1
|
Loriani S, Bartsch A, Calamita E, Donges JF, Hebden S, Hirota M, Landolfi A, Nagler T, Sakschewski B, Staal A, Verbesselt J, Winkelmann R, Wood R, Wunderling N. Monitoring the Multiple Stages of Climate Tipping Systems from Space: Do the GCOS Essential Climate Variables Meet the Needs? SURVEYS IN GEOPHYSICS 2025; 46:327-374. [PMID: 40417377 PMCID: PMC12095353 DOI: 10.1007/s10712-024-09866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/10/2024] [Indexed: 05/27/2025]
Abstract
Many components of the Earth system feature self-reinforcing feedback processes that can potentially scale up a small initial change to a fundamental state change of the underlying system in a sometimes abrupt or irreversible manner beyond a critical threshold. Such tipping points can be found across a wide range of spatial and temporal scales and are expressed in very different observable variables. For example, early-warning signals of approaching critical transitions may manifest in localised spatial pattern formation of vegetation within years as observed for the Amazon rainforest. In contrast, the susceptibility of ice sheets to tipping dynamics can unfold at basin to sub-continental scales, over centuries to even millennia. Accordingly, to improve the understanding of the underlying processes, to capture present-day system states and to monitor early-warning signals, tipping point science relies on diverse data products. To that end, Earth observation has proven indispensable as it provides a broad range of data products with varying spatio-temporal scales and resolutions. Here we review the observable characteristics of selected potential climate tipping systems associated with the multiple stages of a tipping process: This includes i) gaining system and process understanding, ii) detecting early-warning signals for resilience loss when approaching potential tipping points and iii) monitoring progressing tipping dynamics across scales in space and time. By assessing how well the observational requirements are met by the Essential Climate Variables (ECVs) defined by the Global Climate Observing System (GCOS), we identify gaps in the portfolio and what is needed to better characterise potential candidate tipping elements. Gaps have been identified for the Amazon forest system (vegetation water content), permafrost (ground subsidence), Atlantic Meridional Overturning Circulation, AMOC (section mass, heat and fresh water transports and freshwater input from ice sheet edges) and ice sheets (e.g. surface melt). For many of the ECVs, issues in specifications have been identified. Of main concern are spatial resolution and missing variables, calling for an update of the ECVS or a separate, dedicated catalogue of tipping variables.
Collapse
Affiliation(s)
- S. Loriani
- Earth Resilience Science Unit and Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg 31A, 14473 Potsdam, Germany
| | - A. Bartsch
- b.geos, Industriestrasse 1A, 2100 Korneuburg, Austria
| | - E. Calamita
- Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - J. F. Donges
- Earth Resilience Science Unit and Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg 31A, 14473 Potsdam, Germany
- Stockholm Resilience Centre, Stockholm University, Albanovägen 28, 106 91 Stockholm, Sweden
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544 USA
| | - S. Hebden
- Future Earth Secretariat, 11418 Stockholm, Sweden
- ECSAT, European Space Agency, Harwell, Didcot OX11 0FD UK
| | - M. Hirota
- Group IpES, Department of Physics, Federal University of Santa Catarina, Florianópolis, 88034-102 Brazil
- Department of Plant Biology, University of Campinas, Campinas, 13083-970 Brazil
| | - A. Landolfi
- National Research Council of Italy, CNR-ISMAR-Roma, 00133 Rome, Italy
| | - T. Nagler
- ENVEO Environmental Earth Observation Information Technology GmbH, Fürstenweg 176, 6020 Innsbruck, Austria
| | - B. Sakschewski
- Earth Resilience Science Unit and Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg 31A, 14473 Potsdam, Germany
| | - A. Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
| | - J. Verbesselt
- Belgian Science Policy Office (BELSPO), Simon Bolivarlaan 30 Bus 7 Boulevard Simon Bolivar 30 Bte 7, 1000 Brussels, Belgium
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - R. Winkelmann
- Earth Resilience Science Unit and Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg 31A, 14473 Potsdam, Germany
- Institute for Physics and Astronomy, University of Potsdam, Potsdam, 14476 Germany
- Integrative Earth System Science, Max Planck Institute of Geoanthropology, Jena, 07745 Germany
| | - R. Wood
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB UK
| | - N. Wunderling
- Earth Resilience Science Unit and Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg 31A, 14473 Potsdam, Germany
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544 USA
- Center for Critical Computational Studies, Goethe University, Theodor-W.-Adorno-Platz 1, Frankfurt am Main, 60629 Germany
| |
Collapse
|
2
|
Toledo N, Moulatlet G, Gaona G, Valencia B, Hirata R, Conicelli B. Dynamics of meteorological and hydrological drought: The impact of groundwater and El Niño events on forest fires in the Amazon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176612. [PMID: 39362531 DOI: 10.1016/j.scitotenv.2024.176612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Over recent decades, anthropogenic forest fires have significantly altered vegetation dynamics in the Amazon region. While human activities primarily initiate these fires, their escalation is intricately linked to climatic conditions, particularly droughts induced by the warm El Niño phase. This study investigates the impact of meteorological and hydrological drought on forest fires in the Amazon, focusing on the role of groundwater and El Niño events. Utilizing comprehensive drought indicators at various soil depths and standardized precipitation indexes, the research spans from 2004 to 2016, revealing a consistent decrease in humidity conditions across surface soil moisture, root zone soil moisture, and groundwater storage levels. With its slower response to precipitation changes, groundwater emerges as a crucial factor influencing hydrological drought patterns in the Amazon. The spatial distribution of drought conditions is explored, highlighting areas with lower humidity concentrations in the northeast and a correlation between forest fires and positive rates of change in burned area fraction during El Niño events. Notably, the study underscores the substantial increase in burned area during the 2015-2016, characterized by a very strong El Niño. This nuanced understanding of groundwater dynamics and its interplay with El Niño events provides critical insights for developing a tailored fire risk index in the ecologically significant and vulnerable Amazon basin, subsidizing strategies for mitigating fire risk and enhancing preparedness.
Collapse
Affiliation(s)
- Naomi Toledo
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Gabriel Moulatlet
- Arizona Institute for Resilience, University of Arizona, Tucson, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Gabriel Gaona
- Laboratorio de servicios hidrometeorológicos, Grupo de Recursos Hídricos y Acuáticos (GIRHA), Universidad Regional Amazónica Ikiam, km7 vía Muyuna, Tena, Ecuador
| | - Bryan Valencia
- Facultad de Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Ricardo Hirata
- Groundwater Research Center (CEPAS|USP), Institute of Geosciences, University of São Paulo, São Paulo, SP 05508-080, Brazil
| | - Bruno Conicelli
- Groundwater Research Center (CEPAS|USP), Institute of Geosciences, University of São Paulo, São Paulo, SP 05508-080, Brazil.
| |
Collapse
|
3
|
Zhao F, Miao F, Wu Y, Gong S, Zheng G, Yang J, Zhan W. Landslide dynamic susceptibility mapping in urban expansion area considering spatiotemporal land use and land cover change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175059. [PMID: 39084358 DOI: 10.1016/j.scitotenv.2024.175059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Landslides pose a noteworthy threat in urban settlements globally, especially in areas experiencing extreme climate and rapid engineering. However, researches focusing on the long-term uninterrupted land use and land cover change (LULCC) impacted on landslide susceptibility mapping (LSM) in rapid urban expansion areas remains limited, let alone different temporal scenarios adjacency thresholds. This work aims to refine the temporal LSM considering spatiotemporal land use and land cover (LULC) and to provide decision makers with governing factors in landslides control during urbanization in mountainous areas. Herein, annual LULC data and landslide inventory spanning from 1992 to 2022 were utilized to map dynamic landslide susceptibility in Wanzhou District of the Three Gorges Reservoir Area, China. Initially, the landslide-related factors were filtered as input features of random forest (RF) model before diagnosis via multicollinearity test and Pearson Correlation Coefficient (PCC). The advanced patch-generating land use simulation (PLUS) model was then invited to fuel temporal susceptibility prediction powered by LULCC projections. Finally, the performance of various scenarios was evaluated using Receiver Characteristic Curve (ROC) curves and Shapley Additive exPlanation (SHAP) technique, with discussions on LULCC temporal adjacency thresholds and mutual feedback mechanism between territorial exploitation and landslide occurrences. The results indicate that the precision of LSM is positively correlated with the time horizon, acted by incorporating the latest LULC and LULCC achieving an area under the curve (AUC) of 0.920. The transition of land from forest to cropland and impervious areas should be avoided to minimize the increase in landslide susceptibility. Moreover, a one-year adjacency threshold of LULCC is recommended for optimal model accuracy in future LSM. This dynamic LSM framework can serve as a reference for decision makers in future landslide susceptibility mitigation and land resources utilization in rapid urban expansion areas worldwide.
Collapse
Affiliation(s)
- Fancheng Zhao
- Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Fasheng Miao
- Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Yiping Wu
- Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Shunqi Gong
- State Grid Jingzhou Electric Power Supply Company, Jingzhou 434000, China
| | - Guyue Zheng
- Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Jing Yang
- Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Weiwei Zhan
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
4
|
Jackson TD, Fischer FJ, Vincent G, Gorgens EB, Keller M, Chave J, Jucker T, Coomes DA. Tall Bornean forests experience higher canopy disturbance rates than those in the eastern Amazon or Guiana shield. GLOBAL CHANGE BIOLOGY 2024; 30:e17493. [PMID: 39239723 DOI: 10.1111/gcb.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
The future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short-lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old-growth tropical forests over a 4-5-year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small-scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.
Collapse
Affiliation(s)
- Toby D Jackson
- Conservation Research Institute and Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Fabian J Fischer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Grégoire Vincent
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Eric B Gorgens
- Departamento de Engenharia Florestal, Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Michael Keller
- USDA Forest Service, International Institute of Tropical Forestry, Rio Piedras, Puerto Rico, USA
- Jet Propulsion Laboratory, Pasadena, California, USA
| | - Jérôme Chave
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - David A Coomes
- Conservation Research Institute and Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Csillik O, Keller M, Longo M, Ferraz A, Rangel Pinagé E, Görgens EB, Ometto JP, Silgueiro V, Brown D, Duffy P, Cushman KC, Saatchi S. A large net carbon loss attributed to anthropogenic and natural disturbances in the Amazon Arc of Deforestation. Proc Natl Acad Sci U S A 2024; 121:e2310157121. [PMID: 39102539 PMCID: PMC11331119 DOI: 10.1073/pnas.2310157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.
Collapse
Affiliation(s)
- Ovidiu Csillik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Michael Keller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
- International Institute of Tropical Forestry, United Stated Department of Agriculture (USDA) Forest Service, Río Piedras00926, Puerto Rico
| | - Marcos Longo
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Antonio Ferraz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | | | - Eric Bastos Görgens
- Department of Forest Engineering, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG39100-000, Brazil
| | - Jean P. Ometto
- Earth System Sciences Center, National Institute for Space Research-National Institute for Space Research (INPE), São José dos Campos, SP12227-010, Brazil
| | | | - David Brown
- Neptune and Company, Inc., Lakewood, CO80215
| | - Paul Duffy
- Neptune and Company, Inc., Lakewood, CO80215
| | - K. C. Cushman
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37830
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| |
Collapse
|
6
|
Fan L, Cui T, Wigneron JP, Ciais P, Sitch S, Brandt M, Li X, Niu S, Xiao X, Chave J, Wu C, Li W, Yuan W, Xing Z, Li X, Wang M, Liu X, Chen X, Qin Y, Yang H, Tang Q, Li Y, Ma M, Fensholt R. Dominant role of the non-forest woody vegetation in the post 2015/16 El Niño tropical carbon recovery. GLOBAL CHANGE BIOLOGY 2024; 30:e17423. [PMID: 39010751 DOI: 10.1111/gcb.17423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low-frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre-El Niño levels by the end of 2020, resulting in an AGC sink of0.18 0.14 0.26 $$ {0.18}_{0.14}^{0.26} $$ Pg C year-1 during 2014-2020. This sink was dominated by strong AGC increases (0.61 0.49 0.84 $$ {0.61}_{0.49}^{0.84} $$ Pg C year-1) in non-forest woody vegetation during 2016-2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non-forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.
Collapse
Affiliation(s)
- Lei Fan
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Tianxiang Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Xin Li
- Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangming Xiao
- Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman, Oklahoma, USA
| | - Jérome Chave
- Diversité Biologique, CNRS, IRD, UT3, Université Paul Sabatier, Toulouse, France
| | - Chaoyang Wu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Wenping Yuan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zanpin Xing
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaojun Li
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France
| | - Mengjia Wang
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, China
| | - Xiangzhuo Liu
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France
| | - Xiuzhi Chen
- Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanwei Qin
- Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman, Oklahoma, USA
| | - Hui Yang
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Qiang Tang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Yuechen Li
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Mingguo Ma
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Harrison ME, Deere NJ, Imron MA, Nasir D, Adul, Asti HA, Aragay Soler J, Boyd NC, Cheyne SM, Collins SA, D’Arcy LJ, Erb WM, Green H, Healy W, Hendri, Holly B, Houlihan PR, Husson SJ, Iwan, Jeffers KA, Kulu IP, Kusin K, Marchant NC, Morrogh-Bernard HC, Page SE, Purwanto A, Ripoll Capilla B, de Rivera Ortega OR, Santiano, Spencer KL, Sugardjito J, Supriatna J, Thornton SA, Frank van Veen FJ, Yulintine, Struebig MJ. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc Natl Acad Sci U S A 2024; 121:e2307216121. [PMID: 38621126 PMCID: PMC11047076 DOI: 10.1073/pnas.2307216121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/02/2023] [Indexed: 04/17/2024] Open
Abstract
Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.
Collapse
Affiliation(s)
- Mark E. Harrison
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Nicolas J. Deere
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Muhammad Ali Imron
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Darmae Nasir
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Adul
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Hastin Ambar Asti
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Joana Aragay Soler
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, OxfordOX13 5QL, United Kingdom
| | - Nicholas C. Boyd
- Department of Modern Languages, University of Wales Aberystwyth, AberystwthSY23 1DE, United Kingdom
| | - Susan M. Cheyne
- School of Humanities and Social Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Sarah A. Collins
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PlymouthPL4 8AA, United Kingdom
| | - Laura J. D’Arcy
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Wendy M. Erb
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY14850
| | - Hannah Green
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PlymouthPL4 8AA, United Kingdom
| | - William Healy
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Hendri
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Brendan Holly
- Environmental Studies, Centre College, Danville, KY40422
| | - Peter R. Houlihan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA90095-1496
| | - Simon J. Husson
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Iwan
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Karen A. Jeffers
- School of Humanities and Social Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Ici P. Kulu
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Kitso Kusin
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Nicholas C. Marchant
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, OxfordOX13 5QL, United Kingdom
| | - Helen C. Morrogh-Bernard
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Susan E. Page
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Ari Purwanto
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Bernat Ripoll Capilla
- Borneo Nature Foundation International, Tremough Innovation Centre, PenrynTR10 9TA, United Kingdom
| | - Oscar Rodriguez de Rivera Ortega
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QF, United Kingdom
| | - Santiano
- Yayasan Borneo Nature Indonesia, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Katie L. Spencer
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Jito Sugardjito
- Centre for Sustainable Energy and Resources Management, Universitas Nasional, Jakarta12520, Indonesia
- Faculty of Biology, Universitas Nasional, Jakarta12520, Indonesia
| | - Jatna Supriatna
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok16424, Indonesia
| | - Sara A. Thornton
- School of Geography, Geology and the Environment, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - F. J. Frank van Veen
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Yulintine
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, University of Palangka Raya, Palangka Raya73112, Central Kalimantan, Indonesia
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| |
Collapse
|
8
|
Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, Levis C, Lapola DM, Esquível-Muelbert A, Jakovac C, Nobre CA, Oliveira RS, Borma LS, Nian D, Boers N, Hecht SB, Ter Steege H, Arieira J, Lucas IL, Berenguer E, Marengo JA, Gatti LV, Mattos CRC, Hirota M. Critical transitions in the Amazon forest system. Nature 2024; 626:555-564. [PMID: 38356065 PMCID: PMC10866695 DOI: 10.1038/s41586-023-06970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 02/16/2024]
Abstract
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.
Collapse
Affiliation(s)
- Bernardo M Flores
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
| | - Encarni Montoya
- Geosciences Barcelona, Spanish National Research Council, Barcelona, Spain
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | | | - Arie Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Richard A Betts
- Met Office Hadley Centre, Exeter, UK
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Carolina Levis
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - David M Lapola
- Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, Brazil
| | - Adriane Esquível-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Catarina Jakovac
- Department of Plant Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carlos A Nobre
- Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, University of Campinas, Campinas, Brazil
| | - Laura S Borma
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Da Nian
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Niklas Boers
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
- Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Susanna B Hecht
- Luskin School for Public Affairs and Institute of the Environment, University of California, Los Angeles, CA, USA
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands
| | - Julia Arieira
- Science Panel for the Amazon (SPA), São José dos Campos, Brazil
| | | | - Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - José A Marengo
- Centro Nacional de Monitoramento e Alerta de Desastres Naturais, São José dos Campos, Brazil
- Graduate Program in Natural Disasters, UNESP/CEMADEN, São José dos Campos, Brazil
- Graduate School of International Studies, Korea University, Seoul, Korea
| | - Luciana V Gatti
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Caio R C Mattos
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| | - Marina Hirota
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
- Department of Plant Biology, University of Campinas, Campinas, Brazil.
- Group IpES, Department of Physics, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
9
|
Giammarese A, Brown J, Malik N. Reconfiguration of Amazon's connectivity in the climate system. CHAOS (WOODBURY, N.Y.) 2024; 34:013134. [PMID: 38260937 DOI: 10.1063/5.0165861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
With the recent increase in deforestation, forest fires, and regional temperatures, the concerns around the rapid and complete collapse of the Amazon rainforest ecosystem have heightened. The thresholds of deforestation and the temperature increase required for such a catastrophic event are still uncertain. However, our analysis presented here shows that signatures of changing Amazon are already apparent in historical climate data sets. Here, we extend the methods of climate network analysis and apply them to study the temporal evolution of the connectivity between the Amazon rainforest and the global climate system. We observe that the Amazon rainforest is losing short-range connectivity and gaining more long-range connections, indicating shifts in regional-scale processes. Using embeddings inspired by manifold learning, we show that the Amazon connectivity patterns have undergone a fundamental shift in the 21st century. By investigating edge-based network metrics on similar regions to the Amazon, we see the changing properties of the Amazon are noticeable in comparison. Furthermore, we simulate diffusion and random walks on these networks and observe a faster spread of perturbations from the Amazon in recent decades. Our methodology innovations can act as a template for examining the spatiotemporal patterns of regional climate change and its impact on global climate using the toolbox of climate network analysis.
Collapse
Affiliation(s)
- Adam Giammarese
- School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Jacob Brown
- Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Nishant Malik
- School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
10
|
Romanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, et alRomanello M, Napoli CD, Green C, Kennard H, Lampard P, Scamman D, Walawender M, Ali Z, Ameli N, Ayeb-Karlsson S, Beggs PJ, Belesova K, Berrang Ford L, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Freyberg C, Gasparyan O, Gordon-Strachan G, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Hsu SC, Jamart L, Jankin S, Jay O, Kelman I, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Larosa F, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Lotto Batista M, Lowe R, Odhiambo Sewe M, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman O, Pega F, Pershing A, Rabbaniha M, Rickman J, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell JD, Tabatabaei M, Taylor J, Thompson R, Tonne C, Treskova M, Trinanes JA, Wagner F, Warnecke L, Whitcombe H, Winning M, Wyns A, Yglesias-González M, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 2023; 402:2346-2394. [PMID: 37977174 PMCID: PMC7616810 DOI: 10.1016/s0140-6736(23)01859-7] [Show More Authors] [Citation(s) in RCA: 331] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The Lancet Countdown is an international research collaboration that independently monitors the evolving impacts of climate change on health, and the emerging health opportunities of climate action. In its eighth iteration, this 2023 report draws on the expertise of 114 scientists and health practitioners from 52 research institutions and UN agencies worldwide to provide its most comprehensive assessment yet. In 2022, the Lancet Countdown warned that people’s health is at the mercy of fossil fuels and stressed the transformative opportunity of jointly tackling the concurrent climate change, energy, cost-of-living, and health crises for human health and wellbeing. This year’s report finds few signs of such progress. At the current 10-year mean heating of 1·14°C above pre-industrial levels, climate change is increasingly impacting the health and survival of people worldwide, and projections show these risks could worsen steeply with further inaction. However, with health matters gaining prominence in climate change negotiations, this report highlights new opportunities to deliver health-promoting climate change action and a safe and thriving future for all.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Claudia di Napoli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Carole Green
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Paul J Beggs
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | - Kathryn Bowen
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Jonathan Chambers
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Troy J Cross
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- International Development Department, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | | | - Robert Dubrow
- School of Public Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Washington, DC, USA
| | - Matthew Eckelman
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Chris Freyberg
- Department of Information Systems, Massey University, Palmerston North, New Zealand
| | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | | | - Stella Hartinger
- Carlos Vidal Layseca School of Public Health and Management, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Kehan He
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Julian Heidecke
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Washington, DC, USA
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- Centre for AI in Government, University of Birmingham, Birmingham, UK
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, Boston University, Boston, MA, USA
| | - Dominic Kniveton
- School of Global Studies, University of Sussex, Brighton and Hove, UK
| | | | - Francesca Larosa
- Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Tara Neville
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | - Maria Nilsson
- Department for Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | | | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia Pearman
- Center for Science and Technology Policy, University of Colorado Boulder, Boulder, CO, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organisation, Geneva, Switzerland
| | | | | | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK
| | - Joacim Rocklöv
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | | | - Grant Silbert
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Marco Springmann
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago, Spain
| | - Fabian Wagner
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Laura Warnecke
- International Institute for Applied Systems Analysis Energy, Climate, and Environment Program, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Arthur Wyns
- Melbourne Climate Futures, The University of Melbourne, Melbourne, VIC, Australia
| | - Marisol Yglesias-González
- Centro Latinoamericano de Excelencia en Cambio Climatico y Salud, Cayetano Heredia Pervuvian University, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Department of Experimental and Translational Medicine and Division of Medicine, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
11
|
Amaral C, Poulter B, Lagomasino D, Fatoyinbo T, Taillie P, Lizcano G, Canty S, Silveira JAH, Teutli-Hernández C, Cifuentes-Jara M, Charles SP, Moreno CS, González-Trujillo JD, Roman-Cuesta RM. Drivers of mangrove vulnerability and resilience to tropical cyclones in the North Atlantic Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165413. [PMID: 37429480 DOI: 10.1016/j.scitotenv.2023.165413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The North Atlantic Basin (NAB) has seen an increase in the frequency and intensity of tropical cyclones since the 1980s, with record-breaking seasons in 2017 and 2020. However, little is known about how coastal ecosystems, particularly mangroves in the Gulf of Mexico and the Caribbean, respond to these new "climate normals" at regional and subregional scales. Wind speed, rainfall, pre-cyclone forest height, and hydro-geomorphology are known to influence mangrove damage and recovery following cyclones in the NAB. However, previous studies have focused on local-scale responses and individual cyclonic events. Here, we analyze 25 years (1996-2020) of mangrove vulnerability (damage after a cyclone) and 24 years (1996-2019) of short-term resilience (recovery after damage) for the NAB and subregions, using multi-annual, remote sensing-derived databases. We used machine learning to characterize the influence of 22 potential variables on mangrove responses, including human development and long-term climate trends. Our results document variability in the rates and drivers of mangrove vulnerability and resilience, highlighting hotspots of cyclone impacts, mangrove damage, and loss of resilience. Cyclone characteristics mainly drove vulnerability at the regional level. In contrast, resilience was driven by site-specific conditions, including long-term climate trends, pre-cyclone forest structure, soil organic carbon stock, and coastal development (i.e., proximity to human infrastructure). Coastal development is associated with both vulnerability and resilience at the subregional level. Further, we highlight that loss of resilience occurs mostly in areas experiencing long-term drought across the NAB. The impacts of increasing cyclone activity on mangroves and their coastal protection service must be framed in the context of compound climate change effects and continued coastal development. Our work offers descriptive and spatial information to support the restoration and adaptive management of NAB mangroves, which need adequate health, structure, and density to protect coasts and serve as Nature-based Solutions against climate change and extreme weather events.
Collapse
Affiliation(s)
- Cibele Amaral
- Earth Lab, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80303, United States; Universidade Federal de Viçosa, Department of Forest Engineering, Viçosa, MG 36570-900, Brazil; NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, United States.
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, United States
| | - David Lagomasino
- East Carolina University, Department of Coastal Studies, Greenville, NC 27858-4353, United States
| | - Temilola Fatoyinbo
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, United States
| | - Paul Taillie
- University of Florida, Department of Wildlife Ecology and Conservation, Gainesville, FL 32611, United States
| | - Gil Lizcano
- Climate Scale, Parc Barcelona Activa, 08402 Barcelona, Spain
| | - Steven Canty
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, United States; Working Land and Seascapes, Smithsonian Institution, Washington, DC 20013, United States
| | | | | | - Miguel Cifuentes-Jara
- Conservation International, Arlington, VA 22202, United States; Centro Agronómico Tropical de Investigación y Enseñanza, 30501 Turrialba, Costa Rica
| | - Sean Patrick Charles
- East Carolina University, Department of Coastal Studies, Greenville, NC 27858-4353, United States
| | - Claudia Shantal Moreno
- Chair of Land Management, Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Juan David González-Trujillo
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, JoseGutierrez Abascal, 2, 28006 Madrid, Spain; Rui Nabeiro Biodiversity Chair, MED Institute, Universidade de Évora, Largo dos Colegiais, 7000 Évora, Portugal
| | - Rosa Maria Roman-Cuesta
- Wageningen University & Research, Laboratory of Geo-Information Science and Remote Sensing, 6708PB Wageningen, the Netherlands; Technical University of Munich, School of Life Sciences, Institute of Forest Management, 85354 Fresing, Germany
| |
Collapse
|
12
|
Vilà-Cabrera A, Astigarraga J, Jump AS, Zavala MA, Seijo F, Sperlich D, Ruiz-Benito P. Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. TRENDS IN PLANT SCIENCE 2023; 28:1132-1143. [PMID: 37263916 DOI: 10.1016/j.tplants.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.
Collapse
Affiliation(s)
- Albert Vilà-Cabrera
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain.
| | - Julen Astigarraga
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisco Seijo
- Instituto de Empresa, School of Global and Public Affairs, Madrid, Spain
| | - Dominik Sperlich
- Department of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Grupo de Investigación en Teledetección Ambiental, Departamento de Geología, Geografía y Medio Ambiente, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
14
|
Carvalho RL, Resende AF, Barlow J, França FM, Moura MR, Maciel R, Alves-Martins F, Shutt J, Nunes CA, Elias F, Silveira JM, Stegmann L, Baccaro FB, Juen L, Schietti J, Aragão L, Berenguer E, Castello L, Costa FRC, Guedes ML, Leal CG, Lees AC, Isaac V, Nascimento RO, Phillips OL, Schmidt FA, Ter Steege H, Vaz-de-Mello F, Venticinque EM, Vieira ICG, Zuanon J, Ferreira J. Pervasive gaps in Amazonian ecological research. Curr Biol 2023; 33:3495-3504.e4. [PMID: 37473761 DOI: 10.1016/j.cub.2023.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.
Collapse
Affiliation(s)
- Raquel L Carvalho
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade de São Paulo, São Paulo 05508-220, Brazil.
| | - Angelica F Resende
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade de São Paulo, Esalq, Piracicaba 13418-900, Brazil.
| | - Jos Barlow
- Lancaster University, LA1 4YQ Lancaster, UK.
| | | | - Mario R Moura
- Universidade Estadual de Campinas, Campinas 13083-862, Brazil; Universidade Federal da Paraíba, Areia 58397-000, Brazil.
| | | | | | - Jack Shutt
- Manchester Metropolitan University, M15 6BH Manchester, UK
| | - Cassio A Nunes
- Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | | | | | - Lis Stegmann
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil
| | | | - Leandro Juen
- Universidade Federal do Pará, Belém 66075-119, Brazil
| | - Juliana Schietti
- Universidade Federal do Amazonas, Manaus 69067-005, Brazil; Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | - Luiz Aragão
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, Brazil
| | - Erika Berenguer
- Lancaster University, LA1 4YQ Lancaster, UK; University of Oxford, OX1 3QY Oxford, UK
| | | | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | | | | | | | | | | | - Oliver L Phillips
- Universidade Federal Rural da Amazônia, Belém 66077-830, Brazil; University of Leeds, LS2 9JT Leeds, UK
| | | | - Hans Ter Steege
- Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands; Utrecht University, 3584 CS Utrecht, the Netherlands
| | | | | | | | - Jansen Zuanon
- Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | - Joice Ferreira
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade Federal do Pará, Belém 66075-119, Brazil
| |
Collapse
|
15
|
Grossman D. 'We are killing this ecosystem': the scientists tracking the Amazon's fading health. Nature 2023; 620:712-716. [PMID: 37612400 DOI: 10.1038/d41586-023-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
|
16
|
Ferdous J, Islam M, Rahman M. The role of tree size, wood anatomical and leaf stomatal traits in shaping tree hydraulic efficiency and safety in a South Asian tropical moist forest. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
17
|
Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Pérez Mullisaca FM, Barros FDV, Bittencourt P, Jancoski H, Scalon MC, Marimon BS, Oliveras Menor I, Marimon BH, Fancourt M, Chambers-Ostler A, Esquivel-Muelbert A, Rowland L, Meir P, Lola da Costa AC, Nina A, Sanchez JMB, Tintaya JS, Chino RSC, Baca J, Fernandes L, Cumapa ERM, Santos JAR, Teixeira R, Tello L, Ugarteche MTM, Cuellar GA, Martinez F, Araujo-Murakami A, Almeida E, da Cruz WJA, Del Aguila Pasquel J, Aragāo L, Baker TR, de Camargo PB, Brienen R, Castro W, Ribeiro SC, Coelho de Souza F, Cosio EG, Davila Cardozo N, da Costa Silva R, Disney M, Espejo JS, Feldpausch TR, Ferreira L, Giacomin L, Higuchi N, Hirota M, Honorio E, Huaraca Huasco W, Lewis S, Flores Llampazo G, Malhi Y, Monteagudo Mendoza A, Morandi P, Chama Moscoso V, Muscarella R, Penha D, Rocha MC, Rodrigues G, Ruschel AR, Salinas N, Schlickmann M, Silveira M, Talbot J, Vásquez R, Vedovato L, Vieira SA, Phillips OL, Gloor E, Galbraith DR. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 2023; 617:111-117. [PMID: 37100901 PMCID: PMC10156596 DOI: 10.1038/s41586-023-05971-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Collapse
Affiliation(s)
- Julia Valentim Tavares
- School of Geography, University of Leeds, Leeds, UK.
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Signori-Müller
- School of Geography, University of Leeds, Leeds, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | | | | | | | - Martin Acosta
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
| | | | - Fernanda de V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Ecologia, University of Campinas, Campinas, Brazil
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Halina Jancoski
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Marina Corrêa Scalon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Beatriz S Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | - Ben Hur Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Max Fancourt
- School of Geography, University of Leeds, Leeds, UK
| | | | - Adriane Esquivel-Muelbert
- School of Geography, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research (BIFoR), Birmingham, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Alex Nina
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Jose S Tintaya
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jean Baca
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Edwin R M Cumapa
- Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém, Brazil
| | | | - Renata Teixeira
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ligia Tello
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Maira T M Ugarteche
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Gina A Cuellar
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Franklin Martinez
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Everton Almeida
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Jhon Del Aguila Pasquel
- Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Luís Aragāo
- National Institute for Space Research (INPE), São José dos Campos-SP, Brazil
| | | | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Wendeson Castro
- Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, Brazil
- SOS Amazônia, Programa Governança e Proteção da Paisagem Verde na Amazônia, Rio Branco-AC, Brazil
| | | | | | - Eric G Cosio
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Richarlly da Costa Silva
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Acre, Campus Baixada do Sol, Rio Branco, Brazil
| | - Mathias Disney
- Department of Geography, University College London, London, UK
| | - Javier Silva Espejo
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Ted R Feldpausch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Leandro Giacomin
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Niro Higuchi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marina Hirota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Physics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euridice Honorio
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Gerardo Flores Llampazo
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional Jorge Basadre de Grohmann (UNJBG), Tacna, Peru
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Paulo Morandi
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Victor Chama Moscoso
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Robert Muscarella
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Deliane Penha
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Mayda Cecília Rocha
- Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Gleicy Rodrigues
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Monique Schlickmann
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Marcos Silveira
- Museu Universitário, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - Joey Talbot
- Institute for Transport Studies, University of Leeds, Leeds, UK
| | | | - Laura Vedovato
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Simone Aparecida Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
18
|
Dickman LT, Jonko AK, Linn RR, Altintas I, Atchley AL, Bär A, Collins AD, Dupuy J, Gallagher MR, Hiers JK, Hoffman CM, Hood SM, Hurteau MD, Jolly WM, Josephson A, Loudermilk EL, Ma W, Michaletz ST, Nolan RH, O'Brien JJ, Parsons RA, Partelli‐Feltrin R, Pimont F, Resco de Dios V, Restaino J, Robbins ZJ, Sartor KA, Schultz‐Fellenz E, Serbin SP, Sevanto S, Shuman JK, Sieg CH, Skowronski NS, Weise DR, Wright M, Xu C, Yebra M, Younes N. Integrating plant physiology into simulation of fire behavior and effects. THE NEW PHYTOLOGIST 2023; 238:952-970. [PMID: 36694296 PMCID: PMC10952334 DOI: 10.1111/nph.18770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.
Collapse
Affiliation(s)
- L. Turin Dickman
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Alexandra K. Jonko
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Rodman R. Linn
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Ilkay Altintas
- San Diego Supercomputer Center and Halicioglu Data Science InstituteUniversity of California San DiegoLa JollaCA92093USA
| | - Adam L. Atchley
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Andreas Bär
- Department of BotanyUniversity of Innsbruck6020InnsbruckAustria
| | - Adam D. Collins
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Jean‐Luc Dupuy
- Ecologie des Forêts Méditerranéennes (URFM)INRAe84914AvignonFrance
| | | | | | - Chad M. Hoffman
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsCO80523USA
| | - Sharon M. Hood
- Rocky Mountain Research StationUSDA Forest ServiceMissoulaMT59801USA
| | | | - W. Matt Jolly
- Rocky Mountain Research StationUSDA Forest ServiceMissoulaMT59801USA
| | - Alexander Josephson
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | | | - Wu Ma
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Sean T. Michaletz
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Rachael H. Nolan
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2753Australia
- NSW Bushfire Risk Management Research HubWollongongNSW2522Australia
| | | | | | - Raquel Partelli‐Feltrin
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - François Pimont
- Ecologie des Forêts Méditerranéennes (URFM)INRAe84914AvignonFrance
| | - Víctor Resco de Dios
- School of Life Sciences and EngineeringSouthwest University of Science and TechnologyMianyang621010China
- Department of Crop and Forest Sciences and JRU CTFC‐AGROTECNIOUniversitat de LleidaLleida25198Spain
| | - Joseph Restaino
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSouth Lake TahoeCA96155USA
| | - Zachary J. Robbins
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Karla A. Sartor
- Environmental Protection and Compliance DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Emily Schultz‐Fellenz
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Shawn P. Serbin
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNY11973USA
| | - Sanna Sevanto
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Jacquelyn K. Shuman
- Climate and Global Dynamics Laboratory, Terrestrial Sciences SectionNational Center for Atmospheric ResearchBoulderCO80305USA
| | - Carolyn H. Sieg
- Rocky Mountain Research StationUSDA Forest ServiceFlagstaffAZ86001USA
| | | | - David R. Weise
- Pacific Southwest Research StationUSDA Forest ServiceRiversideCA92507USA
| | - Molly Wright
- Cibola National ForestUSDA Forest ServiceAlbuquerqueNM87113USA
| | - Chonggang Xu
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Marta Yebra
- Fenner School of Environment and SocietyAustralian National UniversityCanberraACT2601Australia
- School of EngineeringAustralian National UniversityCanberraACT2601Australia
| | - Nicolas Younes
- Fenner School of Environment and SocietyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
19
|
Araujo ECG, Sanquetta CR, Dalla Corte AP, Pelissari AL, Orso GA, Silva TC. Global review and state-of-the-art of biomass and carbon stock in the Amazon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117251. [PMID: 36657202 DOI: 10.1016/j.jenvman.2023.117251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Understanding how studies have been carried out in the region helps to understand the Amazon rainforest potential in mitigating climate change. In addition, evaluating scientific production is essential to verify the main methods and places researched. Thus, this study objective was to build an overview and identify the main gaps regarding research related to biomass and carbon stocks with the coverage limit of the Amazon rainforest. Therefore, an analysis of the publications indexed in the Scopus database was developed until 2020, performing a bibliometric analysis and a systematic and state-of-the-art review. Initially 2042 publications were obtained, of which 786 met the inclusion criteria. The first work indexed in the Scopus database related to the theme was published in 1982. Over time, it was possible to observe an increasing behavior in relation to the interest in the theme. Natural environments were the most researched and change in the land use and occupation of the Amazon Rainforest is still poorly evaluated. Brazil is the country with the highest number of studies, followed by Peru and Colombia. Guyana and Suriname appear as possible scientific gaps and potential environments to be studied. Studies preferentially explore the biomass carbon, with the soil being little evaluated when compared to the total amount of papers found. When observing only the biomass studies, the aboveground biomass is the most evaluated, while the roots and necromass are little studied. The main variables used in biomass equations were diameter at 1.3 m above ground and total tree height. The biomass to carbon conversion factor has been widely used, but it can generate unreliable results. It is recommended to carry out local assessments of the carbon content, especially using the dry combustion method, which generates less waste, with more precise results and shorter execution time of the analyses. Such assessments present values for the location that can avoid false or misinterpretations of the biomass and carbon stocks in the Amazon Rainforest.
Collapse
Affiliation(s)
- Emmanoella Costa Guaraná Araujo
- Forest Sciences Department, Federal University of Paraná, Curitiba, Brazil; Forest Engineering Academic Department, Federal University of Rondônia, Rolim de Moura, Rondônia, Brazil.
| | | | | | | | | | - Thiago Cardoso Silva
- Forest Engineering and Technology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
20
|
Lapola DM, Pinho P, Barlow J, Aragão LEOC, Berenguer E, Carmenta R, Liddy HM, Seixas H, Silva CVJ, Silva-Junior CHL, Alencar AAC, Anderson LO, Armenteras D, Brovkin V, Calders K, Chambers J, Chini L, Costa MH, Faria BL, Fearnside PM, Ferreira J, Gatti L, Gutierrez-Velez VH, Han Z, Hibbard K, Koven C, Lawrence P, Pongratz J, Portela BTT, Rounsevell M, Ruane AC, Schaldach R, da Silva SS, von Randow C, Walker WS. The drivers and impacts of Amazon forest degradation. Science 2023; 379:eabp8622. [PMID: 36701452 DOI: 10.1126/science.abp8622] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.
Collapse
Affiliation(s)
- David M Lapola
- Laboratório de Ciência do Sistema Terrestre - LabTerra, Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia Pinho
- Instituto de Pesquisas Ambientais da Amazônia, Brasília, DF, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Luiz E O C Aragão
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil.,Geography, University of Exeter, Exeter, UK
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.,Environmental Change Institute, University of Oxford, Oxford, UK
| | | | - Hannah M Liddy
- Columbia Climate School, Columbia University, New York, NY, USA.,NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Hugo Seixas
- Laboratório de Ciência do Sistema Terrestre - LabTerra, Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Camila V J Silva
- Instituto de Pesquisas Ambientais da Amazônia, Brasília, DF, Brazil.,Lancaster Environment Centre, Lancaster University, Lancaster, UK.,BeZero Carbon Ltd, London, UK
| | - Celso H L Silva-Junior
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Programa de Pós-graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil
| | - Ane A C Alencar
- Instituto de Pesquisas Ambientais da Amazônia, Brasília, DF, Brazil
| | - Liana O Anderson
- Centro Nacional de Monitoramento e Alertas de Desastres Naturais, São José dos Campos, SP, Brazil
| | | | | | - Kim Calders
- Computational & Applied Vegetation Ecology Laboratory, Department of Environment, Ghent University, Belgium.,School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | | | - Bruno L Faria
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Diamantina, MG, Brazil
| | | | - Joice Ferreira
- Empresa Brasileira de Pesquisa Agropecuária, Belém, PA, Brazil
| | - Luciana Gatti
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil
| | | | | | - Kathleen Hibbard
- National Aeronautics and Space Administration Headquarters, Washington, DC, USA
| | - Charles Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter Lawrence
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Julia Pongratz
- Max Planck Institute for Meteorology, Hamburg, Germany.,Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Mark Rounsevell
- Karlsruhe Institute of Technology, Karlsruhe, Germany.,University of Edinburgh, Edinburgh, UK
| | - Alex C Ruane
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | | | | | - Celso von Randow
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil
| | | |
Collapse
|
21
|
Vegetation coverage changes driven by a combination of climate change and human activities in Ethiopia, 2003–2018. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zheng Q, Siman K, Zeng Y, Teo HC, Sarira TV, Sreekar R, Koh LP. Future land-use competition constrains natural climate solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156409. [PMID: 35660585 DOI: 10.1016/j.scitotenv.2022.156409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Natural climate solutions (NCS) are an essential complement to climate mitigation and have been increasingly incorporated into international mitigation strategies. Yet, with the ongoing population growth, allocating natural areas for NCS may compete with other socioeconomic priorities, especially urban development and food security. Here, we projected the impacts of land-use competition incurred by cropland and urban expansion on the climate mitigation potential of NCS. We mapped the areas available for implementing 9 key NCS strategies and estimated their climate change mitigation potential. Then, we overlaid these areas with future cropland and urban expansion maps projected under three Shared Socioeconomic Pathway (SSP) scenarios (2020-2100) and calculated the resulting mitigation potential loss of each selected NCS strategy. Our results estimate a substantial reduction, 0.3-2.8 GtCO2 yr-1 or 4-39 %, in NCS mitigation potential, of which cropland expansion for fulfilling future food demand is the primary cause. This impact is particularly severe in the tropics where NCS hold the most abundant mitigation potential. Our findings highlight immediate actions prioritized to tropical areas are important to best realize NCS and are key to developing realistic and sustainable climate policies.
Collapse
Affiliation(s)
- Qiming Zheng
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore.
| | - Kelly Siman
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Yiwen Zeng
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Hoong Chen Teo
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Tasya Vadya Sarira
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Rachakonda Sreekar
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Lian Pin Koh
- Centre for Nature-based Climate Solutions, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| |
Collapse
|
23
|
Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation. SUSTAINABILITY 2022. [DOI: 10.3390/su14159419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Burns are common practices in Brazil and cause major fires, especially in the Legal Amazon. This study evaluated the dynamics of the fire foci in the Legal Amazon in Brazil and their consequences on environmental degradation, particularly in the transformation of the forest into pasture, in livestock and agriculture areas, mining activities and urbanization. The fire foci data were obtained from the reference satellites of the BDQueimadas of the CPTEC/INPE for the period June 1998–May 2022. The data obtained were subjected to descriptive and exploratory statistical analysis, followed by a comparison with the PRODES data during 2004–2021, the DETER data (2016–2019) and the ENSO phases during the ONI index for the study area. Biophysical parameters were used in the assessment of environmental degradation. The results showed that El Niño’s years of activity and the years of extreme droughts (2005, 2010 and 2015) stand out with respect to significant increase in fire foci. Moreover, the significant numbers of fire foci indices during August, September, October and November were recorded as 23.28%, 30.91%, 15.64% and 10.34%, respectively, and these were even more intensified by the El Niño episodes. Biophysical parameters maps showed the variability of the fire foci, mainly in the south and west part of the Amazon basin referring to the Arc of Deforestation. Similarly, the states of Mato Grosso, Pará and Amazonas had the highest alerts from PRODES and DETER, and in the case of DETER, primarily mining and deforestation (94.3%) increased the environmental degradation. The use of burns for agriculture and livestock, followed by mining and wood extraction, caused the degradation of the Amazon biome.
Collapse
|
24
|
Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14112510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fire is a significant agent of landscape transformation on Earth, and a dynamic and ephemeral process that is challenging to map. Difficulties include the seasonality of native vegetation in areas affected by fire, the high levels of spectral heterogeneity due to the spatial and temporal variability of the burned areas, distinct persistence of the fire signal, increase in cloud and smoke cover surrounding burned areas, and difficulty in detecting understory fire signals. To produce a large-scale time-series of burned area, a robust number of observations and a more efficient sampling strategy is needed. In order to overcome these challenges, we used a novel strategy based on a machine-learning algorithm to map monthly burned areas from 1985 to 2020 using Landsat-based annual quality mosaics retrieved from minimum NBR values. The annual mosaics integrated year-round observations of burned and unburned spectral data (i.e., RED, NIR, SWIR-1, and SWIR-2), and used them to train a Deep Neural Network model, which resulted in annual maps of areas burned by land use type for all six Brazilian biomes. The annual dataset was used to retrieve the frequency of the burned area, while the date on which the minimum NBR was captured in a year, was used to reconstruct 36 years of monthly burned area. Results of this effort indicated that 19.6% (1.6 million km2) of the Brazilian territory was burned from 1985 to 2020, with 61% of this area burned at least once. Most of the burning (83%) occurred between July and October. The Amazon and Cerrado, together, accounted for 85% of the area burned at least once in Brazil. Native vegetation was the land cover most affected by fire, representing 65% of the burned area, while the remaining 35% burned in areas dominated by anthropogenic land uses, mainly pasture. This novel dataset is crucial for understanding the spatial and long-term temporal dynamics of fire regimes that are fundamental for designing appropriate public policies for reducing and controlling fires in Brazil.
Collapse
|
25
|
Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:673-702. [PMID: 35231182 DOI: 10.1146/annurev-arplant-102820-012804] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Jena, Germany;
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, Jena, Germany
| | - Adrian J Das
- US Geological Survey, Western Ecological Research Center, Three Rivers, Sequoia and Kings Canyon Field Station, California, USA
| | - Adriane Esquivel-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jennifer S Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thomas A M Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Katinka X Ruthrof
- Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
- Murdoch University, Murdoch, Western Australia, Australia
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
26
|
Rossi LC, Berenguer E, Lees AC, Barlow J, Ferreira J, França FM, Tavares P, Pizo MA. Predation on artificial caterpillars following understorey fires in human‐modified Amazonian forests. Biotropica 2022. [DOI: 10.1111/btp.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Liana Chesini Rossi
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Division of Biology and Conservation Ecology Department of Natural Sciences Manchester Metropolitan University Manchester UK
| | - Erika Berenguer
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Alexander Charles Lees
- Division of Biology and Conservation Ecology Department of Natural Sciences Manchester Metropolitan University Manchester UK
- Cornell Lab of Ornithology Cornell University Ithaca USA
| | - Jos Barlow
- Lancaster Environment Centre Lancaster University Lancaster UK
- Setor de Ecologia e Conservação Universidade Federal de Lavras Lavras MG Brazil
| | - Joice Ferreira
- Embrapa Amazônia Oriental Belém PA Brazil
- Programa de Pós‐Graduação em Ecologia (PPGECO) e Programa de Pós‐Graduação em Ciências Ambientais (PPGCA) Universidade Federal do Pará Belém PA Brazil
| | | | - Paulo Tavares
- Programa de Pós‐Graduação em Ecologia (PPGECO) e Programa de Pós‐Graduação em Ciências Ambientais (PPGCA) Universidade Federal do Pará Belém PA Brazil
| | - Marco Aurélio Pizo
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
| |
Collapse
|
27
|
Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14071545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fire is a major forest degradation component in the Amazon forests. Therefore, it is important to improve our understanding of how the post-fire canopy structure changes cascade through the spectral signals registered by medium-resolution satellite sensors over time. We contrasted accumulated yearly temporal changes in forest aboveground biomass (AGB), measured in permanent plots, and in traditional spectral indices derived from Landsat-8 images. We tested if the spectral indices can improve Random Forest (RF) models of post-fire AGB losses based on pre-fire AGB, proxied by AGB data from immediately after a fire. The delta normalized burned ratio, non-photosynthetic vegetation, and green vegetation (ΔNBR, ΔNPV, and ΔGV, respectively), relative to pre-fire data, were good proxies of canopy damage through tree mortality, even though small and medium trees were the most affected tree size. Among all tested predictors, pre-fire AGB had the highest RF model importance to predicting AGB within one year after fire. However, spectral indices significantly improved AGB loss estimates by 24% and model accuracy by 16% within two years after a fire, with ΔGV as the most important predictor, followed by ΔNBR and ΔNPV. Up to two years after a fire, this study indicates the potential of structural and spectral-based spatial data for integrating complex post-fire ecological processes and improving carbon emission estimates by forest fires in the Amazon.
Collapse
|
28
|
The Effects of Environmental Changes on Plant Species and Forest Dependent Communities in the Amazon Region. FORESTS 2022. [DOI: 10.3390/f13030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review the consequences of environmental changes caused by human activities on forest products and forest-dependent communities in the Amazon region—the vast Amazonas River basin and the Guiana Shield in South America. We used the 2018 and 2021 Intergovernmental Panel on Climate Change reports and recent scientific studies to present evidence and hypotheses for changes in the ecosystem productivity and geographical distribution of plants species. We have identified species associated with highly employed forest products exhibiting reducing populations, mainly linked with deforestation and selective logging. Changes in species composition along with a decline of valuable species have been observed in the eastern, central, and southern regions of the Brazilian Amazon, suggesting accelerated biodiversity loss. Over 1 billion native trees and palms are being lost every two years, causing economic losses estimated between US$1–17 billion. A decrease in native plant species can be abrupt and both temporary or persistent for over 20 years, leading to reduced economic opportunities for forest-dependent communities. Science and technology investments are considered promising in implementing agroforestry systems recovering deforested and degraded lands, which could engage companies that use forest products due to supply chain advantages.
Collapse
|
29
|
Luo X, Keenan TF. Tropical extreme droughts drive long-term increase in atmospheric CO 2 growth rate variability. Nat Commun 2022; 13:1193. [PMID: 35256605 PMCID: PMC8901933 DOI: 10.1038/s41467-022-28824-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The terrestrial carbon sink slows the accumulation of carbon dioxide (CO2) in the atmosphere by absorbing roughly 30% of anthropogenic CO2 emissions, but varies greatly from year to year. The resulting variations in the atmospheric CO2 growth rate (CGR) have been related to tropical temperature and water availability. The apparent sensitivity of CGR to tropical temperature ([Formula: see text]) has changed markedly over the past six decades, however, the drivers of the observation to date remains unidentified. Here, we use atmospheric observations, multiple global vegetation models and machine learning products to analyze the cause of the sensitivity change. We found that a threefold increase in [Formula: see text] emerged due to the long-term changes in the magnitude of CGR variability (i.e., indicated by one standard deviation of CGR; STDCGR), which increased 34.7% from 1960-1979 to 1985-2004 and subsequently decreased 14.4% in 1997-2016. We found a close relationship (r2 = 0.75, p < 0.01) between STDCGR and the tropical vegetated area (23°S - 23°N) affected by extreme droughts, which influenced 6-9% of the tropical vegetated surface. A 1% increase in the tropical area affected by extreme droughts led to about 0.14 Pg C yr-1 increase in STDCGR. The historical changes in STDCGR were dominated by extreme drought-affected areas in tropical Africa and Asia, and semi-arid ecosystems. The outsized influence of extreme droughts over a small fraction of vegetated surface amplified the interannual variability in CGR and explained the observed long-term dynamics of [Formula: see text].
Collapse
Affiliation(s)
- Xiangzhong Luo
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.
- Department of Geography, National University of Singapore, Singapore, Singapore.
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.
| |
Collapse
|
30
|
Finlayson C, Roopsind A, Griscom BW, Edwards DP, Freckleton RP. Removing climbers more than doubles tree growth and biomass in degraded tropical forests. Ecol Evol 2022; 12:e8758. [PMID: 35356565 PMCID: PMC8948070 DOI: 10.1002/ece3.8758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Huge areas of tropical forests are degraded, reducing their biodiversity, carbon, and timber value. The recovery of these degraded forests can be significantly inhibited by climbing plants such as lianas. Removal of super-abundant climbers thus represents a restoration action with huge potential for application across the tropics. While experimental studies largely report positive impacts of climber removal on tree growth and biomass accumulation, the efficacy of climber removal varies widely, with high uncertainty as to where and how to apply the technique. Using meta-analytic techniques, we synthesize results from 26 studies to quantify the efficacy of climber removal for promoting tree growth and biomass accumulation. We find that climber removal increases tree growth by 156% and biomass accumulation by 209% compared to untreated forest, and that efficacy remains for at least 19 years. Extrapolating from these results, climber removal could sequester an additional 32 Gigatons of CO2 over 10 years, at low cost, across regrowth, and production forests. Our analysis also revealed that climber removal studies are concentrated in the Neotropics (N = 22), relative to Africa (N = 2) and Asia (N = 2), preventing our study from assessing the influence of region on removal efficacy. While we found some evidence that enhancement of tree growth and AGB accumulation varies across disturbance context and removal method, but not across climate, the number and geographical distribution of studies limits the strength of these conclusions. Climber removal could contribute significantly to reducing global carbon emissions and enhancing the timber and biomass stocks of degraded forests, ultimately protecting them from conversion. However, we urgently need to assess the efficacy of removal outside the Neotropics, and consider the potential negative consequences of climber removal under drought conditions and for biodiversity.
Collapse
Affiliation(s)
- Catherine Finlayson
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| | - Anand Roopsind
- Center for Natural Climate SolutionsConservation InternationalArlingtonVirginiaUSA
| | - Bronson W. Griscom
- Center for Natural Climate SolutionsConservation InternationalArlingtonVirginiaUSA
| | - David P. Edwards
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| | - Robert P. Freckleton
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
31
|
Abstract
The Amazon Basin is undergoing extensive environmental degradation as a result of deforestation and the rising occurrence of fires. The degradation caused by fires is exacerbated by the occurrence of anomalously dry periods in the Amazon Basin. The objectives of this study were: (i) to quantify the extent of areas that burned between 2001 and 2019 and relate them to extreme drought events in a 20-year time series; (ii) to identify the proportion of countries comprising the Amazon Basin in which environmental degradation was strongly observed, relating the spatial patterns of fires; and (iii) examine the Amazon Basin carbon balance following the occurrence of fires. To this end, the following variables were evaluated by remote sensing between 2001 and 2019: gross primary production, standardized precipitation index, burned areas, fire foci, and carbon emissions. During the examined period, fires affected 23.78% of the total Amazon Basin. Brazil had the largest affected area (220,087 fire foci, 773,360 km2 burned area, 54.7% of the total burned in the Amazon Basin), followed by Bolivia (102,499 fire foci, 571,250 km2 burned area, 40.4%). Overall, these fires have not only affected forests in agricultural frontier areas (76.91%), but also those in indigenous lands (17.16%) and conservation units (5.93%), which are recognized as biodiversity conservation areas. During the study period, the forest absorbed 1,092,037 Mg of C, but emitted 2908 Tg of C, which is 2.66-fold greater than the C absorbed, thereby compromising the role of the forest in acting as a C sink. Our findings show that environmental degradation caused by fires is related to the occurrence of dry periods in the Amazon Basin.
Collapse
|
32
|
The “New Transamazonian Highway”: BR-319 and Its Current Environmental Degradation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Brazilian government intends to complete the paving of the BR-319 highway, which connects Porto Velho in the deforestation arc region with Manaus in the middle of the Amazon Forest. This paving is being planned despite environmental legislation, and there is concern that its effectiveness will cause additional deforestation, threatening large portions of forest, conservation units (CUs), and indigenous lands (ILs) in the surrounding areas. In this study, we evaluated environmental degradation along the BR-319 highway from 2008 to 2020 and verified whether highway maintenance has contributed to deforestation. For this purpose, we created a 20 km buffer adjacent to the BR-319 highway and evaluated variables extracted from remote sensing information between 2008 and 2020. Fire foci, burned areas, and rainfall data were used to calculate a drought index using statistical tests for a time series. Furthermore, these were related to data on deforestation, CUs, and ILs using principal component analysis and Pearson’s correlation. Our results showed that 743 km2 of forest was deforested during the period evaluated, most of which occurred in the last four years. A total of 16,472 fire foci were identified. Both deforestation and fire foci occurred mainly outside the CUs and ILs. The most affected areas were close to capital cities, and after resuming road maintenance in 2015, deforestation increased outside the capital cities. Current government policy for Amazon occupation promotes deforestation and will compromise Brazil’s climate goals of reducing greenhouse gas (GHG) emissions and deforestation.
Collapse
|