1
|
Grace PS, Peters JM, Sixsmith J, Lu R, Irvine EB, Luedeman C, Fenderson BA, Vickers A, Slein MD, McKitrick T, Wei MH, Cummings RD, Wallace A, Cavacini LA, Choudhary A, Proulx MK, Sundling C, Källenius G, Reljic R, Ernst JD, Casadevall A, Locht C, Pinter A, Sassetti CM, Bryson BD, Fortune SM, Alter G. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. Immunity 2025:S1074-7613(25)00225-0. [PMID: 40449485 DOI: 10.1016/j.immuni.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/31/2025] [Accepted: 05/07/2025] [Indexed: 06/03/2025]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), a leading cause of death by an infectious disease globally, has no efficacious vaccine. Antibodies are implicated in M. tuberculosis control, but the mechanisms of action remain poorly understood. We assembled a library of monoclonal antibodies (mAb) and screened for M. tuberculosis-restrictive activity in mice, identifying protective antibodies targeting diverse antigens. To dissect the mechanism of mAb-mediated M. tuberculosis restriction, we optimized a protective lipoarabinomannan-specific mAb, generating Fc variants. In vivo analysis of these Fc variants revealed a role for Fc-effector function in M. tuberculosis restriction. Restrictive Fc variants altered distribution of M. tuberculosis across innate immune cells. Single-cell transcriptomics highlighted distinctly activated pathways within innate immune cell subpopulations, identifying early activation of neutrophils as a key signature of mAb-mediated M. tuberculosis restriction. Therefore, antibody-mediated restriction of M. tuberculosis is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.
Collapse
Affiliation(s)
- Patricia S Grace
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard Lu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Edward B Irvine
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Andrew Vickers
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Tanya McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mo-Hui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aaron Wallace
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Lisa A Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Megan K Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George's University, London, UK
| | - Joel D Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Camille Locht
- University of Lille, CNRS, Inserm, CHU Lille Institut Pasteur de Lille, U1019-URM9017_Center for Infection and Immunity of Lille, 5900 Lille, France
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bryan D Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zhao H, Zhang Z, Xue Y, Wang N, Liu Y, Ma X, Wang L, Wang X, Zhang D, Zhang J, Wu X, Liang Y. Evaluation of Immunogenicity of Mycobacterium tuberculosis ag85ab DNA Vaccine Delivered by Pulmonary Administration. Vaccines (Basel) 2025; 13:442. [PMID: 40432054 PMCID: PMC12115664 DOI: 10.3390/vaccines13050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Tuberculosis (TB) is a respiratory infectious disease, and the current TB vaccine has low local lung protection. We aim to optimize immune pathways to improve the immunogenicity of vaccines. Methods: In the immunogenicity study, 50 BALB/c mice were randomly divided into the following: (1) phosphate buffered saline (PBS)+intramuscular injection combined with electroporation (EP) group (100 μL), (2) pVAX1+EP group (50 μg/100 μL), (3) ag85ab+EP group (50 μg/100 μL), (4) pVAX1+pulmonary delivery (PD) group (50 μg/50 μL), and (5) ag85ab+PD group (50 μg/50 μL). Immunization was given once every 2 weeks for a total of three times. The number of IFN-γ-secreting lung and spleen lymphocytes was determined by enzyme-linked immunospot assay (ELISPOT). The levels of Th1, Th2, and Th17 cytokines in the culture supernatants of lung and spleen lymphocytes were detected with the Luminex method. The proportion of FoxP3 regulatory T cells in splenocytes was determined by flow cytometry. The levels of IgG-, IgG1-, and IgG2a-specific antibodies in plasma and IgA antibody in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Results: The PD and EP routes of Mycobacterium tuberculosis (M. tb) ag85ab DNA vaccine can effectively induce the responses of IFN-γ-secreting lung and spleen lymphocytes, and induce dominant Th1 and Th17 cell immune responses. The PD route can induce earlier, greater numbers and stronger responses of pulmonary effector T cells, with higher levels of the specific antibody IgA detected in BALF. High levels of the specific antibodies IgG, IgG1, and IgG2α were detected in the plasma of mice immunized by the EP route. Conclusions: The PD route of DNA vaccines can more effectively stimulate the body to produce strong cellular and mucosal immunity than the EP route, especially local cellular immunity in the lungs, which can provide early protection for the lungs. It can significantly improve the immunogenicity of the ag85ab DNA vaccine, suggesting a feasible and effective approach to DNA immunization.
Collapse
Affiliation(s)
- Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
- Graduate School, Hebei North University, Zhangjiakou 075000, China;
| | - Zhen Zhang
- Graduate School, Hebei North University, Zhangjiakou 075000, China;
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Nan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xihui Ma
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Junxian Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 100091 Beijing, China; (H.Z.); (Y.X.); (N.W.); (Y.L.); (X.M.); (L.W.); (X.W.); (D.Z.); (J.Z.)
| |
Collapse
|
3
|
Li H, Ji J, Qu M, Ma X, Zuo Y, Tang M, Zeng L, Li H. Isolation and characterization of a protective monoclonal antibody targeting outer membrane protein (OmpA) against tuberculosis. Microbiol Spectr 2025; 13:e0294224. [PMID: 39964152 PMCID: PMC11960079 DOI: 10.1128/spectrum.02942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) complex is an important zoonotic infectious disease around the world, and the One Health approach is an essential strategy for TB prevention and control. The abundant surface antigens present on the cell wall of Mtb can induce protective antibodies; however, its full characterization remains incomplete. Previous research has shown that antibodies targeting surface proteins can enhance host defense mechanisms. Therefore, identifying antigens that stimulate the production of protective antibodies is essential. In this study, we focused on a select antigen, outer membrane protein (OmpA), located on the outer membrane of Mtb. By screening for antibodies with protective effects in phagocytosis and intracellular killing in vitro, we identified a protective antibody targeting OmpA. We prepared an antibody, designated as 1E1, belonging to the IgG2b isotype, which exhibited high titers of 1:2,048,000. Further research demonstrated that antibody-induced protection was achieved by promoting opsonophagocytosis in a dose-dependent manner, enhancing phagosome-lysosome fusion, and inhibiting mycobacterial intracellular growth. These findings were corroborated in vivo, with a reduction in bacterial loads of approximately 0.7 log observed in the preventive group and almost 1.0 log in the therapeutic group of mice treated with the antibodies, compared to the negative control group. Cytotoxicity assays, animal toxicity analyses, and pharmacokinetic evaluations confirmed the safety and sustained effectiveness of the antibody in vivo. These findings indicate that OmpA can elicit protective antibodies and may serve as a treatment strategy for drug-resistant TB and a promising antigen for TB vaccine development. IMPORTANCE In this study, we identified a protective antibody targeting the outer membrane protein (OmpA) of Mycobacterium tuberculosis. This monoclonal antibody (MAb) belongs to the IgG2b isotype and exhibits high titers of 1:2,048,000 to the antigen. The cell infection assays demonstrated that antibody protection was achieved by promoting opsonophagocytosis in a dose-dependent manner, enhancing phagosome-lysosome fusion, and inhibiting mycobacterial intracellular growth in vitro and ex vivo. Cytotoxicity assays, animal toxicity analyses, and pharmacokinetic evaluations confirmed the safety and sustained effectiveness of the antibody in vivo. Furthermore, the mAb 1E1 can reduce the organs' bacterial burdens and pathological damages in the prevention mouse model as well as the treatment models. Above all, in this study, we found a novel mAb named 1E1 with IgG2b isotype targeting OmpA can have protection against tuberculosis (TB) in mice, which may serve as a treatment strategy for drug-resistant TB and a promising antigen for TB vaccine development.
Collapse
Affiliation(s)
- Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjin Qu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - You Zuo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Ouyang J, Guo S, Hu Z, Cao T, Mou J, Gu X, Huang C, Liu J. Recombinant protein Ag85B-Rv2660c-MPT70 promotes quality of BCG-induced immune response against Mycobacterium tuberculosis H37Ra. Front Immunol 2025; 16:1430808. [PMID: 40181958 PMCID: PMC11965932 DOI: 10.3389/fimmu.2025.1430808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mycobacterium tuberculosis (Mtb) infection, has been extensively used worldwide for over 100 years, but the epidemic of tuberculosis (TB) remains a major challenge to human health and well-being. The quest for a more effective vaccination strategy against the Mtb infection continues. Boosting the protective immunity induced by BCG with recombinant protein is a feasible approach to improve the efficacy of BCG, due to the proven safety and effectiveness of recombinant proteins as vaccination regimes against a variety of infectious diseases. While being shown to be promising in clinical trials in preventing Mtb infection, data suggest this strategy requires further improvement. Methods In this study, we developed a novel fusion of proteins derived from major antigenic components of Mtb, including Ag85B, Rv2660c, and MPT70 (ARM), and assessed its antigenicity and ability to boost BCG efficacy in a murine model. Results The results demonstrated that the ARM immunization induced antigen-specific T and B cell responses and reduced the Mtb H37Ra burdens in the lungs and spleen. Mice that were primed with BCG and boosted with the ARM mounted a Th1-type immune response, characterized by an increased proportion of multi-functional ARM- and Mtb lysate-specific CD4+ T cells that produced IFN-γ, TNF-α, and IL-2 compared to BCG alone, and reduced the Mtb burden without the development of severe lung pathological inflammation. Discussion The results of our study demonstrate that the ARM boost improves the quality of the BCG-induced immune response, increases its potency of pathogen reduction, and offers an additional option for enhancing the efficacy of BCG vaccination.
Collapse
Affiliation(s)
- Jiangshan Ouyang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Shaohua Guo
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Zhiming Hu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Xinxia Gu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Chunxu Huang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jie Liu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
- Department of Healthcare Intelligence, University of North America, Fairfax, VA, United States
| |
Collapse
|
5
|
Lepe BA, Zheng CR, Leddy OK, Allsup BL, Solomon SL, Bryson BD. Protease shaving of Mycobacterium tuberculosis facilitates vaccine antigen discovery and delivery of novel cargoes to the Mtb surface. Microbiol Spectr 2025; 13:e0227724. [PMID: 39688428 PMCID: PMC11792546 DOI: 10.1128/spectrum.02277-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB) is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. The bacterial surface is a critical interface that shapes host-pathogen interactions. Several knowledge gaps persist in our understanding of Mycobacterium tuberculosis (Mtb)-host interactions that may be addressed by an improved understanding of the Mtb surface proteome, including the identification of novel vaccine targets as well as developing new approaches to interrogate host-pathogen interactions. Here, we sought to expand our understanding of the Mtb surface proteome in service of these knowledge gaps by adapting protease shaving protocols for multiplexed quantitative mass spectrometry. Pairing quantitative mass spectrometry with the construction of validation strains, we revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult-to-study cellular compartments during bacterial growth and infection.IMPORTANCEThe surface of a bacterial pathogen is a critical interface between the bacterium and the immune system. A better understanding of this interface would facilitate the discovery of new vaccine targets, new virulence proteins, and enable new technologies that modify the bacterial surface. In this study, we established a multiplexed and quantitative biochemical strategy to study the surface of Mycobacterium tuberculosis (Mtb) and identified new vaccine targets. We furthermore established design rules for new technologies aimed at modifying the composition of the bacterial surface. Specifically, we achieved a biological milestone that has not been rigorously reported previously, which is the successful modification of the Mtb surface with a non-native protein.
Collapse
Affiliation(s)
- Bianca A. Lepe
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Christine R. Zheng
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Owen K. Leddy
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Allsup
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Sydney L. Solomon
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Peralta Alvarez MP, Downward K, White A, Harris SA, Satti I, Li S, Morrison A, Sibley L, Sarfas C, Dennis M, Azema HR, Sharpe S, McShane H, Tanner R. Intravenous BCG vaccination in non-human primates induces superior serum antibody titers with enhanced avidity and opsonizing capacity compared to the intradermal route. Vaccine 2024; 42:126444. [PMID: 39522337 PMCID: PMC11906387 DOI: 10.1016/j.vaccine.2024.126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
A new and more effective tuberculosis (TB) vaccine is urgently needed, but development is hampered by the lack of validated immune correlates of protection. Bacillus Calmette Guérin (BCG) vaccination by the aerosol (AE) and intravenous (IV) routes has been shown to confer superior levels of protection from challenge with Mycobacterium tuberculosis (M.tb) in non-human primates (NHP) compared with standard intradermal (ID) administration. This finding offers a valuable opportunity to investigate which aspects of immunity are associated with improved control of M.tb and may represent biomarkers or correlates of protection. As TB vaccine research to date has focused largely on cellular immunity, we aimed to better characterize the poorly-understood serum antibody response to BCG administered by different routes of vaccination in NHP. We demonstrate superior M.tb-specific IgG, IgA, and IgM titers in serum following IV BCG vaccination compared to the ID or AE routes. We also observe improved capacity of IgG induced by IV BCG to opsonize the surface of mycobacteria, and report for the first time that M.tb-specific IgG from IV BCG vaccinated animals is of higher avidity compared with IgG from ID or AE BCG vaccinated animals. Notably, we identified a significant correlation between IgG avidity and measures of protection from aerosol M.tb challenge. Our findings highlight a potential role for antibodies as markers and/or mediators of the superior vaccine-induced protection IV BCG confers against TB and suggest that quality, as well as quantity, of antibodies should be considered when developing and evaluating TB vaccine candidates.
Collapse
Affiliation(s)
- Marco Polo Peralta Alvarez
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK; Laboratorio Nacional de Vacunologia y Virus Tropicales, Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 11350, Mexico
| | - Keya Downward
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew White
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Stephanie A Harris
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Iman Satti
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Shuailin Li
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Laura Sibley
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | | - Mike Dennis
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Hugo Redondo Azema
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sally Sharpe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Helen McShane
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Rachel Tanner
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK; Department of Biology, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
7
|
Leo S, Narasimhan M, Rathinam S, Banerjee A. Biomarkers in diagnosing and therapeutic monitoring of tuberculosis: a review. Ann Med 2024; 56:2386030. [PMID: 39097795 PMCID: PMC11299445 DOI: 10.1080/07853890.2024.2386030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 08/05/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant health challenge worldwide, emphasizing the importance of prompt diagnosis and efficient monitoring of treatment outcomes for effective disease control. Biomarkers have become increasingly important in the realm of TB diagnoses and treatment. The objective of this comprehensive review is to examine the present state of biomarkers employed in the diagnosis of TB, monitoring the response to treatment, and predicting treatment outcomes. In this study, we undertake a comprehensive examination of the diverse biomarkers utilized in TB diagnoses, spanning molecular, immunological, and other novel methodologies. Furthermore, we examine the potential of biomarkers in the context of therapeutic monitoring, assessment of treatment effectiveness, and anticipation of drug resistance. Additionally, this paper presents future prospects regarding the utilization of biomarkers in the therapy of tuberculosis.
Collapse
Affiliation(s)
- Sneha Leo
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Meenakshi Narasimhan
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Sridhar Rathinam
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
8
|
Fredsgaard-Jones T, Harris SA, Morrison H, Ateere A, Nassanga B, Ramon RL, Mitton C, Fletcher E, Decker J, Preston-Jones H, Jackson S, Mawer A, Satti I, Barer M, Hinks T, Bettinson H, McShane H. A dose escalation study to evaluate the safety of an aerosol BCG infection in previously BCG-vaccinated healthy human UK adults. Front Immunol 2024; 15:1427371. [PMID: 39611145 PMCID: PMC11602284 DOI: 10.3389/fimmu.2024.1427371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. Bacillus Calmette-Guérin (BCG), the only licensed vaccine, provides limited protection. Controlled human infection models (CHIMs) are useful in accelerating vaccine development for pathogens with no correlates of protection; however, the need for prolonged treatment makes Mycobacterium tuberculosis an unethical challenge agent. Aerosolised BCG provides a potential safe surrogate of infection. A CHIM in BCG-vaccinated as well as BCG-naïve individuals would allow identification of novel BCG-booster vaccine candidates and facilitate CHIM studies in populations with high TB endemicity. The purpose of this study was to evaluate the safety and utility of an aerosol BCG CHIM in historically BCG-vaccinated volunteers. Methods There were 12 healthy, historically BCG-vaccinated UK adults sequentially enrolled into dose-escalating groups. The first three received 1 × 104 CFU aerosol BCG Danish 1331 via a nebuliser. After safety review, subsequent groups received doses of 1 × 105 CFU, 1 × 106 CFU, or 1 × 107 CFU. Safety was monitored through self-reported adverse events (AEs), laboratory tests, and lung function testing. Immunology blood samples were taken pre-infection and at multiple timepoints post-infection. A bronchoalveolar lavage (BAL) taken 14 days post-infection was analysed for presence of live BCG. Results No serious AEs occurred during the study. Solicited systemic and respiratory AEs were frequent in all groups, but generally short-lived and mild in severity. There was a trend for more reported AEs in the highest-dose group. No live BCG was detected in BAL from any volunteers. Aerosol BCG induced potent systemic cellular immune responses in the highest-dose group 7 days post-infection. Discussion Aerosol BCG infection up to a dose of 1 × 107 CFU was well-tolerated in historically BCG-vaccinated healthy, UK adults. No live BCG was detected in the BAL fluid 14 days post-infection despite potent systemic responses, suggesting early clearance. Further work is needed to expand the number of volunteers receiving BCG via the aerosol route to refine and establish utility of this aerosol BCG CHIM. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04777721.
Collapse
Affiliation(s)
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alberta Ateere
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Celia Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eve Fletcher
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jonathan Decker
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | | | - Susan Jackson
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Andrew Mawer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Michael Barer
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Qin L, Xu J, Chen J, Wang S, Zheng R, Cui Z, Liu Z, Wu X, Wang J, Huang X, Wang Z, Wang M, Pan R, Kaufmann SHE, Meng X, Zhang L, Sha W, Liu H. Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth. eLife 2024; 13:RP92737. [PMID: 39495223 PMCID: PMC11534329 DOI: 10.7554/elife.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Deeper understanding of the crosstalk between host cells and Mycobacterium tuberculosis (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB control.
Collapse
Affiliation(s)
- Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Sen Wang
- Department of Infectious Diseases, National Medical Centre for Infectious Diseases, National Clinical Research Centre for Aging and Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | | | | | | | - Stefan HE Kaufmann
- Max Planck Institute for Infection BiologyBerlinGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hagler Institute for Advanced Study, Texas A&M UniversityCollege StationUnited States
| | - Xun Meng
- Abmart IncShanghaiChina
- Multitude TherapeuticsShanghaiChina
| | - Lu Zhang
- School of Life Science, Fudan UniversityShanghaiChina
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Grace PS, Peters JM, Sixsmith J, Lu R, Luedeman C, Fenderson BA, Vickers A, Slein MD, Irvine EB, McKitrick T, Wei MH, Cummings RD, Wallace A, Cavacini LA, Choudhary A, Proulx MK, Sundling C, Källenius G, Reljic R, Ernst JD, Casadevall A, Locht C, Pinter A, Sasseti CM, Bryson BD, Fortune SM, Alter G. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617070. [PMID: 39416184 PMCID: PMC11482752 DOI: 10.1101/2024.10.07.617070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death by an infectious disease globally, with no efficacious vaccine. Antibodies are implicated in Mtb control, but the mechanisms of antibody action remain poorly understood. We assembled a library of TB monoclonal antibodies (mAb) and screened for the ability to restrict Mtb in mice, identifying protective antibodies targeting known and novel antigens. To dissect the mechanism of mAb-mediated Mtb restriction, we optimized a protective lipoarabinomannan-specific mAb through Fc-swapping. In vivo analysis of these Fc-variants revealed a critical role for Fc-effector function in Mtb restriction. Restrictive Fc-variants altered distribution of Mtb across innate immune cells. Single-cell transcriptomics highlighted distinctly activated molecular circuitry within innate immune cell subpopulations, highlighting early activation of neutrophils as a key signature of mAb-mediated Mtb restriction. Therefore, improved antibody-mediated restriction of Mtb is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.
Collapse
|
11
|
Wang L, Kang J, Jiang H. Intranasal Immunization with a Recombinant Adenovirus Encoding Multi-Stage Antigens of Mycobacterium tuberculosis Preferentially Elicited CD8 + T Cell Immunity and Conferred a Superior Protection in the Lungs of Mice than Bacillus Calmette-Guerin. Vaccines (Basel) 2024; 12:1022. [PMID: 39340053 PMCID: PMC11436211 DOI: 10.3390/vaccines12091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The development of a tuberculosis (TB) vaccine is imperative. Employing multi-stage Mycobacterium tuberculosis (Mtb) antigens as targeted antigens represents a critical strategy in establishing an effective novel TB vaccine. In this investigation, we evaluated the immunogenicity and protective efficacy of a recombinant adenovirus vaccine expressing two fusion proteins, Ag85B-ESAT6 (AE) and Rv2031c-Rv2626c (R2), derived from multi-stage antigens of Mtb via intranasal administration in mice. Intranasal delivery of Ad-AE-R2 induced both long-lasting mucosal and systemic immunities, with a preferential elicitation of CD8+ T cell immunity demonstrated by the accumulation and retention of CD8+ T cells in BALF, lung, and spleen, as well as the generation of CD8+ TRM cells in BALF and lung tissues. Compared to subcutaneous immunization with Bacillus Calmette-Guerin (BCG), Ad-AE-R2 provided superior protection against high-dose intratracheal BCG challenge, specifically within the lungs of mice. Our findings support the notion that empowering T cells within the respiratory mucosa is crucial for TB vaccine development while highlighting targeting CD8+ T cell immunity as an effective strategy for optimizing TB vaccines and emphasizing that eliciting systemic memory immunity is also vital for the successful development of a TB mucosal vaccine. Furthermore, our results demonstrate that the BCG challenge serves as a convenient and efficient method to evaluate candidate vaccine efficacy.
Collapse
Affiliation(s)
- Limei Wang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Jian Kang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
12
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Irvine EB, Nikolov A, Khan MZ, Peters JM, Lu R, Sixsmith J, Wallace A, van Woudenbergh E, Shin S, Karpinski W, Hsiao JC, Casadevall A, Bryson BD, Cavacini L, Grace PS, Alter G, Fortune SM. Fc-engineered antibodies promote neutrophil-dependent control of Mycobacterium tuberculosis. Nat Microbiol 2024; 9:2369-2382. [PMID: 39174703 PMCID: PMC11371646 DOI: 10.1038/s41564-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Mounting evidence indicates that antibodies can contribute towards control of tuberculosis (TB). However, the underlying mechanisms of humoral immune protection and whether antibodies can be exploited in therapeutic strategies to combat TB are relatively understudied. Here we engineered the receptor-binding Fc (fragment crystallizable) region of an antibody recognizing the Mycobacterium tuberculosis (Mtb) capsule, to define antibody Fc-mediated mechanism(s) of Mtb restriction. We generated 52 Fc variants that either promote or inhibit specific antibody effector functions, rationally building antibodies with enhanced capacity to promote Mtb restriction in a human whole-blood model of infection. While there is likely no singular Fc profile that universally drives control of Mtb, here we found that several Fc-engineered antibodies drove Mtb restriction in a neutrophil-dependent manner. Single-cell RNA sequencing analysis showed that a restrictive Fc-engineered antibody promoted neutrophil survival and expression of cell-intrinsic antimicrobial programs. These data show the potential of Fc-engineered antibodies as therapeutics able to harness the protective functions of neutrophils to promote control of TB.
Collapse
Affiliation(s)
- Edward B Irvine
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Angel Nikolov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mehak Z Khan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard Lu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron Wallace
- MassBiologics of the University of Massachusetts Chan Medical School, Boston, MA, USA
| | | | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Jeff C Hsiao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan D Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Chan Medical School, Boston, MA, USA
| | - Patricia S Grace
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA.
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Chen Z, Zhang Y, Wu J, Xu J, Hu Z, Fan XY. A multistage protein subunit vaccine as BCG-booster confers protection against Mycobacterium tuberculosis infection in murine models. Int Immunopharmacol 2024; 139:112811. [PMID: 39068754 DOI: 10.1016/j.intimp.2024.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The eradication of tuberculosis remains a global challenge. Despite being the only licensed vaccine, Bacillus Calmette-Guérin (BCG) confers limited protective efficacy in adults and individuals with latent tuberculosis infections (LTBI). There is an urgent need to develop novel vaccines that can enhance the protective effect of BCG. Protein subunit vaccines have garnered significant research interest due to their safety and plasticity. Based on previous studies, we selected three antigens associated with LTBI (Rv2028c, Rv2029c, Rv3126c) and fused them with an immunodominant antigen Ag85A, resulting in the construction of a multistage protein subunit vaccine named A986. We evaluated the protective effect of recombinant protein A986 adjuvanted with MPL/QS21 as a booster vaccine for BCG against Mycobacterium tuberculosis (Mtb) infection in mice. The A986 + MPL/QS21 induced the secretion of antigen-specific Th1 (IL-2+, IFN-γ+ and TNF-α+) and Th17 (IL-17A+) cytokines in CD4+ and CD8+ T cells within the lung and spleen of mice, while also increased the frequency of central memory and effector memory T cells. Additionally, it also induced the enhanced production of IgG antibodies. Compared to BCG alone, A986 + MPL/QS21 boosting significantly augmented the proliferation of antigen-specific multifunctional T cells and effectively reduced bacterial load in infected mice. Taken together, A986 + MPL/QS21 formulation induced robust antigen-specific immune responses and provided enhanced protection against Mtb infection as a booster of BCG vaccine.
Collapse
Affiliation(s)
- Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Ying Zhang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital & The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China.
| |
Collapse
|
15
|
Lepe BA, Zheng CR, Leddy OK, Allsup BL, Solomon SL, Bryson BD. Protease shaving of Mycobacterium tuberculosis facilitates vaccine antigen discovery and delivery of novel cargoes to the Mtb surface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601718. [PMID: 39005324 PMCID: PMC11245043 DOI: 10.1101/2024.07.02.601718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. Studies have shown that Mtb uses a variety of mechanisms to evade host immunity. Secreted Mtb proteins such as Type VII secretion system substrates have been characterized for their ability to modulate anti-Mtb immunity; however, studies of other pathogens such as Salmonella Typhi and Staphylococcus aureus have revealed that outer membrane proteins can also interact with the innate and adaptive immune system. The Mtb outer membrane proteome has received relatively less attention due to limited techniques available to interrogate this compartment. We filled this gap by deploying protease shaving and quantitative mass spectrometry to identify Mtb outer membrane proteins which serve as nodes in the Mtb-host interaction network. These analyses revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins and deliver these surface-engineered Mtb to the phagosome. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult to study cellular compartments during infection.
Collapse
Affiliation(s)
- Bianca A. Lepe
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Christine R. Zheng
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Owen K. Leddy
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Benjamin L. Allsup
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Sydney L. Solomon
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| |
Collapse
|
16
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
17
|
Nyazema KB, Shey BA, Sei CJ, Peters RP, Maningi NE, Fischer GW, Bernard Fourie P. In vitro evaluation of the binding activity of novel mouse IgG1 opsonic monoclonal antibodies to Mycobacterium tuberculosis and other selected mycobacterial species. J Clin Tuberc Other Mycobact Dis 2024; 35:100435. [PMID: 38601919 PMCID: PMC11004620 DOI: 10.1016/j.jctube.2024.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Antimicrobial resistance alongside other challenges in tuberculosis (TB) therapeutics have stirred renewed interest in host-directed interventions, including the role of antibodies as adjunct therapeutic agents. This study assessed the binding efficacy of two novel IgG1 opsonic monoclonal antibodies (MABs; GG9 & JG7) at 5, 10, and 25 µg/mL to live cultures of Mycobacterium tuberculosis, M. avium, M. bovis, M. fortuitum, M. intracellulare, and M. smegmatis American Type Culture Collection laboratory reference strains, as well as clinical susceptible, multi-drug resistant, and extensively drug resistant M. tuberculosis strains using indirect enzyme-linked immunosorbent assays. These three MAB concentrations were selected from a range of concentrations used in previous optimization (binding and functional) assays. Both MABs bound to all mycobacterial species and sub-types tested, albeit to varying degrees. Statistically significant differences in MAB binding activity were observed when comparing the highest and lowest MAB concentrations (p < 0.05) for both MABs GG9 and JG7, irrespective of the M. tuberculosis resistance profile. Binding affinity increased with an increase in MAB concentration, and optimal binding was observed at 25 µg/mL. JG7 showed better binding activity than GG9. Both MABs also bound to five MOTT species, albeit at varied levels. This non-selective binding to different mycobacterial species suggests a potential role for GG9 and JG7 as adjunctive agents in anti-TB chemotherapy with the aim to enhance bacterial killing.
Collapse
Affiliation(s)
- Kudzai B. Nyazema
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Bong-Akee Shey
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Clara J. Sei
- Vaccine and Antibody Development, Longhorn Vaccines and Diagnostics, Gaithersburg, MD, USA
| | - Remco P.H. Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| | - Nontuthuko E. Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, South Africa
| | - Gerald W. Fischer
- Vaccine and Antibody Development, Longhorn Vaccines and Diagnostics, Gaithersburg, MD, USA
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
18
|
Zeng L, Ma X, Qu M, Tang M, Li H, Lei C, Ji J, Li H. Immunogenicity and protective efficacy of Ag85A and truncation of PstS1 fusion protein vaccines against tuberculosis. Heliyon 2024; 10:e27034. [PMID: 38463854 PMCID: PMC10920368 DOI: 10.1016/j.heliyon.2024.e27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Marglous S, Brown CE, Padler-Karavani V, Cummings RD, Gildersleeve JC. Serum antibody screening using glycan arrays. Chem Soc Rev 2024; 53:2603-2642. [PMID: 38305761 PMCID: PMC7616341 DOI: 10.1039/d3cs00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.
Collapse
Affiliation(s)
- Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
20
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Bernardini R, Tengattini S, Li Z, Piubelli L, Bavaro T, Modolea AB, Mattei M, Conti P, Marini S, Zhang Y, Pollegioni L, Temporini C, Terreni M. Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis. Biol Direct 2024; 19:11. [PMID: 38268026 PMCID: PMC10809592 DOI: 10.1186/s13062-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.
Collapse
Affiliation(s)
- Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy.
| | - Zhihao Li
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Anamaria Bianca Modolea
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan, 20133, Italy
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Yongmin Zhang
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Caterina Temporini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
22
|
Ishida E, Corrigan DT, Chen T, Liu Y, Kim RS, Song L, Rutledge TM, Magee DM, LaBaer J, Lowary TL, Lin PL, Achkar JM. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 2024; 99:104897. [PMID: 38096687 PMCID: PMC10758715 DOI: 10.1016/j.ebiom.2023.104897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanyan Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryung S Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Rutledge
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Nakayama H, Hanafusa K, Yamaji T, Oshima E, Hotta T, Takamori K, Ogawa H, Iwabuchi K. Phylactic role of anti-lipoarabinomannan IgM directed against mannan core during mycobacterial infection in macrophages. Tuberculosis (Edinb) 2023; 143:102391. [PMID: 37574397 DOI: 10.1016/j.tube.2023.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan
| |
Collapse
|
25
|
Liu Y, Chen T, Zhu Y, Furey A, Lowary TL, Chan J, Bournazos S, Ravetch JV, Achkar JM. Features and protective efficacy of human mAbs targeting Mycobacterium tuberculosis arabinomannan. JCI Insight 2023; 8:e167960. [PMID: 37733444 PMCID: PMC10619501 DOI: 10.1172/jci.insight.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
A better understanding of the epitopes most relevant for antibody-mediated protection against tuberculosis (TB) remains a major knowledge gap. We have shown that human polyclonal IgG against the Mycobacterium tuberculosis (M. tuberculosis) surface glycan arabinomannan (AM) and related lipoarabinomannan (LAM) is protective against TB. To investigate the impact of AM epitope recognition and Fcγ receptor (FcγR) binding on antibody functions against M. tuberculosis, we isolated a high-affinity human monoclonal antibody (mAb; P1AM25) against AM and showed its binding to oligosaccharide (OS) motifs we previously found to be associated with in vitro functions of human polyclonal anti-AM IgG. Human IgG1 P1AM25, but not 2 other high-affinity human IgG1 anti-AM mAbs reactive with different AM OS motifs, enhanced M. tuberculosis phagocytosis by macrophages and reduced intracellular growth in an FcγR-dependent manner. P1AM25 in murine IgG2a, but neither murine IgG1 nor a non-FcγR-binding IgG, given intraperitoneally prior to and after aerosolized M. tuberculosis infection, was protective in C57BL/6 mice. Moreover, we demonstrated the protective efficacy of human IgG1 P1AM25 in passive transfer with M. tuberculosis-infected FcγR-humanized mice. These data enhance our knowledge of the important interplay between both antibody epitope specificity and Fc effector functions in the defense against M. tuberculosis and could inform development of vaccines against TB.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Microbiology and Immunology and
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yongqi Zhu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aisha Furey
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - John Chan
- Public Health Research Institute at the International Center for Public Health, New Jersey Medical School – Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Jacqueline M. Achkar
- Department of Microbiology and Immunology and
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
26
|
Ruiz-Tagle C, Naves R, García P, Günther A, Schneiderhan-Marra N, Balcells ME. Differential levels of anti- Mycobacterium tuberculosis-specific IgAs in saliva of household contacts with latent tuberculosis infection. Front Med (Lausanne) 2023; 10:1267670. [PMID: 37869168 PMCID: PMC10587581 DOI: 10.3389/fmed.2023.1267670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Mucosal immunity is strongly elicited in early stages of many respiratory and enteric infections; however, its role in tuberculosis pathogenesis has been scarcely explored. We aimed to investigate Mycobacterium tuberculosis (Mtb) specific IgA levels in saliva in different stages of latent Tuberculosis Infection (TBI). Methodology A multiplex bead-based Luminex immunoassay was developed to detect specific IgA against 12 highly immunogenic Mtb antigens. A prospective cohort of household contacts (>14 years) of pulmonary TB cases was established in Santiago, Chile. Contacts were classified as Mtb-infected or not depending on serial interferon-γ release assay results. Saliva samples were collected and tested at baseline and at a 12-week follow-up. Results Mtb-specific IgA was detectable at all visits in all participants (n = 168), including the "non-Mtb infected" (n = 64). Significantly higher median levels of IgA were found in the "Mtb infected" compared to the uninfected for anti-lipoarabinomannan (LAM) (110 vs. 84.8 arbitrary units (AU), p < 0.001), anti-PstS1 (117 vs. 83 AU, p < 0.001), anti-Cell Membrane Fraction (CMF) (140 vs. 103 AU, p < 0.001) and anti-Culture Filtrate Proteins (CFP) (median 125 vs. 96 AU, p < 0.001), respectively. Nonetheless, the discriminatory performance of these specific mucosal IgA for TBI diagnosis was low. Conclusion Saliva holds Mtb-specific IgA against several antigens with increased levels for anti-LAM, anti-PstS1, anti-CMF and anti-CFP found in household contacts with an established TBI. The role of these mucosal antibodies in TB pathogenesis, and their kinetics in different stages of Mtb infection merits further exploring.
Collapse
Affiliation(s)
- Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia García
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anna Günther
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Warner S, Blaxland A, Counoupas C, Verstraete J, Zampoli M, Marais BJ, Fitzgerald DA, Robinson PD, Triccas JA. Clinical and Experimental Determination of Protection Afforded by BCG Vaccination against Infection with Non-Tuberculous Mycobacteria: A Role in Cystic Fibrosis? Vaccines (Basel) 2023; 11:1313. [PMID: 37631881 PMCID: PMC10459431 DOI: 10.3390/vaccines11081313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium (NTM) of particular concern in individuals with obstructive lung diseases such as cystic fibrosis (CF). Treatment requires multiple drugs and is characterised by high rates of relapse; thus, new strategies to limit infection are urgently required. This study sought to determine how Bacille Calmette-Guérin (BCG) vaccination may impact NTM infection, using a murine model of Mycobacterium abscessus infection and observational data from a non-BCG vaccinated CF cohort in Sydney, Australia and a BCG-vaccinated CF cohort in Cape Town, South Africa. In mice, BCG vaccination induced multifunctional antigen-specific CD4+ T cells circulating in the blood and was protective against dissemination of bacteria to the spleen. Prior infection with M. abscessus afforded the highest level of protection against M. abscessus challenge in the lung, and immunity was characterised by a greater frequency of pulmonary cytokine-secreting CD4+ T cells compared to BCG vaccination. In the clinical CF cohorts, the overall rates of NTM sampling during a three-year period were equivalent; however, rates of NTM colonisation were significantly lower in the BCG-vaccinated (Cape Town) cohort, which was most apparent for M. abscessus. This study provides evidence that routine BCG vaccination may reduce M. abscessus colonisation in individuals with CF, which correlates with the ability of BCG to induce multifunctional CD4+ T cells recognising M. abscessus in a murine model. Further research is needed to determine the optimal strategies for limiting NTM infections in individuals with CF.
Collapse
Affiliation(s)
- Sherridan Warner
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (S.W.); (C.C.); (B.J.M.)
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Anneliese Blaxland
- Department of Respiratory Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia; (A.B.); (D.A.F.)
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (S.W.); (C.C.); (B.J.M.)
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2050, Australia
- Tuberculosis Research Program, Centenary Institute, Camperdown, NSW 2050, Australia
| | - Janine Verstraete
- Department of Paediatrics and Child Health, Faculty of Health Science, University of Cape Town, Cape Town 7700, South Africa; (J.V.); (M.Z.)
- Red Cross War Memorial Children’s Hospital, South Africa, Rondebosch, Cape Town 7700, South Africa
| | - Marco Zampoli
- Department of Paediatrics and Child Health, Faculty of Health Science, University of Cape Town, Cape Town 7700, South Africa; (J.V.); (M.Z.)
- Red Cross War Memorial Children’s Hospital, South Africa, Rondebosch, Cape Town 7700, South Africa
| | - Ben J. Marais
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (S.W.); (C.C.); (B.J.M.)
- Department of Infectious Diseases, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Dominic A. Fitzgerald
- Department of Respiratory Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia; (A.B.); (D.A.F.)
- Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Paul D. Robinson
- Department of Respiratory Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia; (A.B.); (D.A.F.)
- Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, NSW 2050, Australia
- Children’s Health and Environment Program, Child Health Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | - James A. Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (S.W.); (C.C.); (B.J.M.)
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
28
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
29
|
Shey MS, Balfour A, Masina N, Bekiswa A, Schutz C, Goliath R, Dielle R, Katoto PDMC, Wilkinson KA, Lewinsohn D, Lewinsohn DA, Meintjes G. Mycobacterial-specific secretion of cytokines and chemokines in healthcare workers with apparent resistance to infection with Mycobacterium tuberculosis. Front Immunol 2023; 14:1176615. [PMID: 37275871 PMCID: PMC10233115 DOI: 10.3389/fimmu.2023.1176615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background Currently, diagnosis of latent TB infection (LTBI) is based on the secretion of IFN-γ in response to Mycobacterium tuberculosis (Mtb) antigens, the absence of which is regarded as no infection. Some individuals appear to resist Mtb infection despite sustained exposure (resisters). In this study, we aimed to assess cytokines, chemokines and antibodies that may be associated with resistance to Mtb infection. We hypothesized that there may be an alternative immune response to Mtb exposure in the absence of IFN-γ in resisters. Methods We enrolled HIV-uninfected healthcare workers who had worked in high TB-exposure environments for 5 years or longer. We screened them for LTBI using the tuberculin skin test and the QuantiFERON-TB Gold Plus assay. We performed multiplex Luminex to measure concentrations of T cell-associated cytokines and chemokines as well as total antibodies in plasma collected from unstimulated fresh whole blood and supernatants from QuantiFERON-TB Gold Plus tubes following incubation of whole blood for 16-24 hours with ESAT6/CFP10 peptides. Results Samples from 78 individuals were analyzed: 33 resisters (TST<10mm; IGRA<0.35 IU/mL), 33 with LTBI (TST≥10mm and IGRA≥0.35 IU/mL) and 12 discordant (TST=0mm; IGRA≥1.0 IU/mL). There were no differences in concentrations of cytokines and chemokines in plasma between the different groups. Resisters had significantly lower concentrations of IFN-γ, IL-2, TNF-α, MIP-1α, MIP-1β, ITAC, IL-13 and GM-CSF in supernatants compared with LTBI group. There were no significant differences in the concentrations in supernatants of IL-10, IL-1β, IL-17A, IL-21, IL-23, MIP-3α, IL-4, IL-5, IL-6, IL-7, IL-8, Fractalkine and IL-12p70 between the groups. We observed that resisters had similar concentrations of total antibodies (IgG1, IgG2, IgG3, IgG4, IgA, and IgM) in plasma and supernatants compared to the LTBI and discordant groups. Conclusion Resistance to Mtb infection despite sustained exposure is associated with lower Mtb-specific secretion of Th1-associated cytokines and chemokines. However, resisters showed secreted concentrations after Mtb stimulation of total antibodies and cytokines/chemokines associated with innate and Th17 immune responses similar to those with Mtb infection. This suggests an ability to mount non-IFN-γ immune responses to Mtb in apparent resisters.
Collapse
Affiliation(s)
- Muki Shehu Shey
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Avuyonke Balfour
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nomawethu Masina
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abulele Bekiswa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rachel Dielle
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Patrick DMC. Katoto
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
- Centre for General Medicine and Global Health, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Tropical Diseases and Global Health and Department of Internal Medicine , Catholic University of Bukavu, Bukavu, Democratic Republic of Congo
| | - Katalin Andrea Wilkinson
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deborah Anne Lewinsohn
- Division of Infectious Diseases, Department of Paediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Graeme Meintjes
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
31
|
Discrepancy between Mtb-specific IFN-γ and IgG responses in HIV-positive people with low CD4 counts. EBioMedicine 2023; 90:104504. [PMID: 36870197 PMCID: PMC9996381 DOI: 10.1016/j.ebiom.2023.104504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a leading infectious cause of death worldwide and treating latent TB infection (LTBI) with TB preventative therapy is a global priority. This study aimed to measure interferon gamma (IFN-γ) release assay (IGRA) positivity (the current reference standard for LTBI diagnosis) and Mtb-specific IgG antibodies in otherwise healthy adults without HIV and those living with HIV (PLWH). METHODS One-hundred and eighteen adults (65 without HIV and 53 antiretroviral-naïve PLWH), from a peri-urban setting in KwaZulu-Natal, South Africa were enrolled. IFN-γ released following stimulation with ESAT-6/CFP-10 peptides and plasma IgG antibodies specific for multiple Mtb antigens were measured using the QuantiFERON-TB Gold Plus (QFT) and customized Luminex assays, respectively. The relationships between QFT status, relative concentrations of anti-Mtb IgG, HIV-status, sex, age and CD4 count were analysed. FINDINGS Older age, male sex and higher CD4 count were independently associated with QFT positivity (p = 0.045, 0.05 and 0.002 respectively). There was no difference in QFT status between people with and without HIV infection (58% and 65% respectively, p = 0.06), but within CD4 count quartiles, people with HIV had higher QFT positivity than people without HIV (p = 0.008 (2nd quartile), <0.0001 (3rd quartile)). Concentrations of Mtb-specific IFN-γ were lowest, and relative concentrations of Mtb-specific IgGs were highest in PLWH in the lowest CD4 quartile. INTERPRETATION These results suggest that the QFT assay underestimates LTBI among immunosuppressed people with HIV and Mtb-specific IgG may be a useful alternative biomarker for Mtb infection. Further evaluation of how Mtb-specific antibodies can be leveraged to improve LTBI diagnosis is warranted, particularly in HIV-endemic areas. FUNDINGS NIH, AHRI, SHIP: SA-MRC and SANTHE.
Collapse
|
32
|
Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, Renji RM, Babu S. BCG vaccination induces enhanced humoral responses in elderly individuals. Tuberculosis (Edinb) 2023; 139:102320. [PMID: 36758395 DOI: 10.1016/j.tube.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studies have reported the beneficial effects of Bacillus Calmette Guerin (BCG) vaccination, including non-specific cross-protection against other infectious diseases. METHODS We investigated the impact of BCG vaccination on the frequencies of B cell subsets as well as total antibody levels in healthy elderly individuals at one month post vaccination. We also compared the above-mentioned parameters in post-vaccinated individuals to unvaccinated controls. RESULTS Our results demonstrate that BCG vaccination induced enhanced frequencies of immature, classical and activated memory B cells and plasma cells and diminished frequencies of naïve and atypical memory B cells. BCG vaccination induced significantly increased levels of total IgG subclass isotypes compared to baseline. Similarly, all of the above parameters were significantly higher in vaccinated individuals compared to unvaccinated controls. CONCLUSION BCG vaccination was associated with enhanced B cell subsets, suggesting its potential utility by enhancing heterologous immunity.
Collapse
Affiliation(s)
| | | | - Anuradha Rajamanickam
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - B Jeyadeepa
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rachel Mariam Renji
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
33
|
Qu M, Liang Z, Chen Y, Wang Y, Wang H, Liu Z, Liu Y, Dong Y, Ge X, Li H, Zhou X. Antibodies Targeting the Cell Wall Induce Protection against Virulent Mycobacterium bovis Infection. Microbiol Spectr 2023; 11:e0343122. [PMID: 36847491 PMCID: PMC10100962 DOI: 10.1128/spectrum.03431-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/11/2022] [Indexed: 03/01/2023] Open
Abstract
Accumulating evidence indicates that antibodies can protect against some intracellular pathogens. Mycobacterium bovis is an intracellular bacterium, and its cell wall (CW) is essential for its virulence and survival. However, the questions of whether antibodies play a protective role in immunity against M. bovis infection and what effects antibodies specific to the CW of M. bovis have still remain unclear. Here, we report that antibodies targeting the CW of an isolated pathogenic M. bovis strain and that of an attenuated bacillus Calmette-Guérin (BCG) strain could induce protection against virulent M. bovis infection in vitro and in vivo. Further research found that the antibody-induced protection was mainly achieved by promoting Fc gamma receptor (FcγR)-mediated phagocytosis, inhibiting bacterial intracellular growth, and enhancing the fusion of phagosomes and lysosomes, and it also depended on T cells for its efficacy. Additionally, we analyzed and characterized the B-cell receptor (BCR) repertoires of CW-immunized mice via next-generation sequencing. CW immunization stimulated BCR changes in the complementarity determining region 3 (CDR3) isotype distribution, gene usage, and somatic hypermutation. Overall, our study validates the idea that antibodies targeting the CW induce protection against virulent M. bovis infection. This study highlights the importance of antibodies targeting the CW in the defense against tuberculosis. IMPORTANCE M. bovis is the causative agent of animal tuberculosis (TB) and human TB. Research on M. bovis is of great public health significance. Currently, TB vaccines are mainly aimed at eliciting protection by enhancement of cell-mediated immunity, and there are few studies on protective antibodies. This is the first report of protective antibodies against M. bovis infection, and the antibodies had both preventive and even therapeutic effects in an M. bovis infection mouse model. Additionally, we reveal the relationship between CDR3 gene diversity and the immune characteristics of the antibodies. These results will provide valuable advice for the rational development of TB vaccines.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengmin Liang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yulan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziyi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiduo Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhui Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Meeting report: 6th Global Forum on Tuberculosis Vaccines, 22–25 February 2022, Toulouse, France. Vaccine X 2023. [DOI: 10.1016/j.jvacx.2023.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
35
|
Du J, Su Y, Wang R, Dong E, Cao Y, Zhao W, Gong W. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID-19. Front Immunol 2023; 14:1118378. [PMID: 36798128 PMCID: PMC9927227 DOI: 10.3389/fimmu.2023.1118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) is the only approved vaccine for tuberculosis (TB) prevention worldwide. BCG has an excellent protective effect on miliary tuberculosis and tuberculous meningitis in children or infants. Interestingly, a growing number of studies have shown that BCG vaccination can induce nonspecific and specific immunity to fight against other respiratory disease pathogens, including SARS-CoV-2. The continuous emergence of variants of SARS-CoV-2 makes the protective efficiency of COVID-19-specific vaccines an unprecedented challenge. Therefore, it has been hypothesized that BCG-induced trained immunity might protect against COVID-19 infection. This study comprehensively described BCG-induced nonspecific and specific immunity and the mechanism of trained immunity. In addition, this study also reviewed the research on BCG revaccination to prevent TB, the impact of BCG on other non-tuberculous diseases, and the clinical trials of BCG to prevent COVID-19 infection. These data will provide new evidence to confirm the hypotheses mentioned above.
Collapse
Affiliation(s)
- Jingli Du
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yue Su
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Ruilan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Enjun Dong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenjuan Zhao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Corrigan DT, Ishida E, Chatterjee D, Lowary TL, Achkar JM. Monoclonal antibodies to lipoarabinomannan/arabinomannan - characteristics and implications for tuberculosis research and diagnostics. Trends Microbiol 2023; 31:22-35. [PMID: 35918247 PMCID: PMC9771891 DOI: 10.1016/j.tim.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Antibodies to the mycobacterial surface lipoglycan lipoarabinomannan (LAM) and its related capsular polysaccharide arabinomannan (AM) are increasingly important for investigations focused on both understanding mechanisms of protection against Mycobacterium tuberculosis (Mtb) and developing next-generation point-of-care tuberculosis (TB) diagnostics. We provide here an overview of the growing pipeline of monoclonal antibodies (mAbs) to LAM/AM. Old and new methodologies for their generation are reviewed and we outline and discuss their glycan epitope specificity and other features with implications for the TB field.
Collapse
Affiliation(s)
- Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
37
|
Shen K, Lowary TL. Synthesis of the Mycobacterium tuberculosis Canetti Lipooligosaccharide II Nonasaccharide. Org Lett 2022; 24:6428-6432. [PMID: 36005851 DOI: 10.1021/acs.orglett.2c02518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A route for preparing lipooligosaccharide (LOS) glycans from Mycobacterium tuberculosis Canetti was developed and applied to the most complex of these structures, LOS II. The synthesis of the target nonasaccharide was achieved via a convergent [3+3+3] approach. Key features of the strategy include the stereoselective synthesis of an asymmetrically substituted trehalose moiety from two protected glucose residues and several chemoselective glycosylations involving thioglycoside donors.
Collapse
Affiliation(s)
- Ke Shen
- Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
38
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Melkie ST, Arias L, Farroni C, Jankovic Makek M, Goletti D, Vilaplana C. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: a review from the ESGMYC study group. Eur Respir Rev 2022; 31:31/163/210218. [PMID: 35264411 DOI: 10.1183/16000617.0218-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is still responsible for the deaths of >1 million people yearly worldwide, and therefore its correct diagnosis is one of the key components of any TB eradication programme. However, current TB diagnostic tests have many limitations, and improved diagnostic accuracy is urgently needed. To improve the diagnostic performance of traditional serology, a combination of different Mycobacterium tuberculosis (MTB) antigens and different antibody isotypes has been suggested, with some showing promising performance for the diagnosis of active TB. Given the incomplete protection conferred by bacille Calmette-Guérin (BCG) vaccination against adult pulmonary TB, efforts to discover novel TB vaccines are ongoing. Efficacy studies from advanced TB vaccines designed to stimulate cell-mediated immunity failed to show protection, suggesting that they may not be sufficient and warranting the need for other types of immunity. The role of antibodies as tools for TB therapy, TB diagnosis and TB vaccine design is discussed. Finally, we propose that the inclusion of antibody-based TB vaccines in current clinical trials may be advisable to improve protection.
Collapse
Affiliation(s)
- Solomon Tibebu Melkie
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| | - Mateja Jankovic Makek
- Dept for Respiratory Diseases, University Clinical Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| |
Collapse
|
40
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
41
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
42
|
Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022; 43:322-335. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolás M S Gálvez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Catalina A Andrade
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mario A Ramírez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Claudia A Riedel
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
43
|
Setiabudiawan TP, Reurink RK, Hill PC, Netea MG, van Crevel R, Koeken VACM. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: A historical perspective. MED 2022; 3:6-24. [PMID: 35590145 DOI: 10.1016/j.medj.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
Bacillus Calmette-Guérin (BCG) was developed exactly 100 years ago, and it is still the only licensed tuberculosis (TB) vaccine and the most frequently administered of all vaccines worldwide. Despite universal vaccination policies in TB-endemic settings, the burden of TB remains high. Although BCG protects against Mycobacterium tuberculosis infection and TB disease, the level of protection varies greatly between age groups and settings. In this review, we present a historical perspective and describe the evidence for BCG's ability to protect against TB as well as the factors that influence protection. We also present the immunological mechanisms through which BCG vaccination induces protection, focusing on T cell, B cell, and innate immunity. Finally, we discuss several possibilities to boost BCG's efficacy, including alternative vaccination routes, BCG revaccination, and use of recombinant BCG vaccines, and describe the knowledge gaps that exist with respect to BCG's protection against TB.
Collapse
Affiliation(s)
- Todia P Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Remi K Reurink
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, North Dunedin 9016, New Zealand
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Județul Dolj 200349, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany.
| |
Collapse
|
44
|
Nakayama H, Oshima E, Hotta T, Hanafusa K, Nakamura K, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Identification of anti-lipoarabinomannan antibodies against mannan core and their effects on phagocytosis of mycobacteria by human neutrophils. Tuberculosis (Edinb) 2022; 132:102165. [PMID: 35045376 DOI: 10.1016/j.tube.2022.102165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis (MTB) and M. avium-intracellulare complex (MAC) enter host phagocytes, such as neutrophils through lipoarabinomannan (LAM) binding to pattern-recognition receptors, inducing innate immune responses including phagocytosis. Phagocytosis of mycobacteria by human neutrophils depends on the binding of α(1 → 2)-monomannose branching α(1 → 6)-mannan core of LAM/lipomannan (LM), a common component among mycobacterial species, to lactosylceramide (LacCer)-enriched lipid microdomains. We investigated the binding specificities of several anti-LAM antibodies (Abs) to LAMs/LM and found anti-LAM monoclonal IgMs TMDU3 and LA066 were directed against mannan core. Each IgM showed different binding specificity to mannan core. Confocal and stimulated emission depletion microscopy revealed TMDU3 and LA066 strongly bind to MTB and MAC, respectively. Flow cytometric analysis revealed human neutrophils do not express Dectin-2, DC-SIGN or mannose receptor. Furthermore, neutrophil phagocytosis of mycobacteria was markedly inhibited by TMDU3 and LA066, respectively. Similarly, treatment of each mAb with neutrophils reduced the numbers of intracellular MAC. Together, our results suggest that the interaction of LacCer-enriched lipid microdomains with mannan core and its blocking are therapeutic or diagnostic targets for both TB and non-tuberculous mycobacteria infection.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kota Nakamura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Noriko Yokoyama
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| |
Collapse
|
45
|
Bitencourt J, Peralta-Álvarez MP, Wilkie M, Jacobs A, Wright D, Salman Almujri S, Li S, Harris SA, Smith SG, Elias SC, White AD, Satti I, Sharpe SS, O’Shea MK, McShane H, Tanner R. Induction of Functional Specific Antibodies, IgG-Secreting Plasmablasts and Memory B Cells Following BCG Vaccination. Front Immunol 2022; 12:798207. [PMID: 35069580 PMCID: PMC8767055 DOI: 10.3389/fimmu.2021.798207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a major global health problem and the only currently-licensed vaccine, BCG, is inadequate. Many TB vaccine candidates are designed to be given as a boost to BCG; an understanding of the BCG-induced immune response is therefore critical, and the opportunity to relate this to circumstances where BCG does confer protection may direct the design of more efficacious vaccines. While the T cell response to BCG vaccination has been well-characterized, there is a paucity of literature on the humoral response. We demonstrate BCG vaccine-mediated induction of specific antibodies in different human populations and macaque species which represent important preclinical models for TB vaccine development. We observe a strong correlation between antibody titers in serum versus plasma with modestly higher titers in serum. We also report for the first time the rapid and transient induction of antibody-secreting plasmablasts following BCG vaccination, together with a robust and durable memory B cell response in humans. Finally, we demonstrate a functional role for BCG vaccine-induced specific antibodies in opsonizing mycobacteria and enhancing macrophage phagocytosis in vitro, which may contribute to the BCG vaccine-mediated control of mycobacterial growth observed. Taken together, our findings indicate that the humoral immune response in the context of BCG vaccination merits further attention to determine whether TB vaccine candidates could benefit from the induction of humoral as well as cellular immunity.
Collapse
Affiliation(s)
- Julia Bitencourt
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM/Fiocruz), Salvador, Brazil
| | | | - Morven Wilkie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ashley Jacobs
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Salem Salman Almujri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shuailin Li
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven G. Smith
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Division of Biosciences, Brunel University, London, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew D. White
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sally S. Sharpe
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Matthew K. O’Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother 2021; 17:5284-5295. [PMID: 34856853 DOI: 10.1080/21645515.2021.2007711] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB). However, BCG has variable efficacy and cannot completely prevent TB infection and transmission. Therefore, the worldwide prevalence of TB calls for urgent development of a more effective TB vaccine. In the absence of other approved vaccines, it is also necessary to improve the efficacy of BCG itself. Intravenous (IV) BCG administration and BCG revaccination strategies have recently shown promising results for clinical usage. Therefore, it is necessary for us to revisit the BCG vaccination strategies and summarize the current research updates related to BCG vaccination. This literature review provides an updated overview and perspectives of the immunization strategies against TB using BCG, which may inspire the following research on TB vaccine development.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Ishida E, Corrigan DT, Malonis RJ, Hofmann D, Chen T, Amin AG, Chatterjee D, Joe M, Lowary TL, Lai JR, Achkar JM. Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Commun Biol 2021; 4:1181. [PMID: 34642445 PMCID: PMC8511196 DOI: 10.1038/s42003-021-02714-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
The surface polysacharide arabinomannan (AM) and related glycolipid lipoarabinomannan (LAM) play critical roles in tuberculosis pathogenesis. Human antibody responses to AM/LAM are heterogenous and knowledge of reactivity to specific glycan epitopes at the monoclonal level is limited, especially in individuals who can control M. tuberculosis infection. We generated human IgG mAbs to AM/LAM from B cells of two asymptomatic individuals exposed to or latently infected with M. tuberculosis. Here, we show that two of these mAbs have high affinity to AM/LAM, are non-competing, and recognize different glycan epitopes distinct from other anti-AM/LAM mAbs reported. Both mAbs recognize virulent M. tuberculosis and nontuberculous mycobacteria with marked differences, can be used for the detection of urinary LAM, and can detect M. tuberculosis and LAM in infected lungs. These mAbs enhance our understanding of the spectrum of antibodies to AM/LAM epitopes in humans and are valuable for tuberculosis diagnostic and research applications. Elise Ishida et al. generate human monoclonal antibodies that can selectively recognize specific oligosaccharide epitopes of the polysaccharides arabinomannan and lipoarabinomannan, which are critical for M. tuberculosis pathogenesis. The authors demonstrate the utility of these antibodies in both diagnostic and laboratory settings, making them important tools for M. tuberculosis research.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maju Joe
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
48
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
49
|
Hermann C, King CG. TB or not to be: what specificities and impact do antibodies have during tuberculosis? OXFORD OPEN IMMUNOLOGY 2021; 2:iqab015. [PMID: 36845566 PMCID: PMC9914581 DOI: 10.1093/oxfimm/iqab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), is a major cause of global morbidity and mortality. The primary barrier to the development of an effective tuberculosis vaccine is our failure to fully understand the fundamental characteristics of a protective immune response. There is an increasing evidence that mobilization of antibody and B cell responses during natural Mtb infection and vaccination play a role in host protection. Several studies have assessed the levels of Mtb-specific antibodies induced during active disease as well as the potential of monoclonal antibodies to modulate bacterial growth in vitro and in vivo. A major limitation of these studies, however, is that the specific antigens capable of eliciting humoral responses are largely unknown. As a result, information about antibody dynamics and function, which might fundamentally transform our understanding of host Mtb immunity, is missing. Importantly, Mtb infection also induces the recruitment, accumulation and colocalization of B and T cells in the lung, which are positively correlated with protection in humans and animal models of disease. These ectopic lymphoid tissues generally support local germinal center reactions for the proliferation and ongoing selection of effector and memory B cells in the mucosa. Efforts to leverage such responses for human health, however, require a more complete understanding of how antibodies and B cells contribute to the local and systemic host Mtb immunity.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland
| | - Carolyn G King
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland,Correspondence address. Department of Biomedicine, University of Basel, University Hospital of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland. Tel: +41 61 265 3874; E-mail:
| |
Collapse
|
50
|
Grace PS, Dolatshahi S, Lu LL, Cain A, Palmieri F, Petrone L, Fortune SM, Ottenhoff THM, Lauffenburger DA, Goletti D, Joosten SA, Alter G. Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Front Immunol 2021; 12:679973. [PMID: 34290702 PMCID: PMC8287567 DOI: 10.3389/fimmu.2021.679973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
With an estimated 25% of the global population infected with Mycobacterium tuberculosis (Mtb), tuberculosis (TB) remains a leading cause of death by infectious diseases. Humoral immunity following TB treatment is largely uncharacterized, and antibody profiling could provide insights into disease resolution. Here we focused on the distinctive TB-specific serum antibody features in active TB disease (ATB) and compared them with latent TB infection (LTBI) or treated ATB (txATB). As expected, di-galactosylated glycan structures (lacking sialic acid) found on IgG-Fc differentiated LTBI from ATB, but also discriminated txATB from ATB. Moreover, TB-specific IgG4 emerged as a novel antibody feature that correlated with active disease, elevated in ATB, but significantly diminished after therapy. These findings highlight 2 novel TB-specific antibody changes that track with the resolution of TB and may provide key insights to guide TB therapy.
Collapse
Affiliation(s)
- Patricia S. Grace
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA, United States
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Lenette L. Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adam Cain
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Fabrizio Palmieri
- Clinical Department, National Institute for Infectious Diseases (INMI), IRCCS L. Spallanzani, Rome, Italy
| | - Linda Petrone
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS (INMI) L. Spallanzani, Rome, Italy
| | - Sarah M. Fortune
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA, United States
| | - Tom H. M. Ottenhoff
- Department of Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS (INMI) L. Spallanzani, Rome, Italy
| | - Simone A. Joosten
- Department of Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|