1
|
Wagoner ZW, Yates TB, Hernandez-Davies JE, Sureshchandra S, Joloya EM, Jain A, de Assis R, Kastenschmidt JM, Sorn AM, Mitul MT, Tamburini I, Ahuja G, Zhong Q, Trask D, Seldin M, Davies DH, Wagar LE. Systems immunology analysis of human immune organoids identifies host-specific correlates of protection to different influenza vaccines. Cell Stem Cell 2025; 32:529-546.e6. [PMID: 39986275 PMCID: PMC11974613 DOI: 10.1016/j.stem.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Vaccines are an essential tool to significantly reduce pathogen-related morbidity and mortality. However, our ability to rationally design vaccines and identify correlates of protection remains limited. Here, we employed an immune organoid approach to capture human adaptive immune response diversity to influenza vaccines and systematically identify host and antigen features linked to vaccine response variability. Our investigation identified established and unique immune signatures correlated with neutralizing antibody responses across seven different influenza vaccines and antigens. Unexpectedly, heightened ex vivo tissue frequencies of T helper (Th)1 cells emerged as both a predictor and a correlate of neutralizing antibody responses to inactivated influenza vaccines (IIVs). Secondary analysis of human public data confirmed that elevated Th1 signatures are associated with antibody responses following in vivo vaccination. These findings demonstrate the utility of human in vitro models for identifying in vivo correlates of protection and establish a role for Th1 functions in influenza vaccination.
Collapse
Affiliation(s)
- Zachary W Wagoner
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Timothy B Yates
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Jenny E Hernandez-Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Erika M Joloya
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Jenna M Kastenschmidt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Ian Tamburini
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Gurpreet Ahuja
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA; Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Qiu Zhong
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA; Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Wørzner K, Schmidt ST, Zimmermann J, Tami A, Polacek C, Fernandez-Antunez C, Hartmann KT, Jensen RF, Hansen JS, Illigen K, Isling LK, Erbs G, Jungersen G, Rosenkrands I, Offersgaard A, Gottwein J, Holmbeck K, Jensen HE, Ramirez S, Follmann F, Bukh J, Pedersen GK. Intranasal recombinant protein subunit vaccine targeting TLR3 induces respiratory tract IgA and CD8 T cell responses and protects against respiratory virus infection. EBioMedicine 2025; 113:105615. [PMID: 39983329 PMCID: PMC11893338 DOI: 10.1016/j.ebiom.2025.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/16/2024] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Intranasal vaccines against respiratory viruses are desired due to ease of administration and potential to protect against virus infection of the upper respiratory tract. METHODS We tested a cationic liposomal adjuvant delivering the TLR3 agonist Poly (I:C) (CAF®09b) for intranasal administration, by formulating this with SARS-CoV-2 spike trimeric protein and assessing airway mucosal immune responses in mice. The vaccine was further evaluated in SARS-CoV-2 virus challenge models, using mice expressing the human ACE2 receptor and Syrian hamsters. FINDINGS The intranasal vaccine elicited both serum neutralising antibody responses and IgA responses in the upper respiratory tract. Uniquely, it also elicited high-magnitude CD4 and CD8 T cell responses in the lung parenchyma and nasal-associated lymphoid tissue. In contrast, parenteral administration of the same vaccine, or the mRNA-1273 (Spikevax®) vaccine, led to systemic antibody responses and vaccine-induced CD4 T cells were mainly found in circulation. The intranasal vaccine protected against homologous SARS-CoV-2 (Wuhan-Hu-1) challenge in K18-hACE2 mice, preventing weight loss and virus infection in the upper and lower airways. In Syrian hamsters, the vaccine prevented weight loss and significantly reduced virus load after challenge with the homologous strain and Omicron BA.5. INTERPRETATION This study demonstrates that intranasal subunit vaccines containing TLR3-stimulating cationic liposomes effectively induce airway IgA and T cell responses, which could be utilised in future viral pandemics. FUNDING This work was primarily supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.
Collapse
Affiliation(s)
- Katharina Wørzner
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Signe Tandrup Schmidt
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Julie Zimmermann
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ahmad Tami
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotta Polacek
- Virus Research & Development Laboratory, Department of Virology and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Katrine Top Hartmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Fledelius Jensen
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Julia Sid Hansen
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Kristin Illigen
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Krag Isling
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gitte Erbs
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Judith Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark; Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Yegorov S, Brewer A, Cyr L, Ward BJ, Pullenayegum E, Miller MS, Loeb M. Hemagglutination-Inhibition Antibodies and Protection against Influenza Elicited by Inactivated and Live Attenuated Vaccines in Children. J Infect Dis 2025; 231:e308-e316. [PMID: 39504434 PMCID: PMC11841627 DOI: 10.1093/infdis/jiae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hemagglutinin (HA)-inhibiting antibodies contribute to the immune defense against influenza infection. However, there are insufficient data on the extent of correlation between vaccine-elicited HA antibodies and protection in children against different influenza strains, particularly when comparing live attenuated influenza vaccines (LAIV) versus inactivated influenza vaccines (IIV). METHODS We measured postvaccination hemagglutination-inhibition (HAI) titers in 3-15-year-old participants of a cluster-randomized controlled trial of trivalent LAIV(3) versus IIV(3) in Canadian Hutterite colonies. We assessed HAI titers as predictors of symptomatic, reverse transcription polymerase chain reaction (RT-PCR)-confirmed influenza over 3 influenza seasons using Cox proportional hazards regression models with vaccine type as a covariate. RESULTS For each log2 unit increase in postvaccination HAI against A/H1N1 in 2013-2014, A/H3N2 2014-2015, and B/Yamagata in 2013-2014 (each the predominant circulating strain for the respective influenza season), the reduction in the risk of confirmed influenza was equal to 29.6% (95% confidence interval [CI], 17.1%-39.5%), 34.8% (95% CI, 17.2%-47.9%), and 31.8% (95% CI, 23.8%-38.5%), respectively. No reduction in the risk of influenza was observed with B/Yamagata-specific HAI titers in 2012-2013, which was dominated by a mixture of Yamagata and Victoria strains. Despite the overall lower HAI titers in the LAIV3 group, both H1N1 and H3N2 HAI titers were associated with protection against subtype matched influenza. CONCLUSIONS Both LAIV3- and IIV3-elicited HA antibodies are associated with protection against influenza infection in seasons when the vaccine strains match the circulating influenza strain subtypes, supporting the use of HAI as a correlate of protection for both vaccine types in children.
Collapse
MESH Headings
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Child
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Hemagglutination Inhibition Tests
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Adolescent
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Child, Preschool
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Female
- Male
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Canada
- Influenza B virus/immunology
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Angela Brewer
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Louis Cyr
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, Montreal, Québec City, Canada
| | - Eleanor Pullenayegum
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, Health Research Methodology, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Hill-Batorski L, Weiner JA, Ackerman ME, Hatta Y, Hoft DF, Herber R, Moser MJ, Bilsel P. Intranasal M2SR (M2-Deficient Single Replication) Influenza Vaccine Induces Broadly Reactive Mucosal Antibody Production in Adults. J Infect Dis 2025; 231:214-218. [PMID: 39012796 DOI: 10.1093/infdis/jiae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
Intranasal H3N2 M2SR vaccine induced cross-reactive mucosal IgA antibodies against a panel of H3N2 hemagglutinins, ranging from 1968 to 2014, in adults independent of baseline immune status. The breadth extended to potential pandemic strain H7N9, presumably through the hemagglutinin stem.
Intranasal M2SR (M2-deficient single replication) influenza virus vaccine induces robust immune responses in animal models and humans. A high-throughput multiplexed platform was used to analyze hemagglutinin-specific mucosal antibody responses in adults after a single dose of H3N2 M2SR. Nasal swab specimens were analyzed for total and hemagglutinin-specific IgA. Significant dose-dependent increases in mucosal antibody responses to vaccine-matched and drifted H3N2 hemagglutinin were observed in persons vaccinated with M2SR regardless of baseline serum and mucosal immune status. These data suggest that M2SR induces broadly cross-reactive mucosal immune responses, which may provide better protection against drifted and newly emerging influenza strains.
Collapse
Affiliation(s)
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
5
|
Aganja RP, Kim IS, Tae HJ, Lee JH. Expression and delivery of HA1-M2e antigen using an innovative attenuated Salmonella-mediated delivery system confers promising protection against H9N2 avian influenza challenge. Poult Sci 2025; 104:104602. [PMID: 39631285 PMCID: PMC11665344 DOI: 10.1016/j.psj.2024.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
This study explores a dual expression vector system for delivering prokaryotic and eukaryotic antigens to improve conventional vaccination strategies. To enhance immune protection against H9N2 avian influenza virus (AIV), which threatens poultry and humans, we used the previously constructed pJHL270 and pJHL305 plasmids with the Ptrc and CMV promoters to stimulate MHC class II and I responses through exogenous and endogenous antigenic presentation. Salmonella Gallinarum (SG), a delivery vector, was engineered to have defective lipopolysaccharide structures through lon, pagL, and rfaL deletion. It demonstrated a safety profile with lower induction of inflammatory cytokines than the wild-type strain. Bioinformatics tools predicted that the HA1 and M2e sequences, which were designed as consensus sequences of South Korean strains (2000-2021), would have high antigenicity and favorable structures. In vitro expression of the vaccine constructs was validated by western blotting. Birds immunized with attenuated SG harboring pJHL270 (JOL3025) or pJHL305 (JOL3027) containing HA-M2e showed significant increases in serum IgY and mucosal IgA antibodies, indicating strong humoral and mucosal immune responses, comparable with inactivated commercial vaccine. Post-immunization, we found a substantial rise in the hemagglutination inhibition titer, suggesting effective prevention of viral attachment and robust cell-mediated immunity, with a 1.96-fold and 2.80-fold increase in CD4+ and CD8+ T cells, respectively, for JOL3025 and a 1.75-fold and 2.49-fold increase for JOL3027. Furthermore, MHC class I and II expression increased 1.35-fold and 1.63-fold, for JOL3025, and 1.61-fold and 1.68-fold, respectively, for JOL3027. The IL-4 and IFN-γ levels were elevated, indicating a balanced Th-1 and Th-2 response. Post-challenge, birds immunized with vaccine candidates or the commercial vaccine exhibited minimal to no clinical signs, reduced lesions, lower lung viral titers, and negligible impacts on egg production compared to controls. In conclusion, both plasmids successfully delivered HA1-M2e immunogens through the engineered SG strains, eliciting strong humoral, mucosal, and cell-mediated immune responses and co-stimulating MHC class I and II antigen presentation pathways to provide effective protection against H9N2 AIV with minimal adverse effects.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Campus, Iksan 54596, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Campus, Iksan 54596, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Campus, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Campus, Iksan 54596, Republic of Korea.
| |
Collapse
|
6
|
Schewe KE, Cooper S, Crowe J, Llewellyn S, Ritter L, Ryan KA, Dibben O. An Optimised Live Attenuated Influenza Vaccine Ferret Efficacy Model Successfully Translates H1N1 Clinical Data. Vaccines (Basel) 2024; 12:1275. [PMID: 39591178 PMCID: PMC11598904 DOI: 10.3390/vaccines12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Between 2013 and 2016, the A/H1N1pdm09 component of the live attenuated influenza vaccine (LAIV) produced instances of lower-than-expected vaccine effectiveness. Standard pre-clinical ferret models, using a human-like vaccine dose and focusing on antigenic match to circulating wildtype (wt) strains, were unable to predict these fluctuations. By optimising the vaccine dose and utilising clinically relevant endpoints, we aimed to develop a ferret efficacy model able to reproduce clinical observations. Ferrets were intranasally vaccinated with 4 Log10 FFU/animal (1000-fold reduction compared to clinical dose) of seven historical LAIV formulations with known (19-90%) H1N1 vaccine efficacy or effectiveness (VE). Following homologous H1N1 wt virus challenge, protection was assessed based on primary endpoints of wt virus shedding in the upper respiratory tract and the development of fever. LAIV formulations with high (82-90%) H1N1 VE provided significant protection from wt challenge, while formulations with reduced (19-32%) VE tended not to provide significant protection. The strongest correlation observed was between reduction in wt shedding and VE (R2 = 0.75). Conversely, serum immunogenicity following vaccination was not a reliable indicator of protection (R2 = 0.37). This demonstrated that, by optimisation of the vaccine dose and the use of non-serological, clinically relevant protection endpoints, the ferret model could successfully translate clinical H1N1 LAIV VE data.
Collapse
Affiliation(s)
- Katarzyna E. Schewe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Shaun Cooper
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Jonathan Crowe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Steffan Llewellyn
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Lydia Ritter
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Kathryn A. Ryan
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Oliver Dibben
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| |
Collapse
|
7
|
Waldock J, Cox RJ, Chiu C, Subbarao K, Wildfire A, Barclay W, van Kasteren PB, McCauley J, Russell CA, Smith D, Thwaites RS, Tregoning JS, Engelhardt OG. Inno4Vac Workshop Report Part 1: Controlled Human Influenza Virus Infection Model (CHIVIM) Strain Selection and Immune Assays for CHIVIM Studies, November 2021, MHRA, UK. Influenza Other Respir Viruses 2024; 18:e70014. [PMID: 39496425 PMCID: PMC11534430 DOI: 10.1111/irv.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/06/2024] Open
Abstract
Controlled human infection models (CHIMs) are a critical tool for the understanding of infectious disease progression, characterising immune responses to infection and rapid assessment of vaccines or drug treatments. There is increasing interest in using CHIMs for vaccine development and an obvious need for widely available and fit-for-purpose challenge agents. Inno4Vac is a large European consortium working towards accelerating and de-risking the development of new vaccines, including the development of CHIMs for influenza, respiratory syncytial virus and Clostridioides difficile. This report (in two parts) summarises a workshop held at the MHRA in 2021, focused on how to select CHIM candidate strains of influenza and respiratory syncytial virus (RSV) based on desirable virus characteristics and which immune assays would provide relevant information for assessing pre-existing and post-infection immune responses and defining correlates of protection. This manuscript (Part 1) summarises presentations and discussions centred around influenza CHIMs and immune assays (a second manuscript summarises RSV CHIM and immune assays: Inno4Vac workshop report Part 2: RSV CHIM strain selection and immune assays for RSV CHIM studies, November 2021, MHRA, UK).
Collapse
Affiliation(s)
- Joanna Waldock
- Influenza Resource Centre, Vaccines, Science Research & InnovationMedicines and Healthcare Products Regulatory AgencyPotters BarUK
| | - Rebecca J. Cox
- Influenza Centre, Department of Clinical SciencesUniversity of BergenBergenNorway
| | | | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Wendy Barclay
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Puck B. van Kasteren
- Centre for Immunology of Infectious Diseases and Vaccines (IIV)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - John McCauley
- World‐wide Influenza CentreFrancis Crick InstituteLondonUK
| | - Colin A. Russell
- Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Derek Smith
- Centre for Pathogen Evolution, Infectious Diseases Research Centre, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Ryan S. Thwaites
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | | - Othmar G. Engelhardt
- Influenza Resource Centre, Vaccines, Science Research & InnovationMedicines and Healthcare Products Regulatory AgencyPotters BarUK
| |
Collapse
|
8
|
Krammer F, Katz J, Engelhardt O, Post D, Roberts P, Sullivan S, Tompkins S, Chiu C, Schultz‐Cherry S, Cox R. Meeting Report From "Correlates of Protection for Next Generation Influenza Vaccines: Lessons Learned From the COVID-19 Pandemic". Influenza Other Respir Viruses 2024; 18:e13314. [PMID: 39380156 PMCID: PMC11461279 DOI: 10.1111/irv.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND This report summarizes the discussions and conclusions from the "Correlates of Protection for Next Generation Influenza Vaccines: Lessons Learned from the COVID-19 Pandemic" meeting, which took place in Seattle, USA, from March 1, 2023, to March 3, 2023. CONCLUSIONS Discussions around influenza virus correlates of protection and their use continued from where the discussion had been left off in 2019. While there was not much progress in the influenza field itself, many lessons learned during the coronavirus disease 2019 (COVID-19) pandemic, especially the importance of mucosal immunity, were discussed and can directly be applied to influenza correlates of protection.
Collapse
Affiliation(s)
- Florian Krammer
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Vaccine Research and Pandemic Preparedness (C‐VaRPP)Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection ResearchMedical University of ViennaViennaAustria
| | | | - Othmar G. Engelhardt
- Science Research & InnovationMedicines and Healthcare products Regulatory AgencyPotters BarUK
| | - Diane J. Post
- Division of Microbiology and Infectious DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of Health (DMID/NIAID/NIH)RockvilleMarylandUSA
| | - Paul C. Roberts
- Division of Microbiology and Infectious DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of Health (DMID/NIAID/NIH)RockvilleMarylandUSA
| | - Sheena G. Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious DiseasesUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of EpidemiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - S. Mark Tompkins
- Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for Influenza Disease and Emergence Response (CIDER)University of GeorgiaAthensGeorgiaUSA
- Department of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Christopher Chiu
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Stacey Schultz‐Cherry
- Department of Host‐Microbe InteractionsSt Jude Children's Research HospitalMemphisTennesseeUSA
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of MicrobiologyHaukeland University HospitalBergenNorway
| |
Collapse
|
9
|
Eiden J, Fierro C, White A, Davis M, Rhee M, Turner M, Murray B, Herber R, Aitchison R, Marshall D, Moser MJ, Belshe R, Greenberg H, Coelingh K, Kawaoka Y, Neumann G, Bilsel P. Safety and immunogenicity of the intranasal H3N2 M2-deficient single-replication influenza vaccine alone or coadministered with an inactivated influenza vaccine (Fluzone High-Dose Quadrivalent) in adults aged 65-85 years in the USA: a multicentre, randomised, double-blind, double-dummy, phase 1b trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1118-1129. [PMID: 39004096 DOI: 10.1016/s1473-3099(24)00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Older adults (aged ≥65 years) show increased susceptibility to severe disease with influenza virus infection, accounting for 70-85% of annual influenza-related fatalities in the USA. Stimulating mucosal antibodies and T cells might enhance the low vaccine effectiveness seen in older adults for currently licensed inactivated influenza vaccines, which induce mainly serum antibodies. We aimed to evaluate the safety and immunogenicity of the intranasal H3N2 M2-deficient single-replication (M2SR) vaccine, alone or coadministered with a licensed inactivated influenza vaccine (Fluzone High-Dose Quadrivalent; hereafter referred to as Fluzone HD), in older adults. METHODS In this multicentre, randomised, double-blind, double-dummy, phase 1b trial, individuals aged 65-85 years who were considered healthy or with stable chronic conditions with no recent (<6 months) influenza vaccinations were recruited from five clinical trial sites in the USA and randomly assigned (3:3:3:1) using a permuted block design to receive the H3N2 M2SR vaccine and Fluzone HD, the H3N2 M2SR vaccine and placebo, Fluzone HD and placebo, or placebo alone. All participants received a single intranasal spray and a single intramuscular injection, whether active or placebo, to maintain masking. The primary outcome was to assess the safety of H3N2 M2SR, administered alone or with Fluzone HD, in the safety analysis set, which included all participants who were randomly assigned and received treatment. Serum and mucosal antibodies were assessed as a secondary endpoint, and cell-mediated immunity as an exploratory endpoint, in participants in the per-protocol population, which included individuals in the safety analysis set without major protocol deviations. This trial is registered with ClinicalTrials.gov, NCT05163847. FINDINGS Between June 14 and Sept 15, 2022, 305 participants were enrolled and randomly assigned to receive the H3N2 M2SR vaccine plus placebo (n=89), H3N2 M2SR vaccine plus Fluzone HD (n=94), Fluzone HD plus placebo (n=92), or placebo alone (n=30). All randomly assigned participants were included in the safety analysis set. The most frequently reported local symptoms up to day 8 in groups that received M2SR were rhinorrhoea (43% [38 of 89] in the H3N2 M2SR plus placebo group and 38% [36 of 94] in the H3N2 M2SR plus Fluzone HD group), nasal congestion (51% [45 of 89] and 35% [33 of 94]), and injection-site pain (8% [seven of 89] and 49% [46 of 94]), and the most frequently reported solicited systemic symptoms were sore throat (28% [25 of 89]) for M2SR and decreased activity (26% [24 of 94]) for the M2SR plus Fluzone HD group. In the Fluzone HD plus placebo group, the most frequently reported local symptom was injection-site pain (48% [44 of 92]) and systemic symptom was muscle aches (22% [20 of 92]). The frequency of participants with any treatment-emergent adverse event related to vaccination was low across all groups (2-5%). One serious adverse event was reported, in a participant in the Fluzone HD plus placebo group. M2SR with Fluzone HD induced seroconversion (≥four-fold increase in haemagglutination inhibition antibodies from baseline to day 29) in 44 (48%) of 91 participants, compared with 28 (31%) of 90 participants who seroconverted in the Fluzone HD plus placebo group (p=0·023). M2SR with Fluzone HD also induced mucosal and cellular immune responses. INTERPRETATION The H3N2 M2SR vaccine coadministered with Fluzone HD in older adults was well tolerated and provided enhanced immunogenicity compared with Fluzone HD administered alone, suggesting potential for improved efficacy of influenza vaccination in this age group. Additional studies are planned to assess efficacy. FUNDING US Department of Defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Harry Greenberg
- Stanford University School of Medicine, Emeritus, Stanford University, Stanford, CA, USA
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin, Madison, WI, USA
| | - Gabriele Neumann
- Influenza Research Institute, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
10
|
van der Plas JL, Haijema BJ, Leenhouts K, Paul Zoeteweij J, Burggraaf J, Kamerling IMC. Safety, reactogenicity and immunogenicity of an intranasal seasonal influenza vaccine adjuvanted with gram-positive matrix (GEM) particles (FluGEM): A randomized, double-blind, controlled, ascending dose study in healthy adults and elderly. Vaccine 2024; 42:125836. [PMID: 38772837 DOI: 10.1016/j.vaccine.2024.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Intranasal administration of respiratory vaccines offers many advantages such as eliciting both systemic and mucosal immunity at the point of viral entry. Immunogenicity of intranasal vaccination can be improved through the use of adjuvants. Bacteria-like particles derived fromLactococcus lactishave the potential to serve as a vaccine adjuvant.This clinical study investigated the safety, reactogenicity and immunogenicity of intranasal seasonal influenza vaccine adjuvanted with gram-positive matrix particles (FluGEM®). METHODS This was a first-in-human, randomized, double-blind, controlled, dose-escalation study performed at the Centre for Human Drug Research (CHDR), the Netherlands. Participants aged 18-49 were randomized in a 3:1 ratio to receive FluGem® in ascending doses (two-dose regimens) together with a standard trivalent inactivated influenza vaccine or unadjuvanted TIV only. Primary outcomes were safety and tolerability. Secondary outcomes were serum hemagglutination inhibition (HI) antibody titers and mucosal IgA. The most immunogenic dose was used in an additionalelderly cohort (>65 years). RESULTS Ninty participants were included. Intranasal FluGem®was safe and well tolerated. The majority of adverse events were mild (97.4 %) with (un)solicited adverse events comparable across all dose levels and control groups. All groups showed geometric mean increases ≥ 2.5-fold. Seroconversion (≥40 % participants) was achieved at both day 21 (single-dose) and 42 (two-dose) for the 1.25 mg dose and on day 42 (two-dose only) for the 2.5 mg dose. Highest geometric mean IgA increases were observed in the 1.25 mg group on day 21. Immunogenicity was less pronounced in elderly. CONCLUSIONS Intranasal vaccination of FluGEM®was safe and tolerable in healthy adult volunteers aged 18-49 years and 65 and older. Highest immunogenicity was observed for 1.25 mg and 2.5 mg doses (compared to 5 mg) suggesting a potential non-linear dose-response relationship.More research is needed to further investigate the capabilities of bacteria-like peptides as adjuvants.
Collapse
Affiliation(s)
- Johan L van der Plas
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bert-Jan Haijema
- Mucosis B.V., Groningen, the Netherlands; 3D-PharmXchange, Tilburg, the Netherlands
| | - Kees Leenhouts
- Mucosis B.V., Groningen, the Netherlands; Allero Therapeutics B.V., Rotterdam, the Netherlands
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands; Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Wong PF, Isakova-Sivak I, Stepanova E, Krutikova E, Bazhenova E, Rekstin A, Rudenko L. Development of Cross-Reactive Live Attenuated Influenza Vaccine Candidates against Both Lineages of Influenza B Virus. Vaccines (Basel) 2024; 12:95. [PMID: 38250908 PMCID: PMC10821225 DOI: 10.3390/vaccines12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.
Collapse
Affiliation(s)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia; (P.-F.W.); (E.S.); (E.K.); (E.B.); (A.R.); (L.R.)
| | | | | | | | | | | |
Collapse
|
12
|
Laxton CS, Peno C, Hahn AM, Allicock OM, Perniciaro S, Wyllie AL. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. THE LANCET. MICROBE 2023; 4:e837-e850. [PMID: 37516121 DOI: 10.1016/s2666-5247(23)00135-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/31/2023]
Abstract
Despite its prominence in early scientific records, the usefulness of saliva as a respiratory specimen has been de-emphasised over the past century. However, due to its low cost and reliance on specific supply chains and the non-invasive nature of its collection, its benefits over swab-based specimens are again becoming increasingly recognised. These benefits were highlighted over the course of the COVID-19 pandemic, where saliva emerged as a more practical, clinically non-inferior sample type for the detection of SARS-CoV-2 and saw numerous saliva-based diagnostic tests approved for clinical use. Looking forward, as saliva uniquely contains both respiratory secretions and immunological components, it has potentially wide applications, ranging from clinical diagnostics to post-vaccine disease burden and immunity surveillance. This Personal View seeks to summarise the existing evidence for the use of saliva in detecting respiratory pathogens, beyond SARS-CoV-2, as well as detailing methodological factors that can influence sample quality and thus, clinical utility.
Collapse
Affiliation(s)
- Claire S Laxton
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Stephanie Perniciaro
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
13
|
Lewis ED, Crowley DC, Guthrie N, Evans M. Role of Acacia catechu and Scutellaria baicalensis in Enhancing Immune Function Following Influenza Vaccination of Healthy Adults: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:678-690. [PMID: 36413261 DOI: 10.1080/27697061.2022.2145525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The study aimed to examine the role of an Acacia catechu and Scutellaria baicalensis formulation, UP446, on supporting immune function in response to influenza vaccination. METHODS A randomized, triple-blind, placebo-controlled, parallel study consisted of a 56-day intervention period with a 28-day pre-vaccination period, an influenza vaccination on Day 28 and 28-day post-vaccination period. Fifty healthy adults 40-80 years of age who had not received their flu vaccine were randomized to either UP446 or Placebo. At baseline, Days 28 and 56, immune and oxidative stress markers were measured in blood and a quality of life questionnaire was administered. Participants completed the Wisconsin Upper Respiratory Symptom Survey (WURSS)-24 daily. RESULTS In the post-vaccination period, total IgA and IgG levels increased in participants supplemented with UP446 vs. those on Placebo (p ≤ 0.026). As well, influenza B-specific IgG increased 19.4% from Day 28 to 56 and 11.6% from baseline at Day 56 (p ≤ 0.0075). Serum glutathione peroxidase (GSH-Px) was increased in the pre-vaccination period and from baseline at Day 56 with UP446 supplementation (p ≤ 0.0270). CONCLUSION These results suggest a 56-day supplementation with UP446 was beneficial in mounting a robust humoral response following vaccination. Increasing GSH-Px in the pre-vaccination period may help improve antioxidant functions and potentially mitigate the oxidative stress induced following vaccination.
Collapse
|
14
|
Kastenschmidt JM, Sureshchandra S, Jain A, Hernandez-Davies JE, de Assis R, Wagoner ZW, Sorn AM, Mitul MT, Benchorin AI, Levendosky E, Ahuja G, Zhong Q, Trask D, Boeckmann J, Nakajima R, Jasinskas A, Saligrama N, Davies DH, Wagar LE. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. Immunity 2023; 56:1910-1926.e7. [PMID: 37478854 PMCID: PMC10433940 DOI: 10.1016/j.immuni.2023.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Highly effective vaccines elicit specific, robust, and durable adaptive immune responses. To advance informed vaccine design, it is critical that we understand the cellular dynamics underlying responses to different antigen formats. Here, we sought to understand how antigen-specific B and T cells were activated and participated in adaptive immune responses within the mucosal site. Using a human tonsil organoid model, we tracked the differentiation and kinetics of the adaptive immune response to influenza vaccine and virus modalities. Each antigen format elicited distinct B and T cell responses, including differences in their magnitude, diversity, phenotype, function, and breadth. These differences culminated in substantial changes in the corresponding antibody response. A major source of antigen format-related variability was the ability to recruit naive vs. memory B and T cells to the response. These findings have important implications for vaccine design and the generation of protective immune responses in the upper respiratory tract.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Jenny E Hernandez-Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Zachary W Wagoner
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aviv I Benchorin
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Elizabeth Levendosky
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - Gurpreet Ahuja
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Qiu Zhong
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jacob Boeckmann
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Algimantas Jasinskas
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - D Huw Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
15
|
Schultz MD, Suschak JJ, Botta D, Silva-Sanchez A, King RG, Detchemendy TW, Meshram CD, Foote JB, Zhou F, Tipper JL, Zhang J, Harrod KS, Leal SM, Randall TD, Roberts MS, Georges B, Lund FE. A single intranasal administration of AdCOVID protects against SARS-CoV-2 infection in the upper and lower respiratory tracts. Hum Vaccin Immunother 2022; 18:2127292. [PMID: 36194255 PMCID: PMC9746417 DOI: 10.1080/21645515.2022.2127292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has illustrated the critical need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive approach for preventing COVID-19 as the nasal mucosa is the site of initial SARS-CoV-2 entry and viral replication prior to aspiration into the lungs. We previously demonstrated that a single intranasal administration of a candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain of the SARS-CoV-2 spike protein (AdCOVID) induced robust immunity in both the airway mucosa and periphery, and completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge. Here we show that a single intranasal administration of AdCOVID limits viral replication in the nasal cavity of K18-hACE2 mice. AdCOVID also induces sterilizing immunity in the lungs of mice as reflected by the absence of infectious virus. Finally, AdCOVID prevents SARS-CoV-2 induced pathological damage in the lungs of mice. These data show that AdCOVID not only limits viral replication in the respiratory tract, but it also prevents virus-induced inflammation and immunopathology following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Michael D. Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Glenn King
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas W. Detchemendy
- Department of Pathology, Division of Laboratory Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chetan D. Meshram
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fen Zhou
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M. Leal
- Department of Pathology, Division of Laboratory Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D. Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Frances E. Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Eiden J, Fierro C, Schwartz H, Adams M, Ellis KJ, Aitchison R, Herber R, Hatta Y, Marshall D, Moser MJ, Belshe R, Greenberg H, Coelingh K, Kawaoka Y, Neumann G, Bilsel P. Intranasal M2SR (M2-Deficient Single Replication) H3N2 Influenza Vaccine Provides Enhanced Mucosal and Serum Antibodies in Adults. J Infect Dis 2022; 227:103-112. [PMID: 36350017 PMCID: PMC9796169 DOI: 10.1093/infdis/jiac433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We previously demonstrated that an intranasal dose of 108 50% tissue culture infectious dose (TCID50) M2-deficient single replication (M2SR) influenza vaccine protected against highly drifted H3N2 influenza challenge in a subset of subjects who demonstrated ≥2-fold increase in microneutralization (MN) antibodies to Belgium2015 (the challenge strain) after vaccination. Here, we describe a phase 1b, observer-blinded, dose-escalation study demonstrating an increased proportion of responders with this signal of immune protection. METHODS Serosusceptible subjects aged 18-49 years were randomized to receive 2 doses (108-109 TCID50) of M2SR or placebo administered 28 days apart. Clinical specimens were collected before and after each dose. The primary objective was to demonstrate safety of M2SR vaccines. RESULTS The vaccine was well tolerated at all dose levels. Against Belgium2015, ≥ 2-fold increases in MN antibodies were noted among 40% (95% confidence interval [CI], 24.9%-56.7%) of subjects following a single 108 TCID50 M2SR dose and among 80.6% (95% CI, 61.4%-92.3%) after 109 dose (P < .001). A single 109 TCID50 dose of M2SR generated ≥4-fold hemagglutination inhibition antibody seroconversion against the vaccine strain in 71% (95% CI, 52.0%-85.8%) of recipients. Mucosal and cellular immune responses were also induced. CONCLUSIONS These results indicate that M2SR may provide substantial protection against infection with highly drifted strains of H3N2 influenza. CLINICAL TRIALS REGISTRATION NCT03999554.
Collapse
Affiliation(s)
| | | | | | - Mark Adams
- Alliance for Multispecialty Research, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Gabriele Neumann
- Influenza Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Pamuk Bilsel
- Correspondence: Pamuk Bilsel, PhD, FluGen, Inc, 597 Science Drive, Madison, WI 53711 ()
| |
Collapse
|
17
|
Olukitibi TA, Ao Z, Azizi H, Mahmoudi M, Coombs K, Kobasa D, Kobinger G, Yao X. Development and characterization of influenza M2 ectodomain and/or hemagglutinin stalk-based dendritic cell-targeting vaccines. Front Microbiol 2022; 13:937192. [PMID: 36003947 PMCID: PMC9393625 DOI: 10.3389/fmicb.2022.937192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hiva Azizi
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
- Galveston National Laboratory, 301 University Blvd., Galveston, TX, United States
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Xiaojian Yao,
| |
Collapse
|
18
|
Lee ES, Shim YJ, Chathuranga WAG, Ahn YH, Yoon IJ, Yoo SS, Lee JS. CAvant® WO-60 as an Effective Immunological Adjuvant for Avian Influenza and Newcastle Disease Vaccine. Front Vet Sci 2021; 8:730700. [PMID: 34926633 PMCID: PMC8677964 DOI: 10.3389/fvets.2021.730700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the immunogenicity of vaccines currently used in poultry, several pathogens, including avian influenza virus (AIV) and Newcastle disease virus (NDV), cause enormous economic losses to the global poultry industry. The efficacy of vaccines can be improved by the introduction of effective adjuvants. This study evaluated a novel water-in-oil emulsion adjuvant, CAvant® WO-60, which effectively enhanced both the immunogenicity of conserved influenza antigen sM2HA2 and inactivated whole H9N2 antigen (iH9N2). CAvant® WO-60 induced both humoral and cell-mediated immunity in mice and provided 100% protection from challenge with 10 LD50 of A/Aquatic bird/Korea/W81/2005 (H5N2) and A/Chicken/Korea/116/2004 (H9N2) AIV. Importantly, immunization of chickens with iH9N2 plus inactivated NDV LaSota (iNDV) bivalent inactivated vaccine emulsified in CAvant® WO-60 induced seroprotective levels of antigen-specific antibody responses. Taken together, these results suggested that CAvant® WO-60 is a promising adjuvant for poultry vaccines.
Collapse
Affiliation(s)
- Eun-Seo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Jung Shim
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon, South Korea
| | | | - Young-Hoon Ahn
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon, South Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon, South Korea
| | - Sung-Sik Yoo
- Choong Ang Vaccine Laboratory Co., Ltd., Daejeon, South Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
19
|
Safety and Immunogenicity of M2-Deficient, Single Replication, Live Influenza Vaccine (M2SR) in Adults. Vaccines (Basel) 2021; 9:vaccines9121388. [PMID: 34960134 PMCID: PMC8707871 DOI: 10.3390/vaccines9121388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
M2SR (M2-deficient single replication) is an investigational live intranasal vaccine that protects against multiple influenza A subtypes in influenza-naïve and previously infected ferrets. We conducted a phase 1, first-in-human, randomized, dose-escalation, placebo-controlled study of M2SR safety and immunogenicity. Adult subjects received a single intranasal administration with either placebo or one of three M2SR dose levels (106, 107 or 108 tissue culture infectious dose (TCID50)) expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (H3N2) (24 subjects per group). Subjects were evaluated for virus replication, local and systemic reactions, adverse events (AE), and immune responses post-vaccination. Infectious virus was not detected in nasal swabs from vaccinated subjects. At least one AE (most commonly mild nasal rhinorrhea/congestion) was reported among 29%, 58%, and 83% of M2SR subjects administered a low, medium or high dose, respectively, and among 46% of placebo subjects. No subject had fever or a severe reaction to the vaccine. Influenza-specific serum and mucosal antibody responses and B- and T-cell responses were significantly more frequent among vaccinated subjects vs. placebo recipients. The M2SR vaccine was safe and well tolerated and generated dose-dependent durable serum antibody responses against diverse H3N2 influenza strains. M2SR demonstrated a multi-faceted immune response in seronegative and seropositive subjects.
Collapse
|
20
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
21
|
King RG, Silva-Sanchez A, Peel JN, Botta D, Dickson AM, Pinto AK, Meza-Perez S, Allie SR, Schultz MD, Liu M, Bradley JE, Qiu S, Yang G, Zhou F, Zumaquero E, Simpler TS, Mousseau B, Killian JT, Dean B, Shang Q, Tipper JL, Risley CA, Harrod KS, Feng T, Lee Y, Shiberu B, Krishnan V, Peguillet I, Zhang J, Green TJ, Randall TD, Suschak JJ, Georges B, Brien JD, Lund FE, Roberts MS. Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines (Basel) 2021; 9:881. [PMID: 34452006 PMCID: PMC8402488 DOI: 10.3390/vaccines9080881] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.
Collapse
Affiliation(s)
- R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Jessica N. Peel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Alexandria M. Dickson
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Amelia K. Pinto
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - S. Rameeza Allie
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Michael D. Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - John E. Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Guang Yang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Fen Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Thomas S. Simpler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Betty Mousseau
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - John T. Killian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Brittany Dean
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Qiao Shang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.T.); (K.S.H.)
| | - Christopher A. Risley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.T.); (K.S.H.)
| | - Tsungwei Feng
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Young Lee
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Bethlehem Shiberu
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Vyjayanthi Krishnan
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Isabelle Peguillet
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Jianfeng Zhang
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Todd J. Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - Troy D. Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.S.-S.); (S.M.-P.); (S.R.A.); (M.L.); (J.E.B.); (T.D.R.)
| | - John J. Suschak
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - Bertrand Georges
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| | - James D. Brien
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA; (A.M.D.); (A.K.P.); (J.D.B.)
| | - Frances E. Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.K.); (J.N.P.); (D.B.); (M.D.S.); (S.Q.); (G.Y.); (F.Z.); (E.Z.); (T.S.S.); (B.M.); (J.T.K.J.); (B.D.); (Q.S.); (C.A.R.); (T.J.G.)
| | - M. Scot Roberts
- Altimmune Inc., Gaithersburg, MD 20878, USA; (T.F.); (Y.L.); (B.S.); (V.K.); (I.P.); (J.Z.); (J.J.S.); (B.G.)
| |
Collapse
|
22
|
Eiden J, Volckaert B, Rudenko O, Aitchison R, Herber R, Belshe R, Greenberg H, Coelingh K, Marshall D, Kawaoka Y, Neumann G, Bilsel P. Single Replication M2SR Influenza Vaccine Induced Immune Responses Associated with Protection Against Human Challenge with Highly Drifted H3N2 Influenza Strain. J Infect Dis 2021; 226:83-90. [PMID: 34323977 PMCID: PMC9373152 DOI: 10.1093/infdis/jiab374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
Background Current influenza vaccines are strain specific and demonstrate low vaccine efficacy against H3N2 influenza disease, especially when vaccine is mismatched to circulating virus. The novel influenza vaccine candidate, M2-deficient single replication (M2SR), induces a broad, multi-effector immune response. Methods A phase 2 challenge study was conducted to assess the efficacy of an M2SR vaccine expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (Bris2007 M2SR H3N2; clade 1). Four weeks after vaccination, recipients were challenged with antigenically distinct H3N2 virus (A/Belgium/4217/2015, clade 3C.3b) and assessed for infection and clinical symptoms. Results Adverse events after vaccination were mild and similar in frequency for placebo and M2SR recipients. A single dose of Bris2007 M2SR induced neutralizing antibody to the vaccine (48% of recipients) and challenge strain (27% of recipients). Overall, 54% of M2SR recipients were infected after challenge, compared with 71% of placebo recipients. The subset of M2SR recipients with a vaccine-induced microneutralization response against the challenge virus had reduced rates of infection after challenge (38% vs 71% of placebo recipients; P = .050) and reduced illness. Conclusions Study participants with vaccine-induced neutralizing antibodies were protected against infection and illness after challenge with an antigenically distinct virus. This is the first demonstration of vaccine-induced protection against a highly drifted H3N2 challenge virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, University of Wisconsin, Madison, WI, USA
| | - Gabriele Neumann
- Influenza Research Institute, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
23
|
Siggins MK, Thwaites RS, Openshaw PJM. Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses. Trends Microbiol 2021; 29:648-662. [PMID: 33896688 PMCID: PMC8026254 DOI: 10.1016/j.tim.2021.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.
Collapse
Affiliation(s)
- Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
24
|
BOCCALINI SARA, PARIANI ELENA, CALABRÒ GIOVANNAELISA, DE WAURE CHIARA, PANATTO DONATELLA, AMICIZIA DANIELA, LAI PIEROLUIGI, RIZZO CATERINA, AMODIO EMANUELE, VITALE FRANCESCO, CASUCCIO ALESSANDRA, DI PIETRO MARIALUISA, GALLI CRISTINA, BUBBA LAURA, PELLEGRINELLI LAURA, VILLANI LEONARDO, D’AMBROSIO FLORIANA, CAMINITI MARTA, LORENZINI ELISA, FIORETTI PAOLA, MICALE ROSANNATINDARA, FRUMENTO DAVIDE, CANTOVA ELISA, PARENTE FLAVIO, TRENTO GIACOMO, SOTTILE SARA, PUGLIESE ANDREA, BIAMONTE MASSIMILIANOALBERTO, GIORGETTI DUCCIO, MENICACCI MARCO, D’ANNA ANTONIO, AMMOSCATO CLAUDIA, LA GATTA EMANUELE, BECHINI ANGELA, BONANNI PAOLO. [Health Technology Assessment (HTA) of the introduction of influenza vaccination for Italian children with Fluenz Tetra ®]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E1-E118. [PMID: 34909481 PMCID: PMC8639053 DOI: 10.15167/2421-4248/jpmh2021.62.2s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - ELENA PARIANI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
| | - GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), spin off dell’Università Cattolica del Sacro Cuore, Roma, Italia
| | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - DONATELLA PANATTO
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - DANIELA AMICIZIA
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - PIERO LUIGI LAI
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - CATERINA RIZZO
- Area Funzionale Percorsi Clinici ed Epidemiologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italia
| | - EMANUELE AMODIO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - FRANCESCO VITALE
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - ALESSANDRA CASUCCIO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - MARIA LUISA DI PIETRO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - CRISTINA GALLI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LAURA BUBBA
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LAURA PELLEGRINELLI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LEONARDO VILLANI
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - FLORIANA D’AMBROSIO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - MARTA CAMINITI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - ELISA LORENZINI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - PAOLA FIORETTI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | | | - DAVIDE FRUMENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - ELISA CANTOVA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - FLAVIO PARENTE
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - GIACOMO TRENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - SARA SOTTILE
- Università degli Studi di Trento, Trento, Italia
| | | | | | - DUCCIO GIORGETTI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - MARCO MENICACCI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - ANTONIO D’ANNA
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - CLAUDIA AMMOSCATO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - EMANUELE LA GATTA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| |
Collapse
|
25
|
Koch T, Fathi A, Addo MM. The COVID-19 Vaccine Landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:549-573. [PMID: 33973199 DOI: 10.1007/978-3-030-63761-3_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The history of vaccine development spans centuries. At first, whole pathogens were used as vaccine agents, either inactivated or attenuated, to reduce virulence in humans. Safety and tolerability were increased by including only specific proteins as antigens and using cell culture methods, while novel vaccine strategies, like nucleic acid- or vector-based vaccines, hold high promise for the future. Vaccines have generally not been employed as the primary tools in outbreak response, but this might change since advances in medical technology in the last decades have made the concept of developing vaccines against novel pathogens a realistic strategy. Wandering the uncharted territory of a novel pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we can learn from other human Betacoronaviridae that emerged in the last decades, SARS-CoV-1 and MERS-CoV. We can identify the most likely target structures of immunity, establish animal models that emulate human disease and immunity as closely as possible, and learn about complex mechanisms of immune interaction such as cross-reactivity or antibody-dependent enhancement (ADE). However, significant knowledge gaps remain. What are the correlates of protection? How do we best induce immunity in vulnerable populations like the elderly? Will the immunity induced by vaccination (or by natural infection) wane over time? To date, at least 149 vaccine candidates against SARS-CoV-2 are under development. At the time of writing, at least 17 candidates have already progressed past preclinical studies (in vitro models and in vivo animal experiments) into clinical development. This chapter will provide an overview of this rapidly developing field.
Collapse
Affiliation(s)
- Till Koch
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. .,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany.
| | - Anahita Fathi
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
26
|
Tasker S, Wight O’Rourke A, Suyundikov A, Jackson Booth PG, Bart S, Krishnan V, Zhang J, Anderson KJ, Georges B, Roberts MS. Safety and Immunogenicity of a Novel Intranasal Influenza Vaccine (NasoVAX): A Phase 2 Randomized, Controlled Trial. Vaccines (Basel) 2021; 9:224. [PMID: 33807649 PMCID: PMC8000446 DOI: 10.3390/vaccines9030224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Annual influenza vaccination greatly reduces morbidity and mortality, but effectiveness remains sub-optimal. Weaknesses of current vaccines include low effectiveness against mismatched strains, lack of mucosal and other effective tissue-resident immune responses, weak cellular immune responses, and insufficiently durable immune responses. The safety and immunogenicity of NasoVAX, a monovalent intranasal influenza vaccine based on a replication-deficient adenovirus type 5 platform, were evaluated in a placebo-controlled single ascending-dose study. Sixty healthy adults (18-49 years) received a single intranasal dose of 1×109 viral particles (vp), 1 × 1010 vp, or 1 × 1011 vp of NasoVAX or placebo. NasoVAX was well-tolerated and elicited robust influenza-specific systemic and mucosal immune responses. The highest NasoVAX dose and the approved Fluzone® influenza vaccine elicited comparable hemagglutination inhibition (HAI) geometric mean titers (152.8 vs. 293.4) and microneutralization (MN) geometric mean titers (142.5 vs. 162.8), with NasoVAX HAI titers maintained more than 1-year on average following a single dose. Hemagglutinin-specific T cells responses were also documented in peripheral mononuclear cell (PBMC) preparations. Consistent with the intranasal route of administration, NasoVAX elicited antigen-specific mucosal IgA responses in the nasopharyngeal cavity with an increase of approximately 2-fold over baseline GMT at the mid- and high-doses. In summary, NasoVAX appeared safe and elicited a broad immune response, including humoral, cellular, and mucosal immunity, with no impact of baseline anti-adenovirus antibody at the most immunogenic dose.
Collapse
Affiliation(s)
- Sybil Tasker
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
- Codagenix, Inc., Farmingdale, NY 11735, USA
| | - Anna Wight O’Rourke
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
- Biomedical Advanced Research and Development Authority, Washington, DC 20201, USA
| | - Anvar Suyundikov
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
| | | | - Stephan Bart
- Optimal Research, LLC, Rockville, MD 20850, USA; (P.-G.J.B.); (S.B.)
| | - Vyjayanthi Krishnan
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
| | - Jianfeng Zhang
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
| | - Katie J. Anderson
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
- Vaccitech Limited, Oxford OX4 4GE, UK
| | - Bertrand Georges
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
| | - M. Scot Roberts
- Altimmune, Inc., Gaithersburg, MD 20878, USA; (S.T.); (A.W.O.); (A.S.); (V.K.); (J.Z.); (K.J.A.); (B.G.)
| |
Collapse
|
27
|
Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, Dhakal S, Hanson J, Krakowka S, Renukaradhya GJ. Immunity and Protective Efficacy of Mannose Conjugated Chitosan-Based Influenza Nanovaccine in Maternal Antibody Positive Pigs. Front Immunol 2021; 12:584299. [PMID: 33746943 PMCID: PMC7969509 DOI: 10.3389/fimmu.2021.584299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral administration of killed/inactivated swine influenza A virus (SwIAV) vaccine in weaned piglets provides variable levels of immunity due to the presence of preexisting virus specific maternal derived antibodies (MDA). To overcome the effect of MDA on SwIAV vaccine in piglets, we developed an intranasal deliverable killed SwIAV antigen (KAg) encapsulated chitosan nanoparticles called chitosan-based NPs encapsulating KAg (CS NPs-KAg) vaccine. Further, to target the candidate vaccine to dendritic cells and macrophages which express mannose receptor, we conjugated mannose to chitosan (mCS) and formulated KAg encapsulated mCS nanoparticles called mannosylated chitosan-based NPs encapsulating KAg (mCS NPs-KAg) vaccine. In MDA-positive piglets, prime-boost intranasal inoculation of mCS NPs-KAg vaccine elicited enhanced homologous (H1N2-OH10), heterologous (H1N1-OH7), and heterosubtypic (H3N2-OH4) influenza virus-specific secretory IgA (sIgA) antibody response in nasal passage compared to CS NPs-KAg vaccinates. In vaccinated upon challenged with a heterologous SwIAV H1N1, both mCS NPs-KAg and CS NPs-KAg vaccinates augmented H1N2-OH10, H1N1-OH7, and H3N2-OH4 virus-specific sIgA antibody responses in nasal swab, lung lysate, and bronchoalveolar lavage (BAL) fluid; and IgG antibody levels in lung lysate and BAL fluid samples. Whereas, the multivalent commercial inactivated SwIAV vaccine delivered intramuscularly increased serum IgG antibody response. In mCS NPs-KAg and CS NPs-KAg vaccinates increased H1N2-OH10 but not H1N1-OH7 and H3N2-OH4-specific serum hemagglutination inhibition titers were observed. Additionally, mCS NPs-KAg vaccine increased specific recall lymphocyte proliferation and cytokines IL-4, IL-10, and IFNγ gene expression compared to CS NPs-KAg and commercial SwIAV vaccinates in tracheobronchial lymph nodes. Consistent with the immune response both mCS NPs-KAg and CS NPs-KAg vaccinates cleared the challenge H1N1-OH7 virus load in upper and lower respiratory tract more efficiently when compared to commercial vaccine. The virus clearance was associated with reduced gross lung lesions. Overall, mCS NP-KAg vaccine intranasal immunization in MDA-positive pigs induced a robust cross-reactive immunity and offered protection against influenza virus.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Juliette Hanson
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| |
Collapse
|
28
|
Abstract
Influenza poses a significant disease burden on children worldwide, with high rates of hospitalization and substantial morbidity and mortality. Although the clinical presentation of influenza in children has similarities to that seen in adults, there are unique aspects to how children present with infection that are important to recognize. In addition, children play a significant role in viral transmission within communities. Growing evidence supports the idea that early influenza infection can uniquely establish lasting immunologic memory, making an understanding of how viral immunity develops in this population critical to better protect children from infection and to facilitate efforts to develop a more universally protective influenza vaccine.
Collapse
Affiliation(s)
- Jennifer Nayak
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Rochester Medical Center, Rochester, New York 14642-0001, USA
| | - Gregory Hoy
- Medical Scientist Training Program, Medical School, University of Michigan, Ann Arbor, Michigan 48109-2029, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2029, USA
| |
Collapse
|
29
|
Lindsey BB, Höschler K, de Silva TI. Complexities in Predicting the Immunogenicity of Live Attenuated Influenza Vaccines. Clin Infect Dis 2020; 70:2235-2236. [PMID: 31412109 DOI: 10.1093/cid/ciz773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Benjamin B Lindsey
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Katja Höschler
- Virus Reference Department, Reference Microbiology Services, Public Health England, Colindale, United Kingdom
| | - Thushan I de Silva
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom.,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
31
|
Lu L, Fong CHY, Zhang AJ, Wu WL, Li IC, Lee ACY, Dissanayake TK, Chen L, Hung IFN, Chan KH, Chu H, Kok KH, Yuen KY, To KKW. Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040754. [PMID: 33322574 PMCID: PMC7768360 DOI: 10.3390/vaccines8040754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Wai-Lan Wu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Iris Can Li
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Andrew Chak-Yiu Lee
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Linlei Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Hin Chu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence:
| |
Collapse
|
32
|
King RG, Silva-Sanchez A, Peel JN, Botta D, Meza-Perez S, Allie R, Schultz MD, Liu M, Bradley JE, Qiu S, Yang G, Zhou F, Zumaquero E, Simpler TS, Mousseau B, Killian JT, Dean B, Shang Q, Tipper JL, Risley C, Harrod KS, Feng R, Lee Y, Shiberu B, Krishnan V, Peguillet I, Zhang J, Green T, Randall TD, Georges B, Lund FE, Roberts S. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.10.331348. [PMID: 33052351 PMCID: PMC7553185 DOI: 10.1101/2020.10.10.331348] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective preventive vaccination to reduce burden and spread of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) in humans. Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry before viral spread to the lung. Although SARS-CoV-2 vaccine development is rapidly progressing, the current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity. Here, we show that AdCOVID, an intranasal adenovirus type 5 (Ad5)-vectored vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, elicits a strong and focused immune response against RBD through the induction of mucosal IgA, serum neutralizing antibodies and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. Therefore, AdCOVID, which promotes concomitant systemic and local mucosal immunity, represents a promising COVID-19 vaccine candidate.
Collapse
|
33
|
Oktapodas Feiler M, Caserta MT, van Wijngaarden E, Thevenet-Morrison K, Hardy DJ, Zhang YV, Dozier AM, Lawrence BP, Jusko TA. Environmental Lead Exposure and Influenza and Respiratory Syncytial Virus Diagnoses in Young Children: A Test-Negative Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207625. [PMID: 33086756 PMCID: PMC7590174 DOI: 10.3390/ijerph17207625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Experimental and epidemiological evidence suggests that environmental toxicants may influence susceptibility to influenza and respiratory syncytial virus (RSV). The objective of the present study was to estimate the association between blood lead concentrations and the odds of child influenza or RSV infection. A test-negative, case-control study was conducted among 617 children, <4 years of age, tested for influenza/RSV from 2012-2017 in Rochester, NY. There were 49 influenza cases (568 controls) and 123 RSV cases (494 controls). Blood lead concentrations reported in children's medical records were linked with influenza/RSV lab test results. Covariables were collected from medical records, birth certificates, and U.S. census data. In this sample, evidence of an association between blood lead levels and RSV or influenza diagnosis was not observed. Children with a lead level ≥1 μg/dL vs. <1 μg/dL had an adjusted odds ratio (aOR) and 95% confidence limit of 0.95 (0.60, 1.49) for RSV and 1.34 (0.65, 2.75) for influenza. In sex-specific analyses, boys with lead concentrations ≥1 μg/dL vs. <1 μg/dL had an aOR = 1.89 (1.25, 2.86) for influenza diagnosis, while the estimates were inconsistent for girls. These results are suggestive of sex-specific associations between blood lead levels and the risk of influenza, although the sample size was small.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; (E.v.W.); (B.P.L.); (T.A.J.)
- Correspondence:
| | - Mary T. Caserta
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA;
| | - Edwin van Wijngaarden
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; (E.v.W.); (B.P.L.); (T.A.J.)
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY 14620, USA; (K.T.-M.); (A.M.D.)
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY 14620, USA; (K.T.-M.); (A.M.D.)
| | - Dwight J. Hardy
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA;
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA;
| | - Ann M. Dozier
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY 14620, USA; (K.T.-M.); (A.M.D.)
| | - B. Paige Lawrence
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; (E.v.W.); (B.P.L.); (T.A.J.)
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA;
| | - Todd A. Jusko
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; (E.v.W.); (B.P.L.); (T.A.J.)
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA;
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY 14620, USA; (K.T.-M.); (A.M.D.)
| |
Collapse
|
34
|
Brickley EB, Wright PF, Khalenkov A, Neuzil KM, Ortiz JR, Rudenko L, Levine MZ, Katz JM, Brooks WA. The Effect of Preexisting Immunity on Virus Detection and Immune Responses in a Phase II, Randomized Trial of a Russian-Backbone, Live, Attenuated Influenza Vaccine in Bangladeshi Children. Clin Infect Dis 2020; 69:786-794. [PMID: 30481269 PMCID: PMC6695513 DOI: 10.1093/cid/ciy1004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background In a 2012 Phase II clinical trial, 300 Bangladeshi children aged 24 to 59 months with no prior influenza vaccine exposure were randomized to receive a single intranasally-administered dose of either trivalent, Russian-backbone, live, attenuated influenza vaccine (LAIV) or placebo. Protocol-defined analyses, presented in the companion manuscript, demonstrate decreased viral detection and immunogenicity for A/H1N1pdm09, relative to the A/H3N2 and B strains. This post hoc analysis of the trial data aims to investigate the LAIV strain differences by testing the hypothesis that preexisting humoral and mucosal immunity may influence viral recovery and immune responses after LAIV receipt. Methods We used logistic regressions to evaluate the relations between markers of preexisting immunity (ie, hemagglutination inhibition [HAI], microneutralization, and immunoglobulin G and immunoglobulin A (both serum and mucosal antibodies) and LAIV viral recovery in the week post-vaccination. We then tested for potential effect modification by baseline HAI titers (ie, <10 versus ≥10) and week 1 viral recovery on the LAIV-induced serum and mucosal immune responses, measured between days 0 and 21 post-vaccination. Results Higher levels of preexisting immunity to influenza A/H3N2 and B were strongly associated with strain-specific prevention of viral shedding upon LAIV receipt. While evidence of LAIV immunogenicity was observed for all 3 strains, the magnitudes of immune responses were most pronounced in children with no evidence of preexisting HAI and in those with detectable virus. Conclusions The results provide evidence for a bidirectional association between viral replication and immunity, and underscore the importance of accounting for preexisting immunity when evaluating virologic and immunologic responses to LAIVs. Clinical Trials Registration NCT01625689.
Collapse
Affiliation(s)
- Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom.,Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover
| | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Alexey Khalenkov
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Kathleen M Neuzil
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | - Justin R Ortiz
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - W Abdullah Brooks
- Department of International Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
35
|
Skarlupka AL, Handel A, Ross TM. Influenza hemagglutinin antigenic distance measures capture trends in HAI differences and infection outcomes, but are not suitable predictive tools. Vaccine 2020; 38:5822-5830. [PMID: 32682618 DOI: 10.1016/j.vaccine.2020.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023]
Abstract
Vaccination is the most effective method to combat influenza. Vaccine effectiveness is influenced by the antigenic distance between the vaccine strain and the actual circulating virus. Amino acid sequence based methods of quantifying the antigenic distance were designed to predict influenza vaccine effectiveness in humans. The use of these antigenic distance measures has been proposed as an additive method for seasonal vaccine selection. In this report, several antigenic distance measures were evaluated as predictors of hemagglutination inhibition titer differences and clinical outcomes following influenza vaccination or infection in mice or ferrets. The antigenic distance measures described the increasing trend in the change of HAI titer, lung viral titer and percent weight loss in mice and ferrets. However, the variability of outcome variables produced wide prediction intervals for any given antigenic distance value. The amino acid substitution based antigenic distance measures were no better predictors of viral load and weight loss than HAI titer differences, the current predictive measure of immunological correlate of protection for clinical signs after challenge.
Collapse
Affiliation(s)
- Amanda L Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
36
|
Abreu RB, Clutter EF, Attari S, Sautto GA, Ross TM. IgA Responses Following Recurrent Influenza Virus Vaccination. Front Immunol 2020; 11:902. [PMID: 32508822 PMCID: PMC7249748 DOI: 10.3389/fimmu.2020.00902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Influenza is a highly contagious viral respiratory disease that affects millions of people worldwide each year. Annual vaccination is recommended by the World Health Organization to reduce influenza severity and limit transmission through elicitation of antibodies targeting mainly the hemagglutinin glycoprotein of the influenza virus. Antibodies elicited by current seasonal influenza vaccines are predominantly strain-specific. However, continuous antigenic drift by circulating influenza viruses facilitates escape from pre-existing antibodies requiring frequent reformulation of the seasonal influenza vaccine. Traditionally, immunological responses to influenza vaccination have been largely focused on IgG antibodies, with almost complete disregard of other isotypes. In this report, young adults (18–34 years old) and elderly (65–85 years old) subjects were administered the split inactivated influenza vaccine for 3 consecutive seasons and their serological IgA and IgG responses were profiled. Moreover, correlation analysis showed a positive relationship between vaccine-induced IgA antibody titers and traditional immunological endpoints, exposing vaccine-induced IgA antibodies as an important novel immune correlate during influenza vaccination.
Collapse
Affiliation(s)
- Rodrigo B Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Emily F Clutter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Sara Attari
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
37
|
Belshe RB. The Potential of Live, Attenuated Influenza Vaccine for the Prevention of Influenza in Children. Clin Infect Dis 2020; 69:795-796. [PMID: 30517601 DOI: 10.1093/cid/ciy1007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert B Belshe
- Division of Infectious Diseases, Center for Vaccine Development, Saint Louis University School of Medicine, St Louis, Missouri
| |
Collapse
|
38
|
Nah K, Alavinejad M, Rahman A, Heffernan JM, Wu J. Impact of influenza vaccine-modified infectivity on attack rate, case fatality ratio and mortality. J Theor Biol 2020; 492:110190. [PMID: 32035827 DOI: 10.1016/j.jtbi.2020.110190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Generally, vaccines are designed to provide protection against infection (susceptibility), disease (symptoms and transmissibility), and/or complications. In a recent study of influenza vaccination, it was observed that vaccinated yet infected individuals experienced increased transmission levels. In this paper, using a mathematical model of infection and transmission, we study the impact of vaccine-modified effects, including susceptibility and infectivity, on important epidemiological outcomes of an immunization program. The balance between vaccine-modified susceptibility, infectivity and recovery needed in preventing an influenza outbreak, or in mitigating the health outcomes of the outbreak is studied using the SIRV-type of disease transmission model. We also investigate the impact of influenza vaccination program on the infection risk of vaccinated and non-vaccinated individuals.
Collapse
Affiliation(s)
- Kyeongah Nah
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada; Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Mahnaz Alavinejad
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada; Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Ashrafur Rahman
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada; Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
| | - Jane M Heffernan
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; Centre for Disease Modelling (CDM), York University, Toronto, ON M3J 1P3, Canada
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada; Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada; Centre for Disease Modelling (CDM), York University, Toronto, ON M3J 1P3, Canada; Fields-CQAM Laboratory of Mathematics for Public Health, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
39
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
40
|
McLean HQ, King JP, Talley P, Flannery B, Spencer S, Levine MZ, Friedrich TC, Belongia EA. Effect of Previous-Season Influenza Vaccination on Serologic Response in Children During 3 Seasons, 2013-2014 Through 2015-2016. J Pediatric Infect Dis Soc 2020; 9:173-180. [PMID: 30759228 PMCID: PMC7192403 DOI: 10.1093/jpids/piz001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The effects of repeated influenza vaccination in children are not well understood. In this study, we evaluated previous vaccination effects on antibody response after vaccination with trivalent inactivated influenza vaccine (IIV) or quadrivalent live-attenuated influenza vaccine (LAIV) among school-aged children (5-17 years) across 3 seasons. METHODS Children were enrolled in the fall of 2013, 2014, and 2015. The participants received IIV or LAIV according to parent preference (2013-2014) or our randomization scheme (2014-2015). All study children received IIV in 2015-2016. Hemagglutination-inhibition assays measured antibody response to egg-grown vaccine strains from prevaccination and postvaccination serum samples. Geometric mean titers (GMTs) and increases in GMTs from before to after vaccination (geometric mean fold rise [GMFR]) were estimated from repeated-measures linear mixed models. RESULTS We enrolled 161 children in 2013-2014, 128 in 2014-2015, and 126 in 2015-2016. Among the IIV recipients, responses to the influenza A(H1N1)pdm09 and B vaccine strains were lowest among children who had received a previous-season IIV. The GMFRs for strains A(H1N1)pdm09 and B were 1.5 to 2.3 for previous-season IIV and 4.3 to 12.9 for previous-season LAIV or no previous vaccine. GMFRs were lower for strain A(H3N2), and differences according to previous-season vaccination history were smaller and not significant in most seasons. Most children had a post-IIV vaccination titer of ≥40 for vaccine strains in all seasons, regardless of previous-season vaccination history. Little to no increase in antibody levels was observed after vaccination with LAIV. CONCLUSIONS Serologic response to vaccination was greatest for IIV, but previous-season vaccination modified IIV response to A(H1N1)pdm09 and B. Influenza A(H3N2) responses were low in all groups, and LAIV generated minimal serologic response against all strains.
Collapse
Affiliation(s)
- Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Wisconsin
| | - Jennifer P King
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Wisconsin
| | - Pamela Talley
- Epidemic Intelligence Service, Division of Scientific Education and Professional Development
- Infectious Disease Epidemiology, Prevention and Control Division, Minnesota Department of Health, St Paul
| | - Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah Spencer
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine and Wisconsin National Primate Research Center, Madison
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Wisconsin
| |
Collapse
|
41
|
Tse LV, Meganck RM, Graham RL, Baric RS. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Front Microbiol 2020; 11:658. [PMID: 32390971 PMCID: PMC7193113 DOI: 10.3389/fmicb.2020.00658] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging coronaviruses (CoV) are constant global public health threats to society. Multiple ongoing clinical trials for vaccines and antivirals against CoVs showcase the availability of medical interventions to both prevent and treat the future emergence of highly pathogenic CoVs in human. However, given the diverse nature of CoVs and our close interactions with wild, domestic and companion animals, the next epidemic zoonotic CoV could resist the existing vaccines and antivirals developed, which are primarily focused on Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS CoV). In late 2019, the novel CoV (SARS-CoV-2) emerged in Wuhan, China, causing global public health concern. In this review, we will summarize the key advancements of current vaccines and antivirals against SARS-CoV and MERS-CoV as well as discuss the challenge and opportunity in the current SARS-CoV-2 crisis. At the end, we advocate the development of a "plug-and-play" platform technologies that could allow quick manufacturing and administration of broad-spectrum countermeasures in an outbreak setting. We will discuss the potential of AAV-based gene therapy technology for in vivo therapeutic antibody delivery to combat SARS-CoV-2 outbreak and the future emergence of severe CoVs.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita M. Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
42
|
Shannon I, White CL, Nayak JL. Understanding Immunity in Children Vaccinated With Live Attenuated Influenza Vaccine. J Pediatric Infect Dis Soc 2020; 9:S10-S14. [PMID: 31848606 DOI: 10.1093/jpids/piz083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated influenza vaccine (LAIV), or FluMist, was approved for use in the United States in 2003. This vaccine, administered intranasally, offers the advantage of stimulating immunity at the site of infection in the upper respiratory tract and, by mimicking natural infection, has the potential to elicit a multifaceted immune response. However, the development of immunity following LAIV administration requires viral replication, causing vaccine effectiveness to be impacted by both the replicative fitness of the attenuated viruses being administered and the degree of the host's preexisting immunity. In this review, we discuss the current state of knowledge regarding the mechanisms of protection elicited by LAIV in children, contrast this with immune protection that develops upon vaccination with inactivated influenza vaccines, and briefly discuss both the potential advantages as well as challenges offered by this vaccination platform.
Collapse
Affiliation(s)
- Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Chantelle L White
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
43
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
44
|
Turner PJ, Abdulla AF, Cole ME, Javan RR, Gould V, O'Driscoll ME, Southern J, Zambon M, Miller E, Andrews NJ, Höschler K, Tregoning JS. Differences in nasal immunoglobulin A responses to influenza vaccine strains after live attenuated influenza vaccine (LAIV) immunization in children. Clin Exp Immunol 2020; 199:109-118. [PMID: 31670841 PMCID: PMC6954673 DOI: 10.1111/cei.13395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 11/28/2022] Open
Abstract
Different vaccine strains included in the live attenuated influenza vaccine (LAIV) have variable efficacy. The reasons for this are not clear and may include differences in immunogenicity. We report a Phase IV open-label study on the immunogenicity of a single dose of quadrivalent LAIV (Fluenz™ Tetra) in children during the 2015/16 season, to investigate the antibody responses to different strains. Eligible children were enrolled to receive LAIV; nasal samples were collected before and approximately 4 weeks after immunization. There was a significant increase in nasal immunoglobulin (Ig)A to the H3N2, B/Victoria lineage (B/Brisbane) and B/Yamagata lineage (B/Phuket) components, but not to the H1N1 component. The fold change in nasal IgA response was inversely proportional to the baseline nasal IgA titre for H1N1, H3N2 and B/Brisbane. We investigated possible associations that may explain baseline nasal IgA, including age and prior vaccination status, but found different patterns for different antigens, suggesting that the response is multi-factorial. Overall, we observed differences in immune responses to different viral strains included in the vaccine; the reasons for this require further investigation.
Collapse
Affiliation(s)
- P. J. Turner
- National Heart and Lung InstituteImperial College LondonLondonUK
- Public Health England (Colindale)LondonUK
| | - A. F. Abdulla
- Department of Infectious DiseaseSt Mary's CampusImperial College LondonLondonUK
| | - M. E. Cole
- Department of Infectious DiseaseSt Mary's CampusImperial College LondonLondonUK
| | - R. R. Javan
- Department of Infectious DiseaseSt Mary's CampusImperial College LondonLondonUK
| | - V. Gould
- Department of Infectious DiseaseSt Mary's CampusImperial College LondonLondonUK
| | - M. E. O'Driscoll
- Infectious Diseases EpidemiologySt Mary's CampusImperial College LondonLondonUK
| | | | - M. Zambon
- Public Health England (Colindale)LondonUK
| | - E. Miller
- Public Health England (Colindale)LondonUK
| | | | | | - J. S. Tregoning
- Department of Infectious DiseaseSt Mary's CampusImperial College LondonLondonUK
| |
Collapse
|
45
|
Smith A, Rodriguez L, El Ghouayel M, Nogales A, Chamberlain JM, Sortino K, Reilly E, Feng C, Topham DJ, Martínez-Sobrido L, Dewhurst S. A Live Attenuated Influenza Vaccine Elicits Enhanced Heterologous Protection When the Internal Genes of the Vaccine Are Matched to Those of the Challenge Virus. J Virol 2020; 94:e01065-19. [PMID: 31748399 PMCID: PMC6997774 DOI: 10.1128/jvi.01065-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains.IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing
- Antibodies, Viral/immunology
- Dogs
- Female
- HEK293 Cells
- Humans
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Andrew Smith
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester, Rochester, New York, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Maya El Ghouayel
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jeffrey M Chamberlain
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Emma Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
46
|
Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus. Int Immunopharmacol 2019; 78:106115. [PMID: 31841753 DOI: 10.1016/j.intimp.2019.106115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
The nasal priming with Lactobacillus rhamnosus CRL1505 modulates the respiratory antiviral innate immune response and improves protection against influenza virus (IFV) challenge in mice. However, the potential beneficial effect of the CRL1505 strain on the adaptive immune response triggered by IFV infection or vaccination was not evaluated before. In this work, we demonstrated that nasally administered L. rhamnosus CRL1505 is able to improve both the humoral and cellular adaptive immune responses induced by IFV infection or vaccination. Higher levels of IFV-specific IgA and IgG as well as IFN-γ were found in the serum and the respiratory tract of CRL1505-treated mice after IFV challenge. Lactobacilli treated mice also showed reduced concentrations of IL-17 and improved levels of IL-10 during IFV infection. The differential balance of inflammatory and regulatory cytokines induced by L. rhamnosus CRL1505 contributed to the protection against IFV by favoring an effective effector immune response without inducing inflammatory-mediated lung damage. The optimal immunomodulatory effect of the CRL1505 strain was achieved with viable bacteria. However, non-viable L. rhamnosus CRL1505 was also efficient in improving the adaptive immune responses generated by IFV challenges and therefore, emerged as an interesting alternative for vaccination of immunocompromised hosts. Similar to other immunomodulatory properties of lactobacilli, it was shown here that the adjuvant effect in the context of IFV vaccination was a strain dependent ability, since differences were found when L. rhamnosus CRL1505 and the immunomodulatory strain L. rhamnosus IBL027 were compared. This investigation represents a thorough exploration of the role of immunobiotic lactobacilli in improving humoral and cellular adaptive immune responses against IFV in the context of both infection and vaccination.
Collapse
|
47
|
Short KK, Miller SM, Walsh L, Cybulski V, Bazin H, Evans JT, Burkhart D. Co-encapsulation of synthetic lipidated TLR4 and TLR7/8 agonists in the liposomal bilayer results in a rapid, synergistic enhancement of vaccine-mediated humoral immunity. J Control Release 2019; 315:186-196. [PMID: 31654684 PMCID: PMC6980726 DOI: 10.1016/j.jconrel.2019.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
To increase vaccine immunogenicity, modern vaccines incorporate adjuvants, which serve to enhance immune cross-protection, improve humoral and cell-mediated immunity, and promote antigen dose sparing. Pattern recognition receptors (PRRs), including the Toll-like receptor (TLR) family are promising targets for development of agonist formulations for use as vaccine adjuvants. Combinations of co-delivered TLR4 and TLR7/8 ligands have been demonstrated to have synergistic effects on innate and adaptive immune response. Here, we create liposomes that stably co-encapsulate CRX-601, a synthetic TLR4 agonist, and UM-3004, a lipidated TLR7/8 agonist, within the liposomal bilayer in order to achieve co-delivery, allow tunable physical properties, and induce in vitro and in vivo immune synergy. Co-encapsulation demonstrates a synergistic increase in IL-12p70 cytokine output in vitro from treated human peripheral blood mononuclear cells (hPBMCs). Further, co-encapsulated formulations give significant improvement of early IgG2a antibody titers in BALB/c mice following primary vaccination when compared to single agonist or dual agonists delivered in separate liposomes. This work demonstrates that co-encapsulation of TLR4 and lipidated TLR7/8 agonists within the liposomal bilayer leads to innate and adaptive immune synergy which biases a Th1 immune response. Thus, liposomal co-encapsulation may be a useful and flexible tool for vaccine adjuvant formulation containing multiple TLR agonists.
Collapse
Affiliation(s)
- Kristopher K Short
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lois Walsh
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hélène Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - David Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
48
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
49
|
Comparative Immunogenicity of the 2014-2015 Northern Hemisphere Trivalent IIV and LAIV against Influenza A Viruses in Children. Vaccines (Basel) 2019; 7:vaccines7030087. [PMID: 31408963 PMCID: PMC6789519 DOI: 10.3390/vaccines7030087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 11/23/2022] Open
Abstract
Both inactivated influenza vaccines (IIV) and live-attenuated influenza vaccines (LAIV) have been recommended for administration to children. Children are a high-risk group for severe influenza, and a major source of transmission. Therefore, prevention of infection by vaccination is particularly important. However, efficacy and immunogenicity of these vaccines are known to vary by season and geographic location. We compared the immunogenicity of the 2014–2015 Northern Hemisphere trivalent IIV and LAIV against influenza A virus in Canadian Hutterite children aged 2 to 17 using hemagglutination inhibition (HAI) assays, and enzyme-linked immunosorbent assays to measure hemagglutinin-specific serum IgA and mucosal IgA. Both vaccine formulations induced significant increases in HAI titers against H1N1 and H3N2 vaccine strains. Serum IgA titers against H3N2 were significantly boosted by both IIV and LAIV, while only IIV induced a significant increase in serum IgA specific to the H1N1 vaccine strain. While HAI titers correlated with protection conferred by IIV, mucosal IgA titers correlated with protection conferred by LAIV (mucosal IgA titers could not be established as a correlate for IIV due to sample size limitations). IIV and LAIV were previously reported to be equally efficacious in this cohort, although the immunogenicity of IIV was generally superior.
Collapse
|
50
|
Von Holle TA, Moody MA. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2019; 10:1457. [PMID: 31316510 PMCID: PMC6611398 DOI: 10.3389/fimmu.2019.01457] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the availability of yearly vaccinations, influenza continues to cause seasonal, and pandemic rises in illness and death. An error prone replication mechanism results in antigenic drift and viral escape from immune pressure, and recombination results in antigenic shift that can rapidly move through populations that lack immunity to newly emergent strains. The development of a “universal” vaccine is a high priority and many strategies have been proposed, but our current understanding of influenza immunity is incomplete making the development of better influenza vaccines challenging. Influenza immunity has traditionally been measured by neutralization of virions and hemagglutination inhibition, but in recent years there has been a growing appreciation of other responses that can contribute to protection such as antibody-dependent cellular cytotoxicity (ADCC) that can kill influenza-infected cells. ADCC has been shown to provide cross-strain protection and to assist in viral clearance, making it an attractive target for “universal” vaccine designs. Here we provide a brief overview of the current state of influenza research that leverages “the other end of the antibody.”
Collapse
Affiliation(s)
- Tarra A Von Holle
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|