1
|
Mokany K, Burley HM, Ware C, Giljohann KM, O'Grady AP, Christie-Whitehead KM, Harrison MT. Farm revegetation has substantial potential to improve biodiversity outcomes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125174. [PMID: 40163922 DOI: 10.1016/j.jenvman.2025.125174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Agricultural expansion and intensification has caused habitat loss, contributing to the current biodiversity crisis. Reliable, efficient and consistent information at the farm-scale is critical to understand the magnitude of recent changes in biodiversity and to inform future management actions aimed at reversing historical declines. We apply a habitat-based biodiversity assessment approach to examine the potential for grazing farms across Australia to improve outcomes for biodiversity by revegetating 10 % of the farm area. Fourteen case-study farms distributed across Australia with diverse attributes were assessed, including an analysis of likely benefits for biodiversity 30 years after commencing a hypothetical revegetation scenario, within the context of estimates of recent historical changes. From 2004 to 2020, the three biodiversity indicators considered decreased for the majority of farms. The scenario for revegetating 10 % of the farm area was estimated to substantially increase the biodiversity indicators, with half of the farms estimated to achieve recovery for all 3 indicators to greater than 2004 levels by 2050. Smaller farms with lower average ecosystem condition in 2020 were estimated to achieve the greatest gains in biodiversity from the revegetation scenario, relative to their indicator values in 2020. Farm revegetation actions have substantial potential to improve outcomes for biodiversity, though such gains may be difficult and time consuming to achieve, emphasising the importance of avoiding further habitat loss through removal or degradation of native vegetation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew T Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham, TAS, 7248, Australia
| |
Collapse
|
2
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Werner FA, Homeier J. Diverging Elevational Patterns of Tree vs. Epiphyte Species Density, Beta Diversity, and Biomass in a Tropical Dry Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2555. [PMID: 39339530 PMCID: PMC11434910 DOI: 10.3390/plants13182555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied the species composition and biomass of epiphytes and trees along an elevation gradient in a tropical dry forest in SW Ecuador. Both life-forms were inventoried on 25 plots of 400 m2 across five elevation levels (550-1250 m). Tree species density and total species richness increased with elevation, whereas basal area and biomass did not show significant trends. Epiphyte species density and richness both increased strongly with elevation, in parallel to biomass. Plot-level compositional changes were similarly strong for both life-forms. We attribute elevational increases in the species richness of trees and epiphytes to increasing humidity, i.e., more mesic growth conditions. We attribute the more pronounced elevational increase in epiphyte biomass, species density, and richness-the latter coupled with a higher degree of nestedness-to the greater moisture dependency of epiphytes and relatively low direct competition for resources. Our study provides a first comparison of elevational trends in epiphyte and tree diversity and biomass for a tropical dry forest.
Collapse
Affiliation(s)
- Florian A. Werner
- Functional Ecology, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzkystraße 9-11, 26111 Oldenburg, Germany
| | - Jürgen Homeier
- Faculty of Resource Management, HAWK University of Applied Sciences and Arts, Daimlerstraße 2, 37075 Göttingen, Germany
- Plant Ecology, Georg-August University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
4
|
Boakes EH, Dalin C, Etard A, Newbold T. Impacts of the global food system on terrestrial biodiversity from land use and climate change. Nat Commun 2024; 15:5750. [PMID: 38982053 PMCID: PMC11233703 DOI: 10.1038/s41467-024-49999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
The global food system is a key driver of land-use and climate change which in turn drive biodiversity change. Developing sustainable food systems is therefore critical to reversing biodiversity loss. We use the multi-regional input-output model EXIOBASE to estimate the biodiversity impacts embedded within the global food system in 2011. Using models that capture regional variation in the sensitivity of biodiversity both to land use and climate change, we calculate the land-driven and greenhouse gas-driven footprints of food using two metrics of biodiversity: local species richness and rarity-weighted species richness. We show that the footprint of land area underestimates biodiversity impact in more species-rich regions and that our metric of rarity-weighted richness places a greater emphasis on biodiversity costs in Central and South America. We find that methane emissions are responsible for 70% of the overall greenhouse gas-driven biodiversity footprint and that, in several regions, emissions from a single year's food production are associated with global biodiversity loss equivalent to 2% or more of that region's total land-driven biodiversity loss. The measures we present are relatively simple to calculate and could be incorporated into decision-making and environmental impact assessments by governments and businesses.
Collapse
Affiliation(s)
- Elizabeth H Boakes
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
- Institute for Sustainable Resources, Bartlett School of Environment, Energy and Resources, University College London, Central House, 14 Upper Woburn Place, London, UK.
| | - Carole Dalin
- Institute for Sustainable Resources, Bartlett School of Environment, Energy and Resources, University College London, Central House, 14 Upper Woburn Place, London, UK
- Laboratoire de Géologie de L'École Normale Supérieure, PSL Research University, UMR8538 CNRS, Paris, France
| | - Adrienne Etard
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
- International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| |
Collapse
|
5
|
Braz Pires M, Kougioumoutzis K, Norder S, Dimopoulos P, Strid A, Panitsa M. The future of plant diversity within a Mediterranean endemism centre: Modelling the synergistic effects of climate and land-use change in Peloponnese, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174622. [PMID: 38992359 DOI: 10.1016/j.scitotenv.2024.174622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Climate- and land-use change stand as primary threats to terrestrial biodiversity. Yet, their synergistic impacts on species distributions remain poorly understood. To address this knowledge gap, we conducted the first-ever comprehensive species distribution analysis on an entire regional endemism centre within an eastern Mediterranean country, incorporating dynamic land-use/land-cover change data together with climate change scenarios. Specifically, we apply species distribution modelling and spatial data analysis techniques to compare the individual and synergistic effects of these environmental drivers on the endemic vascular flora of Peloponnese, focusing on potential range contractions, altitudinal shifts, and habitat fragmentation levels. Moreover, we identify fine-scale present and potential future endemism hotspots within our study area, incorporating taxonomic and phylogenetic information. Overall, we aim to enhance our current understanding of endemism patterns and contribute to the development of future-proof conservation strategies for safeguarding Greece's endangered endemic flora. The integration of land-use change projections with climate change yielded less severe impacts compared to the effects anticipated when considering climatic variables alone. Most taxa are expected to undergo significant range declines and nearly half might experience increased habitat fragmentation, due to the synergistic effects of climate- and land-use change. We identified endemism hotspots, which are concentrated in or along the main Peloponnesian mountain massifs. However, our predictions indicate that areas presently recognized as endemism hotspots will undergo a concerning area decline, across all future scenarios considered in this study. Our findings highlight the importance of including dynamic land-use variables alongside climatic predictors when projecting species distributions under global change. Moreover, we showed that endemism hotspots are not static and considering their potential geographic shifts is paramount to delineate effective forward-looking conservation strategies.
Collapse
Affiliation(s)
- Mariana Braz Pires
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | | | - Sietze Norder
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
6
|
Mancini G, Santini L, Cazalis V, Akçakaya HR, Lucas PM, Brooks TM, Foden W, Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14227. [PMID: 38111977 DOI: 10.1111/cobi.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 12/20/2023]
Abstract
The International Union for Conservation of Nature (IUCN) Red List is a central tool for extinction risk monitoring and influences global biodiversity policy and action. But, to be effective, it is crucial that it consistently accounts for each driver of extinction. Climate change is rapidly becoming a key extinction driver, but consideration of climate change information remains challenging for the IUCN. Several methods can be used to predict species' future decline, but they often fail to provide estimates of the symptoms of endangerment used by IUCN. We devised a standardized method to measure climate change impact in terms of change in habitat quality to inform criterion A3 on future population reduction. Using terrestrial nonvolant tetrapods as a case study, we measured this impact as the difference between the current and the future species climatic niche, defined based on current and future bioclimatic variables under alternative model algorithms, dispersal scenarios, emission scenarios, and climate models. Our models identified 171 species (13% out of those analyzed) for which their current red-list category could worsen under criterion A3 if they cannot disperse beyond their current range in the future. Categories for 14 species (1.5%) could worsen if maximum dispersal is possible. Although ours is a simulation exercise and not a formal red-list assessment, our results suggest that considering climate change impacts may reduce misclassification and strengthen consistency and comprehensiveness of IUCN Red List assessments.
Collapse
Affiliation(s)
- Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, New York, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Thomas M Brooks
- IUCN Species Survival Commission (SSC), Gland, Switzerland
- World Agroforestry Center (ICRAF), University of The Philippines Los Baños, Los Baños, Philippines
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Wendy Foden
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- Global Change Biology Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Azuero-Pedraza CG, Lauri P, Lessa Derci Augustynczik A, Thomas VM. Managing Forests for Biodiversity Conservation and Climate Change Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9175-9186. [PMID: 38743611 PMCID: PMC11137864 DOI: 10.1021/acs.est.3c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
We include biodiversity impacts in forest management decision making by incorporating the countryside species area relationship model into the partial equilibrium model GLOBIOM-Forest. We tested three forest management intensities (low, medium, and high) and limited biodiversity loss via an additional constraint on regional species loss. We analyzed two scenarios for climate change mitigation. RCP1.9, the higher mitigation scenario, has more biodiversity loss than the reference RCP7.0, suggesting a trade-off between climate change mitigation, with increased bioenergy use, and biodiversity conservation in forests. This trade-off can be alleviated with biodiversity-conscious forest management by (1) shifting biomass production destined to bioenergy from forests to energy crops, (2) increasing areas under unmanaged secondary forest, (3) reducing forest management intensity, and (4) reallocating biomass production between and within regions. With these mechanisms, it is possible to reduce potential global biodiversity loss by 10% with minor changes in economic outcomes. The global aggregated reduction in biodiversity impacts does not imply that biodiversity impacts are reduced in each ecoregion. We exemplify how to connect an ecologic and an economic model to identify trade-offs, challenges, and possibilities for improved decisions. We acknowledge the limitations of this approach, especially of measuring and projecting biodiversity loss.
Collapse
Affiliation(s)
- Cindy G. Azuero-Pedraza
- H.
Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- International
Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria
- CMCC
Foundation—Euro-Mediterranean Center on Climate Change, Via Marco Biagi 5, Lecce 73100, Italy
- RFF-CMCC
European Institute on Economics and the Environment, Via Bergognone 34, Milan 20144, Italy
| | - Pekka Lauri
- International
Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria
| | | | - Valerie M. Thomas
- H.
Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Public Policy, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Weiskopf SR, Isbell F, Arce-Plata MI, Di Marco M, Harfoot M, Johnson J, Lerman SB, Miller BW, Morelli TL, Mori AS, Weng E, Ferrier S. Biodiversity loss reduces global terrestrial carbon storage. Nat Commun 2024; 15:4354. [PMID: 38778013 PMCID: PMC11111688 DOI: 10.1038/s41467-024-47872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Natural ecosystems store large amounts of carbon globally, as organisms absorb carbon from the atmosphere to build large, long-lasting, or slow-decaying structures such as tree bark or root systems. An ecosystem's carbon sequestration potential is tightly linked to its biological diversity. Yet when considering future projections, many carbon sequestration models fail to account for the role biodiversity plays in carbon storage. Here, we assess the consequences of plant biodiversity loss for carbon storage under multiple climate and land-use change scenarios. We link a macroecological model projecting changes in vascular plant richness under different scenarios with empirical data on relationships between biodiversity and biomass. We find that biodiversity declines from climate and land use change could lead to a global loss of between 7.44-103.14 PgC (global sustainability scenario) and 10.87-145.95 PgC (fossil-fueled development scenario). This indicates a self-reinforcing feedback loop, where higher levels of climate change lead to greater biodiversity loss, which in turn leads to greater carbon emissions and ultimately more climate change. Conversely, biodiversity conservation and restoration can help achieve climate change mitigation goals.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Mike Harfoot
- Vizzuality, 123 Calle de Fuencarral, 28010, Madrid, Spain
| | - Justin Johnson
- Department of Applied Economics, University of Minnesota, 1994 Buford Ave, Saint Paul, MN, 55105, USA
| | | | - Brian W Miller
- U.S. Geological Survey North Central Climate Adaptation Science Center, Boulder, CO, USA
| | - Toni Lyn Morelli
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Akira S Mori
- Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Ensheng Weng
- Columbia University/NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, 10025, USA
| | | |
Collapse
|
9
|
Pereira HM, Martins IS, Rosa IMD, Kim H, Leadley P, Popp A, van Vuuren DP, Hurtt G, Quoss L, Arneth A, Baisero D, Bakkenes M, Chaplin-Kramer R, Chini L, Di Marco M, Ferrier S, Fujimori S, Guerra CA, Harfoot M, Harwood TD, Hasegawa T, Haverd V, Havlík P, Hellweg S, Hilbers JP, Hill SLL, Hirata A, Hoskins AJ, Humpenöder F, Janse JH, Jetz W, Johnson JA, Krause A, Leclère D, Matsui T, Meijer JR, Merow C, Obersteiner M, Ohashi H, De Palma A, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper AM, Settele J, Sharp R, Stehfest E, Strassburg BBN, Takahashi K, Talluto L, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Alkemade R. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 2024; 384:458-465. [PMID: 38662818 DOI: 10.1126/science.adn3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/04/2024]
Abstract
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Collapse
Affiliation(s)
- Henrique M Pereira
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
- BIOPOLIS, CIBIO/InBIO, Universidade do Porto, Vairão 4485-661, Portugal
| | - Inês S Martins
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, YO10 5DD, UK
| | - Isabel M D Rosa
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
- Kenvue Portugal, JNTL Consumer Health Ltd, Porto Salvo 2740-262, Portugal
| | - HyeJin Kim
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
- UK Centre for Ecology and Hydrology, Lancaster LA1 4AP, UK
| | - Paul Leadley
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette 91190, France
| | - Alexander Popp
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam 14473, Germany
- Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen D-37213, Germany
| | - Detlef P van Vuuren
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht 3584 CB, Netherlands
| | - George Hurtt
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Luise Quoss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology, Department of Meteorology and Climate/Atmospheric Environmental Research, Garmisch-Partenkirchen 82467, Germany
| | - Daniele Baisero
- Department of Biology and Biotechnologies, Sapienza Università di Roma, Rome I-00185, Italy
- KBA Secretariat, BirdLife International, Cambridge CB2 3QZ, UK
| | - Michel Bakkenes
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
| | - Rebecca Chaplin-Kramer
- Global Science, World Wildlife Fund, San Francisco, CA 94105, USA
- Institute on the Environment, University of Minnesota, Saint Paul, MN 55108, USA
| | - Louise Chini
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza Università di Roma, Rome I-00185, Italy
| | | | - Shinichiro Fujimori
- Department of Environmental Engineering, Katsura Campus, Kyoto University, Kyoto-city 615-8540, Japan
- National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Universidade de Coimbra, Coimbra 3004-530, Portugal
| | - Michael Harfoot
- United Nations Environment Programme, World Conservation Monitoring Centre, Cambridge CB3 0DL, UK
| | - Thomas D Harwood
- CSIRO Environment, Canberra, ACT 2601, Australia
- Environmental Change Institute, Oxford OX1 3QY, UK
| | - Tomoko Hasegawa
- National Institute for Environmental Studies, Ibaraki 305-8506, Japan
- Ritsumeikan University, Shiga 525-8577, Japan
| | | | - Petr Havlík
- International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
| | - Stefanie Hellweg
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - Jelle P Hilbers
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
- Radboud University, Radboud Institute for Biological and Environmental Sciences, Nijmegen 6500 GL, Netherlands
| | - Samantha L L Hill
- United Nations Environment Programme, World Conservation Monitoring Centre, Cambridge CB3 0DL, UK
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Akiko Hirata
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Andrew J Hoskins
- CSIRO Environment, Canberra, ACT 2601, Australia
- James Cook University, Townsville, 4811 Queensland, Australia
| | - Florian Humpenöder
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam 14473, Germany
| | - Jan H Janse
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
- Netherlands Institute of Ecology NIOO-KNAW, Wageningen 6700AB, Netherlands
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT 06511, USA
| | - Justin A Johnson
- Department of Applied Economics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Andreas Krause
- Karlsruhe Institute of Technology, Department of Meteorology and Climate/Atmospheric Environmental Research, Garmisch-Partenkirchen 82467, Germany
- Technical University of Munich, TUM School of Life Sciences, Freising 85354, Germany
| | - David Leclère
- International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
| | - Tetsuya Matsui
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Johan R Meijer
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
| | - Cory Merow
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Michael Obersteiner
- Environmental Change Institute, Oxford OX1 3QY, UK
- International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
| | - Haruka Ohashi
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Ibaraki 305-8687, Japan
| | - Adriana De Palma
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Andy Purvis
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Benjamin Quesada
- Karlsruhe Institute of Technology, Department of Meteorology and Climate/Atmospheric Environmental Research, Garmisch-Partenkirchen 82467, Germany
- "Interactions Climate-Ecosystems (ICE)" Research Group, Earth System Science Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá DC 63B-48, Colombia
| | - Carlo Rondinini
- Department of Biology and Biotechnologies, Sapienza Università di Roma, Rome I-00185, Italy
| | - Aafke M Schipper
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
- Radboud University, Radboud Institute for Biological and Environmental Sciences, Nijmegen 6500 GL, Netherlands
| | - Josef Settele
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology and Social-Ecological Systems, Halle 06210, Germany
- Institute of Biological Sciences, University of the Philippines, Laguna 4031, Philippines
| | - Richard Sharp
- Global Science, World Wildlife Fund, San Francisco, CA 94105, USA
| | - Elke Stehfest
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
| | - Bernardo B N Strassburg
- re.green, Rio de Janeiro 22470-060, Brazil
- Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifícia Universidade Católica, Rio de Janeiro 22451-900, Brazil
| | - Kiyoshi Takahashi
- National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Lauren Talluto
- Department of Ecology, University of Innsbruck, Innsbruck 6020, Austria
| | - Wilfried Thuiller
- Université Grenoble Alpes, CNRS, Université Savoie Mont Blanc, LECA, Laboratoire d'Écologie Alpine, Grenoble F-38000, France
| | - Nicolas Titeux
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology and Social-Ecological Systems, Halle 06210, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Observatory for Climate, Environment and Biodiversity, Belvaux 4422, Luxembourg
| | - Piero Visconti
- International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Observatory for Climate, Environment and Biodiversity, Belvaux 4422, Luxembourg
- Centre for Biodiversity and Environment Research, University College London, London C1E6BT, UK
| | | | - Florian Wolf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Rob Alkemade
- PBL Netherlands Environmental Assessment Agency, Hague 2500 GH, Netherlands
- Earth System and Global Change Group, Wageningen University, Wageningen 6708PB Netherlands
| |
Collapse
|
10
|
Kass JM, Fukaya K, Thuiller W, Mori AS. Biodiversity modeling advances will improve predictions of nature's contributions to people. Trends Ecol Evol 2024; 39:338-348. [PMID: 37968219 DOI: 10.1016/j.tree.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.
Collapse
Affiliation(s)
- Jamie M Kass
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Keiichi Fukaya
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Clements HS, Do Linh San E, Hempson G, Linden B, Maritz B, Monadjem A, Reynolds C, Siebert F, Stevens N, Biggs R, De Vos A, Blanchard R, Child M, Esler KJ, Hamann M, Loft T, Reyers B, Selomane O, Skowno AL, Tshoke T, Abdoulaye D, Aebischer T, Aguirre-Gutiérrez J, Alexander GJ, Ali AH, Allan DG, Amoako EE, Angedakin S, Aruna E, Avenant NL, Badjedjea G, Bakayoko A, Bamba-Kaya A, Bates MF, Bates PJJ, Belmain SR, Bennitt E, Bradley J, Brewster CA, Brown MB, Brown M, Bryja J, Butynski TM, Carvalho F, Channing A, Chapman CA, Cohen C, Cords M, Cramer JD, Cronk N, Cunneyworth PMK, Dalerum F, Danquah E, Davies-Mostert HT, de Blocq AD, De Jong YA, Demos TC, Denys C, Djagoun CAMS, Doherty-Bone TM, Drouilly M, du Toit JT, Ehlers Smith DA, Ehlers Smith YC, Eiseb SJ, Fashing PJ, Ferguson AW, Fernández-García JM, Finckh M, Fischer C, Gandiwa E, Gaubert P, Gaugris JY, Gibbs DJ, Gilchrist JS, Gil-Sánchez JM, Githitho AN, Goodman PS, Granjon L, Grobler JP, Gumbi BC, Gvozdik V, Harvey J, Hauptfleisch M, Hayder F, Hema EM, Herbst M, Houngbédji M, Huntley BJ, Hutterer R, Ivande ST, Jackson K, Jongsma GFM, Juste J, Kadjo B, Kaleme PK, Kamugisha E, Kaplin BA, Kato HN, Kiffner C, et alClements HS, Do Linh San E, Hempson G, Linden B, Maritz B, Monadjem A, Reynolds C, Siebert F, Stevens N, Biggs R, De Vos A, Blanchard R, Child M, Esler KJ, Hamann M, Loft T, Reyers B, Selomane O, Skowno AL, Tshoke T, Abdoulaye D, Aebischer T, Aguirre-Gutiérrez J, Alexander GJ, Ali AH, Allan DG, Amoako EE, Angedakin S, Aruna E, Avenant NL, Badjedjea G, Bakayoko A, Bamba-Kaya A, Bates MF, Bates PJJ, Belmain SR, Bennitt E, Bradley J, Brewster CA, Brown MB, Brown M, Bryja J, Butynski TM, Carvalho F, Channing A, Chapman CA, Cohen C, Cords M, Cramer JD, Cronk N, Cunneyworth PMK, Dalerum F, Danquah E, Davies-Mostert HT, de Blocq AD, De Jong YA, Demos TC, Denys C, Djagoun CAMS, Doherty-Bone TM, Drouilly M, du Toit JT, Ehlers Smith DA, Ehlers Smith YC, Eiseb SJ, Fashing PJ, Ferguson AW, Fernández-García JM, Finckh M, Fischer C, Gandiwa E, Gaubert P, Gaugris JY, Gibbs DJ, Gilchrist JS, Gil-Sánchez JM, Githitho AN, Goodman PS, Granjon L, Grobler JP, Gumbi BC, Gvozdik V, Harvey J, Hauptfleisch M, Hayder F, Hema EM, Herbst M, Houngbédji M, Huntley BJ, Hutterer R, Ivande ST, Jackson K, Jongsma GFM, Juste J, Kadjo B, Kaleme PK, Kamugisha E, Kaplin BA, Kato HN, Kiffner C, Kimuyu DM, Kityo RM, Kouamé NG, Kouete T M, le Roux A, Lee ATK, Lötter MC, Lykke AM, MacFadyen DN, Macharia GP, Madikiza ZJK, Mahlaba TAM, Mallon D, Mamba ML, Mande C, Marchant RA, Maritz RA, Markotter W, McIntyre T, Measey J, Mekonnen A, Meller P, Melville HI, Mganga KZ, Mills MGL, Minnie L, Missoup AD, Mohammad A, Moinde NN, Moise BFE, Monterroso P, Moore JF, Musila S, Nago SGA, Namoto MW, Niang F, Nicolas V, Nkenku JB, Nkrumah EE, Nono GL, Norbert MM, Nowak K, Obitte BC, Okoni-Williams AD, Onongo J, O'Riain MJ, Osinubi ST, Parker DM, Parrini F, Peel MJS, Penner J, Pietersen DW, Plumptre AJ, Ponsonby DW, Porembski S, Power RJ, Radloff FGT, Rambau RV, Ramesh T, Richards LR, Rödel MO, Rollinson DP, Rovero F, Saleh MA, Schmiedel U, Schoeman MC, Scholte P, Serfass TL, Shapiro JT, Shema S, Siebert SJ, Slingsby JA, Sliwa A, Smit-Robinson HA, Sogbohossou EA, Somers MJ, Spawls S, Streicher JP, Swanepoel L, Tanshi I, Taylor PJ, Taylor WA, Te Beest M, Telfer PT, Thompson DI, Tobi E, Tolley KA, Turner AA, Twine W, Van Cakenberghe V, Van de Perre F, van der Merwe H, van Niekerk CJG, van Wyk PCV, Venter JA, Verburgt L, Veron G, Vetter S, Vorontsova MS, Wagner TC, Webala PW, Weber N, Weier SM, White PA, Whitecross MA, Wigley BJ, Willems FJ, Winterbach CW, Woodhouse GM. The bii4africa dataset of faunal and floral population intactness estimates across Africa's major land uses. Sci Data 2024; 11:191. [PMID: 38346970 PMCID: PMC10861571 DOI: 10.1038/s41597-023-02832-6] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/07/2023] [Indexed: 02/15/2024] Open
Abstract
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.
Collapse
Affiliation(s)
- Hayley S Clements
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa.
- Helsinki Lab of Interdisciplinary Conservation Science, University of Helsinki, Helsinki, Finland.
| | - Emmanuel Do Linh San
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Gareth Hempson
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Birthe Linden
- Chair in Biodiversity Value & Change, Faculty of Science, Engineering & Agriculture, University of Venda, Thohoyandou, South Africa
| | - Bryan Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Ara Monadjem
- Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nicola Stevens
- Environmental Change Institute, University of Oxford, Oxford, United Kingdom
| | - Reinette Biggs
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Alta De Vos
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Environmental Sciences, Rhodes University, Makhanda, South Africa
| | - Ryan Blanchard
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Fynbos Node of the South African Environmental Observation Network, Cape Town, South Africa
| | - Matthew Child
- South African National Biodiversity Institute, Cape Town, South Africa
| | - Karen J Esler
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Maike Hamann
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Centre for Geography and Environmental Science, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Ty Loft
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, United Kingdom
| | - Belinda Reyers
- Centre for Environmental Studies, University of Pretoria, Pretoria, South Africa
| | - Odirilwe Selomane
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, Pretoria, South Africa
| | - Andrew L Skowno
- South African National Biodiversity Institute, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Tshegofatso Tshoke
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David G Allan
- Bird Department, Durban Natural Science Museum, Durban, South Africa
| | - Esther E Amoako
- Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana
| | - Samuel Angedakin
- Department of Environmental Management, Makerere University, Kampala, Uganda
| | - Edward Aruna
- Biodiversity Conservation, Reptile and Amphibian Program - Sierra Leone, Freetown, Sierra Leone
| | - Nico L Avenant
- Department of Mammalogy, National Museum, Bloemfontein, South Africa
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Gabriel Badjedjea
- Aquatic Ecology, University of Kisangani/Biodiversity Monitoring Center, Kisangani, Democratic Republic of the Congo
| | - Adama Bakayoko
- UFR Sciences de la Nature, Universite NanguiI Abrogoua, Abidjan, Côte d'Ivoire
| | - Abraham Bamba-Kaya
- Institut de Recherches Agronomiques et Forestières (IRAF), Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Michael F Bates
- Department of Animal and Plant Systematics, National Museum, Bloemfontein, South Africa
- Department of Zoology & Entomology, University of the Free State, Bloemfontein, South Africa
| | | | - Steven R Belmain
- Agriculture, Health and Environment, Natural Resources Institute, University of Greenwich, Chatham, Maritime, United Kingdom
| | - Emily Bennitt
- Okavango Research Institute, University of Botswana, Maun, Botswana
| | - James Bradley
- Kalahari Research and Conservation, Botswana, Botswana
| | | | | | - Michelle Brown
- Department of Anthropology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya
| | - Filipe Carvalho
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
- BIOPOLIS-CIBIO/InBIO, University of Porto, Porto, Portugal
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Callan Cohen
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Marina Cords
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
| | | | - Nadine Cronk
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fredrik Dalerum
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Harriet T Davies-Mostert
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Conserve Global, London, United Kingdom
| | | | - Yvonne A De Jong
- Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya
| | - Terrence C Demos
- Negaunee Integrative Research Center, The Field Museum, Chicago, United States of America
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Chabi A M S Djagoun
- Faculty of Agronomic Sciences, Laboratory of Applied Ecology, University of Abomey Calavi, Cotonou, Benin
| | - Thomas M Doherty-Bone
- Conservation Programs, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| | - Marine Drouilly
- Institute for Communities and Wildlife in Africa (iCWild), University of Cape Town, Cape Town, South Africa
- Centre for Social Science Research (CSSR), University of Cape Town, Cape Town, South Africa
- Panthera, New York, USA
| | - Johan T du Toit
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - David A Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Yvette C Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa
| | - Seth J Eiseb
- Department of Environmental Science, School of Science, University of Namibia, Windhoek, Namibia
| | - Peter J Fashing
- Anthropology Department & Environmental Studies Program, California State University Fullerton, Fullerton, United States of America
| | - Adam W Ferguson
- Gantz Family Collection Center, Field Museum of Natural History, Chicago, USA
| | | | - Manfred Finckh
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Claude Fischer
- Nature Management, University of Applied Sciences of Western Switzerland, Geneva, Jussy, Switzerland
| | - Edson Gandiwa
- Scientific Services, Zimbabwe Parks and Wildlife Management Authority, Harare, Zimbabwe
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique, IRD/CNRS/UPS, Université Toulouse III Paul Sabatier, Toulouse, cedex, 9, France
| | - Jerome Y Gaugris
- Flora Fauna & Man, Ecological Services Limited, Tortola, British Virgin Islands
| | | | - Jason S Gilchrist
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | | | | | | | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - J Paul Grobler
- Genetics, University of the Free State, Bloemfontein, South Africa
| | - Bonginkosi C Gumbi
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Vaclav Gvozdik
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | | | - Morgan Hauptfleisch
- Biodiversity Research Centre, Namibia University of Science and Technology, Windhoek, Namibia
| | - Firas Hayder
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Emmanuel M Hema
- Unité de Formation et de Recherche en Sciences Appliquées et Technologies (UFR-SAT), Université de Dédougou, Dédougou, Burkina Faso
| | - Marna Herbst
- Conservation Services, South African National Parks, Pretoria, South Africa
| | - Mariano Houngbédji
- Organisation pour le Développement Durable et la Biodiversité, Cotonou, Benin
| | - Brian J Huntley
- CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Vairao, Portugal
| | | | - Samuel T Ivande
- A.P. Leventis Ornithological Research Institute (APLORI), University of Jos, Jos, Nigeria
| | - Kate Jackson
- Biology Department, Whitman College, Walla Walla, WA, USA
| | | | - Javier Juste
- Evolutionary Biology, Estación Biológica de Doñana (CSIC), Seville, Spain; CIBER, CIBERESP, Madrid, Spain
| | - Blaise Kadjo
- Natural habitats and biodiversity management, University Félix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | - Prince K Kaleme
- Department of Biology, CRSN/ LWIRO, DS Bukavu, DR Congo, Bukavu, Democratic Republic of the Congo
| | | | - Beth A Kaplin
- Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Humphrey N Kato
- Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Christian Kiffner
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of California, Los Angeles, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Robert M Kityo
- Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - N'goran G Kouamé
- UFR Environnement, Laboratoire de Biodiversité et Ecologie Tropicale, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Marcel Kouete T
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, USA
| | - Aliza le Roux
- Zoology and Entomology, University of the Free State, Qwaqwa campus, Phuthaditjhaba, South Africa
| | - Alan T K Lee
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Mervyn C Lötter
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Duncan N MacFadyen
- Research and Conservation, Oppenheimer Generations, Parktown, Johannesburg, South Africa
| | | | - Zimkitha J K Madikiza
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David Mallon
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mnqobi L Mamba
- Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
| | - Claude Mande
- Department of Ecology and Wildlife Management, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Rob A Marchant
- York institute for Tropical Ecosystems, University of York, York, United Kingdom
| | - Robin A Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
- Conservation Alpha, Cape Town, South Africa
| | - Wanda Markotter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Roodepoort, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming, UMR7179, China
- MECADEV CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Bâtiment d'Anatomie Comparée, Paris, France
| | - Addisu Mekonnen
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Paulina Meller
- Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Haemish I Melville
- Department of Environmental Sciences, University of South Africa, Florida, South Africa
| | - Kevin Z Mganga
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Michael G L Mills
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
| | - Liaan Minnie
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Alain Didier Missoup
- Faculty of Science, Laboratory of Biology and Physiology of Animal Organisms, Zoology Unit, University of Douala, Douala, Cameroon
| | - Abubakr Mohammad
- Researcher, Conflict and Environmental Observatory, Manchester, United Kingdom
| | - Nancy N Moinde
- Conservation Biology, Institute of Primate Research-National Museums of Kenya, Nairobi, Kenya
| | | | - Pedro Monterroso
- Wildlife Conservation Ecology Research Group, CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairã, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- African Parks, Johannesburg, South Africa
| | | | - Simon Musila
- Mammalogy Section-Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Sedjro Gilles A Nago
- Laboratoire d'Ecologie, de Botanique et de Biologie végétale, University of Parakou, Parakou, Benin
| | - Maganizo W Namoto
- Indigenous Woodland Strategy Area, Forestry Research Institute of Malawi, Zomba, Malawi
| | - Fatimata Niang
- Institute of Environmental Sciences, Faculty of Technology and Sciences, University Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jerry B Nkenku
- Departement of Biology, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Evans E Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gonwouo L Nono
- Department of Animal Biologie and Physiologie, University of Yaounde I, Yaounde, Cameroon
| | - Mulavwa M Norbert
- Primatology, Center for Research in Ecology and Forestry (CREF), Bikoro, Democratic Republic of the Congo
| | - Katarzyna Nowak
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Benneth C Obitte
- Small Mammal Conservation Organization, Benin City, Nigeria
- Biological Sciences, Texas Tech University, Lubbock, United States of America
| | | | | | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town, South Africa
| | - Samuel T Osinubi
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Daniel M Parker
- School of Biology and Environmental Science, University of Mpumalanga, Mbombela, South Africa
| | - Francesca Parrini
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mike J S Peel
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Animal Production Institute, Rangeland Ecology, Agricultural Research Council, Pretoria, South Africa
- College of Agriculture and Environmental Sciences: Department of Environmental Sciences (ABEERU), University of South Africa, Pretoria, South Africa
| | - Johannes Penner
- Frogs & Friends, Berlin, Germany
- Chair of Wildlife Ecology & Management, University of Freiburg, Freiburg, Germany
| | - Darren W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Andrew J Plumptre
- KBA Secretariat, c/o BirdLife International, Cambridge, United Kingdom
| | - Damian W Ponsonby
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefan Porembski
- Institute of Biosciences, Department of Botany, University of Rostock, Rostock, Germany
| | - R John Power
- Department of Economic Development, Environment, Conservation & Tourism, North West Provincial Government, Mahikeng, South Africa
| | - Frans G T Radloff
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Ramugondo V Rambau
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Tharmalingam Ramesh
- Division of Conservation Ecology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Leigh R Richards
- Mammalogy Department, Durban Natural Science Museum, Durban, South Africa
| | - Mark-Oliver Rödel
- Herpetology, Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Dominic P Rollinson
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | | | - M Corrie Schoeman
- School of Life Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Paul Scholte
- Gesellschaft fuer Internationale Zusammenarbeit (GIZ), Addis Ababa, Ethiopia
| | - Thomas L Serfass
- Department of Biology and Natural Resources, Frostburg State University, Frostburg, USA
| | - Julie Teresa Shapiro
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Lyon, France
| | - Sidney Shema
- Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Stefan J Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Jasper A Slingsby
- Fynbos Node of the South African Environmental Observation Network, Cape Town, South Africa
- Biological Sciences and Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Cape Town, South Africa
| | | | - Hanneline A Smit-Robinson
- Conservation Division, BirdLife South Africa, Johannesburg, South Africa
- Applied Behavioural Ecological & Ecosystem Research Unit (ABEERU), University of South Africa, Florida, South Africa
| | | | - Michael J Somers
- Mammal Research Institute, Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Jarryd P Streicher
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lourens Swanepoel
- Department of Biology, University of Venda, Thohoyandou, South Africa
| | - Iroro Tanshi
- Small Mammal Conservation Organization, Benin City, Nigeria
- Biology, University of Washington, Seattle, USA
| | - Peter J Taylor
- Zoology and Entomology, University of the Free State, Qwaqwa campus, Phuthaditjhaba, South Africa
| | | | - Mariska Te Beest
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
- Grasslands-Forests-Wetlands Node of the South African Environmental Observation Network, Pietermaritzburg, South Africa
| | | | - Dave I Thompson
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Ndlovu Node of the South African Environmental Observation Network, Phalaborwa, South Africa
| | - Elie Tobi
- Gabon Biodiversity Program, Smithsonian National Zoo and Conservation Biology Institute, Center for Conservation and Sustainability, Gamba, Gabon
| | - Krystal A Tolley
- South African National Biodiversity Institute, Cape Town, South Africa
| | - Andrew A Turner
- Biodiversity Capabilities Directorate, CapeNature, Cape Town, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, South Africa
| | - Wayne Twine
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Victor Van Cakenberghe
- FunMorph Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
- AfricanBats NPC, Centurion, South Africa
| | | | - Helga van der Merwe
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- Arid Lands Node of the South African Environmental Observation Network, Kimberley, South Africa
| | - Chris J G van Niekerk
- NWU Botanical Garden, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| | - Pieter C V van Wyk
- Richtersveld Desert Botanical Gardens, Richtersveld National Park, SANParks, Sendelingsdrift, South Africa
| | - Jan A Venter
- Department of Conservation Management, Nelson Mandela University, George, South Africa
| | - Luke Verburgt
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Geraldine Veron
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Susanne Vetter
- Department of Botany, Rhodes University, Makhanda, South Africa
| | - Maria S Vorontsova
- Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Thomas C Wagner
- Restoration Ecology, Technische Universität München, Freising, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Ecological Consultant, Fürth, Germany
| | - Sina M Weier
- SARChI (NRF-DST) Research Chair on Biodiversity Value and Change, University of Venda, Thohoyandou, South Africa
| | - Paula A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, USA
| | - Melissa A Whitecross
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Landscape Conservation Programme, BirdLife South Africa, Johannesburg, South Africa
| | - Benjamin J Wigley
- Plant Ecology, University of Bayreuth, Bayreuth, Germany
- School of Natural Resource Management, Nelson Mandela University, George, South Africa
- Scientific Services, South African National Parks, Skukuza, South Africa
| | | | | | | |
Collapse
|
12
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Gaüzère P, Botella C, Poggiato G, O'Connor L, Di Marco M, Dragonetti C, Maiorano L, Renaud J, Thuiller W. Dissimilarity of vertebrate trophic interactions reveals spatial uniqueness but functional redundancy across Europe. Curr Biol 2023; 33:5263-5271.e3. [PMID: 37992717 DOI: 10.1016/j.cub.2023.10.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Identifying areas that contain species assemblages not found elsewhere in a region is central to conservation planning.1,2 Species assemblages contain networks of species interactions that underpin species dynamics,3,4 ecosystem processes, and contributions to people.5,6,7 Yet the uniqueness of interaction networks in a regional context has rarely been assessed. Here, we estimated the spatial uniqueness of 10,000 terrestrial vertebrate trophic networks across Europe (1,164 species, 50,408 potential interactions8) based on the amount of similarity between all local networks mapped at a 10 km resolution. Our results revealed more unique networks in the Arctic bioregion, but also in southern Europe and isolated islands. We then contrasted the uniqueness of trophic networks with their vulnerability to human footprint and future climate change and measured their coverage within protected areas. This analysis revealed that unique networks situated in southern Europe were particularly exposed to human footprint and that unique networks in the Arctic might be at risk from future climate change. However, considering interaction networks at the level of trophic groups, rather than species, revealed that the general structure of trophic networks was redundant across the continent, in contrast to species' interactions. We argue that proactive European conservation strategies might gain relevance by turning their eyes toward interaction networks that are both unique and vulnerable.
Collapse
Affiliation(s)
- Pierre Gaüzère
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | | | - Giovanni Poggiato
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Louise O'Connor
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France; Biodiversity, Ecology and Conservation Group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin," "Sapienza," University of Rome, 00185 Roma, Italy
| | - Chiara Dragonetti
- Department of Biology and Biotechnologies "Charles Darwin," "Sapienza," University of Rome, 00185 Roma, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin," "Sapienza," University of Rome, 00185 Roma, Italy
| | - Julien Renaud
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| |
Collapse
|
14
|
Peng S, Shrestha N, Luo Y, Li Y, Cai H, Qin H, Ma K, Wang Z. Incorporating global change reveals extinction risk beyond the current Red List. Curr Biol 2023; 33:3669-3678.e4. [PMID: 37591250 DOI: 10.1016/j.cub.2023.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
Global changes over the past few decades have caused species distribution shifts and triggered population declines and local extinctions of many species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Red List) is regarded as the most comprehensive tool for assessing species extinction risk and has been used at regional, national, and global scales. However, most Red Lists rely on the past and current status of species populations and distributions but do not adequately reflect the risks induced by future global changes. Using distribution maps of >4,000 endemic woody species in China, combined with ensembled species distribution models, we assessed the species threat levels under future climate and land-cover changes using the projected changes in species' suitable habitats and compared our updated Red List with China's existing Red List. We discover an increased number of threatened species in the updated Red List and increased threat levels of >50% of the existing threatened species compared with the existing one. Over 50% of the newly identified threatened species are not adequately covered by protected areas. The Yunnan-Guizhou Plateau, rather than the Hengduan Mountains, is the distribution center of threatened species on the updated Red Lists, as opposed to the threatened species on the existing Red List. Our findings suggest that using Red Lists without considering the impacts of future global changes will underestimate the extinction risks and lead to a biased estimate of conservation priorities, potentially limiting the ability to meet the Kunming-Montreal global conservation targets.
Collapse
Affiliation(s)
- Shijia Peng
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Nawal Shrestha
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hongyu Cai
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haining Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Jameel MA, Nadeem MS, Haq SM, Mubeen I, Shabbir A, Aslam S, Ahmad R, Gaafar ARZ, Al-Munqedhi BMA, Bussmann RW. Shifts in the Distribution Range and Niche Dynamics of the Globally Threatened Western Tragopan ( Tragopan melanocephalus) Due to Climate Change and Human Population Pressure. BIOLOGY 2023; 12:1015. [PMID: 37508444 PMCID: PMC10376776 DOI: 10.3390/biology12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The impact of a changing climate, particularly global warming, often harms the distribution of pheasants, particularly those with limited endemic ranges. To effectively create plans of action aimed at conserving species facing threats such as the Western Tragopan, (Tragopan melanocephalus; Gray, 1829; Galliformes, found in the western Himalayas), it is crucial to understand how future distributions may be affected by anticipated climate change. This study utilized MaxEnt modeling to assess how suitable the habitat of the targeted species is likely to be under different climate scenarios. While similar studies have been conducted regionally, there has been no research on this particular endemic animal species found in the western Himalayas throughout the entire distribution range. The study utilized a total of 200 occurrence points; 19 bioclimatic, four anthropogenic, three topographic, and a vegetation variable were also used. To determine the most fitting model, species distribution modeling (SDM) was employed, and the MaxEnt calibration and optimization techniques were utilized. Data for projected climate scenarios of the 2050s and 2070s were obtained from SSPs 245 and SSPs 585. Among all the variables analyzed; aspect, precipitation of coldest quarter, mean diurnal range, enhanced vegetation index, precipitation of driest month, temperature seasonality, annual precipitation, human footprint, precipitation of driest quarter, and temperature annual range were recognized as the most influential drivers, in that order. The predicted scenarios had high accuracy values (AUC-ROC > 0.9). Based on the feedback provided by the inhabitants, it was observed that the livability of the selected species could potentially rise (between 3.7 to 13%) in all projected scenarios of climate change, because this species is relocating towards the northern regions of the elevation gradient, which is farther from the residential areas, and their habitats are shrinking. The suitable habitats of the Tragopan melanocephalus in the Himalayan region will move significantly by 725 m upwards, because of predicted climate change. However, the fact that the species is considered extinct in most areas and only found in small patches suggests that further research is required to avert a further population decline and delineate the reasons leading to the regional extinction of the species. The results of this study can serve as a foundation for devising conservation strategies for Tragopan melanocephalus under the changing climate and provide a framework for subsequent surveillance efforts aimed at protecting the species.
Collapse
Affiliation(s)
- Muhammad Azhar Jameel
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Sajid Nadeem
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Iqra Mubeen
- Department of Zoology, Government College University, Lahore 54300, Pakistan
| | - Arifa Shabbir
- Department of Zoology, Government College University, Lahore 54300, Pakistan
| | - Shahzad Aslam
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Riyaz Ahmad
- National Center for Wildlife, Riyadh 11575, Saudi Arabia
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
- Department of Botany, Institute of Life Sciences, State Museum of Natural History, 76133 Karlsruhe, Germany
| |
Collapse
|
16
|
Mtsetfwa FP, Kruger L, McCleery RA. Climate change decouples dominant tree species in African savannas. Sci Rep 2023; 13:7619. [PMID: 37165034 PMCID: PMC10172338 DOI: 10.1038/s41598-023-34550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
To understand how two dominant African savanna trees will continue to respond to climate changes, we examined their regeneration niche and adult tree distributions. Specifically, we wanted to (1) determine if distributional patterns were shifting, (2) predict future distributions under different climate change scenarios and (3) evaluate the realism of predicted future distributions. We randomly placed 40 grids into 6 strata across a climate gradient in the kingdom of Eswatini. Within these grids, we sampled adult and seedling marula (Scelerocarya birrea) and knobthorn (Senegalia nigrecens) trees and used the data to model their abundance. Next, we quantified shifts in distributional patterns (e.g., expansion or contraction) by measuring the current and projected areas of overlap between seedling and adult trees. Finally, we predicted future distributions of abundance based on predicted climate conditions. We found knobthorn seedlings within a small portion of the adult distribution, suggesting it was unlikely to track climate changes. Alternatively, finding marula seedlings on and beyond one edge of the adult distribution, suggested its range would shift toward cooler climates. Predicted future distributions suggest suitable climate for both species would transition out of savannas and into grasslands. Future projections (2041-2070) appeared consistent with observed distributions of marula, but knobthorn predictions were unrealistic given the lack of evidence for regeneration outside of its current range. The idiosyncratic responses of these species to climate change are likely to decouple these keystone structures in the coming decades and are likely to have considerable cascading effects including the potential rearrangement of faunal communities.
Collapse
Affiliation(s)
- Fezile P Mtsetfwa
- Department of Wildlife Ecology and Conservation, School of Natural Resource and Environment, University of Florida, Gainesville, FL, USA
- School of Animal Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laurence Kruger
- Organisation for Tropical Studies, Skukuza, South Africa
- Biology Department, University of Cape Town, Cape Town, South Africa
| | - Robert A McCleery
- Department of Wildlife Ecology and Conservation, School of Natural Resource and Environment, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Cenni L, Simoncini A, Massetti L, Rizzoli A, Hauffe HC, Massolo A. Current and future distribution of a parasite with complex life cycle under global change scenarios: Echinococcus multilocularis in Europe. GLOBAL CHANGE BIOLOGY 2023; 29:2436-2449. [PMID: 36815401 DOI: 10.1111/gcb.16616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.
Collapse
Affiliation(s)
- Lucia Cenni
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Andrea Simoncini
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
| | - Luciano Massetti
- Institute of Bioeconomy of the National Research Council, Firenze, Italy
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Heidi C Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Alessandro Massolo
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
- UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
18
|
Rabett RJ, Morimoto R, Kahlert T, Stimpson CM, O’Donnell S, Mai Huong NT, Manh BV, Holmes R, Khánh PS, Van TT, Coward F. Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam. PLoS One 2023; 18:e0280126. [PMID: 36753481 PMCID: PMC9907861 DOI: 10.1371/journal.pone.0280126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023] Open
Abstract
Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia's most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta's southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5-8.5 and SSP2-4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground.
Collapse
Affiliation(s)
- Ryan J. Rabett
- Archaeology & Palaeoecology, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Hellenic Culture & the Liberal Arts, The American College of Greece, Athens, Greece
- * E-mail:
| | - Risa Morimoto
- Department of Economics, School of Oriental and African Studies (SOAS), University of London, London, United Kingdom
| | - Thorsten Kahlert
- Centre for Geographic Information Science and Geomatics, School of Natural & Built Environment, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Shawn O’Donnell
- Department of Geography & Environmental Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | - Bui Van Manh
- Department of Tourism, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Rachael Holmes
- School of Geography, Geology & the Environment, University of Leicester, Leicester, United Kingdom
| | - Phạm Sinh Khánh
- Tràng An Landscape Complex Management Board, Ninh Bình City, Ninh Bình Province, Vietnam
| | - Tran Tan Van
- Vietnam Institute of Geosciences & Mineral Resources, Ministry of Natural Resources & Environment, Hanoi, Vietnam
| | - Fiona Coward
- Department of Archaeology, Anthropology & Forensic Science, Faculty of Science & Technology Bournemouth University, Poole, Dorset, United Kingdom
| |
Collapse
|
19
|
Chowdhury S. Threatened species could be more vulnerable to climate change in tropical countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159989. [PMID: 36347284 DOI: 10.1016/j.scitotenv.2022.159989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat impacting insects globally, yet the impact on tropical insects is largely unknown. Here, I assessed the climatic vulnerability of Bangladeshi butterflies (242 species). About 42 % of species could experience range contraction, and the impact could be significantly more severe among threatened species. Depending on Socio-Economic Pathways (ssps), the future climatic condition could be unsuitable for 2 (ssp126) - 34 % (ssp585) species. The mean elevation of the suitable habitat could increase by 238 %, and the situation could be more severe for the threatened butterflies. Further, 54 % of the realised niche of butterflies could be altered. Although there might be no significant association between the shift in habitat suitability along the elevational gradient, migratory species could experience a more significant shift than non-migrants. Overall, climate change could have a severe impact on Bangladeshi butterflies. To mitigate insect decline globally and meet the Post 2020 Biodiversity Framework targets, immediate detection of climate change impact on tropical insects and developing effective conservation strategies is essential.
Collapse
Affiliation(s)
- Shawan Chowdhury
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Helmholtz Centre for Environmental Research (UFZ), Department of Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
20
|
Mokany K, Ware C, Harwood TD, Schmidt RK, Ferrier S. Habitat-based biodiversity assessment for ecosystem accounting in the Murray-Darling Basin. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13915. [PMID: 35384070 PMCID: PMC9796243 DOI: 10.1111/cobi.13915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding how biodiversity is changing over space and time is crucial for well-informed decisions that help retain Earth's biological heritage over the long term. Tracking changes in biodiversity through ecosystem accounting provides this important information in a systematic way and readily enables linking to other relevant environmental and economic data to provide an integrated perspective. We derived biodiversity accounts for the Murray-Darling Basin, Australia's largest catchment. We assessed biodiversity change from 2010 to 2015 for all vascular plants, all waterbirds, and 10 focal species. We applied a scalable habitat-based assessment approach that combined expected patterns in the distribution of biodiversity from spatial biodiversity models with a time series of spatially complete data on habitat condition derived from remote sensing. Changes in biodiversity from 2010 to 2015 varied across regions and biodiversity features. For the entire Murray-Darling Basin, the expected persistence of vascular plants increased slightly from 2010 to 2015 (from 86.8% to 87.1%), mean species richness of waterbirds decreased slightly (from 12.5 to 12.3 species), whereas for the focal species the estimated area of habitat increased for 8 species and decreased for 1 species. Regions in the north of the Murray-Darling Basin generally had decreases in biodiversity from 2010 to 2015, whereas in the south biodiversity was stable or increased. Our results demonstrate the benefits of habitat-based biodiversity assessments in providing fully scalable biodiversity accounts across different biodiversity features, consistent with the United Nations System of Environmental Economic Accounting - Ecosystem Accounting (SEEA EA) framework.
Collapse
Affiliation(s)
- Karel Mokany
- CSIROCanberraAustralian Capital TerritoryAustralia
| | | | | | | | | |
Collapse
|
21
|
Sun Z, Behrens P, Tukker A, Bruckner M, Scherer L. Global Human Consumption Threatens Key Biodiversity Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9003-9014. [PMID: 36350780 PMCID: PMC9228074 DOI: 10.1021/acs.est.2c00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Key biodiversity areas (KBAs) are critical regions for preserving global biodiversity. KBAs are identified by their importance to biodiversity rather than their legal status. As such, KBAs are often under pressure from human activities. KBAs can encompass many different land-use types (e.g., cropland, pastures) and land-use intensities. Here, we combine a global economic model with spatial mapping to estimate the biodiversity impacts of human land use in KBAs. We find that global human land use within KBAs causes disproportionate biodiversity losses. While land use within KBAs accounts for only 7% of total land use, it causes 16% of the potential global plant loss and 12% of the potential global vertebrate loss. The consumption of animal products accounts for more than half of biodiversity loss within KBAs, with housing the second largest at around 10%. Bovine meat is the largest single contributor to this loss, at around 31% of total biodiversity loss. In terms of land use, lightly grazed pasture contributes the most, accounting for around half of all potential species loss. This loss is concentrated mainly in middle- and low-income regions with rich biodiversity. International trade is an important driver of loss, accounting for 22-29% of total potential plant and vertebrate loss. Our comprehensive global, trade-linked analysis provides insights into maintaining the integrity of KBAs and global biodiversity.
Collapse
Affiliation(s)
- Zhongxiao Sun
- Institute
of Environmental Sciences (CML), Leiden
University, 2333 CC Leiden, the Netherlands
- College
of Land Science and Technology, China Agricultural
University, 100193 Beijing, China
| | - Paul Behrens
- Institute
of Environmental Sciences (CML), Leiden
University, 2333 CC Leiden, the Netherlands
- Leiden
University College The Hague, 2595 DG The Hague, the Netherlands
| | - Arnold Tukker
- Institute
of Environmental Sciences (CML), Leiden
University, 2333 CC Leiden, the Netherlands
- The
Netherlands Organisation for Applied Scientific Research TNO, 2595 DA The Hague, the Netherlands
| | - Martin Bruckner
- Institute
for Ecological Economics, Vienna University
of Economics and Business, 1020 Vienna, Austria
| | - Laura Scherer
- Institute
of Environmental Sciences (CML), Leiden
University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
22
|
Allan JR, Possingham HP, Atkinson SC, Waldron A, Di Marco M, Butchart SHM, Adams VM, Kissling WD, Worsdell T, Sandbrook C, Gibbon G, Kumar K, Mehta P, Maron M, Williams BA, Jones KR, Wintle BA, Reside AE, Watson JEM. The minimum land area requiring conservation attention to safeguard biodiversity. Science 2022; 376:1094-1101. [PMID: 35653463 DOI: 10.1126/science.abl9127] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ambitious conservation efforts are needed to stop the global biodiversity crisis. In this study, we estimate the minimum land area to secure important biodiversity areas, ecologically intact areas, and optimal locations for representation of species ranges and ecoregions. We discover that at least 64 million square kilometers (44% of terrestrial area) would require conservation attention (ranging from protected areas to land-use policies) to meet this goal. More than 1.8 billion people live on these lands, so responses that promote autonomy, self-determination, equity, and sustainable management for safeguarding biodiversity are essential. Spatially explicit land-use scenarios suggest that 1.3 million square kilometers of this land is at risk of being converted for intensive human land uses by 2030, which requires immediate attention. However, a sevenfold difference exists between the amount of habitat converted in optimistic and pessimistic land-use scenarios, highlighting an opportunity to avert this crisis. Appropriate targets in the Post-2020 Global Biodiversity Framework to encourage conservation of the identified land would contribute substantially to safeguarding biodiversity.
Collapse
Affiliation(s)
- James R Allan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, Netherlands.,Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hugh P Possingham
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,The Nature Conservancy, Arlington, VA 22203, USA
| | - Scott C Atkinson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,United Nations Development Programme (UNDP), New York, NY, USA
| | - Anthony Waldron
- Cambridge Conservation Initiative, Department of Zoology, Cambridge University, Cambridge CB2 3QZ, UK.,Faculty of Science and Engineering ARU, Cambridge CB1 1PT, UK
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, I-00185 Rome, Italy.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stuart H M Butchart
- BirdLife International, Cambridge CB2 3QZ, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Vanessa M Adams
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | | | - Chris Sandbrook
- Department of Geography, University of Cambridge, Cambridge CB2 3QZ, UK
| | - Gwili Gibbon
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK
| | - Kundan Kumar
- Rights and Resources Initiative, Washington, DC, USA
| | - Piyush Mehta
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE 19716, USA
| | - Martine Maron
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Brooke A Williams
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Brendan A Wintle
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - April E Reside
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Assessing Conservation and Mitigation Banking Practices and Associated Gains and Losses in the United States. SUSTAINABILITY 2022. [DOI: 10.3390/su14116652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conservation and mitigation banks allow their proponents to buy credits to offset the negative residual impacts of their development projects with the goal of no net loss (NNL) in the ecosystem function and habitat area. However, little is known about the extent to which these bank transactions achieve NNL. We synthesized and reviewed 12,756 transactions in the United States which were related to meeting area and ecological equivalence (n = 4331) between the approved negative impact and offset. While most of these transactions provided an offset that was equal to or greater than the impacted area, approximately one quarter of the transactions, especially those targeting wetlands, did not meet ecological equivalence between the impact and offset. This missing ecological equivalence was often due to the significantly increasing use of preservation, enhancement, and rehabilitation over creating new ecosystems through establishment and re-establishment. Stream transactions seldom added new ecosystem area through creation but mainly used rehabilitation in order to add offset benefits, in many cases leading to a net loss of area. Our results suggest that best practice guidance on habitat creation as well as the incentivization of habitat creation must increase in the future to avoid net loss through bank transactions and to meet the ever-accelerating global changes in land use and the increased pressure of climate change.
Collapse
|
24
|
Wambulwa MC, Luo YH, Zhu GF, Milne R, Wachira FN, Wu ZY, Wang H, Gao LM, Li DZ, Liu J. Determinants of Genetic Structure in a Highly Heterogeneous Landscape in Southwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:779989. [PMID: 35574120 PMCID: PMC9097793 DOI: 10.3389/fpls.2022.779989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Intra-specific genetic diversity is a fundamental component of biodiversity, and is key to species adaptation and persistence. However, significant knowledge gaps still exist in our understanding of the patterns of genetic diversity and their key determinants. Most previous investigations mainly utilized single-species and/or a limited number of explanatory variables; so here we mapped the patterns of plastid genetic diversity within 15 plant species, and explored the key determinants shaping these patterns using a wide range of variables. Population-level cpDNA sequence data for 15 plant species from the Longitudinal Range Gorge Region (LRGR), southwest China, were retrieved from literature and used to estimate haplotype diversity (H D) and population pairwise genetic differentiation (F ST) indices. Genetic diversity and divergence landscape surfaces were then generated based on the H D and F ST, respectively, to clarify the patterns of genetic structure in the region. Subsequently, we analyzed the relationships between plastid genetic diversity and 16 explanatory variables (classified as anthropogenic, climatic, and topographic). We found that the highest genetic diversity occurred in the Yulong Mountain region, with a significant proportion (~74.81%) of the high diversity land area being located outside of protected areas. The highest genetic divergence was observed approximately along the 25°N latitudinal line, with notable peaks in the western and eastern edges of the LRGR. Genetic diversity (H D) was weakly but significantly positively correlated with both Latitude (lat) and Annual Mean Wet Day Frequency (wet), yet significantly negatively correlated with all of Longitude (long), Annual Mean Cloud Cover Percent (cld), Annual Mean Anthropogenic Flux (ahf), and Human Footprint Index (hfp). A combination of climatic, topographic, and anthropogenic factors explained a significant proportion (78%) of genetic variation, with topographic factors (lat and long) being the best predictors. Our analysis identified areas of high genetic diversity (genetic diversity "hotspots") and divergence in the region, and these should be prioritized for conservation. This study contributes to a better understanding of the features that shape the distribution of plastid genetic diversity in the LRGR and thus would inform conservation management efforts in this species-rich, but vulnerable region.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guang-Fu Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Richard Milne
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francis N. Wachira
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Abstract
The food system’s negative impact on biodiversity is increasing over time. Conserving biodiversity requires immediate and widespread action to reduce the biodiversity footprint of food consumption, but biodiversity has historically been neglected in sustainability assessments. We combine high-resolution estimates of the biodiversity footprint with food system scenario modeling to predict the consequences of two key food system sustainability actions in the United States: diet shifts and food waste reduction. Taking these actions may benefit biodiversity in some places and harm it in others. The results of this study can help decision makers understand the trade-offs we must navigate to balance human health, economics, and environmental sustainability and help consumers understand how their diets and food waste behaviors influence global biodiversity. Diet shifts and food waste reduction have the potential to reduce the land and biodiversity footprint of the food system. In this study, we estimated the amount of land used to produce food consumed in the United States and the number of species threatened with extinction as a result of that land use. We predicted potential changes to the biodiversity threat under scenarios of food waste reduction and shifts to recommended healthy and sustainable diets. Domestically produced beef and dairy, which require vast land areas, and imported fruit, which has an intense impact on biodiversity per unit land, have especially high biodiversity footprints. Adopting the Planetary Health diet or the US Department of Agriculture (USDA)–recommended vegetarian diet nationwide would reduce the biodiversity footprint of food consumption. However, increases in the consumption of foods grown in global biodiversity hotspots both inside and outside the United States, especially fruits and vegetables, would partially offset the reduction. In contrast, the USDA-recommended US-style and Mediterranean-style diets would increase the biodiversity threat due to increased consumption of dairy and farmed fish. Simply halving food waste would benefit global biodiversity more than half as much as all Americans simultaneously shifting to a sustainable diet. Combining food waste reduction with the adoption of a sustainable diet could reduce the biodiversity footprint of US food consumption by roughly half. Species facing extinction because of unsustainable food consumption practices could be rescued by reducing agriculture's footprint; diet shifts and food waste reduction can help us get there.
Collapse
|
26
|
Hanssen SV, Steinmann ZJN, Daioglou V, Čengić M, Van Vuuren DP, Huijbregts MAJ. Global implications of crop‐based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB BIOENERGY 2022; 14:307-321. [PMID: 35875590 PMCID: PMC9299942 DOI: 10.1111/gcbb.12911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Bioenergy with carbon capture and storage (BECCS) based on purpose‐grown lignocellulosic crops can provide negative CO2 emissions to mitigate climate change, but its land requirements present a threat to biodiversity. Here, we analyse the implications of crop‐based BECCS for global terrestrial vertebrate species richness, considering both the land‐use change (LUC) required for BECCS and the climate change prevented by BECCS. LUC impacts are determined using global‐equivalent, species–area relationship‐based loss factors. We find that sequestering 0.5–5 Gtonne of CO2 per year with lignocellulosic crop‐based BECCS would require hundreds of Mha of land, and commit tens of terrestrial vertebrate species to extinction. Species loss per unit of negative emissions decreases with: (i) longer lifetimes of BECCS systems, (ii) less overall deployment of crop‐based BECCS and (iii) optimal land allocation, that is prioritizing locations with the lowest species loss per negative emission potential, rather than minimizing overall land use or prioritizing locations with the lowest biodiversity. The consequences of prevented climate change for biodiversity are based on existing climate response relationships. Our tentative comparison shows that for crop‐based BECCS considered over 30 years, LUC impacts on vertebrate species richness may outweigh the positive effects of prevented climate change. Conversely, for BECCS considered over 80 years, the positive effects of climate change mitigation on biodiversity may outweigh the negative effects of LUC. However, both effects and their interaction are highly uncertain and require further understanding, along with the analysis of additional species groups and biodiversity metrics. We conclude that factoring in biodiversity means lignocellulosic crop‐based BECCS should be used early to achieve the required mitigation over longer time periods, on optimal biomass cultivation locations, and most importantly, as little as possible where conversion of natural land is involved, looking instead to sustainably grown or residual biomass‐based feedstocks and alternative strategies for carbon dioxide removal.
Collapse
Affiliation(s)
- Steef V. Hanssen
- Department of Environmental Science Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Zoran J. N. Steinmann
- Department of Environmental Science Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
- Environmental Systems Analysis Group Wageningen University & Research Wageningen The Netherlands
| | - Vassilis Daioglou
- PBL Netherlands Environmental Assessment Agency The Hague The Netherlands
- Copernicus Institute of Sustainable Development Utrecht University Utrecht The Netherlands
| | - Mirza Čengić
- Department of Environmental Science Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Detlef P. Van Vuuren
- PBL Netherlands Environmental Assessment Agency The Hague The Netherlands
- Copernicus Institute of Sustainable Development Utrecht University Utrecht The Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental Science Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| |
Collapse
|
27
|
Marks RA, Hotaling S, Frandsen PB, VanBuren R. Representation and participation across 20 years of plant genome sequencing. NATURE PLANTS 2021; 7:1571-1578. [PMID: 34845350 PMCID: PMC8677620 DOI: 10.1038/s41477-021-01031-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/27/2021] [Indexed: 05/22/2023]
Abstract
The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism-both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa.
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
- Data Science Lab, Smithsonian Institution, Washington, DC, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Detectability of the Critically Endangered Araucaria angustifolia Tree Using Worldview-2 Images, Google Earth Engine and UAV-LiDAR. LAND 2021. [DOI: 10.3390/land10121316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Brazilian Atlantic Forest is a global biodiversity hotspot and has been extensively mapped using satellite remote sensing. However, past mapping focused on overall forest cover without consideration of keystone plant resources such as Araucaria angustifolia. A. angustifolia is a critically endangered coniferous tree that is essential for supporting overall biodiversity in the Atlantic Forest. A. angustifolia’s distribution has declined dramatically because of overexploitation and land-use changes. Accurate detection and rapid assessments of the distribution and abundance of this species are urgently needed. We compared two approaches for mapping Araucaria angustifolia across two scales (stand vs. individual tree) at three study sites in Brazil. The first approach used Worldview-2 images and Random Forest in Google Earth Engine to detect A. angustifolia at the stand level, with an accuracy of >90% across all three study sites. The second approach relied on object identification using UAV-LiDAR and successfully mapped individual trees (producer’s/user’s accuracy = 94%/64%) at one study site. Both approaches can be employed in tandem to map remaining stands and to determine the exact location of A. angustifolia trees. Each approach has its own strengths and weaknesses, and we discuss their adoptability by managers to inform conservation of A. angustifolia.
Collapse
|
29
|
Reddy MM, Jennings L, Thomas OP. Marine Biodiscovery in a Changing World. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 116:1-36. [PMID: 34698944 DOI: 10.1007/978-3-030-80560-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The term "marine biodiscovery" has been recently been adopted to describe the area of marine natural products dedicated to the search of new drugs. Several maritime countries such as Australia, New Zealand, South Korea, and Japan as well as some European countries have invested significantly in this area of research over the last 50 years. In the late 2000s, research in this field has received significant interest and support in Ireland for exploring new marine bioresources from the nutrient-rich waters of the Northeastern Atlantic Ocean. Despite undeniable success exemplified by the marketing of new drugs, especially in oncology, the integration of new technical but also environmental aspects should be considered. Indeed, global change, particularly in our oceans, such as climate change, biodiversity loss, and the emergence of microbial pathogens, not only affects the environment but ultimately contributes to social inequalities. In this contribution, new avenues and best practices are proposed, such as the development of biorepositories and shared data for the future of marine biodiscovery research. The extension of this type of scientific work will allow humanity to finally make the optimum use of marine bioresources.
Collapse
Affiliation(s)
- Maggie M Reddy
- Marine Biodiscovery, School of Chemistry and Ryan Institute, NUI Galway, University Road, Galway, H91TK33, Ireland
| | - Laurence Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, NUI Galway, University Road, Galway, H91TK33, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, NUI Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
30
|
Horreo JL, Fitze PS. Global changes explain the long-term demographic trend of the Eurasian common lizard (Squamata: Lacertidae). Curr Zool 2021; 68:221-228. [PMID: 35355947 PMCID: PMC8962747 DOI: 10.1093/cz/zoab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
The demographic trend of a species depends on the dynamics of its local populations, which can be compromised by local or by global phenomena. However, the relevance of local and global phenomena has rarely been investigated simultaneously. Here, we tested whether local phenomena compromised a species’ demographic trend using the Eurasian common lizard Zootoca vivipara, the terrestrial reptile exhibiting the widest geographic distribution, as a model species. We analyzed the species’ ancient demographic trend using genetic data from its 6 allopatric genetic clades and tested whether its demographic trend mainly depended on single clades or on global phenomena. Zootoca vivipara’s effective population size increased since 2.3 million years ago and started to increase steeply and continuously from 0.531 million years ago. Population growth rate exhibited 2 maxima, both occurring during global climatic changes and important vegetation changes on the northern hemisphere. Effective population size and growth rate were negatively correlated with global surface temperatures, in line with global parameters driving long-term demographic trends. Zootoca vivipara’s ancient demography was neither driven by a single clade, nor by the 2 clades that colonized huge geographic areas after the last glaciation. The low importance of local phenomena, suggests that the experimentally demonstrated high sensitivity of this species to short-term ecological changes is a response in order to cope with short-term and local changes. This suggests that what affected its long-term demographic trend the most, were not these local changes/responses, but rather the important and prolonged global climatic changes and important vegetation changes on the northern hemisphere, including the opening up of the forest by humans.
Collapse
Affiliation(s)
- Jose L Horreo
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, Madrid 28040, Spain
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), C/José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), C/José Gutiérrez Abascal 2, Madrid 28006, Spain
| |
Collapse
|
31
|
Choi Y, Lim CH, Chung HI, Kim Y, Cho HJ, Hwang J, Kraxner F, Biging GS, Lee WK, Chon J, Jeon SW. Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: Insights from the Republic of Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112400. [PMID: 33823436 DOI: 10.1016/j.jenvman.2021.112400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Over the past century, the decline in biodiversity due to climate change and habitat loss has become unprecedentedly serious. Multiple drivers, including climate change, land-use/cover change, and qualitative change in habitat need to be considered in an integrated approach, which has rarely been taken, to create an effective conservation strategy. The purpose of this study is to quantitatively evaluate and map the combined impacts of those multiple drivers on biodiversity in the Republic of Korea (ROK). To this end, biodiversity persistence (BP) was simulated by employing generalized dissimilarity modeling with estimates of habitat conditions. Habitat Condition Index was newly developed based on national survey datasets to represent the changes in habitat quality according to the land cover changes and forest management, especially after the ROK's National Reforestation Programme. The changes in habitat conditions were simulated for a period ranging from the 1960s to the 2010s; additionally, future (2050s) spatial scenarios were constructed. By focusing on the changes in forest habitat quality along with climate and land use, this study quantitatively and spatially analyzed the changes in BP over time and presented the effects of reforestation and forest management. The results revealed that continuous forest management had a positive impact on BP by offsetting the negative effects of past urbanization. Improvements in forest habitat quality also can effectively reduce the negative impacts of climate change. This quantitative analysis of successful forest restoration in Korea proved that economic development and urbanization could be in parallel with biodiversity enhancement. Nevertheless, current forest management practices were found to be insufficient in fully offsetting the decline in future BP caused by climate change. This indicates that there is a need for additional measures along with mitigation of climate change to maintain the current biodiversity level.
Collapse
Affiliation(s)
- Yuyoung Choi
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chul-Hee Lim
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea
| | - Hye In Chung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jin Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhoo Hwang
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Gregory S Biging
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Woo-Kyun Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhyung Chon
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Woo Jeon
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Guerra CA, Delgado-Baquerizo M, Duarte E, Marigliano O, Görgen C, Maestre FT, Eisenhauer N. Global projections of the soil microbiome in the Anthropocene. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2021; 30:987-999. [PMID: 33867861 PMCID: PMC7610617 DOI: 10.1111/geb.13273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/01/2021] [Indexed: 05/30/2023]
Abstract
AIM Soil microbes are essential for maintenance of life-supporting ecosystem services, but projections of how these microbes will be affected by global change scenarios are lacking. Therefore, our aim was to provide projections of future soil microbial distribution using several scenarios of global change. LOCATION Global. TIME PERIOD 1950-2090. MAJOR TAXA STUDIED Bacteria and fungi. METHODS We used a global database of soil microbial communities across six continents to estimate past and future trends of the soil microbiome. To do so, we used structural equation models to include the direct and indirect effects of changes in climate and land use in our predictions, using current climate (temperature and precipitation) and land-use projections between 1950 and 2090. RESULTS Local bacterial richness will increase in all scenarios of change in climate and land use considered, although this increase will be followed by a generalized community homogenization process affecting > 85% of terrestrial ecosystems. Changes in the relative abundance of functional genes associated with the increases in bacterial richness are also expected. Based on an ecological cluster analysis, our results suggest that phylotypes such as Geodermatophilus spp. (typical desert bacteria), Mycobacterium sp. (which are known to include important human pathogens), Streptomyces mirabilis (major producers of antibiotic resistance genes) or potential fungal soil-borne plant pathogens belonging to Ascomycota fungi (Venturia spp., Devriesia spp.) will become more abundant in their communities. MAIN CONCLUSIONS Our results provide evidence that climate change has a stronger influence on soil microbial communities than change in land use (often including deforestation and agricultural expansion), although most of the effects of climate are indirect, through other environmental variables (e.g., changes in soil pH). The same was found for microbial functions such as the prevalence of phosphate transport genes. We provide reliable predictions about the changes in the global distribution of microbial communities, showing an increase in alpha diversity and a homogenization of soil microbial communities in the Anthropocene.
Collapse
Affiliation(s)
- Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, Spain
| | - Eliana Duarte
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
- Fakultät für Mathematik, Otto-Von-Guericke Universität Magdeburg, Magdeburg, 39106, Germany
| | | | - Christiane Görgen
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
33
|
Protection and Management of Species, Habitats, Ecosystems and Landscapes: Current Trends and Global Needs. FORESTS 2020. [DOI: 10.3390/f11121244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human well-being and the prerequisite sustainable environmental management are currently at stake, reaching a bottleneck when trying to cope with (i) the ever-growing world population, (ii) the constantly increasing need for natural resources (and the subsequent overexploitation of species, habitats, ecosystems, and landscapes) and (iii) the documented and on-going impacts of climate change. In developed societies, the concern about environmental protection is set high in the public dialogue, as well as to management and policy agendas. The recently constituted Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (IPBES) urges transformative changes for technological, economic, and social factors aiming to tackle both direct and indirect drivers of biodiversity loss. By this, the role of conservation and management practices for the environment is characterized as a crucial and top issue and should deal with (a) promoting best practices from the local to the global level, (b) identifying spatial and temporal knowledge gaps, (c) multidisciplinary aspects for sustainable management practices, (d) identifying and interpreting the role of stakeholders and socio-economic parameters in the decision-making process, and (e) methods and practices to integrate the concept of ecosystem services into natural capital assessment and accounting, conservation and management strategies. Modern literature highlights that land-use change and prioritization, restoration of natural areas, cultural landscape identification and maintenance, should be considered to the top of the scientific and policy agenda, as well as to the epicenter of novel awareness-raising strategies for the environment in the near future.
Collapse
|
34
|
|
35
|
Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 2020; 585:551-556. [PMID: 32908312 DOI: 10.1038/s41586-020-2705-y] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.
Collapse
|
36
|
Williams BA, Venter O, Allan JR, Atkinson SC, Rehbein JA, Ward M, Di Marco M, Grantham HS, Ervin J, Goetz SJ, Hansen AJ, Jantz P, Pillay R, Rodríguez-Buriticá S, Supples C, Virnig AL, Watson JE. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2020.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Mokany K, Ferrier S, Harwood TD, Ware C, Di Marco M, Grantham HS, Venter O, Hoskins AJ, Watson JEM. Reconciling global priorities for conserving biodiversity habitat. Proc Natl Acad Sci U S A 2020; 117:9906-9911. [PMID: 32317385 PMCID: PMC7211919 DOI: 10.1073/pnas.1918373117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Degradation and loss of natural habitat is the major driver of the current global biodiversity crisis. Most habitat conservation efforts to date have targeted small areas of highly threatened habitat, but emerging debate suggests that retaining large intact natural systems may be just as important. We reconcile these perspectives by integrating fine-resolution global data on habitat condition and species assemblage turnover to identify Earth's high-value biodiversity habitat. These are areas in better condition than most other locations predicted to have once supported a similar assemblage of species and are found within both intact regions and human-dominated landscapes. However, only 18.6% of this high-value habitat is currently protected globally. Averting permanent biodiversity loss requires clear, spatially explicit targets for retaining these unprotected high-value habitats.
Collapse
Affiliation(s)
- Karel Mokany
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia;
| | - Simon Ferrier
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Thomas D Harwood
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Chris Ware
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Moreno Di Marco
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- Department of Biology and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Hedley S Grantham
- Global Conservation Program, Wildlife Conservation Society, Bronx, NY 10460
| | - Oscar Venter
- Natural Resources & Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Andrew J Hoskins
- Commonwealth Scientific and Industrial Research Organisation, Townsville, QLD 4810, Australia
| | - James E M Watson
- Global Conservation Program, Wildlife Conservation Society, Bronx, NY 10460
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
38
|
Di Marco M, Baker ML, Daszak P, De Barro P, Eskew EA, Godde CM, Harwood TD, Herrero M, Hoskins AJ, Johnson E, Karesh WB, Machalaba C, Garcia JN, Paini D, Pirzl R, Smith MS, Zambrana-Torrelio C, Ferrier S. Opinion: Sustainable development must account for pandemic risk. Proc Natl Acad Sci U S A 2020; 117:3888-3892. [PMID: 32060123 PMCID: PMC7049118 DOI: 10.1073/pnas.2001655117] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Moreno Di Marco
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, EcoSciences Precinct, Dutton Park, QLD 4102, Australia;
- Department of Biology and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia
| | | | - Paul De Barro
- CSIRO Health & Biosecurity, EcoSciences Precinct, Dutton Park, QLD 4102, Australia
| | | | - Cecile M Godde
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Tom D Harwood
- CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Mario Herrero
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Andrew J Hoskins
- CSIRO Health and Biosecurity, James Cook University, Townsville, QLD 4810, Australia
| | - Erica Johnson
- EcoHealth Alliance, New York, NY 10001
- Department of Biology, City University of New York, New York, NY 10016
| | - William B Karesh
- EcoHealth Alliance, New York, NY 10001
- Global Health Security Agenda Consortium Steering Committee, Washington, DC 20201
- World Animal Health Organisation Working Group on Wildlife, Paris 75017, France
| | - Catherine Machalaba
- EcoHealth Alliance, New York, NY 10001
- Global Health Security Agenda Consortium Steering Committee, Washington, DC 20201
| | | | - Dean Paini
- CSIRO Health & Biosecurity, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Rebecca Pirzl
- CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Mark Stafford Smith
- CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | | | - Simon Ferrier
- CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Schipper AM, Hilbers JP, Meijer JR, Antão LH, Benítez‐López A, de Jonge MMJ, Leemans LH, Scheper E, Alkemade R, Doelman JC, Mylius S, Stehfest E, van Vuuren DP, van Zeist W, Huijbregts MAJ. Projecting terrestrial biodiversity intactness with GLOBIO 4. GLOBAL CHANGE BIOLOGY 2020; 26:760-771. [PMID: 31680366 PMCID: PMC7028079 DOI: 10.1111/gcb.14848] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/09/2019] [Indexed: 05/06/2023]
Abstract
Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (-0.02) than the regional rivalry and fossil-fuelled development scenarios (-0.06 and -0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.
Collapse
Affiliation(s)
- Aafke M. Schipper
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
- Department of Environmental ScienceInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| | - Jelle P. Hilbers
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Johan R. Meijer
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Laura H. Antão
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsUK
- Research Centre for Ecological ChangeOrganismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Ana Benítez‐López
- Department of Environmental ScienceInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
- Integrative Ecology GroupEstación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD‐CSIC)SevillaSpain
| | - Melinda M. J. de Jonge
- Department of Environmental ScienceInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| | - Luuk H. Leemans
- Department of Environmental ScienceInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| | | | - Rob Alkemade
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
- Environmental Systems Analyses GroupWageningen UniversityWageningenThe Netherlands
| | | | - Sido Mylius
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Elke Stehfest
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Detlef P. van Vuuren
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
- Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Mark A. J. Huijbregts
- Department of Environmental ScienceInstitute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
40
|
Mokany K, Harwood TD, Ferrier S. Improving links between environmental accounting and scenario‐based cumulative impact assessment for better‐informed biodiversity decisions. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 2019; 573:582-585. [DOI: 10.1038/s41586-019-1567-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/20/2019] [Indexed: 01/25/2023]
|