1
|
Boucher J, Pépin G, Goyer B, Hubert A, Bazié WW, Vitry J, Barabé F, Gilbert C. Exploring the relationship between extracellular vesicles, the dendritic cell immunoreceptor, and microRNA-155 in an in vivo model of HIV-1 infection to understand the disease and develop new treatments. FASEB J 2025; 39:e70475. [PMID: 40111214 DOI: 10.1096/fj.202402692rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
HIV-1 infection induces persistent immune system activation despite antiretroviral therapy. New immunomodulatory targets might be required to restore immune competence. The dendritic cells immunoreceptor (DCIR) can bind HIV-1 and regulate immune functions and extracellular vesicles (EVs) production. EVs have emerged as biomarkers and a non-invasive tool to monitor HIV-1 progression. In people living with HIV-1, an increase in the size and abundance of EVs is associated with a decline in the CD4/CD8 T cells ratio, a key marker of immune dysfunction. Analysis of host nucleic acids within EVs has revealed an enrichment of microRNA-155 (miR-155) during HIV-1 infection. Experiments have demonstrated that miR-155-rich EVs enhance HIV-1 infection in vitro. A humanized NSG-mouse model was established to assess the in vivo impact of miR-155-rich EVs. Co-production of the virus with miR-155-rich EVs heightened the viral load and lowered the CD4/CD8 ratio in the mice. Upon euthanasia, EVs were isolated from plasma for size and quantity assessment. Consistent with findings in individuals with HIV-1, increased EV size and abundance were inversely correlated with the CD4/CD8 ratio. Next, by using the virus co-product with EV-miR-155, we tested a DCIR inhibitor to limit infection and immune damage in a humanized mouse model. DCIR inhibition reduced infection and partially restored immune functions. Finally, viral particles and various EV subtypes can convey HIV-1 RNA. HIV-1 RNA was predominantly associated with large EVs (200-1000 nm) rather than small EVs (50-200 nm). Viral loads in large EVs strongly correlated with blood and tissue markers of immune activation. The humanized mice model has proven its applicability to studying the roles of EVs on HIV-1 infection and investigating the impact of DCIR inhibition.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Gabriel Pépin
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Benjamin Goyer
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Audrey Hubert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Wilfried Wenceslas Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Programme de Recherche Sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Vitry
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Frédéric Barabé
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Wu Q, Deng L, Cao Y, Lian S. Preoperative Biomarkers and Survival in Chinese Breast Cancer Patients with HIV: A Propensity-Score-Matched-Cohort Study. Viruses 2023; 15:1490. [PMID: 37515177 PMCID: PMC10383696 DOI: 10.3390/v15071490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND China initiated its national free antiretroviral therapy program in 2004 and saw a dramatic decline in mortality among the population with HIV. However, the morbidity of non-AIDS-defining cancers such as breast cancer is steadily growing as life expectancy improves. The aim of this study was to investigate the clinical characteristics and prognosis of breast cancer patients with HIV in China. MATERIALS AND METHODS Data from 21 breast cancer patients with HIV and 396 breast cancer patients without HIV treated at the Shanghai public health clinical center from 2014-2022 was collected. After propensity score matching, 21 paired patients in the two groups were obtained and compared. The optimal cut-off value of preoperative biomarkers for recurrence was determined via maximally selected log-rank statistics. Preoperative biomarkers were categorized into high and low groups, based on the best cut-off values and compared using Kaplan-Meier survival curves and the log-rank test. The Cox proportional hazards regression model was used to perform univariate and multivariate analyses. RESULTS The median follow-up time was 38 months (IQR: 20-68 months) for the propensity-score-matching cohort. The progression-free survival at 1, 2 and 3 years for patients with and without HIV were 74.51%, 67.74%, and 37.63% and 95.24%, 95.24%, and 90.48%, respectively. The overall survival for patients with HIV at 1, 2 and 3 years were 94.44%, 76.74%, and 42.63%. After multivariate analysis, Only HIV status (hazard ratios (HRs) = 6.83, 95% [confidence intervals (CI)] 1.22-38.12) were associated with progression-free survival. Based on the best cut-off value, CD8 showed discriminative value for overall survival (p = 0.04), whereas four variables, the lymphocyte-to-monocyte ratio (p = 0.02), platelet-to-lymphocyte ratio (p = 0.03), CD3 (p = 0.01) and CD8 (p < 0.01) were suggested be significant for progression-free survival. The univariate analysis suggested that CD3 (HRs = 0.10, 95% [CI] 0.01-0.90) and lymphocyte-to-monocyte ratio (HRs = 0.22, 95% [CI] 0.05-0.93) were identified as significant predictors for progression-free survival. CONCLUSION In this study, breast cancer in patients with HIV in China reflected a more aggressive nature with a more advanced diagnostic stage and worse prognosis. Moreover, preoperative immune and inflammatory biomarkers might play a role in the prognosis of breast cancer patients with HIV.
Collapse
Affiliation(s)
- Qian Wu
- Department of General Surgery, Fudan University Affiliated Huadong Hospital, Shanghai 200040, China
| | - Li Deng
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ye Cao
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Shixian Lian
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
3
|
Klasse PJ, Moore JP. Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. J Virol 2022; 96:e0003422. [PMID: 35384694 PMCID: PMC9044961 DOI: 10.1128/jvi.00034-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
With the much-debated exception of the modestly reduced acquisition reported for the RV144 efficacy trial, HIV-1 vaccines have not protected humans against infection, and a vaccine of similar design to that tested in RV144 was not protective in a later trial, HVTN 702. Similar vaccine regimens have also not consistently protected nonhuman primates (NHPs) against viral acquisition. Conversely, experimental vaccines of different designs have protected macaques from viral challenges but then failed to protect humans, while many other HIV-1 vaccine candidates have not protected NHPs. While efficacy varies more in NHPs than humans, vaccines have failed to protect in the most stringent NHP model. Intense investigations have aimed to identify correlates of protection (CoPs), even in the absence of net protection. Unvaccinated animals and humans vary vastly in their susceptibility to infection and in their innate and adaptive responses to the vaccines; hence, merely statistical associations with factors that do not protect are easily found. Systems biological analyses, including artificial intelligence, have identified numerous candidate CoPs but with no clear consistency within or between species. Proposed CoPs sometimes have only tenuous mechanistic connections to immune protection. In contrast, neutralizing antibodies (NAbs) are a central mechanistic CoP for vaccines that succeed against other viruses, including SARS-CoV-2. No HIV-1 vaccine candidate has yet elicited potent and broadly active NAbs in NHPs or humans, but narrow-specificity NAbs against the HIV-1 isolate corresponding to the immunogen do protect against infection by the autologous virus. Here, we analyze why so many HIV-1 vaccines have failed, summarize the outcomes of vaccination in NHPs and humans, and discuss the value and pitfalls of hunting for CoPs other than NAbs. We contrast the failure to find a consistent CoP for HIV-1 vaccines with the identification of NAbs as the principal CoP for SARS-CoV-2.
Collapse
Affiliation(s)
- P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Ishii H, Terahara K, Nomura T, Okazaki M, Yamamoto H, Shu T, Sakawaki H, Miura T, Watkins DI, Matano T. Env-independent protection of intrarectal SIV challenge by vaccine induction of Gag/Vif-specific CD8+ T cells but not CD4+ T cells. Mol Ther 2022; 30:2048-2057. [PMID: 35231604 PMCID: PMC9092394 DOI: 10.1016/j.ymthe.2022.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022] Open
Abstract
Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cells, the preferential targets of HIV infection, might increase viral acquisition after HIV exposure. We have recently developed an immunogen (CaV11), tandemly connected overlapping 11-mer peptides spanning the simian immunodeficiency virus (SIV) Gag capsid and Vif proteins, to selectively induce Gag- and Vif-specific CD8+ T cells but not CD4+ T cells. Here, we show protective efficacy of a CaV11-expressing vaccine against repeated intrarectal low-dose SIVmac239 challenge in rhesus macaques. Eight of the twelve vaccinated macaques were protected after eight challenges. Kaplan-Meier analysis indicated significant protection in the vaccinees compared to the unvaccinated macaques. Vaccine-induced Gag-specific CD8+ T cell responses were significantly higher in the protected than the unprotected vaccinees. These results suggest that classical CD8+ T cell induction by viral Env-independent vaccination can confer protection from intrarectal SIV acquisition, highlighting the rationale for this immunogen design to induce virus-specific CD8+ T cells but not CD4+ T cells in HIV-vaccine development.
Collapse
|
5
|
Cheng J, Myers TG, Levinger C, Kumar P, Kumar J, Goshu BA, Bosque A, Catalfamo M. IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells. iScience 2022; 25:103588. [PMID: 35005538 PMCID: PMC8717455 DOI: 10.1016/j.isci.2021.103588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown. In the present manuscript, we investigated the role of IL-27 signaling in human T cells by evaluating the global transcriptional changes related to the function of HIV-specific T cells. We found that T cells from people living with HIV (PLWH), expressed higher levels of STAT1 leading to enhanced STAT1 activation upon IL-27 stimulation. Observed IL-27 induced transcriptional changes were associated with IFN/STAT1-dependent pathways in CD4 and CD8 T cells. Importantly, IL-27 dependent modulation of T-bet expression promoted IFNγ secretion by TIGIT+HIVGag-specific T cells. This new immunomodulatory effect of IL-27 on HIV-specific T cell function suggests its potential therapeutic use in cure strategies.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bruktawit A. Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| |
Collapse
|
6
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
7
|
Lunardi LW, Bragatte MADS, Vieira GF. The influence of HLA/HIV genetics on the occurrence of elite controllers and a need for therapeutics geotargeting view. Braz J Infect Dis 2021; 25:101619. [PMID: 34562387 PMCID: PMC9392165 DOI: 10.1016/j.bjid.2021.101619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/02/2022] Open
Abstract
The interaction of HIV-1, human leukocyte antigen (HLA), and elite controllers (EC) compose a still intricate triad. Elite controllers maintain a very low viral load and a normal CD4 count, even without antiretrovirals. There is a lot of diversity in HIV subtypes and HLA alleles. The most common subtype in each country varies depending on its localization and epidemiological history. As we know EC appears to maintain an effective CD8 response against HIV. In this phenomenon, some alleles of HLAs are associated with a slow progression of HIV infection, others with a rapid progression. This relationship also depends on the virus subtype. Epitopes of Gag protein-restricted by HLA-B*57 generated a considerable immune response in EC. However, some mutations allow HIV to escape the CD8 response, while others do not. HLA protective alleles, like HLA-B*27, HLA-B*57 and HLA-B*58:01, that are common in Caucasians infected with HIV-1 Clade B, do not show the same protection in sub-Saharan Africans infected by HIV-1 Clade C. Endogenous pathway of antigen processing and presentation is used to present intracellular synthesized cellular peptides as well as viral protein fragments via the MHC class I molecule to the cytotoxic T-lymphocytes (CTLs). Some epitopes are immunodominant, which means that they drive the immune reaction to some virus. Mutation on an anchor residue of epitope necessary for binding on MHC class I is used by HIV to escape the immune system. Mutations inside or flanking an epitope may lead to T cell lack of recognition and CTL escape. Studying how immunodominance at epitopes drives the EC in a geographically dependent way with genetics and immunological elements orchestrating it may help future research on vaccines or immunotherapy for HIV.
Collapse
Affiliation(s)
- Luciano Werle Lunardi
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Alves de Souza Bragatte
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Gustavo Fioravanti Vieira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil; Universidade La Salle Canoas, Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Canoas, RS, Brazil.
| |
Collapse
|
8
|
T cell immune discriminants of HIV reservoir size in a pediatric cohort of perinatally infected individuals. PLoS Pathog 2021; 17:e1009533. [PMID: 33901266 PMCID: PMC8112655 DOI: 10.1371/journal.ppat.1009533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/11/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention. Low HIV reservoir size is associated with positive outcomes of therapeutic approaches and better immune function. Here, we identified a 9-marker T cell immune signature based on phenotypic flow cytometry data that associated with total HIV DNA measurements in a pediatric cohort of 34 perinatally infected participants with sustained viral control. Notably, frequencies of PD-1+ CD4 T cells and TIGIT+ CD4 T cells were positively correlated and HIV-specific (CD40L+) CD4 T cells were negatively correlated with HIV DNA, and were impacted by time of ART initiation. Gene expression analysis by multiplex RT-PCR showed that the frequencies of PD-1+ CD4 T cells associated with an exhausted Th1 molecular profile in CD4 T cells. This signature could inform future therapeutic studies and provide mechanistic insight on HIV persistence in perinatally infected HIV.
Collapse
|
9
|
The importance of advanced cytometry in defining new immune cell types and functions relevant for the immunopathogenesis of HIV infection. AIDS 2020; 34:2169-2185. [PMID: 32910071 DOI: 10.1097/qad.0000000000002675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: In the last years, novel, exciting immunological findings of interest for HIV research and treatment were identified thanks to different cytometric approaches. The analysis of the phenotypes and functionality of cells belonging to the immune system could clarify their role in the immunopathogenesis of HIV infection, and to elaborate key concepts, relevant in the treatment of this disease. Important discoveries have been made concerning cells that are important for protective immunity like lymphocytes that display polyfunctionality, resident memory T cells, innate lymphoid cells, to mention a few. The complex phenotype of myeloid-derived suppressor cells has been investigated, and relevant changes have been reported during chronic and primary HIV infection, in correlation with changes in CD4 T-cell number, T-cell activation, and with advanced disease stage. The search for markers of HIV persistence present in latently infected cells, namely those molecules that are important for a functional or sterilizing cure, evidenced the role of follicular helper T cells, and opened a discussion on the meaning and use of different surface molecules not only in identifying such cells, but also in designing new strategies. Finally, advanced technologies based upon the simultaneous detection of HIV-RNA and proteins at the single cell level, as well as those based upon spectral cytometry or mass cytometry are now finding new actors and depicting a new scenario in the immunopathogenesis of the infection, that will allow to better design innovative therapies based upon novel drugs and vaccines.
Collapse
|
10
|
Chen P, Chen H, Moussa M, Cheng J, Li T, Qin J, Lifson JD, Sneller MC, Krymskaya L, Godin S, Lane HC, Catalfamo M. Recombinant Human Interleukin-15 and Anti-PD-L1 Combination Therapy Expands a CXCR3+PD1-/low CD8 T-Cell Subset in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Infect Dis 2020; 221:523-533. [PMID: 31562760 DOI: 10.1093/infdis/jiz485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The PD1/PD-L1 pathway contributes to the pathogenesis of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, and blockade of this pathway may have potential to restore immune function and promote viral control or elimination. In this study, we combined a checkpoint inhibitor anti-PD-L1 (Avelumab) and recombinant human interleukin-15 (rhIL-15) in SIV-infected rhesus macaques (RM). METHODS The rhIL-15 was administered as continuous infusion in 2 cycles of 10 days in the context of weekly administration of anti-PD-L1 (Avelumab) in SIV-infected RM receiving combination antiretroviral therapy (cART). Safety, immunological parameters, and viral loads were monitored during the study. RESULTS Administration of rhIL-15/anti-PD-L1 was safe and well tolerated. Treatment resulted in transient increases in proliferating (Ki67+) natural killer and CD8 T cells. In addition, treatment expanded a CXCR3+PD1-/low CD8 T-cell subset with the ability to secrete cytokines. Despite these effects, no changes in plasma viremia were observed after cART interruption. CONCLUSIONS Expansion of the CXCR3+PD1-/low CD8 T-cell subset with functional capacity and potential to traffic to sites of viral reservoirs in SIV-infected rhesus macaques had no demonstrable effect on plasma viremia after cART interruption.
Collapse
Affiliation(s)
- Ping Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA.,CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jing Qin
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael C Sneller
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Krymskaya
- Clinical Support Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, Maryland, USA
| | - H Clifford Lane
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| |
Collapse
|
11
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
12
|
Gallinaro A, Borghi M, Pirillo MF, Cecchetti S, Bona R, Canitano A, Michelini Z, Di Virgilio A, Olvera A, Brander C, Negri D, Cara A. Development and Preclinical Evaluation of an Integrase Defective Lentiviral Vector Vaccine Expressing the HIVACAT T Cell Immunogen in Mice. Mol Ther Methods Clin Dev 2020; 17:418-428. [PMID: 32154327 PMCID: PMC7056611 DOI: 10.1016/j.omtm.2020.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
Abstract
Cellular immune responses play a fundamental role in controlling viral replication and AIDS progression in human immunodeficiency virus (HIV)-infected subjects and in simian immunodeficiency virus (SIV)-infected macaques. Integrase defective lentiviral vector (IDLV) represents a promising vaccine candidate, inducing functional and durable immune responses in mice and non-human primates. Here, we designed HIV- and SIV-based IDLVs to express the HIVACAT T cell immunogen (HTI), a mosaic antigen designed to cover vulnerable sites in HIV-1 Gag, Pol, Vif, and Nef. We observed that HTI expression during lentiviral vector production interfered profoundly with IDLV particles release because of sequestration of both HIV- and SIV-Gag proteins in the cytoplasm of the vector-producing cells. However, modifications in IDLV design and vector production procedures greatly improved recovery of both HIV- and SIV-based IDLV-HTI. Immunization experiments in BALB/c mice showed that both IDLVs elicited HTI-specific T cell responses. However, immunization with HIV-based IDLV elicited also a T cell response toward exogenous HIV proteins in IDLV particles, suggesting that SIV-based IDLV may be a preferable platform to assess the induction of transgene-specific immune responses against rationally designed HIV structural antigens. These data support the further evaluation of IDLV as an effective platform of T cell immunogens for the development of an effective HIV vaccine.
Collapse
Affiliation(s)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Alex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
13
|
Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, Styles TM, Quarnstrom CF, Walter KA, Ketas TJ, Legere T, Jagadeesh Reddy PB, Kasturi SP, Tsai A, Yeung BZ, Gupta S, Tomai M, Vasilakos J, Shaw GM, Kang CY, Moore JP, Subramaniam S, Khatri P, Montefiori D, Kozlowski PA, Derdeyn CA, Hunter E, Masopust D, Amara RR, Pulendran B. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med 2020; 26:932-940. [PMID: 32393800 PMCID: PMC7303014 DOI: 10.1038/s41591-020-0858-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/drug effects
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/drug effects
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Heterologous
- Immunogenicity, Vaccine
- Immunologic Memory/immunology
- Macaca mulatta
- Mucous Membrane
- SAIDS Vaccines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- Vagina
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tysheena P Charles
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Venkata S Bollimpelli
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha L Burton
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Petitdemange
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Tiffany M Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Traci Legere
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Pradeep Babu Jagadeesh Reddy
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- Pfizer, Andover, MA, USA
| | - Sudhir Pai Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | | | | | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Suphaphiphat K, Bernard-Stoecklin S, Gommet C, Delache B, Dereuddre-Bosquet N, Kent SJ, Wines BD, Hogarth PM, Le Grand R, Cavarelli M. Innate and Adaptive Anti-SIV Responses in Macaque Semen: Implications for Infectivity and Risk of Transmission. Front Immunol 2020; 11:850. [PMID: 32528466 PMCID: PMC7247827 DOI: 10.3389/fimmu.2020.00850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is transmitted primarily by sexual exposure, with semen being the principal contaminated fluid. However, HIV-specific immune response in semen has been understudied. We investigated specific parameters of the innate, cellular, and humoral immune response that may affect semen infectivity in macaques infected with SIVmac251. Serial semen levels of cytokines and chemokines, SIV-specific antibodies, neutralization, and FcγR-mediated functions and SIV-specific T-cell responses were assessed and compared to systemic responses across 53 cynomolgus macaques. SIV infection induced an overall inflammatory state in the semen. Several pro-inflammatory molecules correlated with SIV virus levels. Effector CD8+ T cells were expanded in semen upon infection. SIV-specific CD8+ T-cells that expressed multiple effector molecules (IFN-γ+MIP-1β+TNF+/-) were induced in the semen of a subset of SIV-infected macaques, but this did not correlate with local viral control. SIV-specific IgG, commonly capable of engaging the FcγRIIIa receptor, was detected in most semen samples although this positively correlated with seminal viral load. Several inflammatory immune responses in semen develop in the context of higher levels of SIV seminal plasma viremia. These inflammatory immune responses could play a role in viral transmission and should be considered in the development of preventive and prophylactic vaccines.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Sibylle Bernard-Stoecklin
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Céline Gommet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Benoit Delache
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Roger Le Grand
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
16
|
Auclair S, Liu F, Niu Q, Hou W, Churchyard G, Morgan C, Frahm N, Nitayaphan S, Pitisuthithum P, Rerks-Ngarm S, Kimata JT, Soong L, Franchini G, Robb M, Kim J, Michael N, Hu H. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathog 2018; 14:e1006888. [PMID: 29474461 PMCID: PMC5841825 DOI: 10.1371/journal.ppat.1006888] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/07/2018] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination.
Collapse
Affiliation(s)
- Sarah Auclair
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Fengliang Liu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Qingli Niu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | | | - Cecilia Morgan
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sorachai Nitayaphan
- Royal Thai Army Expert, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Punnee Pitisuthithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, C/O Ministry of Public Health, Nonthaburi, Thailand
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, MD, United States of America
| | - Merlin Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome Kim
- International Vaccine Institute, Gwanak-gu, Seoul, ROK
| | - Nelson Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli Morghen C, Accolla RS, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS One 2018; 13:e0190869. [PMID: 29385169 PMCID: PMC5791965 DOI: 10.1371/journal.pone.0190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can induce HLA-DR cell surface expression. However, in-vivo experiments did not show any significant increase in the humoral response. As CIITA already proved to elicit immunogenicity by improving antigen presentation, further in-vivo experiments should be performed to increase the immune responses. The use of prime/boost immunisation protocols and the oral administration route of the recombinants may enhance the immunogenicity of Env peptides presented by MHC-II and provide CD4+ T-cell stimulation.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
| | - Greta Forlani
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Giovanna Tosi
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
- Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, Tirana, Albania
| | - Roberto S. Accolla
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
- CNR Institute of Neurosciences, Cellular and Molecular Pharmacology Section, University of Milan, via Vanvitelli 32, Milan, Italy
- * E-mail:
| |
Collapse
|
18
|
Turk G, Ghiglione Y, Hormanstorfer M, Laufer N, Coloccini R, Salido J, Trifone C, Ruiz MJ, Falivene J, Holgado MP, Caruso MP, Figueroa MI, Salomón H, Giavedoni LD, Pando MDLÁ, Gherardi MM, Rabinovich RD, Pury PA, Sued O. Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4⁺ T-cell Count? Viruses 2018; 10:E34. [PMID: 29342870 PMCID: PMC5795447 DOI: 10.3390/v10010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022] Open
Abstract
Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4⁺ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4⁺ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish "progressors" from "non-progressors". Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.
Collapse
Affiliation(s)
- Gabriela Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Yanina Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | | | - Natalia Laufer
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
- Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina.
| | - Romina Coloccini
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Jimena Salido
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - César Trifone
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - María Julia Ruiz
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Juliana Falivene
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - María Pía Holgado
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - María Paula Caruso
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - María Inés Figueroa
- Fundación Huésped, Buenos Aires C1202ABB, Argentina.
- Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires C1425AGP, Argentina.
| | - Horacio Salomón
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Luis D Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - María de Los Ángeles Pando
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - María Magdalena Gherardi
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Roberto Daniel Rabinovich
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires- CONICET, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina.
| | - Pedro A Pury
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
| | - Omar Sued
- Fundación Huésped, Buenos Aires C1202ABB, Argentina.
| |
Collapse
|
19
|
Insights into the Impact of CD8 + Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression. J Virol 2017; 91:JVI.01162-17. [PMID: 28931681 DOI: 10.1128/jvi.01162-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8+ lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8+ lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8+ cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8+ lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8+ lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8+ lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8+ lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation.IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1-infected individuals, a functional cure has yet to be found. Improvement of drug interventions for a virus that is able to infect a wide range of tissues and cell types requires a thorough understanding of viral adaptation and infection dynamics within this target milieu. Although it is difficult to accomplish in the human host, longitudinal sampling of multiple anatomical locations is readily accessible in the SIV-infected macaque models of neuro-AIDS. The significance of our research is in identifying the impact of immune modulation, through differing immune selective pressures, on viral evolutionary behavior in a multitude of anatomical compartments. The results provide evidence encouraging the development of a more sophisticated model that considers a network of individual viral subpopulations within the host, with differing infection and transmission dynamics, which is necessary for more effective treatment strategies.
Collapse
|
20
|
Ruiz MJ, Salido J, Abusamra L, Ghiglione Y, Cevallos C, Damilano G, Rodriguez AM, Trifone C, Laufer N, Giavedoni LD, Sued O, Salomón H, Gherardi MM, Turk G. Evaluation of Different Parameters of Humoral and Cellular Immune Responses in HIV Serodiscordant Heterosexual Couples: Humoral Response Potentially Implicated in Modulating Transmission Rates. EBioMedicine 2017; 26:25-37. [PMID: 29129698 PMCID: PMC5832641 DOI: 10.1016/j.ebiom.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
As the HIV/AIDS pandemic still progresses, understanding the mechanisms governing viral transmission as well as protection from HIV acquisition is fundamental. In this context, cohorts of HIV serodiscordant heterosexual couples (SDC) represent a unique tool. The present study was aimed to evaluate specific parameters of innate, cellular and humoral immune responses in SDC. Specifically, plasma levels of cytokines and chemokines, HIV-specific T-cell responses, gp120-specific IgG and IgA antibodies, and HIV-specific antibody-dependent cellular cytotoxicity (ADCC) activity were assessed in nine HIV-exposed seronegative individuals (ESN) and their corresponding HIV seropositive partners (HIV+-P), in eighteen chronically infected HIV subjects (C), nine chronically infected subjects known to be HIV transmitters (CT) and ten healthy HIV− donors (HD). Very low magnitude HIV-specific cellular responses were found in two out of six ESN. Interestingly, HIV+-P had the highest ADCC magnitude, the lowest IgA levels and the highest IgG/IgA ratio, all compared to CT. Positive correlations between CD4+ T-cell counts and both IgG/IgA ratios and %ADCC killing uniquely distinguished HIV+-P. Additionally, evidence of IgA interference with ADCC responses from HIV+-P and CT is provided. These data suggest for the first time a potential role of ADCC and/or gp120-specific IgG/IgA balance in modulating heterosexual transmission. In sum, this study provides key information to understand the host factors that influence viral transmission, which should be considered in both the development of prophylactic vaccines and novel immunotherapies for HIV-1 infection. The evaluation of different immune parameters in HIV serodiscordant couples helped identify factors shaping transmission. Innate and cellular immune responses were apparently not involved in this scenario. HIV-specific ADCC, IgA titer and IgG/IgA balance were identified as factors involved in modulating viral transmission.
The existence of individuals that remain HIV negative despite being repeatedly exposed to the virus has long been described. To date, only homozygosis for a 32-base pair deletion in the ccr5 gene has been consistently shown to be a determinant of HIV resistance. Still, subjects bearing the WT ccr5 gene have also been described as resistant or less susceptible to HIV. Thus, other mechanisms must be involved in this phenomenon. The results presented here postulate ADCC and IgG/IgA ratio as potential mechanisms involved in modulating HIV transmission in the context of serodiscordant couples and inspire further investigations.
Collapse
Affiliation(s)
- María Julia Ruiz
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jimena Salido
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Yanina Ghiglione
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Cintia Cevallos
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriel Damilano
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Ana María Rodriguez
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina; Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Luis D Giavedoni
- Department of Virology and Immunology, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina; Hospital Juan A. Fernández, Unidad Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Horacio Salomón
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Zheng K, Fan Y, Ji R, Ma S. Distinctive effects of pilose antler on mouse peripheral blood immune cell populations. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1332011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kexin Zheng
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Yudan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Ruiqin Ji
- College of Horticulture, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, People’s Republic of China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| |
Collapse
|
22
|
Calazans A, Boggiano C, Lindsay R. A DNA inducing VLP vaccine designed for HIV and tested in mice. PLoS One 2017; 12:e0183803. [PMID: 28837706 PMCID: PMC5570355 DOI: 10.1371/journal.pone.0183803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/13/2017] [Indexed: 11/24/2022] Open
Abstract
We developed a DNA vaccine that induces the formation of a VLP in vivo. This VLP was designed to elicit neutralizing antibodies, to induce better T-cell responses and to activate the innate immune system. Overall, 5 groups of 10 mice were electroporated with the following constructs: pVLP-LTR-GagPro [full], pVLP-GagPro [VLP wihout RNA], pVLP-LTR-Gag [VLP immature], pVLP-Gag and pVLP-EnvBG505 [regular DNA vaccine] and a mock group. We performed ICS on the mouse spleens and performed ELISA for ENV antibodies and a Luminex assay for inflammatory cytokines. The VLP showed good binding to the neutralizing antibodies. The percentage of CD4 cells producing cytokines was 0.1% [IFNg], 0.15%[IL-2] and 0.2% [TNFa] for the construct pVLP-LTR-GagPro. The percentage of CD8 cells producing cytokines was 0.3%[IFNg], 0.2%[IL-2] and 0.25%[TNFa]. All pVLP constructs induced more antibodies for EnvBG505 than the regular DNA vaccine Env. The pVLP-LTR-GagPro induced more IL-1B than the other constructs 24 hours post-vaccination.
Collapse
Affiliation(s)
- Alexandre Calazans
- Design and Development Laboratory, International AIDS Vaccine Initiative, Brooklyn, NY, United States of America
- Center for Technological Development in Health, Oswaldo Cruz, Foundation, Rio de Janeiro, Brazil
- * E-mail:
| | - Cesar Boggiano
- Design and Development Laboratory, International AIDS Vaccine Initiative, Brooklyn, NY, United States of America
| | - Ross Lindsay
- Design and Development Laboratory, International AIDS Vaccine Initiative, Brooklyn, NY, United States of America
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
24
|
Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma. AIDS 2017; 31:333-342. [PMID: 27835615 DOI: 10.1097/qad.0000000000001319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. DESIGN The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. METHODS The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. RESULTS Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. CONCLUSIONS Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.
Collapse
|
25
|
Modification of the HIV-specific CD8+ T-cell response in an HIV elite controller after chikungunya virus infection. AIDS 2016; 30:1905-11. [PMID: 27124898 DOI: 10.1097/qad.0000000000001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the impact of chikungunya virus (CHIKV) infection on the quality of the HIV-specific CD8 T-cell (CTL) response in an HIV elite controller. DESIGN Three blood samples were obtained from an elite controller at 27 days (EC-CHIKV, Sample 1, S1), 41 days (S2) and 1 year (S3) after CHIKV infection. Additionally, samples from another nine elite controllers and nine viremic chronics were obtained. METHODS CD4 T-cell counts, viral load and immune activation were recorded. Natural killer (NK) cells and HIV-specific CTL quality were evaluated. Data were analyzed using nonparametric statistics. RESULTS A male HIV elite controller was confirmed for CHIKV infection. At S1, he presented 211 cells/μl CD4 T-cell count, a HIV viral load blip (145 copies/ml) and high T-cell activation. NK cell percentage and activation were higher at S2. All parameters were recovered by S3. CTLs at S1 were exclusively monofunctional with a high proportion (>80%) of degranulating CTLs. By S3, CTL polyfunctionality was more similar to that of a typical elite controller. The distribution of CTL memory subsets also displayed altered profiles. CONCLUSION The results showed that the phenotype and function of HIV-specific CTLs were modified in temporal association with an HIV viral load blip that followed CHIKV infection. This might have helped to control the transient HIV rebound. Additionally, NK cells could have been involved in this control. These results provide useful information to help understand how elite controllers maintain their status, control HIV infection and alert about the negative impact to the immune function of HIV-infected individuals living in CHIKV endemic areas.
Collapse
|
26
|
Tjernlund A, Burgener A, Lindvall JM, Peng T, Zhu J, Öhrmalm L, Picker LJ, Broliden K, McElrath MJ, Corey L. In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells--A Tool to Interrogate a Functional Immune Response Ex Vivo. PLoS One 2016; 11:e0149907. [PMID: 26986062 PMCID: PMC4795610 DOI: 10.1371/journal.pone.0149907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells.
Collapse
Affiliation(s)
- Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- * E-mail:
| | - Adam Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Ave. Winnipeg, MB, Canada
| | - Jessica M. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Tao Peng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Lars Öhrmalm
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - Louis J. Picker
- Department of Pathology, Vaccine and Gene Therapy Institute, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
27
|
Shao L, Zhang X, Gao Y, Xu Y, Zhang S, Yu S, Weng X, Shen H, Chen ZW, Jiang W, Zhang W. Hierarchy Low CD4+/CD8+ T-Cell Counts and IFN-γ Responses in HIV-1+ Individuals Correlate with Active TB and/or M.tb Co-Infection. PLoS One 2016; 11:e0150941. [PMID: 26959228 PMCID: PMC4784913 DOI: 10.1371/journal.pone.0150941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. METHODS 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. RESULTS There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001). CONCLUSIONS Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.
Collapse
Affiliation(s)
- Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinyun Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yunya Xu
- Department of Infectious Diseases, Honghe No.1 People’s Hospital, Mengzi, Mengzi County, 661100, China
| | - Shu Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shenglei Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongbo Shen
- Chinese Academy of Science and Institute Pasteur of Shanghai, Shanghai, 200040, China
| | - Zheng W. Chen
- Department of Microbiology & Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| | - Weimin Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
28
|
Dinges W, Girard PM, Podzamczer D, Brockmeyer NH, García F, Harrer T, Lelievre JD, Frank I, Colin De Verdière N, Yeni GP, Ortega Gonzalez E, Rubio R, Clotet Sala B, DeJesus E, Pérez-Elias MJ, Launay O, Pialoux G, Slim J, Weiss L, Bouchaud O, Felizarta F, Meurer A, Raffi F, Esser S, Katlama C, Koletar SL, Mounzer K, Swindells S, Baxter JD, Schneider S, Chas J, Molina JM, Koutsoukos M, Collard A, Bourguignon P, Roman F. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial. Medicine (Baltimore) 2016; 95:e2673. [PMID: 26871794 PMCID: PMC4753889 DOI: 10.1097/md.0000000000002673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.
Collapse
Affiliation(s)
- Warren Dinges
- From the Seattle Travel and Preventive Medicine, Seattle Infectious Disease Clinic, Seattle, WA, USA (WD); Service des Maladies Infectieuses, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris; and INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France (P-MG); HIV Unit, Infectious Disease Service, Hospital Universitari de Bellvitge, L'Hospitalet, 08907 Barcelona, Spain (DP); Department of Dermatology, Venerology, and Allergology, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany (NHB); Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain (FG); Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (TH); Service d'Immunologie Clinique, Hôpital Henri Mondor, Créteil, France (J-DL); University of Pennsylvania, Philadelphia, PA, USA (IF); Service des Maladies Infectieuses et Tropicales, Hôpital Saint Louis, University of Paris Diderot Paris 7, Sorbonne Paris Cité and INSERM U941 (NCDV, J-MM); Hôpital Bichat Claude Bernard, Service des Maladies Infectieuses et Tropicales A, Paris, France (G-PY); Servicio de Enfermedades Infecciosas, Hospital General Universitario de Valencia, Valencia (EOG); Servicio de Enfermedades Infecciosas, Hospital 12 De Octubre, Madrid, Spain (RR); IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Uvic-UCC, Barcelona, Spain (BCS); Orlando Immunology Center, Orlando, FL, USA (EDS); Servicio de Enfermedades Infecciosas, Hospital Ramón Y Cajal, IRYCIS Madrid, Spain (MJPE); Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC 1417 and F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC); and Assistance Publique Hôpitaux de Paris, Hôpital Cochin (OL); Maladies Infectieuses et Tropicales Co-infections, Hôpital Tenon, Paris, France (GP, JC); Saint Michael's Medical Center, Newark, NJ, USA (JS); Service d'immunologie Clinique, Hôpital Européen Georges Pompidou, Paris, France (LW); Service des Maladie Infectieuses et Tropicales, Hôpital Avicenne, Bobigny, France (OB); Private practice, Bakersfield, CA, USA (FF); Zentrum für Innere Medizin und Infektiologie, Praxis, München, Germany (AM); CMIT, 46 Rue Henri Huchard, Paris, France (FR); HIV Ambulanz, Klinik für Dermatologie, Uniklinikum Essen, Essen, Germany (SE); Service des Maladies Infectieuses et Tropicales, Hôpital de la Pitié-Salpêtrière, Paris, France (CK); The Ohio State University, Division of Infectious Diseases, Columbus, OH (SLK); Philadelphia FIGHT, Philadelphia, PA (KM); University of Nebraska Medical Center, Omaha, NE (SS); Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ (JDB); Living Hope Clinical Foundation, Long Beach, CA, USA (SS); and GSK Vaccines, Wavre/Rixensart, Belgium (MK, AC, PB, FR)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Towards an HIV cure based on targeted killing of infected cells: different approaches against acute versus chronic infection. Curr Opin HIV AIDS 2016; 10:207-13. [PMID: 25710815 DOI: 10.1097/coh.0000000000000151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Current regimens of combination antiretroviral therapy (cART) offer effective control of HIV infection, with maintenance of immune health and near-normal life expectancy. What will it take to progress beyond the status quo, whereby infectious virus can be eradicated (a 'sterilizing cure') or fully controlled without the need for ongoing cART (a 'functional cure')? RECENT FINDINGS On the basis of therapeutic advances in the cancer field, we propose that targeted cytotoxic therapy to kill HIV-infected cells represents a logical complement to cART for achieving an HIV cure. This concept is based on the fact that cART effectively blocks replication of the virus, but does not eliminate cells that are already infected; targeted cytotoxic therapy would contribute precisely this missing component. We suggest that different modalities are suited for curing primary acute versus established chronic infection. For acute infection, relatively short-acting potent agents such as recombinant immunotoxins might prove sufficient for HIV eradication, whereas for chronic infection, a long-lasting (lifelong?) modality is required to maintain full virus control, as might be achieved with genetically modified autologous T cells. SUMMARY We present perspectives for complementing cART with targeted cytotoxic therapy, whereby HIV infection is either eradicated or fully controlled, thereby eliminating the need for lifelong cART.
Collapse
|
30
|
Khattar SK, Palaniyandi S, Samal S, LaBranche CC, Montefiori DC, Zhu X, Samal SK. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus. Hum Vaccin Immunother 2015; 11:504-15. [PMID: 25695657 DOI: 10.4161/21645515.2014.987006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.
Collapse
Affiliation(s)
- Sunil K Khattar
- a Virginia-Maryland Regional College of Veterinary Medicine ; University of Maryland ; College Park , MD USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Le Chenadec J, Scott-Algara D, Blanche S, Didier C, Montange T, Viard JP, Dollfus C, Avettand-Fenoel V, Rouzioux C, Warszawski J, Buseyne F. Gag-Specific CD4 and CD8 T-Cell Proliferation in Adolescents and Young Adults with Perinatally Acquired HIV-1 Infection Is Associated with Ethnicity - The ANRS-EP38-IMMIP Study. PLoS One 2015; 10:e0144706. [PMID: 26650393 PMCID: PMC4674108 DOI: 10.1371/journal.pone.0144706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
The ANRS-EP38-IMMIP study aimed to provide a detailed assessment of the immune status of perinatally infected youths living in France. We studied Gag-specific CD4 and CD8 T-cell proliferation and the association between the proliferation of these cells, demographic factors and HIV disease history. We included 93 youths aged between 15 and 24 years who had been perinatally infected with HIV. Sixty-nine had undergone valid CFSE-based T-cell proliferation assays. Gag-specific proliferation of CD4 and CD8 T cells was detected in 12 (16%) and 30 (38%) patients, respectively. The Gag-specific proliferation of CD4 and CD8 T cells was more frequently observed in black patients than in patients from other ethnic groups (CD4: 32% vs. 4%, P = 0.001; CD8: 55% vs. 26%, P = 0.02). Among aviremic patients, the duration of viral suppression was shorter in CD8 responders than in CD8 nonresponders (medians: 54 vs. 20 months, P = 0.04). Among viremic patients, CD8 responders had significantly lower plasma HIV RNA levels than CD8 nonresponders (2.7 vs. 3.7 log10 HIV-RNA copies/ml, P = 0.02). In multivariate analyses including sex and HIV-1 subtype as covariables, Gag-specific CD4 T-cell proliferation was associated only with ethnicity, whereas Gag-specific CD8 T-cell proliferation was associated with both ethnicity and the duration of viral suppression. Both CD4 and CD8 responders reached their nadir CD4 T-cell percentages at younger ages than their nonresponder counterparts (6 vs. 8 years, P = 0.04 for both CD4 and CD8 T-cell proliferation). However, these associations were not significant in multivariate analysis. In conclusion, after at least 15 years of HIV infection, Gag-specific T-cell proliferation was found to be more frequent in black youths than in patients of other ethnic groups, despite all the patients being born in the same country, with similar access to care.
Collapse
Affiliation(s)
| | - Daniel Scott-Algara
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Stéphane Blanche
- AP-HP, Unité Immunologie et Hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Paris, France
| | - Céline Didier
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Thomas Montange
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS, UMR 3569, Paris, France
| | - Jean-Paul Viard
- EA7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Centre de Diagnostic et de Thérapeutique, Hôpital de l’Hôtel-Dieu, Paris, France
| | - Catherine Dollfus
- AP-HP, Service d’Hématologie et d’Oncologie Pédiatrique, Hôpital Trousseau, Paris, France
| | - Véronique Avettand-Fenoel
- EA7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Laboratoire de Virologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Christine Rouzioux
- EA7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Laboratoire de Virologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Josiane Warszawski
- CESP INSERM U1018, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Florence Buseyne
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS, UMR 3569, Paris, France
- * E-mail:
| |
Collapse
|
32
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
33
|
Ishii H, Matano T. Development of an AIDS vaccine using Sendai virus vectors. Vaccine 2015; 33:6061-5. [PMID: 26232346 DOI: 10.1016/j.vaccine.2015.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
34
|
Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges. mBio 2015. [PMID: 26199332 PMCID: PMC4513081 DOI: 10.1128/mbio.01005-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV.
Collapse
|
35
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
36
|
A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults. PLoS One 2015; 10:e0125954. [PMID: 25961283 PMCID: PMC4427332 DOI: 10.1371/journal.pone.0125954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445
Collapse
|
37
|
Bermejo M, López-Huertas MR, Hedgpeth J, Mateos E, Rodríguez-Mora S, Maleno MJ, Plana M, Swindle J, Alcamí J, Coiras M. Analysis of protein kinase C theta inhibitors for the control of HIV-1 replication in human CD4+ T cells reveals an effect on retrotranscription in addition to viral transcription. Biochem Pharmacol 2015; 94:241-56. [PMID: 25732195 DOI: 10.1016/j.bcp.2015.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
HIV-1 infection cannot be cured due to reservoirs formed early after infection. Decreasing the massive CD4+ T cell activation that occurs at the beginning of the disease would delay reservoir seeding, providing a better prognosis for patients. CD4+ T cell activation is mediated by protein kinase C (PKC) theta (θ), which is involved in T-cell proliferation, as well as NF-κB, NF-AT, and AP-1 activation. We found that PKCθ activity increased viral replication, but also that HIV-1 induced higher activation of PKCθ in infected CD4+ T cells, creating a feedback loop. Therefore, specific inhibition of PKCθ activity could contribute to control HIV-1 replication. We tested the efficacy of seven PKCθ specific inhibitors to control HIV-1 replication in CD4+ T cells and selected two of the more potent and safer: CGX1079 and CGX0471. They reduced PKCθ phosphorylation at T538 and its translocation to the plasma membrane, which correlated with decreased HIV-1 retrotranscription through partial inhibition of SAMHD1 antiviral activity, rendering lower proviral integration. CGX1079 and CGX0471 also interfered with viral transcription, which would reduce the production of new virions, as well as the subsequent spread and infection of new targets that would increase the reservoir size. CGX1079 and CGX0471 did not completely abrogate T-cell functions such as proliferation and CD8-mediated release of IFN-γ in PBMCs from HIV-infected patients, thereby avoiding general immunosuppresion. Consequently, using PKCθ inhibitors as adjuvant of antiretroviral therapy in recently infected patients would decrease the pool of activated CD4+ T cells, thwarting proviral integration and reducing the reservoir size.
Collapse
Affiliation(s)
- Mercedes Bermejo
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María José Maleno
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Broad and persistent Gag-specific CD8+ T-cell responses are associated with viral control but rarely drive viral escape during primary HIV-1 infection. AIDS 2015; 29:23-33. [PMID: 25387316 DOI: 10.1097/qad.0000000000000508] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We characterized protein-specific CD8 T-cell immunodominance patterns during the first year of HIV-1 infection, and their impact on viral evolution and immune control. METHODS We analyzed CD8 T-cell responses to the full HIV-1 proteome during the first year of infection in 18 antiretroviral-naïve individuals with acute HIV-1 subtype C infection, all identified prior to seroconversion. Ex-vivo and cultured interferon-γ ELISPOT assays were performed and viruses from plasma were sequenced within defined CTL Gag epitopes. RESULTS Nef-specific CD8 T-cell responses were dominant during the first 4 weeks after infection and made up 40% of the total responses at this time; yet, by 1 year, responses against this region had declined and Gag responses made up to 47% of all T-cell responses measured. An inverse correlation between the breadth of Gag-specific responses and viral load set point was evident at 26 weeks after infection (P = 0.0081, r = -0.60) and beyond. An inverse correlation between the number of persistent responses targeting Gag and viral set point was also identified (P = 0.01, r = -0.58). Gag-specific responses detectable by the cultured ELISPOT assay correlated negatively with viral load set point (P = 0.0013, r = -0.91). Sequence evolution in targeted and nontargeted Gag epitopes in this cohort was infrequent. CONCLUSIONS These data underscore the importance of HIV-specific CD8 T-cell responses, particularly to the Gag protein, in the maintenance of low viral load levels during primary infection, and show that these responses are initially poorly elicited by natural infection. These data have implications for vaccine design strategies.
Collapse
|
39
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:87-99. [PMID: 25496723 DOI: 10.1016/j.pharma.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4+ T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive life-long adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
40
|
Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PLoS One 2014; 9:e112556. [PMID: 25398137 PMCID: PMC4232368 DOI: 10.1371/journal.pone.0112556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vacc-4x, a Gag p24-based therapeutic HIV vaccine, has been shown to reduce viral load set-points after intradermal administration. In this randomized controlled pilot study we investigate intranasal administration of Vacc-4x with Endocine as adjuvant. Methods Safety and immunogenicity were tested in patients on effective ART. They were randomized to low, medium or high dose Vacc-4x or adjuvant alone, administered four times at weekly intervals with no booster. Vacc-4x-specific T cell responses were measured in vitro by proliferation and in vivo by a single DTH skin test at the end of study. Nasal and rectal mucosal secretions were analyzed for Vacc-4x-specific antibodies by ELISA. Immune regulation induced by Vacc-4x was assessed by functional blockade of the regulatory cytokines IL-10 and TGF-β. Results Vacc-4x proliferative T cell responses increased only among the vaccinated (p≤0.031). The low dose group showed the greatest increase in Vacc-4x CD8+T cell responses (p = 0.037) and developed larger DTH (p = 0.005) than the adjuvant group. Rectal (distal) Vacc-4x IgA and IgG antibodies also increased (p = 0.043) in this group. In contrast, the high dose generated higher nasal (local) Vacc-4x IgA (p = 0.028) and serum IgG (p = 0.030) antibodies than the adjuvant. Irrespective of dose, increased Vacc-4x CD4+T cell responses were associated with low proliferation (r = −0.82, p<0.001) and high regulation (r = 0.61, p = 0.010) at baseline. Conclusion Intranasal administration of Vacc-4x with Endocine was safe and induced dose-dependent vaccine-specific T cell responses and both mucosal and systemic humoral responses. The clinical significance of dose, immune regulation and mucosal immunity warrants further investigation. Trial Registration ClinicalTrials.gov NCT01473810
Collapse
|
41
|
Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. AIDS 2014; 28:2189-200. [PMID: 25313583 DOI: 10.1097/qad.0000000000000389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The identification of still unrevealed mechanisms affecting the anti-HIV CD8 T-cell response in HIV-1 infection. DESIGN Starting from the observation that anti-Tat immunization is associated with improved CD8 T-cell immunity, we developed both in-vitro and ex-vivo assays to characterize the effects of extra-cellular Tat on the adaptive CD8 T-cell response. METHODS The effects of Tat on CD8 T-cell activation were assayed using CD8 T-cell clones specific for either cellular (MART-1) or viral (HIV-1 Nef) antigens, and HIV-1 Gag-specific CD8 T cells from HIV-1 patients. RESULTS The interaction between CD8 T lymphocytes and immobilized Tat, but not its soluble form, inhibits peptide-specific CD8 T-lymphocyte activation. The inhibition does not depend on Tat trans-activation activity, but on the interaction of the Tat RGD domain with α5β1 and αvβ3 integrins. Impaired CD8 T-cell activation was also observed in cocultures of CD8 T cells with HIV-1-infected cells. Anti-Tat Abs abrogate the inhibitory effect, consistently with the evidence that extracellular Tat accumulates on the cell membrane of virus-producing cells. The Tat-induced inhibition of cell activation associates with increased apoptosis of CD8 T cells. Finally, the inhibition of cell activation also takes place in Gag-specific CD8 T lymphocytes from HIV-1-infected patients. CONCLUSION Our results support the idea that CD8 T-cell apoptosis induced by surface-bound extracellular Tat can contribute to the dysregulation of the CD8 T-cell adaptive response against HIV as well as other pathogens present in AIDS patients.
Collapse
|
42
|
Early skewed distribution of total and HIV-specific CD8+ T-cell memory phenotypes during primary HIV infection is related to reduced antiviral activity and faster disease progression. PLoS One 2014; 9:e104235. [PMID: 25093660 PMCID: PMC4122399 DOI: 10.1371/journal.pone.0104235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The important role of the CD8+ T-cells on HIV control is well established. However, correlates of immune protection remain elusive. Although the importance of CD8+ T-cell specificity and functionality in virus control has been underscored, further unraveling the link between CD8+ T-cell differentiation and viral control is needed. Here, an immunophenotypic analysis (in terms of memory markers and Programmed cell death 1 (PD-1) expression) of the CD8+ T-cell subset found in primary HIV infection (PHI) was performed. The aim was to seek for associations with functional properties of the CD8+ T-cell subsets, viral control and subsequent disease progression. Also, results were compared with samples from Chronics and Elite Controllers. It was found that normal maturation of total and HIV-specific CD8+ T-cells into memory subsets is skewed in PHI, but not at the dramatic level observed in Chronics. Within the HIV-specific compartment, this alteration was evidenced by an accumulation of effector memory CD8+ T (TEM) cells over fully differentiated terminal effector CD8+ T (TTE) cells. Furthermore, higher proportions of total and HIV-specific CD8+ TEM cells and higher HIV-specific TEM/(TEM+TTE) ratio correlated with markers of faster progression. Analysis of PD-1 expression on total and HIV-specific CD8+ T-cells from PHI subjects revealed not only an association with disease progression but also with skewed memory CD8+ T-cell differentiation. Most notably, significant direct correlations were obtained between the functional capacity of CD8+ T-cells to inhibit viral replication in vitro with higher proportions of fully-differentiated HIV-specific CD8+ TTE cells, both at baseline and at 12 months post-infection. Thus, a relationship between preservation of CD8+ T-cell differentiation pathway and cell functionality was established. This report presents evidence concerning the link among CD8+ T-cell function, phenotype and virus control, hence supporting the instauration of early interventions to prevent irreversible immune damage.
Collapse
|
43
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
44
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
45
|
Kibirige CN, Menendez FA, Zhang H, Nilles TL, Langan S, Margolick JB. Late-emerging strains of HIV induce T-cell homeostasis failure by promoting bystander cell death and immune exhaustion in naïve CD4 and all CD8 T-cells. Med Hypotheses 2014; 83:69-73. [PMID: 24774718 DOI: 10.1016/j.mehy.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 04/01/2014] [Indexed: 12/13/2022]
Abstract
The mechanisms involved in the decline of CD4 and CD8 T-cells that lead to HIV-induced immune dysregulation are not clearly understood. We hypothesize that late-emerging strains of HIV, such as CXCR4-tropic (X4) virions, induce T-cell homeostasis failure by promoting significantly more bystander cell death, and immune exhaustion in naïve CD4 and all CD8 T-cells, when compared to strain of HIV, such as CCR5-tropic (R5) virions, found early during the course of infection. In the reported study, inactivated X4 virions induced greater bystander cell death in sort-purified naïve CD4 T-cells compared to R5 virions, which was significant (p=0.013), and in memory CD8 T-cells, though the latter was not significant. A clearer understanding of the mechanisms involved in HIV-induced depletion of T-cell numbers and function could lead to therapies that prevent T-cell death and restore immune function. These therapies could improve current anti-retroviral and cure-related treatments by boosting the immune system's own ability to combat the virus.
Collapse
Affiliation(s)
- Catherine N Kibirige
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| | - Frederick A Menendez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Tricia L Nilles
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Susan Langan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| |
Collapse
|
46
|
Jin Y, Sun C, Feng L, Li P, Xiao L, Ren Y, Wang D, Li C, Chen L. Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS One 2014; 9:e93143. [PMID: 24671203 PMCID: PMC3966893 DOI: 10.1371/journal.pone.0093143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/03/2014] [Indexed: 01/07/2023] Open
Abstract
CD4+ T cell-mediated immunity has increasingly received attention due to its contribution in the control of HIV viral replication; therefore, it is of great significance to improve CD4+ T cell responses to enhance the efficacy of HIV vaccines. Recent studies have suggested that macroautophagy plays a crucial role in modulating adaptive immune responses toward CD4+ T cells or CD8+ T cells. In the present study, a new strategy based on a macroautophagy degradation mechanism is investigated to enhance CD4+ T cell responses against the HIV/SIV gag antigen. Our results showed that when fused to the autophagosome-associated LC3b protein, SIVgag protein can be functionally targeted to autophagosomes, processed by autophagy-mediated degradation in autolysosomes/lysosomes, presented to MHC II compartments and elicit effective potential CD4 T cell responses in vitro. Importantly, compared with the SIVgag protein alone, SIVgag-LC3b fusion antigen can induce a stronger antigen-specific CD4+ T cell response in mice, which is characterized by an enhanced magnitude and polyfunctionality. This study provides insight for the immunological modulation between viral and mammalian cells via autophagy, and it also presents an alternative strategy for the design of new antigens in the development of effective HIV vaccines.
Collapse
Affiliation(s)
- Yi Jin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CS); (LC)
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Lijun Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizhong Ren
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China (USTC), Hefei, China
| | - Dimin Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (CS); (LC)
| |
Collapse
|
47
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
48
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
49
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
50
|
Lind A, Brekke K, Pettersen FO, Mollnes TE, Trøseid M, Kvale D. A parameter for IL-10 and TGF-ß mediated regulation of HIV-1 specific T cell activation provides novel information and relates to progression markers. PLoS One 2014; 9:e85604. [PMID: 24416431 PMCID: PMC3887102 DOI: 10.1371/journal.pone.0085604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/29/2013] [Indexed: 01/24/2023] Open
Abstract
HIV replication is only partially controlled by HIV-specific activated effector T cells in chronic HIV infection and strategies are warranted to improve their efficacy. Chronic T cell activation is generally accompanied by regulation of antigen-specific T cell responses which may impair an effective control of chronic infections. The impact of HIV-induced T cell regulation on individual patients' disease progression is largely unknown, since classical T cell activation assays reflect net activation with regulation as unknown contributing factor. We here explore a quantitative parameter for antigen-induced cytokine-mediated regulation (R(AC) of HIV-specific effector T cell activation by functional antibody-blockade of IL-10 and transforming growth factor-β. HIV Env- and Gag-specific T cell activation and R(AC) were estimated in peripheral blood mononuclear cells from 30 treatment-naïve asymptomatic HIV-infected progressors (CD4 count 472/µl, HIV RNA 37500 copies/ml) stimulated with overlapping peptide panels for 6 days. R(AC) was estimated from differences in T cell activation between normal and blocked cultures, and related to annual CD4 loss, immune activation (CD38) and microbial translocation (plasma lipopolysaccharides). R(AC) was heterogeneously distributed between individual patients and the two HIV antigens. Notably, RAC did not correlate to corresponding classical activation. Env R(AC) correlated with CD38 and CD4 loss rates (r> = 0.37, p = <0.046) whereas classical Gag activation tended to correlate with HIV RNA (r = -0.35, p = 0.06). 14 patients (47%) with low R(AC)'s to both Env and Gag had higher CD8 counts (p = 0.014) and trends towards lower annual CD4 loss (p = 0.056) and later start with antiretroviral treatment (p = 0.07) than the others. In contrast, patients with high RAC to both Env and Gag (n = 8) had higher annual CD4 loss (p = 0.034) and lower CD8 counts (p = 0.014). R(AC) to Env and Gag was not predicted by classical activation parameters and may thus provide additional information on HIV-specific immunity. R(AC) and other assessments of regulation deserve further in-depth exploration.
Collapse
Affiliation(s)
- Andreas Lind
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Brekke
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | | | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and University of Tromsø, Tromsø, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Marius Trøseid
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|