1
|
Høydahl LS, Berntzen G, Løset GÅ. Engineering T-cell receptor-like antibodies for biologics and cell therapy. Curr Opin Biotechnol 2024; 90:103224. [PMID: 39488859 DOI: 10.1016/j.copbio.2024.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
A major prevailing challenge limiting our ability to fully harness the potential of the latest-generation therapeutic antibodies is the scarcity of clinically established disease-specific targets. A major next step forward will therefore be to expand this target space. The recent clinical success of immunotherapies such as adoptive T-cell transfer, immune checkpoint inhibition, and chimeric antigen receptor (CAR) T-cell therapy strongly supports focusing on the immunopeptidome of peptides presented by human leukocyte antigen (pHLA) that are normally surveilled by T-cell receptors (TCRs). Directing novel antibody development toward pHLA targets has given rise to TCR-like antibodies, which reached the clinic in 2020, as both bispecific T-cell engaging antibodies and the CARs of CAR-T cell therapies. In this review, we highlight recent advances in TCR-like antibodies, including therapeutic modalities, engineering strategies, and benchmarks for success.
Collapse
Affiliation(s)
| | | | - Geir Å Løset
- Nextera AS, Gaustadalléen 21, N-0349 Oslo, Norway.
| |
Collapse
|
2
|
Liu M, Akahori Y, Imai N, Wang L, Negishi K, Kato T, Fujiwara H, Miwa H, Shiku H, Miyahara Y. MAGE-A4 pMHC-targeted CAR-T cells exploiting TCR machinery exhibit significantly improved in vivo function while retaining antigen specificity. J Immunother Cancer 2024; 12:e010248. [PMID: 39572159 PMCID: PMC11580264 DOI: 10.1136/jitc-2024-010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The development of chimeric antigen receptor (CAR)-T cell therapies for solid tumors has attracted considerable attention, yet their clinical efficacy remains limited. Therefore, various efforts have been made to improve the efficacy of CAR-T cell therapy. As one promising strategy, incorporating the T-cell receptor (TCR) machinery into CAR structures has been reported to improve the efficacy of CAR-T cells in studies using conventional CARs targeting such as EGFR. However, in the case of peptide/major histocompatibility complex (pMHC)-targeted CARs, the advantages of exploiting TCR machinery have not been fully elucidated. We recently developed MAGE-A4-derived pMHC (MAGE-A4 pMHC)-targeted CAR-T cells (MA-CAR-T cells) using a highly specific human scFv antibody against MAGE-A4p230-239/HLA-A*02:01. We aimed to determine whether MAGE-A4 pMHC-targeted CAR-T cells using the TCR machinery (Hybrid MA-TCR-T cells) exhibit superior functionality without compromising antigen specificity. METHODS We constructed a retroviral vector expressing Hybrid MA-TCR where MAGE-A4 pMHC-specific scFv are fused to human TCR constant chains. RESULTS Hybrid MA-TCR-T cells demonstrated superior in vitro functions compared with MA-CAR-T cells, while maintaining strict antigen specificity. In addition, functional superiority of Hybrid MA-TCR-T cells to MA-CAR-T cells became more pronounced on repetitive antigen stimulation. In particular, Hybrid MA-TCR-T cells significantly inhibited tumor growth in an immunodeficient mouse model more effectively than MA-CAR-T cells. Ex vivo analyses indicated that their enhanced therapeutic efficacy might result from higher infiltration of functionally active, less differentiated Hybrid MA-TCR-T cells in tumor tissues. CONCLUSIONS These findings suggest that leveraging the TCR machinery is a promising strategy for enhancing pMHC-targeted CAR-T cell therapy for solid tumors, potentially leading to more effective treatments.
Collapse
Affiliation(s)
- Meiou Liu
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yasushi Akahori
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoko Imai
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Linan Wang
- Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kohei Negishi
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takuma Kato
- Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Fujiwara
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Miwa
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Shiku
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Miyahara
- Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Wang L, Matsumoto M, Akahori Y, Seo N, Shirakura K, Kato T, Katsumoto Y, Miyahara Y, Shiku H. Preclinical evaluation of a novel CAR-T therapy utilizing a scFv antibody highly specific to MAGE-A4 p230-239/HLA-A∗02:01 complex. Mol Ther 2024; 32:734-748. [PMID: 38243600 PMCID: PMC10928314 DOI: 10.1016/j.ymthe.2024.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Despite the revolutionary success of chimeric antigen receptor (CAR)-T therapy for hematological malignancies, successful CAR-T therapies for solid tumors remain limited. One major obstacle is the scarcity of tumor-specific cell-surface molecules. One potential solution to overcome this barrier is to utilize antibodies that recognize peptide/major histocompatibility complex (MHCs) in a T cell receptor (TCR)-like fashion, allowing CAR-T cells to recognize intracellular tumor antigens. This study reports a highly specific single-chain variable fragment (scFv) antibody against the MAGE-A4p230-239/human leukocyte antigen (HLA)-A∗02:01 complex (MAGE-A4 pMHC), screened from a human scFv phage display library. Indeed, retroviral vectors encoding CAR, utilizing this scFv antibody as a recognition component, efficiently recognized and lysed MAGA-A4+ tumor cells in an HLA-A∗02:01-restricted manner. Additionally, the adoptive transfer of T cells modified by the CAR-containing glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related receptor (GITR) intracellular domain (ICD), but not CD28 or 4-1BB ICD, significantly suppressed the growth of MAGE-A4+ HLA-A∗02:01+ tumors in an immunocompromised mouse model. Of note, a comprehensive analysis revealed that a broad range of amino acid sequences of the MAGE-A4p230-239 peptide were critical for the recognition of MAGE-A4 pMHC by these CAR-T cells, and no cross-reactivity to analogous peptides was observed. Thus, MAGE-A4-targeted CAR-T therapy using this scFv antibody may be a promising and safe treatment for solid tumors.
Collapse
Affiliation(s)
- Linan Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masahiro Matsumoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan
| | - Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kazuko Shirakura
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoichi Katsumoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
4
|
Lin Y, Chen CY, Ku YC, Wang LC, Hung CC, Lin ZQ, Chen BH, Hung JT, Sun YC, Hung KF. A modified SELEX approach to identify DNA aptamers with binding specificity to the major histocompatibility complex presenting ovalbumin model antigen. RSC Adv 2023; 13:32681-32693. [PMID: 37936644 PMCID: PMC10626974 DOI: 10.1039/d3ra04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Aptamers have sparked significant interest in cell recognition because of their superior binding specificity and biocompatibility. Cell recognition can be mediated by targeting the major histocompatibility complex (MHC) that presents short peptides derived from intracellular antigens. Although numerous antibodies have demonstrated a specific affinity for the peptide-MHC complex, the number of aptamers that exhibit comparable characteristics is limited. Aptamers are usually selected from large libraries via the Systemic Evolution of Ligands by Exponential Enrichment (SELEX), an iterative process of selection and PCR amplification to enrich a pool of aptamers with high affinity. However, the success rate of aptamer identification is low, possibly due to the presence of complementary sequences or sequences rich in guanine and cytosine that are less accessible for primers. Here, we modified SELEX by employing systemic consecutive selections with minimal PCR amplification. We also modified the analysis by selecting aptamers that were identified in multiple selection rounds rather than those that are highly enriched. Using this approach, we were able to identify two aptamers with binding specificity to cells expressing the ovalbumin alloantigen as a proof of concept. These two aptamers were also discovered among the top 150 abundant candidates, despite not being highly enriched, by performing conventional SELEX. Additionally, we found that highly enriched aptamers tend to contain fractions of the primer sequence and have minimal target affinity. Candidate aptamers are easily missed in the conventional SELEX process. Therefore, our modification for SELEX may facilitate the identification of aptamers for more application in diverse biomedical fields. Significance: we modify the conventional method to improve the efficiency in the identification of the aptamer, a single strand of nucleic acid with binding specificity to the target molecule, showing as a proof of concept that this approach is particularly useful to select aptamers that can selectively bind to cells presenting a particular peptide by the major histocompatibility complex (MHC) on the cell surface. Given that cancer cells may express mutant peptide-MHC complexes that are distinct from those expressed by normal cells, this study sheds light on the potential application of aptamers to cancer cell targeting.
Collapse
Affiliation(s)
- Yang Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu-Chia Ku
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Li-Chin Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chia-Chien Hung
- School of Computer Science, Georgia Institute of Technology Atlanta GA USA
| | - Zhi-Qian Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Bing-Hong Chen
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | | | - Yi-Chen Sun
- School of Medicine, Tzu-Chi University Hualien Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation New Taipei City Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University Taipei Taiwan
| |
Collapse
|
5
|
Li Y, Jiang W, Mellins ED. TCR-like antibodies targeting autoantigen-mhc complexes: a mini-review. Front Immunol 2022; 13:968432. [PMID: 35967436 PMCID: PMC9363607 DOI: 10.3389/fimmu.2022.968432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
T cell receptors (TCRs) recognize peptide antigens bound to major histocompatibility complex (MHC) molecules (p/MHC) that are expressed on cell surfaces; while B cell-derived antibodies (Abs) recognize soluble or cell surface native antigens of various types (proteins, carbohydrates, etc.). Immune surveillance by T and B cells thus inspects almost all formats of antigens to mount adaptive immune responses against cancer cells, infectious organisms and other foreign insults, while maintaining tolerance to self-tissues. With contributions from environmental triggers, the development of autoimmune disease is thought to be due to the expression of MHC risk alleles by antigen-presenting cells (APCs) presenting self-antigen (autoantigen), breaking through self-tolerance and activating autoreactive T cells, which orchestrate downstream pathologic events. Investigating and treating autoimmune diseases have been challenging, both because of the intrinsic complexity of these diseases and the need for tools targeting T cell epitopes (autoantigen-MHC). Naturally occurring TCRs with relatively low (micromolar) affinities to p/MHC are suboptimal for autoantigen-MHC targeting, whereas the use of engineered TCRs and their derivatives (e.g., TCR multimers and TCR-engineered T cells) are limited by unpredictable cross-reactivity. As Abs generally have nanomolar affinity, recent advances in engineering TCR-like (TCRL) Abs promise advantages over their TCR counterparts for autoantigen-MHC targeting. Here, we compare the p/MHC binding by TCRs and TCRL Abs, review the strategies for generation of TCRL Abs, highlight their application for identification of autoantigen-presenting APCs, and discuss future directions and limitations of TCRL Abs as immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wei Jiang
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| | - Elizabeth D. Mellins
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| |
Collapse
|
6
|
Liu C, Liu H, Dasgupta M, Hellman LM, Zhang X, Qu K, Xue H, Wang Y, Fan F, Chang Q, Yu D, Ge L, Zhang Y, Cui Z, Zhang P, Heller B, Zhang H, Shi B, Baker BM, Liu C. Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma. Sci Rep 2022; 12:12068. [PMID: 35840635 PMCID: PMC9287321 DOI: 10.1038/s41598-022-15946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies are at the vanguard of the most promising cancer treatments. Whereas traditional therapeutic antibodies have been limited to extracellular antigens, T cell receptor mimic (TCRm) antibodies can target intracellular antigens presented by cell surface major histocompatibility complex (MHC) proteins. TCRm antibodies can therefore target a repertoire of otherwise undruggable cancer antigens. However, the consequences of off-target peptide/MHC recognition with engineered T cell therapies are severe, and thus there are significant safety concerns with TCRm antibodies. Here we explored the specificity and safety profile of a new TCRm-based T cell therapy for hepatocellular carcinoma (HCC), a solid tumor for which no effective treatment exists. We targeted an alpha-fetoprotein peptide presented by HLA-A*02 with a highly specific TCRm, which crystallographic structural analysis showed binds directly over the HLA protein and interfaces with the full length of the peptide. We fused the TCRm to the γ and δ subunits of a TCR, producing a signaling AbTCR construct. This was combined with an scFv/CD28 co-stimulatory molecule targeting glypican-3 for increased efficacy towards tumor cells. This AbTCR + co-stimulatory T cell therapy showed potent activity against AFP-positive cancer cell lines in vitro and an in an in vivo model and undetectable activity against AFP-negative cells. In an in-human safety assessment, no significant adverse events or cytokine release syndrome were observed and evidence of efficacy was seen. Remarkably, one patient with metastatic HCC achieved a complete remission after nine months and ultimately qualified for a liver transplant.
Collapse
Affiliation(s)
- Chang Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Moumita Dasgupta
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA
| | - Lance M Hellman
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA
| | - Xiaogang Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kai Qu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yun Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fenling Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Qi Chang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Duo Yu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Linhu Ge
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Yu Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Ziyou Cui
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Pengbo Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Bradley Heller
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Hongbing Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Bingyin Shi
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA.
| | - Cheng Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA.
| |
Collapse
|
7
|
Duan Z, Ho M. T-Cell Receptor Mimic Antibodies for Cancer Immunotherapy. Mol Cancer Ther 2021; 20:1533-1541. [PMID: 34172530 DOI: 10.1158/1535-7163.mct-21-0115] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Antibody-based immunotherapies show clinical effectiveness in various cancer types. However, the target repertoire is limited to surface or soluble antigens, which are a relatively small percentage of the cancer proteome. Most proteins of the human proteome are intracellular. Short peptides from intracellular targets can be presented by MHC class I (MHC-I) molecules on cell surface, making them potential targets for cancer immunotherapy. Antibodies can be developed to target these peptide/MHC complexes, similar to the recognition of such complexes by the T-cell receptor (TCR). These antibodies are referred to as T-cell receptor mimic (TCRm) or TCR-like antibodies. Ongoing preclinical and clinical studies will help us understand their mechanisms of action and selection of target epitopes for immunotherapy. The present review will summarize and discuss the selection of intracellular antigens, production of the peptide/MHC complexes, isolation of TCRm antibodies for therapeutic applications, limitations of TCRm antibodies, and possible ways to advance TCRm antibody-based approaches into the clinic.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland. .,Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Dass SA, Selva Rajan R, Tye GJ, Balakrishnan V. The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy. Hum Vaccin Immunother 2021; 17:2981-2994. [PMID: 33989511 DOI: 10.1080/21645515.2021.1913960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is ranked as the fourth most common cancer in women worldwide. Monoclonal antibody has created a new dimension in the immunotherapy of many diseases, including cervical cancer. The antibody's ability to target various aspects of cervical cancer (oncoviruses, oncoproteins, and signaling pathways) delivers a promising future for efficient immunotherapy. Besides, technologies such as hybridoma and phage display provide a fundamental platform for monoclonal antibody generation and create the opportunity to generate novel antibody classes including, T cell receptor (TCR)-like antibody. In this review, the current immunotherapy strategies for cervical cancer are presented. We have also proposed a novel concept of T cell receptor (TCR)-like antibody and its potential applications for enhancing cervical cancer therapeutics. Finally, the possible challenges in TCR-like antibody application for cervical cancer therapeutics have been addressed, and strategies to overcome the challenges have been highlighted to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Rehasri Selva Rajan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| |
Collapse
|
9
|
Dragon AC, Zimmermann K, Nerreter T, Sandfort D, Lahrberg J, Klöß S, Kloth C, Mangare C, Bonifacius A, Tischer-Zimmermann S, Blasczyk R, Maecker-Kolhoff B, Uchanska-Ziegler B, Abken H, Schambach A, Hudecek M, Eiz-Vesper B. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. J Immunother Cancer 2020; 8:jitc-2020-000736. [PMID: 33127653 PMCID: PMC7604878 DOI: 10.1136/jitc-2020-000736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Immunosuppressive therapy or T-cell depletion in transplant patients can cause uncontrolled growth of Epstein-Barr virus (EBV)-infected B cells resulting in post-transplant lymphoproliferative disease (PTLD). Current treatment options do not distinguish between healthy and malignant B cells and are thereby often limited by severe side effects in the already immunocompromised patients. To specifically target EBV-infected B cells, we developed a novel peptide-selective chimeric antigen receptor (CAR) based on the monoclonal antibody TÜ165 which recognizes an Epstein-Barr nuclear antigen (EBNA)−3C-derived peptide in HLA-B*35 context in a T-cell receptor (TCR)-like manner. In order to attract additional immune cells to proximity of PTLD cells, based on the TÜ165 CAR, we moreover generated T cells redirected for universal cytokine-mediated killing (TRUCKs), which induce interleukin (IL)-12 release on target contact. Methods TÜ165-based CAR-T cells (CAR-Ts) and TRUCKs with inducible IL-12 expression in an all-in-one construct were generated. Functionality of the engineered cells was assessed in co-cultures with EBNA-3C-peptide-loaded, HLA-B*35-expressing K562 cells and EBV-infected B cells as PTLD model. IL-12, secreted by TRUCKs on target contact, was further tested for its chemoattractive and activating potential towards monocytes and natural killer (NK) cells. Results After co-cultivation with EBV target cells, TÜ165 CAR-Ts and TRUCKs showed an increased activation marker expression (CD137, CD25) and release of proinflammatory cytokines (interferon-γ and tumor necrosis factor-α). Moreover, TÜ165 CAR-Ts and TRUCKs released apoptosis-inducing mediators (granzyme B and perforin) and were capable to specifically lyse EBV-positive target cells. Live cell imaging revealed a specific attraction of TÜ165 CAR-Ts around EBNA-3C-peptide-loaded target cells. Of note, TÜ165 TRUCKs with inducible IL-12 showed highly improved effector functions and additionally led to recruitment of monocyte and NK cell lines. Conclusions Our results demonstrate that TÜ165 CAR-Ts recognize EBV peptide/HLA complexes in a TCR-like manner and thereby allow for recognizing an intracellular EBV target. TÜ165 TRUCKs equipped with inducible IL-12 expression responded even more effectively and released IL-12 recruited additional immune cells which are generally missing in proximity of lymphoproliferation in immunocompromised PTLD patients. This suggests a new and promising strategy to specifically target EBV-infected cells while sparing and mobilizing healthy immune cells and thereby enable control of EBV-associated lymphoproliferation.
Collapse
Affiliation(s)
- Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Katharina Zimmermann
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Thomas Nerreter
- Department of Internal Medicine II, Universitätsklinikum Würzburg, Wuerzburg, Bayern, Germany
| | - Deborah Sandfort
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Julia Lahrberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Stephan Klöß
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Niedersachsen, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Sachsen, Germany
| | - Christina Kloth
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Caroline Mangare
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | | | - Hinrich Abken
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, Universitätsklinikum Regensburg, Regensburg, Bayern, Germany
| | - Axel Schambach
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Niedersachsen, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael Hudecek
- Department of Internal Medicine II, Universitätsklinikum Würzburg, Wuerzburg, Bayern, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Niedersachsen, Germany
| |
Collapse
|
10
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
11
|
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 2019; 135:907-918. [PMID: 31170490 DOI: 10.1016/j.ijbiomac.2019.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/29/2022]
Abstract
Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Hilal Ahmed Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Targeting the MHC Ligandome by Use of TCR-Like Antibodies. Antibodies (Basel) 2019; 8:antib8020032. [PMID: 31544838 PMCID: PMC6640717 DOI: 10.3390/antib8020032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide–major histocompatibility molecule (pMHC) complexes are often referred to as “TCR-like” mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use.
Collapse
|
13
|
Ahmed M, Lopez-Albaitero A, Pankov D, Santich BH, Liu H, Yan S, Xiang J, Wang P, Hasan AN, Selvakumar A, O'Reilly RJ, Liu C, Cheung NKV. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight 2018; 3:97805. [PMID: 29467338 DOI: 10.1172/jci.insight.97805] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
EBV infection is associated with a number of malignancies of clinical unmet need, including Hodgkin lymphoma, nasopharyngeal carcinoma, gastric cancer, and posttransplant lymphoproliferative disease (PTLD), all of which express the EBV protein latent membrane protein 2A (LMP2A), an antigen that is difficult to target by conventional antibody approaches. To overcome this, we utilized phage display technology and a structure-guided selection strategy to generate human T cell receptor-like (TCR-like) monoclonal antibodies with exquisite specificity for the LMP2A-derived nonamer peptide, C426LGGLLTMV434 (CLG), as presented on HLA-A*02:01. Our lead construct, clone 38, closely mimics the native binding mode of a TCR, recognizing residues at position P3-P8 of the CLG peptide. To enhance antitumor potency, we constructed dimeric T cell engaging bispecific antibodies (DiBsAb) of clone 38 and an affinity-matured version clone 38-2. Both DiBsAb showed potent antitumor properties in vitro and in immunodeficient mice implanted with EBV transformed B lymphoblastoid cell lines and human T cell effectors. Clone 38 DiBsAb showed a stronger safety profile compared with its affinity-matured variant, with no activity against EBV- tumor cell lines and a panel of normal tissues, and was less cross-reactive against HLA-A*02:01 cells pulsed with a panel of CLG-like peptides predicted from a proteomic analysis. Clone 38 was also shown to recognize the CLG peptide on other HLA-A*02 suballeles, including HLA-A*02:02, HLA-A*02:04, and HLA-A*02:06, allowing for its potential use in additional populations. Clone 38 DiBsAb is a lead candidate to treat EBV malignancies with one of the strongest safety profiles documented for TCR-like mAbs.
Collapse
Affiliation(s)
- Mahiuddin Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andres Lopez-Albaitero
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dmitry Pankov
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Liu
- Eureka Therapeutics, Emeryville, California, USA
| | - Su Yan
- Eureka Therapeutics, Emeryville, California, USA
| | - Jingyi Xiang
- Eureka Therapeutics, Emeryville, California, USA
| | - Pei Wang
- Eureka Therapeutics, Emeryville, California, USA
| | - Aisha N Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Annamalai Selvakumar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cheng Liu
- Eureka Therapeutics, Emeryville, California, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Trenevska I, Li D, Banham AH. Therapeutic Antibodies against Intracellular Tumor Antigens. Front Immunol 2017; 8:1001. [PMID: 28868054 PMCID: PMC5563323 DOI: 10.3389/fimmu.2017.01001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8-10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I) molecules. These tumor-associated peptide-MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm) or T-cell receptor (TCR)-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.
Collapse
Affiliation(s)
- Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
15
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
16
|
Purcell AW, Croft NP, Tscharke DC. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr Opin Immunol 2016; 40:88-95. [PMID: 27060633 DOI: 10.1016/j.coi.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
We review approaches to quantitate antigen presentation using a variety of biological and biochemical readouts and highlight the emerging role of mass spectrometry (MS) in defining and quantifying MHC-bound peptides presented at the cell surface. The combination of high mass accuracy in the determination of the molecular weight of the intact peptide of interest and its signature pattern of fragmentation during tandem MS provide an unambiguous and definitive identification. This is in contrast to the potential receptor cross-reactivity towards closely related peptides and variable dose responsiveness seen in biological readouts. In addition, we gaze into the not too distant future where big data approaches in MS can be accommodated to quantify whole immunopeptidomes both in vitro and in vivo.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Nathan P Croft
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- The John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
17
|
Dunbar J, Knapp B, Fuchs A, Shi J, Deane CM. Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. PLoS Comput Biol 2014; 10:e1003852. [PMID: 25233457 PMCID: PMC4168974 DOI: 10.1371/journal.pcbi.1003852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The variable domains of antibodies and T-Cell receptors (TCRs) share similar structures. Both molecules act as sensors for the immune system but recognise their respective antigens in different ways. Antibodies bind to a diverse set of antigenic shapes whilst TCRs only recognise linear peptides presented by a major histocompatibility complex (MHC). The antigen specificity and affinity of both receptors is determined primarily by the sequence and structure of their complementarity determining regions (CDRs). In antibodies the binding site is also known to be affected by the relative orientation of the variable domains, VH and VL. Here, the corresponding property for TCRs, the Vβ-Vα orientation, is investigated and compared with that of antibodies. We find that TCR and antibody orientations are distinct. General antibody orientations are found to be incompatible with binding to the MHC in a canonical TCR-like mode. Finally, factors that cause the orientation of TCRs and antibodies to be different are investigated. Packing of the long Vα CDR3 in the domain-domain interface is found to be influential. In antibodies, a similar packing affect can be achieved using a bulky residue at IMGT position 50 on the VH domain. Along with IMGT VH 50, other positions are identified that may help to promote a TCR-like orientation in antibodies. These positions should provide useful considerations in the engineering of therapeutic TCR-like antibodies. The immune system needs to be able to sense molecules that might be harmful to the organism. Such harmful molecules are known as antigens. Two classes of receptor proteins that mediate antigen recognition are antibodies and T-Cell receptors (TCRs). Antibodies are able to bind a diverse range of antigen shapes whilst TCRs are specialised to recognise a cell-surface protein, the pMHC. Antibodies that bind the pMHC are rarely created naturally. However, such TCR-like antibodies are of therapeutic importance. The binding regions of the TCR and the antibody have very similar three dimensional structures. Both consist of two independent units, domains, which associate and form the antigen binding site between them. This work examines how the two domains orientate with respect to one another in TCRs and antibodies. Our results show that the conformations that exist in TCRs and antibodies are distinct. Consequently it is difficult for an antibody to bind to a pMHC in the same way a TCR would. However, a similar conformation can be achieved in antibodies as in TCRs by the presence of certain amino-acids in the domain interface. This knowledge should aid the development of therapeutic TCR-like antibodies.
Collapse
Affiliation(s)
- James Dunbar
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bernhard Knapp
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Angelika Fuchs
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Informatics, Penzberg, Germany
| | - Jiye Shi
- Informatics, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Hwang I. Virus outbreaks in chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:13592-612. [PMID: 25068866 PMCID: PMC4179090 DOI: 10.3390/s140813592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Filamentous bacteriophages have successfully been used to detect chemical and biological analytes with increased selectivity and sensitivity. The enhancement largely originates not only from the ability of viruses to provide a platform for the surface display of a wide range of biological ligands, but also from the geometric morphologies of the viruses that constitute biomimetic structures with larger surface area-to-volume ratio. This review will appraise the mechanism of multivalent display of the viruses that enables surface modification of virions either by chemical or biological methods. The accommodation of functionalized virions to various materials, including polymers, proteins, metals, nanoparticles, and electrodes for sensor applications will also be discussed.
Collapse
Affiliation(s)
- Inseong Hwang
- The Research Institute of Basic Sciences, Seoul National University, Seoul 147-779, Korea.
| |
Collapse
|
19
|
Veomett N, Dao T, Liu H, Xiang J, Pankov D, Dubrovsky L, Whitten JA, Park SM, Korontsvit T, Zakhaleva V, Casey E, Curcio M, Kharas MG, O'Reilly RJ, Liu C, Scheinberg DA. Therapeutic efficacy of an Fc-enhanced TCR-like antibody to the intracellular WT1 oncoprotein. Clin Cancer Res 2014; 20:4036-46. [PMID: 24850840 DOI: 10.1158/1078-0432.ccr-13-2756] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE RMFPNAPYL (RMF), a Wilms' tumor gene 1 (WT1)-derived CD8 T-cell epitope presented by HLA-A*02:01, is a validated target for T-cell-based immunotherapy. We previously reported ESK1, a high avidity (Kd < 0.2 nmol/L), fully-human monoclonal antibody (mAb) specific for the WT1 RMF peptide/HLA-A*02:01 complex, which selectively bound and killed WT1(+) and HLA-A*02:01(+) leukemia and solid tumor cell lines. EXPERIMENTAL DESIGN We engineered a second-generation mAb, ESKM, to have enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) function due to altered Fc glycosylation. ESKM was compared with native ESK1 in binding assays, in vitro ADCC assays, and mesothelioma and leukemia therapeutic models and pharmacokinetic studies in mice. ESKM toxicity was assessed in HLA-A*02:01(+) transgenic mice. RESULTS ESK antibodies mediated ADCC against hematopoietic and solid tumor cells at concentrations below 1 μg/mL, but ESKM was about 5- to 10-fold more potent in vitro against multiple cancer cell lines. ESKM was more potent in vivo against JMN mesothelioma, and effective against SET2 AML and fresh ALL xenografts. ESKM had a shortened half-life (4.9 days vs. 6.5 days), but an identical biodistribution pattern in C57BL/6J mice. At therapeutic doses of ESKM, there was no difference in half-life or biodistribution in HLA-A*02:01(+) transgenic mice compared with the parent strain. Importantly, therapeutic doses of ESKM in these mice caused no depletion of total WBCs or hematopoetic stem cells, or pathologic tissue damage. CONCLUSIONS The data provide proof of concept that an Fc-enhanced mAb can improve efficacy against a low-density, tumor-specific, peptide/MHC target, and support further development of this mAb against an important intracellular oncogenic protein.
Collapse
Affiliation(s)
- Nicholas Veomett
- Sloan Kettering Institute; Weill Cornell Medical College, New York, New York
| | | | - Hong Liu
- Eureka Therapeutics Inc., Emeryville, California; and
| | - Jingyi Xiang
- Eureka Therapeutics Inc., Emeryville, California; and
| | | | | | | | | | | | | | | | | | | | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, California; and
| | - David A Scheinberg
- Sloan Kettering Institute; Weill Cornell Medical College, New York, New York;
| |
Collapse
|
20
|
Construction and molecular characterization of a T-cell receptor-like antibody and CAR-T cells specific for minor histocompatibility antigen HA-1H. Gene Ther 2014; 21:575-84. [PMID: 24694533 DOI: 10.1038/gt.2014.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023]
Abstract
The genetic transfer of T-cell receptors (TCRs) directed toward target antigens into T lymphocytes has been used to generate antitumor T cells efficiently without the need for the in vitro induction and expansion of T cells with cognate specificity. Alternatively, T cells have been gene-modified with a TCR-like antibody or chimeric antigen receptor (CAR). We show that immunization of HLA-A2 transgenic mice with tetramerized recombinant HLA-A2 incorporating HA-1 H minor histocompatibility antigen (mHag) peptides and β2-microglobulin (HA-1 H/HLA-A2) generate highly specific antibodies. One single-chain variable region moiety (scFv) antibody, #131, demonstrated high affinity (KD=14.9 nM) for the HA-1 H/HLA-A2 complex. Primary human T cells transduced with #131 scFV coupled to CD28 transmembrane and CD3ζ domains were stained with HA-1 H/HLA-A2 tetramers slightly more intensely than a cytotoxic T lymphocyte (CTL) clone specific for endogenously HLA-A2- and HA-1 H-positive cells. Although #131 scFv CAR-T cells required >100-fold higher antigen density to exert cytotoxicity compared with the cognate CTL clone, they could produce inflammatory cytokines against cells expressing HLA-A2 and HA-1 H transgenes. These data implicate that T cells with high-affinity antigen receptors reduce the ability to lyse targets with low-density peptide/MHC complexes (~100 per cell), while they could respond at cytokine production level.
Collapse
|
21
|
T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies (Basel) 2013. [DOI: 10.3390/antib2030517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Veomett N, Dao T, Scheinberg DA. Therapeutic antibodies to intracellular targets in cancer therapy. Expert Opin Biol Ther 2013; 13:1485-8. [PMID: 23991764 DOI: 10.1517/14712598.2013.833602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are a proven therapeutic platform, but they cannot readily cross the cell membranes to bind intracellular antigens, while some of the most important disease-associated proteins are intracellular, protected from direct mAb attack. However, the cellular processes of necrosis and major histocompatibility complex (MHC) class I antigen presentation expose epitopes from intracellular proteins to the extracellular environment or cell surface. Antibodies that exploit these processes can therefore specifically target diseased cells based on their intracellular protein content. These strategies expose important new targets for mAb therapy and expand the potential for effective therapies.
Collapse
|
23
|
Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proc Natl Acad Sci U S A 2012; 109:15407-12. [PMID: 22949678 DOI: 10.1073/pnas.1208696109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitivity is essential in CD8+ T-cell killing of virus-infected cells and tumor cells. Although the affinity of the T-cell receptor (TCR) for antigen is relatively low, the avidity of T cell-antigen-presenting cell interactions is greatly enhanced by increasing the valence of the interaction. It is known that TCRs cluster into protein islands after engaging their cognate antigen (peptides bound to MHC molecules). Here, we show that mouse K(b) class I molecules segregate into preformed, long-lasting (hours) clusters on the antigen-presenting cell surface based on their bound viral peptide. Peptide-specific K(b) clustering occurs when source antigens are expressed by vaccinia or vesicular stomatitis virus, either as proteasome-liberated precursors or free intracellular peptides. By contrast, K(b)-peptide complexes generated by incubating cells with synthetic peptides are extensively intermingled on the cell surface. Peptide-specific complex sorting is first detected in the Golgi complex, and compromised by removing the K(b) cytoplasmic tail. Peptide-specific clustering is associated with increased T-cell sensitivity: on a per-complex basis, endogenous SIINFEKL activates T cells more efficiently than synthetic SIINFEKL, and wild-type K(b) presents endogenous SIINFEKL more efficiently than tailless K(b). We propose that endogenous processing generates peptide-specific clusters of class I molecules to maximize the sensitivity and speed of T-cell immunosurveillance.
Collapse
|
24
|
T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One 2012; 7:e43746. [PMID: 22916301 PMCID: PMC3423377 DOI: 10.1371/journal.pone.0043746] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.
Collapse
|
25
|
Zhou Y, Zhao L, Marks JD. Selection and characterization of cell binding and internalizing phage antibodies. Arch Biochem Biophys 2012; 526:107-13. [PMID: 22627065 DOI: 10.1016/j.abb.2012.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 12/25/2022]
Abstract
Many therapeutic targets are cell surface receptors, which can be challenging antigens for antibody generation. For many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell. This allows use of the antibody to deliver various payloads into the cell to achieve a therapeutic effect. Phage antibody technology has proven a powerful tool for the generation and optimization of human antibodies to any antigen. While applied to the generation of antibodies to purified proteins, it is possible to directly select cell binding and internalizing antibodies on cells. Potential advantages of this approach include: cell surface receptors are in native conformation on intact cells while this might not be so for recombinant proteins; antibodies can be selected for both cell binding and internalization properties; the antibodies can be used to identify their tumor associated antigens; and such antibodies can be used for human treatment directly since they are human in sequence. This review will discuss the factors that impact the successful selection of cell binding and internalizing antibodies. These factors include the cell types used for selection, the impact of different phage antibody library formats, and the specific selection protocols used.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
26
|
Weidanz JA, Hawkins O, Verma B, Hildebrand WH. TCR-like biomolecules target peptide/MHC Class I complexes on the surface of infected and cancerous cells. Int Rev Immunol 2012; 30:328-40. [PMID: 22053972 DOI: 10.3109/08830185.2011.604880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human leukocyte antigen (HLA; also called major histocompatibility, or MHC) class I system presents peptides that distinguish healthy from diseased cells. Therefore, the discovery of peptide/MHC class I markers can provide highly specific targets for immunotherapy. Over the course of almost two decades, various strategies have been used, with mixed success, to produce antibodies that have recognition specificity for unique peptide/MHC class I complexes that mark infected and cancerous cells. Using these antibody reagents, novel peptide/MHC class I targets have been directly validated on diseased cells and new insight has been gained into the mechanisms of antigen presentation. More recently, these antibodies have shown promise for clinical applications such as therapeutic targeting of cancerous and infected cells and diagnosis and imaging of diseased cells. In this review, the authors comprehensively describe the methods used to identify disease-specific peptide/MHC class I epitopes and generate antibodies to these markers. Finally, they offer several examples that illustrate the promise of using these antibodies as anti-cancer agents.
Collapse
Affiliation(s)
- Jon A Weidanz
- Department of Biomedical Sciences and Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine, Abilene, TX 79601, USA.
| | | | | | | |
Collapse
|
27
|
Weidanz JA, Hildebrand WH. Expanding the targets available to therapeutic antibodies via novel disease-specific markers. Int Rev Immunol 2012; 30:312-27. [PMID: 22053971 DOI: 10.3109/08830185.2011.608136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The development of immunotherapies offers significant promise for clinical applications in cancer and infectious diseases. Here the authors describe a novel, integrated approach to immunotherapy that combines novel technologies to discover and target disease-specific peptide/HLA class I complexes. This unique class of markers makes the entire proteome accessible to antibody reagents and offers unsurpassed specificity for targeting cancerous and infected cells. Arm one of the three-armed approach uses an innovative technology for the efficient, direct discovery of new peptide/HLA class I markers. Arm two applies a powerful and inventive strategy to generate T-cell receptor mimics (TCRms), which are antibodies with exquisite binding specificity for peptide/HLA class I markers, and uses TCRms to validate the specific expression of markers on cancerous and infected cells. The third arm uses TCRms to target and kill diseased cells with high sensitivity and specificity. In summary, the combination of two pioneering technologies expands the repertoire of disease-specific markers that can be targeted by therapeutic antibodies and enables a powerful, integrated approach to HLA-based immunotherapy.
Collapse
Affiliation(s)
- Jon A Weidanz
- Center for Immunotherapeutic Research and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | | |
Collapse
|
28
|
Abstract
Tumour and virus-infected cells are recognised by CD8+ cytotoxic T cells that, in response, are activated to eliminate these cells. In order to be activated, the clonotypic T-cell receptor (TCR) needs to encounter a specific peptide antigen presented by the membrane surface major histocompatibility complex (MHC) molecule. Cells that have undergone malignant transformation or viral infection present peptides derived from tumour-associated antigens or viral proteins on their MHC class I molecules. Therefore, disease-specific MHC-peptide complexes are desirable targets for immunotherapeutic approaches. One such approach transforms the unique fine specificity but low intrinsic affinity of TCRs to MHC-peptide complexes into high-affinity soluble antibody molecules endowed with a TCR-like specificity towards tumour or viral epitopes. These antibodies, termed TCR-like antibodies, are being developed as a new class of immunotherapeutics that can target tumour and virus-infected cells and mediate their specific killing. In addition to their therapeutic capabilities, TCR-like antibodies are being developed as diagnostic reagents for cancer and infectious diseases, and serve as valuable research tools for studying MHC class I antigen presentation.
Collapse
|
29
|
Zhou Y, Marks JD. Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol 2012; 502:43-66. [PMID: 22208981 DOI: 10.1016/b978-0-12-416039-2.00003-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phage antibody technology can be used to generate human antibodies to essentially any antigen. Many therapeutic target antigens are cell surface receptors, which can be challenging targets for antibody generation. In addition, for many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell upon binding. This allows use of the antibody to deliver a range of payloads into the cell to achieve a therapeutic effect. In this chapter, we describe how human phage antibody libraries can be selected directly on tumor cell lines to generate antibodies that bind cell surface receptors and which upon binding are rapidly internalized into the cell. Specific protocols show how to (1) directly select cell binding and internalizing antibodies from human phage antibody libraries, (2) screen the phage antibodies in a high-throughput flow cytometry assay for binding to the tumor cell line used for selection, (3) identify the antigen bound by the phage antibody using immunoprecipitation and mass spectrometry, and (4) direct cell binding and internalizing selections to a specific tumor antigen by sequential selection on a tumor cell line followed by selection on yeast displaying the target tumor antigen on the yeast surface.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | | |
Collapse
|
30
|
Abstract
Traditional methods of phage display panning bind purified antigen to plates or other solid phases to which libraries are then applied. These methods are not directly applicable to antigens in their native environment on cell surfaces or in settings where the target antigen is unknown. We describe here a procedure of a panning strategy on cell surface receptors including a depletion step. We explain every step of the protocol: production of phage library, depletion and selection, elution, screening by ELISA, and analysis of soluble antibodies by ELISA and flow cytometry. Finally, several possible variants of the protocol are explained in Subheading 4.
Collapse
|
31
|
Tassev DV, Cheng M, Cheung NKV. Retargeting NK92 cells using an HLA-A2-restricted, EBNA3C-specific chimeric antigen receptor. Cancer Gene Ther 2011; 19:84-100. [PMID: 21979579 DOI: 10.1038/cgt.2011.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in adoptive cell immunotherapy have led to several promising options for cancer patients. Single-chain variable fragments (scFvs) were isolated from a human phage display library by panning on recombinant human leukocyte antigen (HLA)-A2-peptide complexes. A scFv (EBNA Clone 315) specific for HLA-A2 carrying a 10 amino acid peptide (LLDFVRFMGV) derived from the Epstein-Barr virus latent protein EBNA3C was fully characterized. EBNA Clone 315 displayed exquisite specificity toward its targeted T-cell epitope (TCE) and did not cross-react with the free peptide, HLA-A2 complexes, which carried irrelevant peptides, or HLA-A2(-) cells. Furthermore, after engineering into a scFv-Fc fusion protein, we were able to determine its affinity, detection sensitivity, and ability to induce antibody-dependent cellular cytotoxicity (ADCC). As a proof-of-principle, a chimeric antigen receptor (CAR) version of EBNA Clone 315 was used to reprogram NK92MI cells. CAR-expressing NK92MI cells showed highly specific and potent cytotoxicity toward the targeted TCE, with detection sensitivity of approximately 25 molecules and cytolytic capacity threefold greater than scFv-Fc-mediated ADCC. For the first time, we show the successful reprogramming of non-T cells toward a specific TCE using a CAR.
Collapse
Affiliation(s)
- D V Tassev
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
32
|
An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 2011; 117:4262-72. [PMID: 21296998 DOI: 10.1182/blood-2010-07-299248] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PR1 (VLQELNVTV) is a human leukocyte antigen-A2 (HLA-A2)-restricted leukemia-associated peptide from proteinase 3 (P3) and neutrophil elastase (NE) that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of acute myeloid leukemia (AML). We report a novel T-cell receptor (TCR)-like immunoglobulin G2a (IgG2a) antibody (8F4) with high specific binding affinity (dissociation constant [K(D)] = 9.9nM) for a combined epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes (P = .046). 8F4 mediated complement-dependent cytolysis of AML blasts and Lin(-)CD34(+)CD38(-) leukemia stem cells (LSCs) but not normal leukocytes (P < .005). Although PR1 expression was similar on LSCs and hematopoietic stem cells, 8F4 inhibited AML progenitor cell growth, but not normal colony-forming units from healthy donors (P < .05). This study shows that 8F4, a novel TCR-like antibody, binds to a conformational epitope of the PR1/HLA-A2 complex on the cell surface and mediates specific lysis of AML, including LSCs. Therefore, this antibody warrants further study as a novel approach to targeting leukemia-initiating cells in patients with AML.
Collapse
|
33
|
Lomash S, Nagpal S, Salunke DM. An antibody as surrogate receptor reveals determinants of activity of an innate immune peptide antibiotic. J Biol Chem 2010; 285:35750-8. [PMID: 20837490 PMCID: PMC2975199 DOI: 10.1074/jbc.m110.150516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Anti-Infective Agents/immunology
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antimicrobial Cationic Peptides/immunology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Crystallography, X-Ray
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Immunity, Innate/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Peptide Library
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/growth & development
- Thermodynamics
Collapse
Affiliation(s)
- Suvendu Lomash
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Sushma Nagpal
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Dinakar M. Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
- the Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
34
|
Verma B, Hawkins OE, Neethling FA, Caseltine SL, Largo SR, Hildebrand WH, Weidanz JA. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 2010; 59:563-73. [PMID: 19779714 PMCID: PMC11031085 DOI: 10.1007/s00262-009-0774-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cancer Vaccines/therapeutic use
- DEAD-box RNA Helicases/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Nude
- Molecular Mimicry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Bhavna Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
| | - Oriana E. Hawkins
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | | | | | | | - William H. Hildebrand
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jon A. Weidanz
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
- Receptor Logic, Inc, Abilene, TX 79601 USA
| |
Collapse
|
35
|
Verma B, Neethling FA, Caseltine S, Fabrizio G, Largo S, Duty JA, Tabaczewski P, Weidanz JA. TCR mimic monoclonal antibody targets a specific peptide/HLA class I complex and significantly impedes tumor growth in vivo using breast cancer models. THE JOURNAL OF IMMUNOLOGY 2010; 184:2156-65. [PMID: 20065111 DOI: 10.4049/jimmunol.0902414] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our laboratory has developed a process for generating mAbs with selectivity to unique peptides in the context of MHC molecules. Recently, we reported that RL4B, an mAb that we have called a TCR mimic (TCRm) because it recognizes peptide in the context of MHC, has cytotoxic activity in vitro and prevented growth of tumor cells in a prophylactic setting. When presented in the context of HLA-A2, RL4B TCRm recognizes the peptide GVLPALPQV derived from human chorionic gonadotropin (hCG)-beta. In this study, we show that RL4B TCRm has strong binding affinity for the GVLPALPQV peptide/HLA-A2 epitope and fine binding specificity for cells that express endogenous hCGbeta Ag and HLA-A2. In addition, suppression of tumor growth with RL4B TCRm was observed in orthotopic models for breast cancer. Using two aggressive human tumor cell lines, MDA-MB-231 and MCF-7, we provide evidence that RL4B TCRm significantly retards tumor growth, supporting a possible role for TCRm agents in therapeutic settings. Moreover, tumors in mice responded to RL4B TCRm therapy in a dose-dependent manner, eliminating tumors at the highest dose. RL4B TCRm strongly detects the hCGbeta peptide/HLA-A2 epitope in human primary breast tumor tissue, but does not react or reacts weakly with normal breast tissue from the same patient. These results further illustrate the selective nature of TCRm Abs and the clinical relevance of the GVLPALPQV peptide/HLA-A2 epitope expression in tumor cells, because they provide the first evidence that Abs that mimic the TCR can be used to markedly reduce and suppress tumor growth.
Collapse
Affiliation(s)
- Bhavna Verma
- Center for Immunotherapeutic Research, School of Pharmacy, Texas Tech University Health Sciences Center, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Na SY, Eujen H, Göbel K, Meuth SG, Martens K, Wiendl H, Hünig T. Antigen-Specific Blockade of Lethal CD8 T-Cell Mediated Autoimmunity in a Mouse Model of Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:6569-75. [DOI: 10.4049/jimmunol.0804200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Anikeeva N, Mareeva T, Liu W, Sykulev Y. Can oligomeric T-cell receptor be used as a tool to detect viral peptide epitopes on infected cells? Clin Immunol 2009; 130:98-109. [PMID: 18845488 PMCID: PMC2632680 DOI: 10.1016/j.clim.2008.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/19/2008] [Indexed: 11/25/2022]
Abstract
We have utilized soluble HIV Gag-specific T-cell receptor (TCR) D3 with low affinity and TCR-like antibody 25-D1.16 recognizing its natural peptide-MHC (pMHC) ligand with high affinity to determine how affinity and off-rate of the receptor-pMHC interactions affect the sensitivity of pMHC detection on the cell surface. We found that with soluble TCR cognate pMHCs can be detected only at relatively high cell surface densities when the TCR was oligomerized using either Streptavidin or quantum dot (QD) scaffolds. While the higher affinity probe led to a greater sensitivity of pMHC detection, monomers and oligomers of the probe showed essentially the same detection limit, which is restricted by the sensitivity of standard flow cytometry technique. We have also shown that imaging of QD/TCR specifically bound to cognate pMHC on the cell surface yielded a very bright fluorescent signal that can enhance the sensitivity of viral peptide detection on infected cells.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107
| | - Tatiana Mareeva
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107
| | - Wei Liu
- Evident Technologies, 216 River Street, Troy, New York 12180
| | - Yuri Sykulev
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
38
|
Zhou Y, Marks JD. Identification of target and function specific antibodies for effective drug delivery. Methods Mol Biol 2009; 525:145-xv. [PMID: 19252832 DOI: 10.1007/978-1-59745-554-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phage antibody technology is a powerful approach for generating human antibodies to virtually any target antigen. For many therapeutic applications, it is useful to generate antibodies that bind to cell-surface receptors in a manner where binding results in internalization of the antibody. This allows use of the antibody to deliver toxic payloads intracellularly to achieve a therapeutic effect. Here we describe how phage antibody libraries can be directly selected on tumor cell lines to generate antibodies binding cell-surface receptors and which are rapidly internalized upon binding. Protocols are provided showing how to (1) directly select internalizing antibodies from phage antibody libraries; (2) screen phage antibodies in a high-throughput flow cytometry assay for binding to the tumor cell line used for selection; (3) identify the antigen bound by the phage antibody using immunoprecipitation and mass spectrometry; and (4) verify and quantitate such that phage antibodies are internalized.
Collapse
Affiliation(s)
- Yu Zhou
- University of California, San Francisco, CA, USA
| | | |
Collapse
|
39
|
Lev A, Takeda K, Zanker D, Maynard JC, Dimberu P, Waffarn E, Gibbs J, Netzer N, Princiotta MF, Neckers L, Picard D, Nicchitta CV, Chen W, Reiter Y, Bennink JR, Yewdell JW. The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity 2008; 28:787-98. [PMID: 18549799 PMCID: PMC2587262 DOI: 10.1016/j.immuni.2008.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/13/2008] [Accepted: 04/04/2008] [Indexed: 01/28/2023]
Abstract
The nature of crosspriming immunogens for CD8(+) T cell responses is highly controversial. By using a panel of T cell receptor-like antibodies specific for viral peptides bound to mouse D(b) major histocompatibility complex class I molecules, we show that an exceptional peptide (PA(224-233)) expressed as a viral minigene product formed a sizeable cytosolic pool continuously presented for hours after protein synthesis was inhibited. PA(224-233) pool formation required active cytosolic heat-shock protein 90 but not ER g96 and uniquely enabled crosspriming by this peptide. These findings demonstrate that exceptional class I binding oligopeptides that escape proteolytic degradation are potent crosspriming agents. Thus, the feeble immunogenicity of natural proteasome products in crosspriming can be attributed to their evanescence in donor cells and not an absolute inability of cytosolic oligopeptides to be transferred to and presented by professional antigen-presenting cells.
Collapse
Affiliation(s)
- Avital Lev
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Neethling FA, Ramakrishna V, Keler T, Buchli R, Woodburn T, Weidanz JA. Assessing vaccine potency using TCRmimic antibodies. Vaccine 2008; 26:3092-102. [DOI: 10.1016/j.vaccine.2008.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Epel M, Carmi I, Soueid-Baumgarten S, Oh S, Bera T, Pastan I, Berzofsky J, Reiter Y. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur J Immunol 2008; 38:1706-20. [PMID: 18446790 PMCID: PMC2682370 DOI: 10.1002/eji.200737524] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MHC class I molecules are important components of immune surveillance. There are no available methods to directly visualize and determine the quantity and distribution of MHC/peptide complexes on individual cells or to detect such complexes on antigen-presenting cells in tissues. MHC-restricted recombinant antibodies with the same specificity of T cell receptors (TCR) may become a valuable tool to address these questions. They may also serve as valuable targeting molecules that mimic the specificity of cytotoxic T cells. We isolated by phage display a panel of human recombinant Fab antibodies with peptide-specific, MHC-restricted TCR-like reactivity directed toward HLA-A2-restricted T cell epitopes derived from a novel antigen termed TCRgamma alternative reading frame protein (TARP) which is expressed on prostate and breast cancer cells. We have characterized one of these recombinant antibodies and demonstrated its capacity to directly detect specific HLA-A2/TARP T cell epitopes on antigen-presenting cells that have complexes formed by naturally occurring active intracellular processing of the antigen, as well as on the surface of tumor cells. Moreover, by genetic fusion we armed the TCR-like antibody with a potent toxin and demonstrated that it can serve as a targeting moiety killing tumor cells in a peptide-specific, MHC-restricted manner similar to cytotoxic T lymphocytes.
Collapse
MESH Headings
- ADP Ribose Transferases/administration & dosage
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/pharmacology
- ADP Ribose Transferases/therapeutic use
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antigens, Neoplasm/immunology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/pharmacology
- Bacterial Toxins/therapeutic use
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Exotoxins/administration & dosage
- Exotoxins/genetics
- Exotoxins/pharmacology
- Exotoxins/therapeutic use
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Immunoglobulin Fab Fragments/biosynthesis
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunotoxins/immunology
- Immunotoxins/pharmacology
- Immunotoxins/therapeutic use
- Male
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Nude
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Virulence Factors/administration & dosage
- Virulence Factors/genetics
- Virulence Factors/pharmacology
- Virulence Factors/therapeutic use
- Xenograft Model Antitumor Assays
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- Malka Epel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Soares SG, Barbosa JE. Application of recombinant antibody library for screening specific antigens in a bovine sperm cell subpopulation. Livest Sci 2008. [DOI: 10.1016/j.livsci.2007.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Abstract
In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents.
Collapse
Affiliation(s)
- I Zafir-Lavie
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
44
|
Yu KOA, Im JS, Illarianov PA, Ndonye RM, Howell AR, Besra GS, Porcelli SA. Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand alpha-galactosylceramide bound to mouse CD1d. J Immunol Methods 2007; 323:11-23. [PMID: 17442335 PMCID: PMC1939826 DOI: 10.1016/j.jim.2007.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 11/18/2022]
Abstract
The alpha-galactosylceramide (alpha-GalCer) known as KRN7000 remains the best studied ligand of the lipid-binding MHC class I-like protein CD1d. The KRN7000:CD1d complex is highly recognized by invariant natural killer T (iNKT) cells, an evolutionarily conserved subset of T lymphocytes that express an unusual semi-invariant T cell antigen receptor, and mediate a variety of proinflammatory and immunoregulatory functions. To facilitate the study of glycolipid antigen presentation to iNKT cells by CD1d, we undertook the production of mouse monoclonal antibodies (mAbs) specific for complexes of KRN7000 bound to mouse CD1d (mCD1d) proteins. Three such monoclonal antibodies were isolated that bound only to mCD1d proteins that were loaded with KRN7000 or closely-related forms of alpha-GalCer. These mAbs showed no reactivity with mCD1d proteins that were not loaded with alpha-GalCer, nor did they bind to complexes formed by loading mCD1d with the self-glycolipid and putative iNKT cell ligand isoglobotrihexosylceramide. These complex-specific monoclonal antibodies allow the direct detection and monitoring of complexes formed by the binding of KRN7000 and other alpha-GalCer analogues to mCD1d. The availability of these mAbs should facilitate a wide range of studies on the biology and potential clinical applications of CD1d-restricted iNKT cells.
Collapse
Affiliation(s)
- Karl O. A. Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Petr A. Illarianov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Rachel M. Ndonye
- Department of Chemistry, University of Connecticut, Stoors, CT 06269-3060, U.S.A
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Stoors, CT 06269-3060, U.S.A
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| |
Collapse
|
45
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
46
|
Brophy SE, Jones LL, Holler PD, Kranz DM. Cellular uptake followed by class I MHC presentation of some exogenous peptides contributes to T cell stimulatory capacity. Mol Immunol 2006; 44:2184-94. [PMID: 17169430 PMCID: PMC2547883 DOI: 10.1016/j.molimm.2006.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 11/12/2006] [Indexed: 02/03/2023]
Abstract
The T cell stimulatory activity of peptides is known to be associated with the cell surface stability and lifetime of the peptide-MHC (pepMHC) complex. In this report, soluble high-affinity T cell receptors (TCRs) that are specific for pepMHC complexes recognized by the mouse CD8+ clone 2C were used to monitor the cell surface lifetimes of synthetic agonist peptides. In the 2C system, L(d)-binding peptide p2Ca (LSPFPFDL) has up to 10,000-fold lower activity than peptide QL9 (QLSPFPFDL) even though the 2C TCR binds to p2Ca-L(d) and QL9-L(d) complexes with similar affinities. Unexpectedly, p2Ca-L(d) complexes were found to have a longer cell surface lifetime than QL9-L(d) complexes. However, the strong agonist activity of QL9 correlated with its ability to participate in efficient intracellular delivery followed by cell surface expression of the peptide, resulting in high and persistent surface levels of QL9-L(d). The ability of target cells to take up and present QL9 was observed with TAP-deficient cells and TAP-positive cells, including dendritic cells. The process was brefeldin A-sensitive, indicating a requirement for transport of the pepMHC through the ER and/or golgi. Thus, strong T cell stimulatory activity of some pepMHC complexes can be accomplished not only through long cell surface lifetimes of the ligand, but through a mechanism that leads to delayed presentation of the exogenous antigen after intracellular uptake.
Collapse
Affiliation(s)
| | | | | | - David M. Kranz
- Author to whom correspondence should be sent: David M. Kranz, Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, Tel: 217-244-2821, Fax: 217-244-5858, E-mail:
| |
Collapse
|
47
|
Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH, Lustgarten J. Levels of Specific Peptide-HLA Class I Complex Predicts Tumor Cell Susceptibility to CTL Killing. THE JOURNAL OF IMMUNOLOGY 2006; 177:5088-97. [PMID: 17015692 DOI: 10.4049/jimmunol.177.8.5088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recognition of tumor-associated Ags (TAAs) on tumor cells by CTLs and the subsequent tumor cell death are assumed to be dependent on TAA protein expression and to correlate directly with the level of peptide displayed in the binding site of the HLA class I molecule. In this study we evaluated whether the levels of Her-2/neu protein expression on human tumor cell lines directly correlate with HLA-A*0201/Her2/neu peptide presentation and CTL recognition. We developed a TCR mimic (TCRm) mAb designated 1B8 that specifically recognizes the HLA-A2.1/Her2/neu peptide (369-377) (Her2(369)-A2) complex. TCRm mAb staining intensity varied for the five human tumor cell lines analyzed, suggesting quantitative differences in levels of the Her2(369)-A2 complex on these cells. Analysis of tumor cell lines pretreated with IFN-gamma and TNF-alpha for Her2/neu protein and HLA-A2 molecule expression did not reveal a direct correlation between the levels of Her2/neu Ag, HLA-A2 molecule, and Her2(369)-A2 complex expression. However, compared with untreated cells, cytokine-treated cell lines showed an increase in Her2(369)-A2 epitope density that directly correlated with enhanced tumor cell death (p = 0.05). Although a trend was observed between tumor cell lysis and the level of the Her2(369)-A2 complex for untreated cells, the association was not significant. These findings suggest that tumor cell susceptibility to CTL-mediated lysis may be predicted based on the level of specific peptide-MHC class I expression rather than on the total level of TAA expression. Further, these studies demonstrate the potential of the TCRm mAb for validation of endogenous HLA-peptide epitopes on tumor cells.
Collapse
Affiliation(s)
- Jon A Weidanz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S, Weidanz JA. Antibody Targeting to a Class I MHC-Peptide Epitope Promotes Tumor Cell Death. THE JOURNAL OF IMMUNOLOGY 2006; 177:4187-95. [PMID: 16951384 DOI: 10.4049/jimmunol.177.6.4187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Therapeutic mAbs that target tumor-associated Ags on the surface of malignant cells have proven to be an effective and specific option for the treatment of certain cancers. However, many of these protein markers of carcinogenesis are not expressed on the cells' surface. Instead these tumor-associated Ags are processed into peptides that are presented at the cell surface, in the context of MHC class I molecules, where they become targets for T cells. To tap this vast source of tumor Ags, we generated a murine IgG2a mAb, 3.2G1, endowed with TCR-like binding specificity for peptide-HLA-A*0201 (HLA-A2) complex and designated this class of Ab as TCR mimics (TCRm). The 3.2G1 TCRm recognizes the GVL peptide (GVLPALPQV) from human chorionic gonadotropin beta presented by the peptide-HLA-A*0201 complex. When used in immunofluorescent staining reactions using GVL peptide-loaded T2 cells, the 3.2G1 TCRm specifically stained the cells in a peptide and Ab concentration-dependent manner. Staining intensity correlated with the extent of cell lysis by complement-dependent cytotoxicity (CDC), and a peptide concentration-dependent threshold level existed for the CDC reaction. Staining of human tumor lines demonstrated that 3.2G1 TCRm was able to recognize endogenously processed peptide and that the breast cancer cell line MDA-MB-231 highly expressed the target epitope. The 3.2G1 TCRm-mediated CDC and Ab-dependent cellular cytotoxicity of a human breast carcinoma line in vitro and inhibited in vivo tumor implantation and growth in nude mice. These results provide validation for the development of novel TCRm therapeutic reagents that specifically target and kill tumors via recognition and binding to MHC-peptide epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibody Specificity
- Apoptosis/immunology
- Binding Sites, Antibody
- Cell Line, Tumor
- Epitopes/immunology
- Epitopes/metabolism
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry/immunology
- Neoplasm Transplantation
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Vaughan P Wittman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nguyen van Binh P, Duc HT. Epitopes of the class I major histocompatibility complex (MHC-I) recognized in the syngeneic or allogeneic context predominantly linked to antigenic peptide loading to its binding groove. Clin Exp Immunol 2006; 145:372-9. [PMID: 16879259 PMCID: PMC1809676 DOI: 10.1111/j.1365-2249.2006.03130.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Class 1 major histocompatibility complex (MHC-I)-antigenic peptide exposed at the target cell surface is crucial for the adaptive immune response exerted in the self/syngeneic context by cytotoxic T lymphocyte (CTL). Such a complex also provides epitopes in the allogeneic context for antibody response directed against the MHC-I polymorphic determinant. In the present report we examined the formation of the MHC-I-peptide complex leading predominantly to the expression of T and/or B cell epitopes in a process of internal versus external antigenic peptide loading onto the binding groove of MHC-I. Analyses using antibodies specific to complex MHC-I-peptide generated in the syngeneic context to mimic T cell receptor (TCR) in comparison with antibodies specific to the MHC-I polymorphic determinant allowed the observation that the external peptide loading to MHC-I, while remaining necessary for inducing the formation of B cell epitopes, was less efficient than the internal one for generating T cell epitopes. Thus, external loading of peptide to the MHC-I appeared to match more closely the allogeneic situation and the humoral immunity in general, while internal peptide loading corresponded with the self/syngeneic context of the cellular CTL response.
Collapse
Affiliation(s)
- P Nguyen van Binh
- INSERM U602, Microenvironnement et Physiopathologie de la Differenciation, Hôpital Paul Brousse, 94800 Villejuif, France
| | | |
Collapse
|
50
|
Pang KC, Wei JQZ, Chen W. Dynamic quantification of MHC class I–peptide presentation to CD8+ T cells via intracellular cytokine staining. J Immunol Methods 2006; 311:12-8. [PMID: 16516224 DOI: 10.1016/j.jim.2006.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 12/22/2005] [Accepted: 01/03/2006] [Indexed: 11/25/2022]
Abstract
In order to further our basic understanding of antigen processing and presentation as well as to translate that knowledge into clinically effective vaccines and immunotherapies, having appropriate tools to study MHC class I-peptide presentation is highly desirable. Current methods are based upon HPLC fractionation of extracted peptides, monoclonal Ab, multivalent T cell receptors (TCR), T cell hybridomas, TCR transgenic cells, and T cell lines. However, each of these is associated with problems that make them either difficult to apply generally or too insensitive to adequately quantitate antigen presentation. We have developed a method based upon intracellular cytokine staining (ICS) that dynamically and relatively quantitates MHC class I-peptide presentation to CD8+ T cells in a manner that is both widely applicable and highly sensitive. It is well-suited to assess antigen presentation in its early stages, does not require fixation nor labeling of antigen presenting cells (APC), can be used to examine cross-presentation, and is able to directly employ ex vivo T cells which obviates the need for the development and maintenance of T cell lines and hybridomas. Our method represents a simple yet powerful tool that others interested in studying antigen processing and presentation should find of great practical value.
Collapse
Affiliation(s)
- Ken C Pang
- T cell Laboratory, Ludwig Institute for Cancer Research, Melbourne Branch, Austin Health, Heidelberg, VIC, 3084, Australia
| | | | | |
Collapse
|