1
|
Glass AM, Navas-Martin S. Interferon-induced protein ISG15 in the central nervous system, quo vadis? FEBS Lett 2025. [PMID: 40353372 DOI: 10.1002/1873-3468.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
The ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) is a unique molecular effector that functions both intra- and extracellularly. Central to its pleiotropic nature is the ability to coordinate cellular responses following its conjugation to target proteins via ISGylation or in its free form. The activity of ISG15 is highly context-dependent: in the case of viral infections, ISG15 can serve as a pro- or antiviral factor. While ISG15 has been studied extensively, several gaps persist in our understanding of its role in dysregulated immune homeostasis. In particular, the role of ISG15 in the central nervous system (CNS), which has traditionally been considered an immune-privileged site, remains ill-defined. Interestingly, elevated ISG15 expression is observed in the CNS following instances of brain injury, autoimmunity, neurodegeneration, and viral infection. In this review, we seek to provide a comprehensive analysis of these studies as they pertain to ISG15 and its potential roles in the CNS. Furthermore, we discuss questions and challenges in the field while highlighting ISG15 as a potential diagnostic biomarker or therapeutic target. Impact statement While ISG15 has been studied extensively, several gaps remain in our understanding of its role in dysregulated immune homeostasis and its impact within the central nervous system (CNS). In this review, we provide a comprehensive analysis of the emerging roles of ISG15 in brain injury, autoimmunity, neurodegeneration, and viral infection within the CNS.
Collapse
Affiliation(s)
- Adam M Glass
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Grygorczuk S, Czupryna P, Martonik D, Adamczuk J, Parfieniuk-Kowerda A, Grzeszczuk A, Pawlak-Zalewska W, Dunaj-Małyszko J, Mielczak K, Parczewski M, Moniuszko-Malinowska A. The Factors Associated with the Blood-Brain Barrier Dysfunction in Tick-Borne Encephalitis. Int J Mol Sci 2025; 26:1503. [PMID: 40003967 PMCID: PMC11855613 DOI: 10.3390/ijms26041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
The pathogenesis of the central nervous system (CNS) pathology in tick-borne encephalitis (TBE) remains unclear. We attempted to identify mediators of the blood-brain barrier (BBB) disruption in human TBE in paired serum and cerebrospinal fluid (CSF) samples from 100 TBE patients. CSF albumin quotient (Qalb) was calculated as a measure of BBB impairment. Concentrations of cytokines, cytokine antagonists, adhesion molecules, selectins and matrix metalloproteinases (MMP) were measured with a multiplex bead assay. Single nucleotide polymorphisms (SNP) in genes MIF, TNF, TNFRSF1A, TNFRSF1B, IL-10, TLR3 and TLR4 were studied in patient blood DNA extracts and analyzed for associations with Qalb and/or cytokine concentrations. The multivariate regression models of Qalb were built with the soluble mediators as independent variables. The best models obtained included L-selectin, P-selectin, sVCAM, MMP7, MMP8 (or MMP9) and IL-28A as positive and IL-12p70, IL-15, IL-6Rα/IL-6 ratio and TNF-RII/TNFα ratio as negative correlates of Qalb. The genotype did not associate with Qalb, but polymorphism rs4149570 (in TNFRSF1A) associated with TNFα and rs1800629 (TNF) with MIF concentration. We confirm the association of the TNFα-dependent response, L-selectin and MMP8/MMP9 with BBB disruption and identify its novel correlates (IL-12, IL-15, IL-28A, MMP7). We detect no genotype associations with BBB function in TBE.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Wioletta Pawlak-Zalewska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Kaja Mielczak
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| |
Collapse
|
3
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Pranclova V, Nedvedova L, Kotounova E, Hönig V, Dvorakova M, Davidkova M, Bily T, Vancova M, Ruzek D, Palus M. Unraveling the role of human microglia in tick-borne encephalitis virus infection: insights into neuroinflammation and viral pathogenesis. Microbes Infect 2024; 26:105383. [PMID: 38942136 DOI: 10.1016/j.micinf.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains. We investigated primary human microglia and two immortalized microglial cell lines exposed to three TBEV strains (Hypr, Neudörfl and 280), each differing in virulence. Our results show that all microglia cultures tested support long-term productive infections, regardless of the viral strain. In particular, immune response varied significantly with the viral strain, as shown by the differential secretion of cytokines and chemokines such as IP-10, MCP-1, IL-8 and IL-6, quantified using a Luminex 48-plex assay. The most virulent strain triggered the highest cytokine induction. Electron tomography revealed substantial ultrastructural changes in the infected microglia, despite the absence of cytopathic effects. These findings underscore the susceptibility of human microglia to TBEV and reveal strain-dependent variations in viral replication and immune responses, highlighting the complex role of microglia in TBEV-induced neuropathology and contribute to a deeper understanding of TBE pathogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Lenka Nedvedova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eliska Kotounova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Marketa Dvorakova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marika Davidkova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Tomas Bily
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.
| |
Collapse
|
5
|
Gervais A, Marchal A, Fortova A, Berankova M, Krbkova L, Pychova M, Salat J, Zhao S, Kerrouche N, Le Voyer T, Stiasny K, Raffl S, Schieber Pachart A, Fafi-Kremer S, Gravier S, Robbiani DF, Abel L, MacDonald MR, Rice CM, Weissmann G, Kamal Eldin T, Robatscher E, Erne EM, Pagani E, Borghesi A, Puel A, Bastard P, Velay A, Martinot M, Hansmann Y, Aberle JH, Ruzek D, Cobat A, Zhang SY, Casanova JL. Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients. J Exp Med 2024; 221:e20240637. [PMID: 39316018 PMCID: PMC11448868 DOI: 10.1084/jem.20240637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Andrea Fortova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Michaela Berankova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Krbkova
- Department of Children’s Infectious Diseases, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Salat
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Karin Stiasny
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Simon Raffl
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | | | - Samira Fafi-Kremer
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Simon Gravier
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gaia Weissmann
- Department of Pediatrics and Neonatology, F. Tappeiner Hospital, Merano, Italy
| | - Tarek Kamal Eldin
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Eva Robatscher
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elke Maria Erne
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elisabetta Pagani
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aurélie Velay
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Yves Hansmann
- CHU de Strasbourg, Service des Maladies Infectieuses et Tropicales, Strasbourg, France
| | - Judith H. Aberle
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Daniel Ruzek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
6
|
Boytz R, Keita K, Pawlak JB, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. NPJ VIRUSES 2024; 2:47. [PMID: 39371935 PMCID: PMC11452341 DOI: 10.1038/s44298-024-00057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are essential eukaryotic organelles that regulate a range of cellular processes, from metabolism to calcium homeostasis and programmed cell death. They serve as essential platforms for antiviral signaling proteins during the innate immune response to viral infections. Mitochondria are dynamic structures, undergoing frequent fusion and fission processes that regulate various aspects of mitochondrial biology, including innate immunity. Pathogens have evolved sophisticated mechanisms to manipulate mitochondrial morphology and function to facilitate their replication. In this review, we examine the emerging literature on how flaviviruses modulate mitochondrial processes.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Maudry Laurent-Rolle
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
7
|
Prančlová V, Hönig V, Zemanová M, Růžek D, Palus M. Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection. Int J Mol Sci 2024; 25:7892. [PMID: 39063134 PMCID: PMC11276942 DOI: 10.3390/ijms25147892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
Collapse
Affiliation(s)
- Veronika Prančlová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| | - Marta Zemanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| |
Collapse
|
8
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Skrzydlewska E. Changes in cerebrospinal fluid proteome of patients with tick-borne encephalitis. J Med Virol 2024; 96:e29763. [PMID: 38949193 DOI: 10.1002/jmv.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Cao M, Yang W, Yang J, Zhao Y, Hu X, Xu X, Tian J, Chen Y, Jiang H, Ren R, Li C. Minocycline Inhibits Tick-Borne Encephalitis Virus and Protects Infected Cells via Multiple Pathways. Viruses 2024; 16:1055. [PMID: 39066217 PMCID: PMC11281541 DOI: 10.3390/v16071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.
Collapse
Affiliation(s)
- Mengtao Cao
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Jintao Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Yanli Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Xiaoyu Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Xu
- Instrument Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Jing Tian
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Yue Chen
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Hongxia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.Y.); (Y.Z.); (H.J.)
| | - Ruiwen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| | - Chunyuan Li
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou 510507, China; (M.C.); (X.H.); (J.T.); (Y.C.)
- Guangdong Arbovirus Diseases Emergency Technology Research Center, Guangzhou 510507, China
| |
Collapse
|
10
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
11
|
Reynolds ES, Hart CE, Nelson JT, Marzullo BJ, Esterly AT, Paine DN, Crooker J, Massa PT, Thangamani S. Comparative Pathogenesis of Two Lineages of Powassan Virus Reveals Distinct Clinical Outcome, Neuropathology, and Inflammation. Viruses 2024; 16:820. [PMID: 38932113 PMCID: PMC11209061 DOI: 10.3390/v16060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus.
Collapse
Affiliation(s)
- Erin S. Reynolds
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Charles E. Hart
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jacob T. Nelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brandon J. Marzullo
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, NY 14203, USA
- Genomics and Bioinformatics Core, New York State Center of Excellence Bioinformatics & Life Sciences, SUNY Buffalo, Buffalo, NY 14203, USA
| | - Allen T. Esterly
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dakota N. Paine
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jessica Crooker
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Paul T. Massa
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA (A.T.E.)
- SUNY Center for Vector-Borne Diseases, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
12
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
13
|
Dobrzyńska M, Moniuszko-Malinowska A, Radziwon P, Pancewicz S, Gęgotek A, Skrzydlewska E. Tick-borne encephalitis virus transmitted singly and in duo with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum bacteria by ticks as pathogens modifying lipid metabolism in human blood. J Biomed Sci 2024; 31:28. [PMID: 38438941 PMCID: PMC10910801 DOI: 10.1186/s12929-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| |
Collapse
|
14
|
Banerjee J, Ranjan RP, Alam MT, Deshmukh S, Tripathi PP, Gandhi S, Banerjee S. Virus-associated neuroendocrine cancers: Pathogenesis and current therapeutics. Pathol Res Pract 2023; 248:154720. [PMID: 37542862 DOI: 10.1016/j.prp.2023.154720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise malignancies involving neuroendocrine cells that often lead to fatal pathological conditions. Despite escalating global incidences, NENs still have poor prognoses. Interestingly, research indicates an intricate association of tumor viruses with NENs. However, there is a dearth of comprehension of the complete scenario of NEN pathophysiology and its precise connections with the tumor viruses. Interestingly, several cutting-edge experiments became helpful for further screening of NET for the presence of polyomavirus, Human papillomavirus (HPV), Kaposi sarcoma-associated herpesvirus (KSHV), Epstein Barr virus (EBV), etc. Current research on the neuroendocrine tumor (NET) pathogenesis provides new information concerning their molecular mechanisms and therapeutic interventions. Of note, scientists observed that metastatic neuroendocrine tumors still have a poor prognosis with a palliative situation. Different oncolytic vector has already demonstrated excellent efficacies in clinical studies. Therefore, oncolytic virotherapy or virus-based immunotherapy could be an emerging and novel therapeutic intervention. In-depth understanding of all such various aspects will aid in managing, developing early detection assays, and establishing targeted therapeutic interventions for NENs concerning tumor viruses. Hence, this review takes a novel approach to discuss the dual role of tumor viruses in association with NENs' pathophysiology as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Juni Banerjee
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| | - Ramya P Ranjan
- National Institute of Animal Biotechnology (NIAB), Gachibowli, Hyderabad, Telangana 500032, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (IICB), 4, Raja S. C. Mullick Road, Kolkata 700032, India; IICB-Translational Research Unit of Excellence(IICB-TRUE), Kolkata 700091, India
| | - Sanika Deshmukh
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Prem Prakash Tripathi
- CSIR-Indian Institute of Chemical Biology (IICB), 4, Raja S. C. Mullick Road, Kolkata 700032, India; IICB-Translational Research Unit of Excellence(IICB-TRUE), Kolkata 700091, India.
| | - Sonu Gandhi
- National Institute of Animal Biotechnology (NIAB), Gachibowli, Hyderabad, Telangana 500032, India.
| | - Shuvomoy Banerjee
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
15
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
16
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
17
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
18
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
19
|
Fortova A, Hönig V, Salat J, Palus M, Pychova M, Krbkova L, Barkhash AV, Kriha MF, Chrdle A, Lipoldova M, Ruzek D. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker in paediatric and adult tick-borne encephalitis patients. Virus Res 2023; 324:199020. [PMID: 36528170 DOI: 10.1016/j.virusres.2022.199020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in central nervous system infections. We analysed the levels of 8 different MMPs in the cerebrospinal fluid (CSF) of 89 adult patients infected with tick-borne encephalitis (TBE) virus and compared them with the levels in a control group. MMP-9 was the only MMP that showed significantly increased CSF levels in TBE patients. Serum MMP-9 levels were subsequently measured in 101 adult TBE patients at various time points during the neurological phase of TBE and at follow-up. In addition, serum MMP-9 was analysed in 37 paediatric TBE patients. Compared with control levels, both paediatric and adult TBE patients had significantly elevated serum MMP-9 levels. In most adult patients, serum MMP-9 levels peaked at hospital admission, with higher serum MMP-9 levels observed in patients with encephalitis than in patients with meningitis. Elevated serum MMP-9 levels were observed throughout hospitalisation but decreased to normal levels at follow-up. Serum MMP-9 levels correlated with clinical course, especially in patients heterozygous for the single-nucleotide polymorphism rs17576 (A/G; Gln279Arg) in the MMP9 gene. The results highlight the importance of MMP-9 in the pathogenesis of TBE and suggest that serum MMP-9 may serve as a promising bioindicator of TBE in both paediatric and adult TBE patients.
Collapse
Affiliation(s)
- Andrea Fortova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia
| | - Vaclav Hönig
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martin Palus
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czechia
| | - Lenka Krbkova
- Department of Children's Infectious Disease, Faculty of Medicine and University Hospital, Masaryk University, CZ-61300 Brno, Czechia
| | - Andrey V Barkhash
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentyeva Ave., Novosibirsk 630090, Russia
| | - Michal F Kriha
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czechia
| | - Ales Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia; Royal Liverpool University Hospital, Prescot St, Liverpool L7 8XP, UK
| | - Marie Lipoldova
- Institute of Molecular Genetics of the Czech Academy of Sciences, CZ-14220 Prague, Czechia
| | - Daniel Ruzek
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czechia.
| |
Collapse
|
20
|
Telikani Z, Monson EA, Hofer MJ, Helbig KJ. Antiviral response within different cell types of the CNS. Front Immunol 2022; 13:1044721. [PMID: 36458002 PMCID: PMC9706196 DOI: 10.3389/fimmu.2022.1044721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 01/28/2024] Open
Abstract
The central nervous system (CNS) is a constitutive structure of various cell types conserved by anatomical barriers. Many of the major CNS cell-type populations distributed across the different brain regions are targets for several neurotropic viruses. Numerous studies have demonstrated that viral susceptibility within the CNS is not absolute and initiates a cell-type specific antiviral defence response. Neurons, astrocytes, and microglial cells are among the major resident cell populations within the CNS and are all equipped to sense viral infection and induce a relative antiviral response mostly through type I IFN production, however, not all these cell types adopt a similar antiviral strategy. Rising evidence has suggested a diversity regarding IFN production and responsiveness based on the cell type/sub type, regional distinction and cell`s developmental state which could shape distinct antiviral signatures. Among CNS resident cell types, neurons are of the highest priority to defend against the invading virus due to their poor renewable nature. Therefore, infected and uninfected glial cells tend to play more dominant antiviral roles during a viral infection and have been found to be the major CNS IFN producers. Alternatively, neuronal cells do play an active part during antiviral responses but may adopt differential strategies in addition to induction of a typical type I IFN response, to minimize the chance of cellular damage. Heterogeneity observed in neuronal IFN responsiveness may be partially explained by their altered ISGs and/or lower STATS expression levels, however, further in vivo studies are required to fully elucidate the specificity of the acquired antiviral responses by distinct CNS cell types.
Collapse
Affiliation(s)
- Zahra Telikani
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Ebony A. Monson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and the Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Karla J. Helbig
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Powassan Virus Induces Structural Changes in Human Neuronal Cells In Vitro and Murine Neurons In Vivo. Pathogens 2022; 11:pathogens11101218. [PMID: 36297275 PMCID: PMC9609669 DOI: 10.3390/pathogens11101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus (TBFV) that can cause severe encephalitis in humans with a case-fatality rate as high as 11%. Patients who survive severe encephalitic disease can develop long-term neurological sequelae that can be debilitating and life-long. In this study, we have sought to characterize a primary human fetal brain neural stem cell system (hNSC), which can be differentiated into neuron and astrocyte co-cultures, to serve as a translational in vitro system for infection with POWV and a comparative mosquito-borne flavivirus (MBFV), West Nile virus (WNV). We found that both viruses are able to infect both cell types in the co-culture and that WNV elicits a strong inflammatory response characterized by increased cytokines IL-4, IL-6, IL-8, TNF-α and IL-1β and activation of apoptosis pathways. POWV infection resulted in fewer cytokine responses, as well as less detectable apoptosis, while neurons infected with POWV exhibited structural aberrations forming in the dendrites. These anomalies are consistent with previous findings in which tick-borne encephalitis virus (TBEV) infected murine primary neurons formed laminal membrane structures (LMS). Furthermore, these structural aberrations are also recapitulated in brain tissue from infected mice. Our findings indicate that POWV is capable of infecting human primary neurons and astrocytes without causing apparent widespread apoptosis, while forming punctate structures reminiscent with LMS in primary human neurons and in vivo.
Collapse
|
22
|
Marshall EM, Koopmans MPG, Rockx B. A Journey to the Central Nervous System: Routes of Flaviviral Neuroinvasion in Human Disease. Viruses 2022; 14:2096. [PMID: 36298652 PMCID: PMC9611789 DOI: 10.3390/v14102096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.
Collapse
Affiliation(s)
| | | | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
23
|
Bhide K, Mochnáčová E, Tkáčová Z, Petroušková P, Kulkarni A, Bhide M. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells. Sci Rep 2022; 12:8863. [PMID: 35614140 PMCID: PMC9133079 DOI: 10.1038/s41598-022-13043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne encephalitis virus and West Nile virus can cross the blood–brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.
Collapse
Affiliation(s)
- Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Fortova A, Hönig V, Palus M, Salat J, Pychova M, Krbkova L, Vyhlidalova T, Kriha MF, Chrdle A, Ruzek D. Serum and cerebrospinal fluid phosphorylated neurofilament heavy subunit as a marker of neuroaxonal damage in tick-borne encephalitis. J Gen Virol 2022; 103. [PMID: 35506983 DOI: 10.1099/jgv.0.001743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extensive axonal and neuronal loss is the main cause of severe manifestations and poor outcomes in tick-borne encephalitis (TBE). Phosphorylated neurofilament heavy subunit (pNF-H) is an essential component of axons, and its detection in cerebrospinal fluid (CSF) or serum can indicate the degree of neuroaxonal damage. We examined the use of pNF-H as a biomarker of neuroaxonal injury in TBE. In 89 patients with acute TBE, we measured CSF levels of pNF-H and 3 other markers of brain injury (glial fibrillary acidic protein, S100B and ubiquitin C-terminal hydrolase L1) and compared the results to those for patients with meningitis of other aetiology and controls. Serum pNF-H levels were measured in 80 patients and compared with findings for 90 healthy blood donors. TBE patients had significantly (P<0.001) higher CSF pNF-H levels than controls as early as hospital admission. Serum pNF-H concentrations were significantly higher in samples from TBE patients collected at hospital discharge (P<0.0001) than in controls. TBE patients with the highest peak values of serum pNF-H, exceeding 10 000 pg ml-1, had a very severe disease course, with coma or tetraplegia. Patients requiring intensive care had significantly higher serum pNF-H levels than other TBE patients (P<0.01). Elevated serum pNF-H values were also observed in patients with incomplete recovery (P<0.05). Peak serum pNF-H levels correlated positively with the duration of hospitalization (P=0.005). Measurement of pNF-H levels in TBE patients might be useful for assessing disease severity and determining prognosis.
Collapse
Affiliation(s)
- Andrea Fortova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia
| | - Vaclav Hönig
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martin Palus
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czechia
| | - Lenka Krbkova
- Department of Children's Infectious Disease, Faculty of Medicine and University Hospital, Masaryk University, CZ-61300 Brno, Czechia
| | - Tereza Vyhlidalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia
| | - Michal F Kriha
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czechia
| | - Ales Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, CZ-37001 Ceske Budejovice, Czechia.,Royal Liverpool University Hospital, Prescot St, Liverpool L7 8XP, UK
| | - Daniel Ruzek
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, CZ-62100 Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czechia
| |
Collapse
|
26
|
Metabolic Response to Tick-Borne Encephalitis Virus Infection and Bacterial Co-Infections. Pathogens 2022; 11:pathogens11040384. [PMID: 35456059 PMCID: PMC9030592 DOI: 10.3390/pathogens11040384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ticks are vectors of various pathogens, including tick-borne encephalitis virus and bacteria such as B. burgdorferi and A. phagocytophilum, causing infections/co-infections, which are still a diagnostic and therapeutic problem. Therefore, the aim of this study was to compare the effects of TBEV infection/bacterial co-infection on metabolic changes in the blood of patients before and after treatment. It was found that those infections promote plasma ROS enhanced generation and antioxidant defence reduction, especially in relation to glutathione and thioredoxin systems, despite the increased effectiveness of Nrf2 transcription factor in granulocytes. Observed oxidative stress promotes the oxidative modifications of phospholipids containing polyunsaturated fatty acids (LA, AA, EPA) with increased lipid peroxidation (estimated as 8-isoPGF2α, 4-HNE). It is accompanied by protein modifications measured as 4-HNE-protein adducts, carbonyl groups, dityrosine increase, and tryptophan level decrease, which promote structural and functional modification of the following transcription factors: Nrf2 and NFkB inhibitors. The lower level of 8-iso-PGF2α in co-infections indicates an impairment of the body’s ability to intensify inflammation and fight co-infections, while an increased level of Trx after therapy may contribute to the intensification of the inflammatory process. The obtained results indicate the potential possibility of using the assessed metabolic parameters to introduce targeted pharmacotherapy in cases of TBEV infections/bacterial co-infections.
Collapse
|
27
|
Astrocyte Control of Zika Infection Is Independent of Interferon Type I and Type III Expression. BIOLOGY 2022; 11:biology11010143. [PMID: 35053142 PMCID: PMC8772967 DOI: 10.3390/biology11010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Zika virus (ZIKV) is a mosquito-borne virus first isolated from the Zika forest, Uganda, in 1947, which has been spreading across continents since then. We now know ZIKV causes both microencephaly in newborns and neurological complications in adults; however, no effective treatment options have yet been found. A more complete understanding of Zika-infection-mediated pathogenesis and host responses is required to enable the development of novel treatment strategies. In this study, efforts were made to elucidate the host responses following Zika virus infection using several astrocyte cell models, as astrocytes are a major cell type within the central nervous system (CNS) with significant antiviral ability. Our data suggest that astrocytes can resist ZIKV both in an interferon type I- and III-independent manner and suggest that an early and more diverse antiviral response may be more effective in controlling Zika infection. This study also identifies astrocyte cellular models that appear to display differential abilities in the control of viral infection, which may assist in the study of alternate neurotropic virus infections. Overall, this work adds to the growing body of knowledge surrounding ZIKV-mediated cellular host interactions and will contribute to a better understanding of ZIKV-mediated pathogenesis. Abstract Zika virus (ZIKV) is a pathogenic neurotropic virus that infects the central nervous system (CNS) and results in various neurological complications. Astrocytes are the dominant CNS cell producer of the antiviral cytokine IFN-β, however little is known about the factors involved in their ability to mediate viral infection control. Recent studies have displayed differential responses in astrocytes to ZIKV infection, and this study sought to elucidate astrocyte cell-specific responses to ZIKV using a variety of cell models infected with either the African (MR766) or Asian (PRVABC59) ZIKV strains. Expression levels of pro-inflammatory (TNF-α and IL-1β) and inflammatory (IL-8) cytokines following viral infection were low and mostly comparable within the ZIKV-resistant and ZIKV-susceptible astrocyte models, with better control of proinflammatory cytokines displayed in resistant astrocyte cells, synchronising with the viral infection level at specific timepoints. Astrocyte cell lines displaying ZIKV-resistance also demonstrated early upregulation of multiple antiviral genes compared with susceptible astrocytes. Interestingly, pre-stimulation of ZIKV-susceptible astrocytes with either poly(I:C) or poly(dA:dT) showed efficient protection against ZIKV compared with pre-stimulation with either recombinant IFN-β or IFN-λ, perhaps indicating that a more diverse antiviral gene expression is necessary for astrocyte control of ZIKV, and this is driven in part through interferon-independent mechanisms.
Collapse
|
28
|
Tavčar Verdev P, Potokar M, Korva M, Resman Rus K, Kolenc M, Avšič Županc T, Zorec R, Jorgačevski J. In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cell Mol Life Sci 2022; 79:566. [PMID: 36283999 PMCID: PMC9596533 DOI: 10.1007/s00018-022-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.
Collapse
Affiliation(s)
- Petra Tavčar Verdev
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Miša Korva
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
29
|
Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors. Comput Struct Biotechnol J 2022; 20:2759-2777. [PMID: 35685361 PMCID: PMC9167876 DOI: 10.1016/j.csbj.2022.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.
Collapse
|
30
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Hubálek Z. History of Arbovirus Research in the Czech Republic. Viruses 2021; 13:2334. [PMID: 34835140 PMCID: PMC8622538 DOI: 10.3390/v13112334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
The aim of this review is to follow the history of studies on endemiv arboviruses and the diseases they cause which were detected in the Czech lands (Bohemia, Moravia and Silesia (i.e., the Czech Republic)). The viruses involve tick-borne encephalitis, West Nile and Usutu flaviviruses; the Sindbis alphavirus; Ťahyňa, Batai, Lednice and Sedlec bunyaviruses; the Uukuniemi phlebovirus; and the Tribeč orbivirus. Arboviruses temporarily imported from abroad to the Czech Republic have been omitted. This brief historical review includes a bibliography of all relevant papers.
Collapse
Affiliation(s)
- Zdenek Hubálek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| |
Collapse
|
32
|
Ghita L, Breitkopf V, Mulenge F, Pavlou A, Gern OL, Durán V, Prajeeth CK, Kohls M, Jung K, Stangel M, Steffen I, Kalinke U. Sequential MAVS and MyD88/TRIF signaling triggers anti-viral responses of tick-borne encephalitis virus-infected murine astrocytes. J Neurosci Res 2021; 99:2478-2492. [PMID: 34296786 DOI: 10.1002/jnr.24923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is typically transmitted upon tick bite and can cause meningitis and encephalitis in humans. In TBEV-infected mice, mitochondrial antiviral-signaling protein (MAVS), the downstream adaptor of retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling, is needed to induce early type I interferon (IFN) responses and to confer protection. To characterize the brain-resident cell subset that produces protective IFN-β in TBEV-infected mice, we isolated neurons, astrocytes, and microglia from mice and exposed these cell types to TBEV in vitro. Under such conditions, neurons showed the highest percentage of infected cells, whereas astrocytes and microglia were infected to a lesser extent. In the supernatant (SN) of infected neurons, IFN-β was not detectable, while infected astrocytes showed high and microglia low IFN-β expression. Transcriptome analyses of astrocytes implied that MAVS signaling was needed early after TBEV infection. Accordingly, MAVS-deficient astrocytes showed enhanced TBEV infection and significantly reduced early IFN-β responses. Nevertheless, at later time points, moderate amounts of IFN-β were detected in the SN of infected MAVS-deficient astrocytes. Transcriptome analyses indicated that MAVS deficiency negatively affected the induction of early anti-viral responses, which resulted in significantly increased TBEV replication. Treatment with MyD88 and TRIF inhibiting peptides reduced only late IFN-β responses of TBEV-infected WT astrocytes and blocked entirely IFN-β responses of infected MAVS-deficient astrocytes. Thus, upon TBEV exposure of brain-resident cells, astrocytes are important IFN-β producers showing biphasic IFN-β induction that initially depends on MAVS and later on MyD88/TRIF signaling.
Collapse
Affiliation(s)
- Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Veronika Breitkopf
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Moritz Kohls
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Imke Steffen
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
34
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
35
|
Poelaert KCK, Williams RM, Matullo CM, Rall GF. Noncanonical Transmission of a Measles Virus Vaccine Strain from Neurons to Astrocytes. mBio 2021; 12:e00288-21. [PMID: 33758092 PMCID: PMC8092232 DOI: 10.1128/mbio.00288-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/20/2023] Open
Abstract
Viruses, including members of the herpes-, entero-, and morbillivirus families, are the most common cause of infectious encephalitis in mammals worldwide. During most instances of acute viral encephalitis, neurons are typically the initial cell type that is infected. However, as replication and spread ensue, other parenchymal cells can become viral targets, especially in chronic infections. Consequently, to ascertain how neurotropic viruses trigger neuropathology, it is crucial to identify which central nervous system (CNS) cell populations are susceptible and permissive throughout the course of infection, and to define how viruses spread between distinct cell types. Using a measles virus (MV) transgenic mouse model that expresses human CD46 (hCD46), the MV vaccine strain receptor, under the control of a neuron-specific enolase promoter (NSE-hCD46+ mice), a novel mode of viral spread between neurons and astrocytes was identified. Although hCD46 is required for initial neuronal infection, it is dispensable for heterotypic spread to astrocytes, which instead depends on glutamate transporters and direct neuron-astrocyte contact. Moreover, in the presence of RNase A, astrocyte infection is reduced, suggesting that nonenveloped ribonucleoproteins (RNP) may cross the neuron-astrocyte synaptic cleft. The characterization of this novel mode of intercellular transport offers insights into the unique interaction of neurons and glia and may reveal therapeutic targets to mitigate the life-threatening consequences of measles encephalitis.IMPORTANCE Viruses are the most important cause of infectious encephalitis in mammals worldwide; several thousand people, primarily the very young and the elderly, are impacted annually, and few therapies are reliably successful once neuroinvasion has occurred. To understand how viruses contribute to neuropathology, and to develop tools to prevent or ameliorate such infections, it is crucial to define if and how viruses disseminate among the different cell populations within the highly complex central nervous system. This study defines a noncanonical mode of viral transmission between neurons and astrocytes within the brain.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| | - Riley M Williams
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS. Vaccines (Basel) 2021; 9:vaccines9030196. [PMID: 33652698 PMCID: PMC7996866 DOI: 10.3390/vaccines9030196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.
Collapse
|
37
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Fedyanina LN, Kuznetsova TA, Zvyagintseva TN, Shchelkanov MY. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021; 9:200. [PMID: 33671278 PMCID: PMC7921925 DOI: 10.3390/biomedicines9020200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The disease-preventive and medicinal properties of plant polyphenolic compounds have long been known. As active ingredients, they are used to prevent and treat many noncommunicable diseases. In recent decades, marine macroalgae have attracted the attention of biotechnologists and pharmacologists as a promising and almost inexhaustible source of polyphenols. This heterogeneous group of compounds contains many biopolymers with unique structure and biological properties that exhibit high anti-infective activity. In the present review, the authors focus on the antiviral potential of polyphenolic compounds (phlorotannins) from marine algae and consider the mechanisms of their action as well as other biological properties of these compounds that have effects on the progress and outcome of viral infections. Effective nutraceuticals, to be potentially developed on the basis of algal polyphenols, can also be used in the complex therapy of viral diseases. It is necessary to extend in vivo studies on laboratory animals, which subsequently will allow proceeding to clinical tests. Polyphenolic compounds have a great potential as active ingredients to be used for the creation of new antiviral pharmaceutical substances.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | | | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
38
|
ADAM15 Participates in Tick-Borne Encephalitis Virus Replication. J Virol 2021; 95:JVI.01926-20. [PMID: 33208450 DOI: 10.1128/jvi.01926-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a major tick-borne viral pathogen of humans, is known to cause neurological diseases such as meningitis, encephalitis, and meningoencephalitis. However, the life cycle and pathogenesis of TBEV are not well understood. Here, we show that the knockdown or knockout of ADAM15 (a disintegrin and metalloproteinase 15), a host protein involved in neuroblastoma diseases, leads to TBEV replication and assembly defects. We characterized the disintegrin domain in ADAM15 and found that the ADAM15 subcellular localization was changed following TBEV infection. RNA interference (RNAi) screen analysis confirmed ADAM's nonredundant functions and identified a specific role for ADAM15 in TBEV infection. An RNA-sequencing analysis was also conducted to understand the causal link between TBEV infection and the cellular endomembrane network, namely, the generation of replication organelles promoting viral genome replication and virus production. Our data demonstrated that TBEV infection changes ADAM15 cellular localization, which contributes to membrane reorganization and viral replication.IMPORTANCE Tick populations are increasing, and their geographic ranges are expanding. Increases in tick-borne disease prevalence and transmission are important public health issues. Tick-borne encephalitis virus (TBEV) often results in meningitis, encephalitis, and meningoencephalitis. TBEV causes clinical disease in more than 20,000 humans in Europe and Asia per year. An increased incidence of TBE has been noted in Europe and Asia, as a consequence of climate and socioeconomic changes. The need to investigate the mechanism(s) of interaction between the virus and the host factors is apparent, as it will help us to understand the roles of host factors in the life cycle of TBEV. The significance of our research is in identifying the ADAM15 for TBEV replication, which will greatly enhance our understanding of TBEV life cycle and highlight a target for pharmaceutical consideration.
Collapse
|
39
|
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, Cadar D, Savini G, Teodori L, Monaco F, Schmidt-Chanasit J, Saiz JC, Gonzales G, Lecollinet S, Beck C, Gosselet F, Van de Perre P, Foulongne V, Salinas S, Simonin Y. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation 2021; 18:11. [PMID: 33407600 PMCID: PMC7789689 DOI: 10.1186/s12974-020-02060-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Orianne Constant
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Marie France Martin
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Lina Lapeyre
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Liana Teodori
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Federica Monaco
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148, Hamburg, Germany
| | | | - Gaëlle Gonzales
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Cécile Beck
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (BBB Lab), University of Artois, UR2465, F-62300, Lens, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France.
| |
Collapse
|
40
|
Lindqvist R, Rosendal E, Weber E, Asghar N, Schreier S, Lenman A, Johansson M, Dobler G, Bestehorn M, Kröger A, Överby AK. The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection. J Neuroinflammation 2020; 17:284. [PMID: 32988388 PMCID: PMC7523050 DOI: 10.1186/s12974-020-01943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Ebba Rosendal
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Elvira Weber
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Current affiliation: Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Naveed Asghar
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sarah Schreier
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annasara Lenman
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Magnus Johansson
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Malena Bestehorn
- Bundeswehr Institute of Microbiology, Munich, Germany.,Parasitology Unit, University of Hohenheim, D-, Stuttgart, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany. .,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Anna K Överby
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
| |
Collapse
|
41
|
Martínez IZ, Pérez-Martínez C, Salinas LM, Juste RA, García Marín JF, Balseiro A. Phenotypic Characterization of Encephalitis and Immune Response in the Brains of Lambs Experimentally Infected with Spanish Goat Encephalitis Virus. Animals (Basel) 2020; 10:ani10081373. [PMID: 32784781 PMCID: PMC7459603 DOI: 10.3390/ani10081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary This article studies the local immune response in the central nervous system (CNS) in lambs experimentally infected with Spanish goat encephalitis virus. CNS sections were immunostained to detect microglia, astrocytes, T lymphocytes, and B lymphocytes. In glial foci and perivascular cuffing areas, microglia were the most abundant cell type (45.4% of immunostained cells), followed by T lymphocytes (18.6%) and B lymphocytes (4.4%). Reactive astrogliosis occurred to a greater extent in the lumbosacral spinal cord. Thalamus, hypothalamus, corpus callosum, and medulla oblongata cord contained the largest areas occupied by glial foci. Lesions were more severe in lambs than in goats. Abstract Spanish goat encephalitis virus (SGEV), a novel subtype of tick-borne flavivirus closely related to louping ill virus, causes a neurological disease in experimentally infected goats and lambs. Here, the distribution of microglia, T and B lymphocytes, and astrocytes was determined in the encephalon and spinal cord of eight Assaf lambs subcutaneously infected with SGEV. Cells were identified based on immunohistochemical staining against Iba1 (microglia), CD3 (T lymphocytes), CD20 (B lymphocytes), and glial fibrillary acidic protein (astrocytes). In glial foci and perivascular cuffing areas, microglia were the most abundant cell type (45.4% of immunostained cells), followed by T lymphocytes (18.6%) and B lymphocytes (4.4%). Thalamus, hypothalamus, corpus callosum, and medulla oblongata contained the largest areas occupied by glial foci. Reactive astrogliosis occurred to a greater extent in the lumbosacral spinal cord than in other regions of the central nervous system. Lesions were more frequent on the side of the animal experimentally infected with the virus. Lesions were more severe in lambs than in goats, suggesting that lambs may be more susceptible to SGEV, which may be due to species differences or to interindividual differences in the immune response, rather than to differences in the relative proportions of immune cells. Larger studies that monitor natural or experimental infections may help clarify local immune responses to this flavivirus subtype in the central nervous system.
Collapse
Affiliation(s)
- Ileana Z. Martínez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24006 León, Spain; (I.Z.M.); (C.P.-M.); (L.M.S.); (J.F.G.M.)
- Universidad Popular Autónoma del Estado de Puebla, UPAEP Universidad, Puebla 72410, Mexico
| | - Claudia Pérez-Martínez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24006 León, Spain; (I.Z.M.); (C.P.-M.); (L.M.S.); (J.F.G.M.)
| | - Luis M. Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24006 León, Spain; (I.Z.M.); (C.P.-M.); (L.M.S.); (J.F.G.M.)
- Universidad Internacional Antonio de Valdivieso, UNIAV, 47000 Rivas, Nicaragua
| | - Ramón A. Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Bizkaia, Spain;
| | - Juan F. García Marín
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24006 León, Spain; (I.Z.M.); (C.P.-M.); (L.M.S.); (J.F.G.M.)
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, Grulleros, 24346 León, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24006 León, Spain; (I.Z.M.); (C.P.-M.); (L.M.S.); (J.F.G.M.)
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, Grulleros, 24346 León, Spain
- Correspondence:
| |
Collapse
|
42
|
Kaufman F, Dostálková A, Pekárek L, Thanh TD, Kapisheva M, Hadravová R, Bednárová L, Novotný R, Křížová I, Černý J, Grubhoffer L, Ruml T, Hrabal R, Rumlová M. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett 2020; 594:1989-2004. [PMID: 32510601 DOI: 10.1002/1873-3468.13857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Collapse
Affiliation(s)
- Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Lukáš Pekárek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Tung Dinh Thanh
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Romana Hadravová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radim Novotný
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Richard Hrabal
- NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
43
|
Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, Boissart C, Lecollinet S, Richardson J, Haddad N, Coulpier M. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation 2020; 17:76. [PMID: 32127025 PMCID: PMC7053149 DOI: 10.1186/s12974-020-01756-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-Eastern Asia. TBEV tropism is critical for neuropathogenesis, yet little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis. METHOD Human neuronal/glial cells were differentiated from neural progenitor cells and infected with the TBEV-Hypr strain. Kinetics of infection, cellular tropism, and cellular responses, including innate immune responses, were characterized by measuring viral genome and viral titer, performing immunofluorescence, enumerating the different cellular types, and determining their rate of infection and by performing PCR array and qRT-PCR. The specific response of neurons and astrocytes was analyzed using the same approaches after enrichment of the neuronal/glial cultures for each cellular subtype. RESULTS We showed that infection of human neuronal/glial cells mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death, and astrogliosis. We further showed that these cells conserved their capacity to mount an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures for either neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. CONCLUSION Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They describe a new in vitro model for in-depth study of TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.
Collapse
Affiliation(s)
- Mazigh Fares
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Marielle Cochet-Bernoin
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Gaëlle Gonzalez
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Claudia N Montero-Menei
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d'Angers, F-49933, Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, CHU Angers, BB-0033-00038, Angers, France
| | | | | | - Sylvie Lecollinet
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jennifer Richardson
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR 956, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Coulpier
- UMR1161 Virologie, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
44
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
45
|
Martínez IZ, Pérez-Martínez C, Salinas LM, García-Marín JF, Juste RA, Balseiro A. Phenotypic characterization of encephalitis in the brains of goats experimentally infected with Spanish Goat Encephalitis Virus. Vet Immunol Immunopathol 2019; 220:109978. [PMID: 31821945 DOI: 10.1016/j.vetimm.2019.109978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Spanish goat encephalitis virus (SGEV) is a novel tick-borne flavivirus subtype, closely related to the flavivirus louping ill virus (LIV). SGEV caused a severe, acute and mortal neurological disease outbreak in northern Spain in a goat herd. In order to characterize the cell population in lesions and to determine the distribution of the inflammatory cells, central nervous system (CNS) samples of nine female Alpine goats challenged subcutaneously with SGEV over the right thorax behind the elbow were evaluated using immunohistochemistry (microglia-Iba1, T lymphocytes-CD3, B lymphocytes-CD20 and astrocytes-GFAP). The number of microglia (37.8 %) and T lymphocytes (21.5 %) was greater than the number of B lymphocytes (16.8 %). Goats were classified into clusters based on the severity of histological lesions in CNS (A-mild to moderate lesions and B-severe lesions). Microglia was significantly more abundant than T and B lymphocytes in cluster B (severe lesions). The total area occupied by glial foci revealed that medulla oblongata and spinal cord were the most affected tissues. Astrogliosis (GFAP+) was present in the majority of the CNS sections being near to the pial surface. The lesion predominance on the right side of the medulla oblongata, which could be associated to the site of challenge suggestive of neurotropic route was also statistically confirmed. Results suggest that the cellular immune response would be the most important response to the SGEV infection.
Collapse
Affiliation(s)
- Ileana Z Martínez
- Universidad de León, Campus de Vegazana, León, Spain; Universidad Popular Autónoma del Estado de Puebla, UPAEP Universidad, Puebla, Mexico.
| | | | - Luis M Salinas
- Universidad de León, Campus de Vegazana, León, Spain; Universidad Internacional Antonio de Valdivieso, UNIAV, Rivas, Nicaragua
| | | | - Ramón A Juste
- Centro de Biotecnología, Servicio Regional de Investigación y Desarrollo Agroalimentario, SERIDA, Gijón, Asturias, Spain
| | - Ana Balseiro
- Universidad de León, Campus de Vegazana, León, Spain; Centro de Biotecnología, Servicio Regional de Investigación y Desarrollo Agroalimentario, SERIDA, Gijón, Asturias, Spain
| |
Collapse
|
46
|
Pokorna Formanova P, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, Ruzek D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation 2019; 16:205. [PMID: 31699097 PMCID: PMC6839073 DOI: 10.1186/s12974-019-1596-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a severe neuropathological disorder caused by tick-borne encephalitis virus (TBEV). Brain TBEV infection is characterized by extensive pathological neuroinflammation. The mechanism by which TBEV causes CNS destruction remains unclear, but growing evidence suggests that it involves both direct neuronal damage by the virus infection and indirect damage caused by the immune response. Here, we aimed to examine the TBEV-infection-induced innate immune response in mice and in human neural cells. We also compared cytokine/chemokine communication between naïve and infected neuronal cells and astrocytes. Methods We used a multiplexed Luminex system to measure multiple cytokines/chemokines and growth factors in mouse serum samples and brain tissue, and in human neuroblastoma cells (SK-N-SH) and primary cortical astrocytes (HBCA), which were infected with the highly pathogenic TBEV strain Hypr. We also investigated changes in cytokine/chemokine production in naïve HBCA cells treated with virus-free supernatants from TBEV-infected SK-N-SH cells and in naïve SK-N-SH cells treated with virus-free supernatants from TBEV-infected HBCA cells. Additionally, a plaque assay was performed to assess how cytokine/chemokine treatment influenced viral growth following TBEV infection. Results TBEV-infected mice exhibited time-dependent increases in serum and brain tissue concentrations of multiple cytokines/chemokines (mainly CXCL10/IP-10, and also CXCL1, G-CSF, IL-6, and others). TBEV-infected SK-N-SH cells exhibited increased production of IL-8 and RANTES and downregulated MCP-1 and HGF. TBEV infection of HBCA cells activated production of a broad spectrum of pro-inflammatory cytokines, chemokines, and growth factors (mainly IL-6, IL-8, CXCL10, RANTES, and G-CSF) and downregulated the expression of VEGF. Treatment of SK-N-SH with supernatants from infected HBCA induced expression of a variety of chemokines and pro-inflammatory cytokines, reduced SK-N-SH mortality after TBEV infection, and decreased virus growth in these cells. Treatment of HBCA with supernatants from infected SK-N-SH had little effect on cytokine/chemokine/growth factor expression but reduced TBEV growth in these cells after infection. Conclusions Our results indicated that both neurons and astrocytes are potential sources of pro-inflammatory cytokines in TBEV-infected brain tissue. Infected/activated astrocytes produce cytokines/chemokines that stimulate the innate neuronal immune response, limiting virus replication, and increasing survival of infected neurons.
Collapse
Affiliation(s)
- Petra Pokorna Formanova
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Martin Palus
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Vaclav Hönig
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Michal Stefanik
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Pavel Svoboda
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic
| | - Daniel Ruzek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
47
|
Model System for the Formation of Tick-Borne Encephalitis Virus Replication Compartments without Viral RNA Replication. J Virol 2019; 93:JVI.00292-19. [PMID: 31243132 PMCID: PMC6714791 DOI: 10.1128/jvi.00292-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level. Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required. IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.
Collapse
|
48
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
49
|
Rodrigues R, Danskog K, Överby AK, Arnberg N. Characterizing the cellular attachment receptor for Langat virus. PLoS One 2019; 14:e0217359. [PMID: 31163044 PMCID: PMC6548386 DOI: 10.1371/journal.pone.0217359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Tick-borne encephalitis infections have increased the last 30 years. The mortality associated to this viral infection is 0.5 to 30% with a risk of permanent neurological sequelae, however, no therapeutic is currently available. The first steps of virus-cell interaction, such as attachment and entry, are of importance to understand pathogenesis and tropism. Several molecules have been shown to interact with tick-borne encephalitis virus (TBEV) at the plasma membrane surface, yet, no studies have proven that these are specific entry receptors. In this study, we set out to characterize the cellular attachment receptor(s) for TBEV using the naturally attenuated member of the TBEV complex, Langat virus (LGTV), as a model. Inhibiting or cleaving different molecules from the surface of A549 cells, combined with inhibition assays using peptide extracts from high LGTV binding cells, revealed that LGTV attachment to host cells is dependent on plasma membrane proteins, but not on glycans or glycolipids, and suggested that LGTV might use different cellular attachment factors on different cell types. Based on this, we developed a transcriptomic approach to generate a list of candidate attachment and entry receptors. Our findings shed light on the first step of the flavivirus life-cycle and provide candidate receptors that might serve as a starting point for future functional studies to identify the specific attachment and/or entry receptor for LGTV and TBEV.
Collapse
Affiliation(s)
- Raquel Rodrigues
- Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Katarina Danskog
- Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Niklas Arnberg
- Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Maximova OA, Pletnev AG. Flaviviruses and the Central Nervous System: Revisiting Neuropathological Concepts. Annu Rev Virol 2019; 5:255-272. [PMID: 30265628 DOI: 10.1146/annurev-virology-092917-043439] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flaviviruses are major emerging human pathogens on a global scale. Some flaviviruses can infect the central nervous system of the host and therefore are regarded as neurotropic. The most clinically relevant classical neurotropic flaviviruses include Japanese encephalitis virus, West Nile virus, and tick-borne encephalitis virus. In this review, we focus on these flaviviruses and revisit the concepts of flaviviral neurotropism, neuropathogenicity, neuroinvasion, and resultant neuropathogenesis. We attempt to synthesize the current knowledge about interactions between the central nervous system and flaviviruses from the neuroanatomical and neuropathological perspectives and address some misconceptions and controversies. We hope that revisiting these neuropathological concepts will improve the understanding of flaviviral neuroinfections. This, in turn, may provide further guiding foundations for relevant studies of other emerging or geographically expanding flaviviruses with neuropathogenic potential, such as Zika virus and dengue virus, and pave the way for intelligent therapeutic strategies harnessing potentially beneficial, protective host responses to interfere with disease progression and outcome.
Collapse
Affiliation(s)
- Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|