD8+ T cell functional failure and recovery. This paper summarizes the importance of CD8+ T cell glycolysis in the immune system. We discuss the link between glycolysis and CD8+ T cell activation, differentiation, and proliferation, and the effect of altered glycolysis on CD8+ T cell function. In addition, potential molecular targets to enhance and restore the immune function of CD8+ T cells by affecting glycolysis and the link between glycolysis and CD8+ T cell senescence are summarized. This review provides new insights into the relationship between glycolysis and CD8+ T cell function, and proposes novel strategies for immunotherapy by targeting glycolysis.
Collapse
Affiliation(s)
- Jiaying Cao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, 410008, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
16
|
Muñoz-Wolf N, Ward RW, Hearnden CH, Sharp FA, Geoghegan J, O’Grady K, McEntee CP, Shanahan KA, Guy C, Bowie AG, Campbell M, Roces C, Anderluzzi G, Webb C, Perrie Y, Creagh E, Lavelle EC. Non-canonical inflammasome activation mediates the adjuvanticity of nanoparticles. Cell Rep Med 2023; 4:100899. [PMID: 36652908 PMCID: PMC9873954 DOI: 10.1016/j.xcrm.2022.100899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/24/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
The non-canonical inflammasome sensor caspase-11 and gasdermin D (GSDMD) drive inflammation and pyroptosis, a type of immunogenic cell death that favors cell-mediated immunity (CMI) in cancer, infection, and autoimmunity. Here we show that caspase-11 and GSDMD are required for CD8+ and Th1 responses induced by nanoparticulate vaccine adjuvants. We demonstrate that nanoparticle-induced reactive oxygen species (ROS) are size dependent and essential for CMI, and we identify 50- to 60-nm nanoparticles as optimal inducers of ROS, GSDMD activation, and Th1 and CD8+ responses. We reveal a division of labor for IL-1 and IL-18, where IL-1 supports Th1 and IL-18 promotes CD8+ responses. Exploiting size as a key attribute, we demonstrate that biodegradable poly-lactic co-glycolic acid nanoparticles are potent CMI-inducing adjuvants. Our work implicates ROS and the non-canonical inflammasome in the mode of action of polymeric nanoparticulate adjuvants and establishes adjuvant size as a key design principle for vaccines against cancer and intracellular pathogens.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland,Translational & Respiratory Immunology Lab, Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Dublin D02 R590, Ireland,Clinical Medicine Tallaght University Hospital, Dublin D24 NR04, Ireland
| | - Ross W. Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland
| | - Claire H. Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland
| | - Fiona A. Sharp
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland
| | - Joan Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Katie O’Grady
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland
| | - Craig P. McEntee
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland
| | - Katharine A. Shanahan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin D02 R590, Ireland
| | - Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin D02 R590, Ireland
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin D02 R590, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Carla.B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Giulia Anderluzzi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Cameron Webb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Emma Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin D02 R590, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 R590, Ireland,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland,Corresponding author
| |
Collapse
|
17
|
Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, Kyaw T. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol 2022; 13:1040233. [PMID: 36483558 PMCID: PMC9724649 DOI: 10.3389/fimmu.2022.1040233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis. Methods and results CD8 T cell depletion in hypertensive mice, strongly attenuated CF, reduced cardiac apoptosis and improved ventricular relaxation. Interaction between cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is highly dependent on the CD8+ T cells expressing the innate stress-sensing receptor NKG2D and stressed cardiomyocytes expressing the NKG2D activating ligand RAE-1. The interaction between NKG2D and RAE-1 results in CD8+ T cell activation, release of perforin, cardiomyocyte apoptosis, increased numbers of TGF-β1 expressing macrophages and fibrosis. Deleting NKG2D or perforin from CD8+ T cells greatly attenuates these effects. Activation of the cytoplasmic DNA-STING-TBK1-IRF3 signaling pathway in overly stressed cardiomyocytes is responsible for elevating RAE-1 and MCP-1, a macrophage attracting chemokine. Inhibiting STING activation greatly attenuates cardiomyocyte RAE-1 expression, the cardiomyocyte apoptosis, TGF-β1 and fibrosis. Conclusion Our data highlight a novel pathway by which CD8 T cells contribute to an early triggering mechanism in CF development; preventing CD8+ T cell activation by inhibiting the cardiomyocyte RAE-1-CD8+ T cell-NKG2D axis holds promise for novel therapeutic strategies to limit hypertensive cardiac fibrosis.
Collapse
Affiliation(s)
- Kurt Brassington
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Cao
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Tin Kyaw,
| |
Collapse
|
18
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
Li P, Liu X, Lang Y, Cui X, Shi Y. A Comparative Study of Severe and Critical Influenza B in Children in the 2021–2022 Winter Season. Int J Gen Med 2022; 15:7995-8001. [PMCID: PMC9635463 DOI: 10.2147/ijgm.s385307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Pan Li
- Respiratory Department, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Xinfeng Liu
- Respiratory Department, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Yanmei Lang
- Respiratory Department, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Xiaowei Cui
- Respiratory Department, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Yanxi Shi
- Respiratory Department, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
- Correspondence: Yanxi Shi, Respiratory Department, Children’s Hospital of Hebei Province, 133 Jianhua South Street, Shijiazhuang, 050031, People’s Republic of China, Email
| |
Collapse
|
20
|
Wang L, Cao Z, Wang Z, Guo J, Wen J. Reactive oxygen species associated immunoregulation post influenza virus infection. Front Immunol 2022; 13:927593. [PMID: 35967412 PMCID: PMC9373727 DOI: 10.3389/fimmu.2022.927593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
An appropriate level of reactive oxygen species (ROS) is necessary for cell proliferation, signaling transduction, and apoptosis due to their highly reactive character. ROS are generated through multiple metabolic pathways under a fine-tuned control between oxidant and antioxidant signaling. A growing number of evidence has proved their highly relevant role in modulating inflammation during influenza virus infection. As a network of biological process for protecting organism from invasion of pathogens, immune system can react and fight back through either innate immune system or adaptive immune system, or both. Herein, we provide a review about the mechanisms of ROS generation when encounter influenza virus infection, and how the imbalanced level of ROS influences the replication of virus. We also summarize the pathways used by both the innate and adaptive immune system to sense and attack the invaded virus and abnormal levels of ROS. We further review the limitation of current strategies and discuss the direction of future work.
Collapse
Affiliation(s)
- Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States,*Correspondence: Jing Wen,
| |
Collapse
|
21
|
Adjobimey T, Meyer J, Terkeš V, Parcina M, Hoerauf A. Helminth antigens differentially modulate the activation of CD4 + and CD8 + T lymphocytes of convalescent COVID-19 patients in vitro. BMC Med 2022; 20:241. [PMID: 35764965 PMCID: PMC9241220 DOI: 10.1186/s12916-022-02441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) is a respiratory disease caused by SARS-CoV-2, a recently discovered strain of coronavirus. The virus has spread rapidly, causing millions of death worldwide. Contrary to the predictions, prevalence and mortality due to COVID-19 have remained moderate on the African continent. Several factors, including age, genetics, vaccines, and co-infections, might impact the course of the pandemic in Africa. Helminths are highly endemic in Sub-Saharan Africa and are renowned for their ability to evade, skew, and suppress human immune responses through various immune-modulatory mechanisms. Such effects will likely impact SARS-CoV-2 transmission and disease progression. METHODS Here, we analyzed in vitro the impact of antigen extracts from three major helminth parasites, including Onchocerca volvulus, Brugia malayi, and Ascaris lumbricoides, on the immune reactivity to SARS-CoV-2 peptides in COVID-19 patients. Activation of CD4+ and CD8+ T cells was investigated using flow cytometry to monitor the expression of CD137 (4-1BB) and CD69. Cytokine expression, including IL-6, IL-10, IFN-γ, and TNFα, was measured by Luminex in cell culture supernatants. RESULTS We observed that helminth antigens significantly reduced the frequency of SARS-CoV-2-reactive CD4+ T helper cells. In contrast, the expression of SARS-CoV-2-reactive CD8+ T cells was not affected and even significantly increased when PBMCs from COVID-19 patients living in Benin, an endemic helminth country, were used. In addition, stimulation with helminth antigens was associated with increased IL-10 and a reduction of IFNγ and TNFα. CONCLUSIONS Our data offer a plausible explanation for the moderate incidence of COVID-19 in Africa and support the hypothesis that helper T cell-mediated immune responses to SARS-CoV-2 are mitigated in the presence of helminth antigens, while virus-specific cytotoxic T cell responses are maintained.
Collapse
Affiliation(s)
- Tomabu Adjobimey
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany. .,Unité de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques (FAST), Université d'Abomey-Calavi, Abomey-Calavi, Bénin.
| | - Julia Meyer
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Vedrana Terkeš
- Department of Infectiology, General Hospital Zadar, Zadar, Croatia
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany.,Bonn-Cologne Site, German Center for Infectious Disease Research (DZIF), Bonn, Germany
| |
Collapse
|
22
|
Guan M, Jiao Y, Zhou L. Immune Infiltration Analysis with the CIBERSORT Method in Lung Cancer. DISEASE MARKERS 2022; 2022:3186427. [PMID: 35340416 PMCID: PMC8956442 DOI: 10.1155/2022/3186427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immune infiltration of lung cancer (LC) is tightly related to clinical results. Nevertheless, past researches have not elucidated the diversities of functionally different cellular types making up the immunoresponse. METHODS In the present research, on the foundation of a deconvolution algorithm (CIBERSORT) and clinically annotated expression profiles, our team studied the tumor-infiltrating immune cells (TIICs) presenting in 502 LC samples and 49 normal samples in a comprehensive way. The fraction of 22 immunocyte subgroups was assessed to identify the relationship among every cellular type and survival and reaction to chemical therapies. RESULTS Consequently, profiles of immunity infiltration change remarkably between paired tumor and precancerous tissues, and the change can describe the diversity of individuals. Of the cellular subgroups studied, cancers without dendritic resting cells or with a decreased quantity of follicular helper T (Tfh) cells were related to the poor prognosis. Correlation analysis between different stages of LC and 22 immune cell subpopulations revealed that the amount of 14 immune cells in LC was remarkably related to tumor stage. The high expression of resting dendritic cells and follicular helper T cells predicted better prognostic value, and univariate analyses proved that two TIICs were significantly associated with patients' prognosis. CONCLUSIONS To sum up, the data herein reveal that there may be subtle differences in the cell constituents of the immune infiltrate in LC, and those diversities may be vital determinating factors of prognostic results and reactions to therapies.
Collapse
Affiliation(s)
- Meng Guan
- Cancer Center, The First Hospital of Jilin University, Changchun 130031, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130031, China
| | - Lili Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun 130031, China
| |
Collapse
|
23
|
Bai S, Jiang H, Song Y, Zhu Y, Qin M, He C, Du G, Sun X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J Control Release 2022; 344:134-146. [PMID: 35217098 DOI: 10.1016/j.jconrel.2022.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022]
Abstract
Tumor peptide vaccines contain only key amino acid sequences of tumor neoantigens, and therefore can provide precise activation of immune responses. Recent research has found that short peptide vaccines restricted to MHC-I epitopes are insufficient to activate effective CD8+ T cell responses for tumor elimination, and assistance from CD4+ T cell immunity could significantly improve the therapeutic outcome. Herein, we proposed an innovative peptide vaccine strategy to simultaneously activate CD8+ and CD4+ T cell responses by combining MHC-I and MHC-II epitopes into one long peptide antigen. To further strengthen the anti-tumor immune response induced by this dual-epitope peptide, we engineered a PEG derivative (PpASE) stabilized aluminum nanoparticle for delivering the synthetic long peptides (ANLs). The synthesized nanovaccine with a diameter of ~100 nm showed good stability and enhanced antigen uptake by antigen-presenting cells (APCs). As a result, ANLs promoted the presentation of MHC-I epitope in APCs and induced stronger activation and proliferation of CD8+ T cells as compared to aluminum nanoparticle loaded with MHC-I epitope restricted peptides (ANSs). After subcutaneous vaccination, the developed nanovaccine significantly inhibited tumor growth and prolonged mouse survival in both B16-OVA and B16F10 tumor models. Finally, ANLs were also able to elevate the maturation level of human dendritic cells (DCs), showing a great possibility of clinical translation.
Collapse
Affiliation(s)
- Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Hao Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yuanshuai Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yining Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu 610041, China.
| |
Collapse
|
24
|
Mehta PH, Fiorenza S, Koldej RM, Jaworowski A, Ritchie DS, Quinn KM. T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Front Immunol 2021; 12:780442. [PMID: 34899742 PMCID: PMC8658247 DOI: 10.3389/fimmu.2021.780442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
A range of emerging therapeutic approaches for the treatment of cancer aim to induce or augment endogenous T cell responses. Chimeric antigen receptor (CAR) T cell therapy (CTT) is one such approach that utilises the patient’s own T cells, engineered ex vivo to target cell surface antigens, to eliminate haematological malignancies. Despite mediating high rates of responses in some clinical trials, this approach can be limited by dysfunctional T cells if they are present at high frequencies either in the starting material from the patient or the CAR T cell product. The fitness of an individual’s T cells, driven by age, chronic infection, disease burden and cancer treatment, is therefore likely to be a crucial limiting factor of CTT. Currently, T cell dysfunction and its impact on CTT is not specifically quantified when patients are considering the therapy. Here, we review our current understanding of T cell fitness for CTT, how fitness may be impacted by age, chronic infection, malignancy, and treatment. Finally, we explore options to specifically tailor clinical decision-making and the CTT protocol for patients with more extensive dysfunction to improve treatment efficacy. A greater understanding of T cell fitness throughout a patient’s treatment course could ultimately be used to identify patients likely to achieve favourable CTT outcomes and improve methods for T cell collection and CTT delivery.
Collapse
Affiliation(s)
- Palak H Mehta
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Salvatore Fiorenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E. The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 2021; 19:21. [PMID: 34749737 PMCID: PMC8573303 DOI: 10.1186/s12948-021-00161-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hadis Karami
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kaveh Goudarzi
- Nursing Department, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
26
|
Swain SL, Jones MC, Devarajan P, Xia J, Dutton RW, Strutt TM, McKinstry KK. Durable CD4 T-Cell Memory Generation Depends on Persistence of High Levels of Infection at an Effector Checkpoint that Determines Multiple Fates. Cold Spring Harb Perspect Biol 2021; 13:a038182. [PMID: 33903157 PMCID: PMC8559547 DOI: 10.1101/cshperspect.a038182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have discovered that the determination of CD4 effector and memory fates after infection is regulated not only by initial signals from antigen and pathogen recognition, but also by a second round of such signals at a checkpoint during the effector response. Signals to effectors determine their subsequent fate, inducing further progression to tissue-restricted follicular helpers, cytotoxic CD4 effectors, and long-lived memory cells. The follicular helpers help the germinal center B-cell responses that give rise to high-affinity long-lived antibody responses and memory B cells that synergize with T-cell memory to provide robust long-lived protection. We postulate that inactivated vaccines do not provide extended signals from antigen and pathogen beyond a few days, and thus elicit ineffective CD4 T- and B-cell effector responses and memory. Defining the mechanisms that underlie effective responses should provide insights necessary to develop vaccine strategies that induce more effective and durable immunity.
Collapse
Affiliation(s)
- Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Richard W Dutton
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Tara M Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | - K Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| |
Collapse
|
27
|
Ren HM, Lukacher AE, Rahman ZSM, Olsen NJ. New developments implicating IL-21 in autoimmune disease. J Autoimmun 2021; 122:102689. [PMID: 34224936 DOI: 10.1016/j.jaut.2021.102689] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Elevated interleukin (IL)-21 is a common finding in the tissues and/or sera of patients with autoimmune disease. CD4 T cells are the primary producers of IL-21; often the IL-21 producing CD4 T cells will express molecules associated with follicular helper cells (TFH). Recent work has shown that the CD4 T cell-derived IL-21 is able to promote effector functions and memory differentiation of CD8 T cells in chronic infections and cancer. Autoimmunity has similarities to chronic infections and cancer. However, CD4 T cell-derived IL-21:IL21R signaling in CD8 T cells has not been fully appreciated in the context of autoimmunity. In this review, we assess the current knowledge regarding CD4 T cell-derived IL-21 and IL21R signaling within CD8 T cells and evaluate what implications it has within several autoimmune diseases including systemic lupus erythematous, rheumatoid arthritis, juvenile idiopathic arthritis, type 1 diabetes mellitus, psoriasis, Sjögren's syndrome, vitiligo, antiphospholipid syndrome, pemphigus, and giant cell arteritis.
Collapse
Affiliation(s)
- Heather M Ren
- MD/PhD Medical Scientist Training Program at Penn State College of Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Nancy J Olsen
- Devision of Rheumatology, Department of Medicine, Penn State MS Hershey Medical Center, Hershey, PA, 17033, USA
| |
Collapse
|
28
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Immunometabolism in haematopoietic stem cell transplantation and adoptive cellular therapies. Curr Opin Hematol 2021; 27:353-359. [PMID: 33003083 DOI: 10.1097/moh.0000000000000615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Controlling T cell activity through metabolic manipulation has become a prominent feature in immunology and practitioners of both adoptive cellular therapy (ACT) and haematopoietic stem cell transplantation (HSCT) have utilized metabolic interventions to control T cell function. This review will survey recent metabolic research efforts in HSCT and ACT to paint a broad picture of immunometabolism and highlight advances in each area. RECENT FINDINGS In HSCT, recent publications have focused on modifying reactive oxygen species, sirtuin signalling or the NAD salvage pathway within alloreactive T cells and regulatory T cells. In ACT, metabolic interventions that bolster memory T cell development, increase mitochondrial density and function, or block regulatory signals in the tumour microenvironment (TME) have recently been published. SUMMARY Metabolic interventions control immune responses. In ACT, efforts seek to improve the in-vivo metabolic fitness of T cells, while in HSCT energies have focused on blocking alloreactive T cell expansion or promoting regulatory T cells. Methods to identify new, metabolically targetable pathways, as well as the ability of metabolic biomarkers to predict disease onset and therapeutic response, will continue to advance the field towards clinically applicable interventions.
Collapse
|
30
|
Marcacci G, Fiorentino G, Volzone F, Falcone U, Parrella R, Donnarumma D, D'Ovidio S, Annunziata A, Micallo G, Portella G, De Chiara A, De Filippi R, Crisci S, Pinto A. Atypical COVID-19 dynamics in a patient with mantle cell lymphoma exposed to rituximab. Infect Agent Cancer 2021; 16:38. [PMID: 34078415 PMCID: PMC8170447 DOI: 10.1186/s13027-021-00376-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with non-hodgkin lymphomas (NHL) represent a population of special interest during the current Coronavirus disease-19 (COVID-19) pandemics. NHLs are associated with disease- and treatment-related immunodeficiencies which may generate unusual COVID-19 dynamics and pose unique management challenges. We report the unusual clinical course of COVID-19 in a patient with mantle cell lymphoma (MCL) exposed to nine doses of Rituximab shortly before infection with severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). He had a prolonged asymptomatic phase, with negative molecular and antibody testing for SARS-CoV-2, followed by a rapidly progressive evolution to severe COVID-19. Despite detection of viral RNA overlapped with first symptoms occurrence, anti-SARS-CoV-2 antibodies displayed an asynchronous pattern, with IgG first appearing 2 days after RNA positivity and IgM never being detected throughout the entire clinical course. While disease-associated immune derangements and/or previous treatments involving anti-CD20 antibodies might have contributed to COVID-19 dynamics in our patient, data suggests that antibody testings, without concurrent molecular assessment for SARS-CoV-2, may turn inadequate for monitoring of MCL patients, and in general NHL patients heavily exposed to anti-CD20 antibodies, during the current pandemics. We suggest that repeated molecular testing of nasopharyngeal swab should be implemented in these subjects despite a negative serology and absence of symptoms of SARS-CoV-2 infection. For the same reasons, a customized strategy needs to be developed for patients exposed to anti-CD20 antibodies, based on different features and mechanism of action of available SARS-CoV-2 vaccines and novel vaccinomics developments.
Collapse
Affiliation(s)
- Gianpaolo Marcacci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Giuseppe Fiorentino
- Respiratory Physiopathology and Rehabilitation Unit, AORN dei Colli, Naples, Italy
| | - Francesco Volzone
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Umberto Falcone
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Roberto Parrella
- Respiratory Infectious Disease Unit, AORN dei Colli, Naples, Italy
| | - Daniela Donnarumma
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Silvia D'Ovidio
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Anna Annunziata
- Respiratory Physiopathology and Rehabilitation Unit, AORN dei Colli, Naples, Italy
| | - Giovanni Micallo
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, Università degli Studi Federico II, Naples, Italy
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Rosaria De Filippi
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
- Department of Clinical Medicine and Surgery, Università degli Studi Federico II, Naples, Italy
| | - Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione 'G. Pascale', IRCCS, Naples, Italy.
| |
Collapse
|
31
|
Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and Regulation of T H Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol 2021; 12:669474. [PMID: 34012451 PMCID: PMC8126720 DOI: 10.3389/fimmu.2021.669474] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Current success of immunotherapy in cancer has drawn attention to the subsets of TH cells in the tumor which are critical for activation of anti-tumor response either directly by themselves or by stimulating cytotoxic T cell activity. However, presence of immunosuppressive pro-tumorigenic TH subsets in the tumor milieu further contributes to the complexity of regulation of TH cell-mediated immune response. In this review, we present an overview of the multifaceted positive and negative effects of TH cells, with an emphasis on regulation of different TH cell subtypes by various immune cells, and how a delicate balance of contradictory signals can influence overall success of cancer immunotherapy. We focus on the regulatory network that encompasses dendritic cell-induced activation of CD4+ TH1 cells and subsequent priming of CD8+ cytotoxic T cells, along with intersecting anti-inflammatory and pro-tumorigenic TH2 cell activity. We further discuss how other tumor infiltrating immune cells such as immunostimulatory TH9 and Tfh cells, immunosuppressive Treg cells, and the duality of TH17 function contribute to tip the balance of anti- vs pro-tumorigenic TH responses in the tumor. We highlight the developing knowledge of CD4+ TH1 immune response against neoantigens/oncodrivers, impact of current immunotherapy strategies on CD4+ TH1 immunity, and how opposing action of TH cell subtypes can be explored further to amplify immunotherapy success in patients. Understanding the nuances of CD4+ TH cells regulation and the molecular framework undergirding the balancing act between anti- vs pro-tumorigenic TH subtypes is critical for rational designing of immunotherapies that can bypass therapeutic escape to maximize the potential of immunotherapy.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gabriella Albert
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Gary Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Oncological Sciences, University of South Florida, Tampa, FL, United States.,Department of Breast Cancer Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
32
|
Turner SJ, Bennett TJ, Gruta NLL. CD8 + T-Cell Memory: The Why, the When, and the How. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038661. [PMID: 33648987 PMCID: PMC8091951 DOI: 10.1101/cshperspect.a038661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of effective adaptive T-cell memory is a cardinal feature of the adaptive immune system. The establishment of protective T-cell immunity requires the differentiation of CD8+ T cells from a naive state to one where pathogen-specific memory CD8+ T cells are capable of responding to a secondary infection more rapidly and robustly without the need for further differentiation. The study of factors that determine the fate of activated CD8+ T cells into either effector or memory subsets has a long history. The advent of new technologies is now providing new insights into how epigenetic regulation not only impacts acquisition and maintenance of effector function, but also the maintenance of the quiescent yet primed memory state. There is growing appreciation that rather than distinct subsets, memory T-cell populations may reflect different points on a spectrum between the starting naive T-cell population and a terminally differentiated effector CD8+ T-cell population. Interestingly, there is growing evidence that the molecular mechanisms that underpin the rapid effector function of memory T cells are also observed in innate immune cells such as macrophages and natural killer (NK) cells. This raises an interesting hypothesis that the memory/effector T-cell state represents a default innate-like response to antigen recognition, and that it is the naive state that is the defining feature of adaptive immunity. These issues are discussed.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Taylah J Bennett
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Zhang S, Springer LE, Rao HZ, Espinosa Trethewy RG, Bishop LM, Hancock MH, Grey F, Snyder CM. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog 2021; 17:e1009255. [PMID: 33508041 PMCID: PMC7872266 DOI: 10.1371/journal.ppat.1009255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells. Cytomegalovirus (CMV) is a common cause of disease in immune compromised individuals as well as a common cause of congenital infections leading to disease in newborns. The virus is thought to enter primarily via mucosal barrier tissues, such as the oral and nasal mucosa. However, it is not clear how the virus escapes these barrier tissues to reach distant sites. In this study, we used a mouse model of CMV infection. Our data illustrate a complex balance between the immune system and viral infection of “myeloid cells”, which are most commonly thought to carry the virus around the body after infection. In particular, our data suggest that robust immune responses at the site of infection force the virus to rely on myeloid cells to escape the site of infection. Moreover, viral genes designed to evade these immune responses were needed to protect the virus during and after its spread to distant sites. Together, this work sheds light on the mechanisms of immune control and viral survival during CMV infection of mucosal tissues and spread to distant sites of the body.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han-Zhi Rao
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey M. Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (FG); (CMS)
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FG); (CMS)
| |
Collapse
|
34
|
Kusnadi A, Ramírez-Suástegui C, Fajardo V, Chee SJ, Meckiff BJ, Simon H, Pelosi E, Seumois G, Ay F, Vijayanand P, Ottensmeier CH. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8 + T cells. Sci Immunol 2021; 6:eabe4782. [PMID: 33478949 PMCID: PMC8101257 DOI: 10.1126/sciimmunol.abe4782] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Serena J Chee
- NIHR and CRUK Southampton Experimental Cancer Medicine Center, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Emanuela Pelosi
- Southampton Specialist Virology Centre, Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
35
|
Kervevan J, Chakrabarti LA. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci 2021; 22:E523. [PMID: 33430234 PMCID: PMC7825705 DOI: 10.3390/ijms22020523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| |
Collapse
|
36
|
Busselaar J, Tian S, van Eenennaam H, Borst J. Helpless Priming Sends CD8 + T Cells on the Road to Exhaustion. Front Immunol 2020; 11:592569. [PMID: 33123174 PMCID: PMC7573232 DOI: 10.3389/fimmu.2020.592569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Persistent antigen exposure in chronic infection and cancer has been proposed to lead to cytotoxic T lymphocyte (CTL) “exhaustion”, i.e., loss of effector function and disease control. Recent work identifies a population of poorly differentiated TCF-1+PD-1+ CD8+ T cells as precursors of the terminally exhausted CTL pool. These “predysfunctional” CTLs are suggested to respond to PD-1 targeted therapy by giving rise to a pool of functional CTLs. Supported by gene expression analyses, we present a model in which lack of CD4+ T cell help during CD8+ T cell priming results in the formation of predysfunctional CTLs. Our model implies that predysfunctional CTLs are formed during priming and that the remedy for CTL dysfunction is to provide “help” signals for generation of optimal CTL effectors. We substantiate that this may be achieved by engaging CD4+ T cells in new CD8+ T cell priming, or by combined PD-1 blocking and CD27 agonism with available immunotherapeutic antibodies.
Collapse
Affiliation(s)
- Julia Busselaar
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sun Tian
- Aduro Biotech Europe BV, Oss, Netherlands
| | | | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
37
|
Finelli C. Obesity, COVID-19 and immunotherapy: the complex relationship! Immunotherapy 2020; 12:1105-1109. [PMID: 32677493 PMCID: PMC7370803 DOI: 10.2217/imt-2020-0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Carmine Finelli
- Department of Internal Medicine, Ospedale Cav R Apicella, ASL Napoli 3 Sud, Via di Massa, 1, 80040 Pollena, Napoli, Italy
- COVID Hospital Boscotrecase, ASL Napoli 3 Sud, Via Lenza, 3, 80042 Boscotrecase, Napoli, Italy
| |
Collapse
|
38
|
Ren HM, Lukacher AE. IL-21 in Homeostasis of Resident Memory and Exhausted CD8 T Cells during Persistent Infection. Int J Mol Sci 2020; 21:ijms21186966. [PMID: 32971931 PMCID: PMC7554897 DOI: 10.3390/ijms21186966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023] Open
Abstract
CD4 T cells guide the development of CD8 T cells into memory by elaborating mitogenic and differentiation factors and by licensing professional antigen-presenting cells. CD4 T cells also act to stave off CD8 T cell dysfunction during repetitive antigen stimulation in persistent infection and cancer by mitigating generation of exhausted T cells (TEX). CD4 T cell help is also required for establishing and maintaining tissue-resident memory T cells (TRM), the nonrecirculating memory T cell subset parked in nonlymphoid tissues to provide frontline defense against reinvading pathogens. Interleukin (IL)-21 is the signature cytokine secreted by follicular helper CD4 T cells (TFH) to drive B cell expansion and differentiation in germinal centers to mount high-affinity, isotype class-switched antibodies. In several infection models, IL-21 has been identified as the CD4 T help needed for formation and survival of TRM and TEX. In this review, we will explore the different memory subsets of CD8 T cells in persistent infections, the metabolic profiles associated with each, and evidence documenting the importance of CD4 T cell-derived IL-21 in regulating CD8 TRM and TEX development, homeostasis, and function.
Collapse
|
39
|
Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, Shwetank, Rahman ZSM, Evavold BD, Lukacher AE. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol 2020; 5:5/51/eabb5590. [PMID: 32948671 DOI: 10.1126/sciimmunol.abb5590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.
Collapse
Affiliation(s)
- Heather M Ren
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Quinn Wade
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shwetank
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
40
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
41
|
Kusnadi A, Ramírez-Suástegui C, Fajardo V, Chee SJ, Meckiff BJ, Simon H, Pelosi E, Seumois G, Ay F, Vijayanand P, Ottensmeier CH. Severely ill COVID-19 patients display augmented functional properties in SARS-CoV-2-reactive CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.09.194027. [PMID: 32676602 PMCID: PMC7359524 DOI: 10.1101/2020.07.09.194027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The molecular properties of CD8 + T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8 + T cells from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8 + T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the non-exhausted subsets from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8 + T cell memory responses in patients with severe COVID-19 illness. CD8 + T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features. Cells with such features were mostly absent in SARS-CoV-2 responsive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8 + T cells responding to SARS-CoV-2.
Collapse
Affiliation(s)
- Anthony Kusnadi
- La Jolla Institute for Immunology, La Jolla, CA, USA
- These authors jointly contributed to the work
| | - Ciro Ramírez-Suástegui
- La Jolla Institute for Immunology, La Jolla, CA, USA
- These authors jointly contributed to the work
| | - Vicente Fajardo
- La Jolla Institute for Immunology, La Jolla, CA, USA
- These authors jointly contributed to the work
| | - Serena J Chee
- NIHR and CRUK Southampton Experimental Cancer Medicine Center, Faculty of Medicine, University of Southampton, Southampton, UK
- These authors jointly contributed to the work
| | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Emanuela Pelosi
- Southampton Specialist Virology Centre, Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, United Kingdom
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- These authors jointly directed the work
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, United Kingdom
- These authors jointly directed the work
| |
Collapse
|
42
|
Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020; 9:pathogens9060481. [PMID: 32570728 PMCID: PMC7350342 DOI: 10.3390/pathogens9060481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illnesses in children, the elderly and immunocompromised patients. Although this pathogen was only discovered in 2001, an enormous amount of research has been conducted in order to develop safe and effective vaccines to prevent people from contracting the disease. In this review, we summarize current knowledge about the most promising experimental B- and T-cell epitopes of human metapneumovirus for the rational design of HMPV vaccines using vector delivery systems, paying special attention to the conservation of these epitopes among different lineages/genotypes of HMPV. The prospects of the successful development of an epitope-based HMPV vaccine are discussed in the context of recent findings regarding HMPV’s ability to modulate host immunity. In particular, we discuss the lack of data on experimental human CD4 T-cell epitopes for HMPV despite the role of CD4 lymphocytes in both the induction of higher neutralizing antibody titers and the establishment of CD8 memory T-cell responses. We conclude that current research should be focused on searching for human CD4 T-cell epitopes of HMPV that can help us to design a safe and cross-protective epitope-based HMPV vaccine.
Collapse
|
43
|
Yuan C, Zhu H, Yang Y, Cai X, Xiang F, Wu H, Yao C, Xiang Y, Xiao H. Viral loads in throat and anal swabs in children infected with SARS-CoV-2. Emerg Microbes Infect 2020; 9:1233-1237. [PMID: 32419639 PMCID: PMC7450259 DOI: 10.1080/22221751.2020.1771219] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay on anal swabs
was recently reported to be persistently positive even after throat testing was negative
during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However,
data about the consistent performance of RT-PCR assay on throat and anal swabs remain
limited in paediatric patients. Here, we retrospectively reviewed RT-PCR-testing results
of 212 paediatric patients with suspected SARS-CoV-2 infection at Wuhan Children’s
Hospital. The diagnostic potential of these two types of specimens showed significant
difference (positive rate: 78.2% on throat swabs vs. 52.6% on anal swabs, McNemar Test
P = 0.0091) and exhibited a weak positive consistency
(Kappa value was 0.311, P < 0.0001) in paediatric
patients. Furthermore, viral loads detected on both throat and anal swabs also showed no
significant difference (P = 0.9511) and correlation (Pearson
r = 0.0434, P = 0.8406), and
exhibited an inconsistent kinetic change through the course of SARS-CoV-2 infection.
Besides, viral loads in the throat and anal swabs were correlated with different types of
immune states, immune-reactive phase, and the resolution phase/immunologic tolerance,
respectively. These findings revealed that RT-PCR-testing on throat and anal swabs showed
significant difference for monitoring SARS-CoV-2 infection and correlated with different
immune state in paediatric patients.
Collapse
Affiliation(s)
- Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongmin Zhu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Feiyan Xiang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huan Wu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cong Yao
- Health Care Department, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
44
|
Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020; 12:v12040376. [PMID: 32235330 PMCID: PMC7232439 DOI: 10.3390/v12040376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses.
Collapse
|
45
|
CD4 + T cell help creates memory CD8 + T cells with innate and help-independent recall capacities. Nat Commun 2019; 10:5531. [PMID: 31797935 PMCID: PMC6892909 DOI: 10.1038/s41467-019-13438-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
CD4+ T cell help is required for the generation of CD8+ cytotoxic T lymphocyte (CTL) memory. Here, we use genome-wide analyses to show how CD4+ T cell help delivered during priming promotes memory differentiation of CTLs. Help signals enhance IL-15-dependent maintenance of central memory T (TCM) cells. More importantly, help signals regulate the size and function of the effector memory T (TEM) cell pool. Helped TEM cells produce Granzyme B and IFNγ upon antigen-independent, innate-like recall by IL-12 and IL-18. In addition, helped memory CTLs express the effector program characteristic of helped primary CTLs upon recall with MHC class I-restricted antigens, likely due to epigenetic imprinting and sustained mRNA expression of effector genes. Our data thus indicate that during priming, CD4+ T cell help optimizes CTL memory by creating TEM cells with innate and help-independent antigen-specific recall capacities.
Collapse
|
46
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
47
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
48
|
Takamura S, Kohlmeier JE. Establishment and Maintenance of Conventional and Circulation-Driven Lung-Resident Memory CD8 + T Cells Following Respiratory Virus Infections. Front Immunol 2019; 10:733. [PMID: 31024560 PMCID: PMC6459893 DOI: 10.3389/fimmu.2019.00733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
Antigen-specific CD8+ tissue-resident memory T cells (TRM cells) persist in the lung following resolution of a respiratory virus infection and provide first-line defense against reinfection. In contrast to other memory T cell populations, such as central memory T cells that circulate between lymph and blood, and effector memory T cells (TEM cells) that circulate between blood and peripheral tissues, TRM cells are best defined by their permanent residency in the tissues and their independence from circulatory T cell populations. Consistent with this, we recently demonstrated that CD8+ TRM cells primarily reside within specific niches in the lung (Repair-Associated Memory Depots; RAMD) that normally exclude CD8+ TEM cells. However, it has also been reported that circulating CD8+ TEM cells continuously convert into CD8+ TRM cells in the lung interstitium, helping to sustain TRM numbers. The relative contributions of these two mechanisms of CD8+ TRM cells maintenance in the lung has been the source of vigorous debate. Here we propose a model in which the majority of CD8+ TRM cells are maintained within RAMD (conventional TRM) whereas a small fraction of TRM are derived from circulating CD8+ TEM cells and maintained in the interstitium. The numbers of both types of TRM cells wane over time due to declines in both RAMD availability and the overall number of TEM in the circulation. This model is consistent with most published reports and has important implications for the development of vaccines designed to elicit protective T cell memory in the lung.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|