1
|
Yang OO. The immunopathogenesis of SARS-CoV-2 infection: Overview of lessons learned in the first 5 years. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf033. [PMID: 40180332 DOI: 10.1093/jimmun/vkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
This review provides a broad overview of lessons learned in the five years since COVID-19 was identified. It is a bimodal disease, starting with an initially virus-driven phase, followed by resolution or ensuing inappropriate immune activation causing severe inflammation that is no longer strictly virus dependent. Humoral immunity is beneficial for preventing or attenuating the early stage, without benefit once the later stage begins. Neutralizing antibodies elicited by natural infection or vaccination are short-lived and highly vulnerable to viral sequence variation. By contrast, cellular immunity, particularly the CD8+ T cell arm, has a role in preventing or attenuating severe disease, is far less susceptible to viral variation, and is longer-lived than antibodies. Finally, an ill-defined phenomenon of prolonged symptoms after acute infection, termed "long COVID," is poorly understood but may involve various immunologic defects that are hyperactivating or immunosuppressive. Remaining issues include needing to better understand the immune dysregulation of severe disease to allow more tailored therapeutic interventions, developing antibody strategies that cope with the viral spike sequence variability, prolonging vaccine efficacy, and unraveling the mechanisms of long COVID to design therapeutic approaches.
Collapse
Affiliation(s)
- Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Nouanesengsy A, Semesi A, Quach K, Ivanochko D, Byrne W, Hwang M, La Neve MR, Leon-Ponte M, Litosh A, Wisener N, Adeli K, Campigotto A, Grunebaum E, McGeer A, Moraes TJ, Sepiashvili L, Upton J, Julien JP, Allen U. Persistence and decay of neutralizing antibody responses elicited by SARS-CoV-2 infection and hybrid immunity in a Canadian cohort. Microbiol Spectr 2025; 13:e0133324. [PMID: 39969224 PMCID: PMC11960127 DOI: 10.1128/spectrum.01333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
A major challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been assessing the intensity, dynamics, and determinants of the antibody responses after infection and/or vaccination. Therefore, we aimed to characterize the longitudinal dynamics of the antibody responses among naturally infected individuals and individuals who achieved hybrid immunity in a large Canadian cohort. We demonstrate that anti-Spike IgGs and neutralizing antibody dynamics vary greatly among individuals with COVID-19, in peak antibody levels, rate of waning, and longevity of the antibody response. Additionally, we found an association between robust antibody responses and individuals with severe COVID-19 clinical symptoms during the first-month post-symptom onset. For individuals who achieved hybrid immunity, a robust increase in anti-S1 IgGs and neutralizing antibodies followed the first vaccination dose; however, there was a minimal increase in the anti-S1 IgGs and neutralizing antibody titers after administration of the second dose of the vaccine. Furthermore, neutralizing antibodies elicited by the wild-type virus alone were largely ineffective against emerging variants of concern in our natural infection-only cohort, in contrast to a much broader and more robust neutralization profile observed in individuals who achieved hybrid immunity. Our findings emphasize the need for global SARS-CoV-2 vaccination efforts to further sustain protective immune responses required to minimize viral spread and disease severity in the population. As SARS-CoV-2 variants continue to emerge, understanding the interplay between previous infections, vaccine durability, and virus evolution will be critical for guiding ongoing vaccination strategies. IMPORTANCE A major challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been assessing the intensity, dynamics, and determinants of the antibody response after infection and/or vaccination. Our paper addresses this in a large Canadian cohort with antibody responses that were generated by natural infection as well as vaccine in some persons studied.
Collapse
Affiliation(s)
- Amy Nouanesengsy
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Kim Quach
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Walter Byrne
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew Hwang
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria-Rosa La Neve
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matilde Leon-Ponte
- Division of Allergy and Immunology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alice Litosh
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole Wisener
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Campigotto
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tunenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Theo J. Moraes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lusia Sepiashvili
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Upton
- Division of Allergy and Immunology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Upton Allen
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Erice A, Nuño N, Prieto L, Caballero C. Immune Imprinting, Non-Durable Hybrid Immunity, and Hybrid Immune Damping Following SARS-CoV-2 Primary Vaccination with BNT162b2 and Boosting with mRNA-1273. Vaccines (Basel) 2025; 13:310. [PMID: 40266217 PMCID: PMC11945725 DOI: 10.3390/vaccines13030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Long-term studies on the immune response following multiple doses of SARS-CoV-2 mRNA vaccines remain limited. Methods: Secondary analyses of data from a cohort of non-immunocompromised subjects who received two doses of BNT162b2 (primary vaccination) and a booster with mRNA-1273 nine months later. Antibodies targeting the receptor-binding domain of the S1 subunit of the SARS-CoV-2 spike (anti-RBD) were measured at eight time points during follow-up; the SARS-CoV-2-specific T cell response was measured 16 and 25 months after primary vaccination using an interferon-γ release assay. Results: During the 9-month follow up period after primary vaccination and before the mRNA-1273 booster, anti-RBD were significantly higher at all time points in subjects with documented SARS-CoV-2 infection before the first study time point (previously infected subjects; n = 50) compared to naïve subjects (n = 208; p < 0.05). During a 16-month follow up period following the mRNA-1273 booster, anti-RBD were lower at all time points in previously infected subjects (n = 21) compared to naïve subjects (n = 109), although the differences were non-significant. Breakthrough SARS-CoV-2 infections increased over time in both groups, particularly after the mRNA-1273 booster. Most participants had a persistent SARS-CoV-2 specific T cell response regardless of prior infection. Conclusions: These findings suggest a modulating effect of previous SARS-CoV-2 infection on the humoral immune response to mRNA vaccination, a non-durable hybrid immunity following mRNA vaccination in previously infected subjects, and attenuation of the humoral immune response (immune damping) after repeated exposure to SARS-CoV-2 antigens through mRNA vaccination and/or infection.
Collapse
Affiliation(s)
- Alejo Erice
- Department of Internal Medicine, Hospital Asepeyo, 28823 Coslada, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| | - Néstor Nuño
- Independent Researcher, 28400 Madrid, Spain;
| | - Lola Prieto
- Unidad de Apoyo a la Investigación, Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain;
| | - Cristina Caballero
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
- Clinical Diagnostic Laboratory, Hospital Asepeyo, 28823 Coslada, Spain;
| |
Collapse
|
4
|
Mills AN, Dubois B, Lesseur C, Rommel AS, Tubassum R, Kaplowitz E, Boychuk N, Stern T, Chen J, Lieb W, Janevic T, Jessel RH. Impact of antenatal SARS-CoV-2 infection on development of hypertensive disorders of pregnancy in a large, diverse, cohort. Pregnancy Hypertens 2025; 39:101205. [PMID: 40010184 DOI: 10.1016/j.preghy.2025.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Various studies have noted an association between antenatal SARS-CoV-2 infection and increased risk for development of hypertensive disorders of pregnancy (HDP). Both disease processes have been shown to involve endothelial dysfunction systemically and in the placenta, suggesting common pathogenesis. We aim to further investigate this association in a diverse urban population. STUDY DESIGN Generation C is a prospective pregnancy cohort study at a large academic institution in NYC established between April 2020 and February 2022. SARS-CoV-2 infection during pregnancy was ascertained using a combination of spike and nucleocapsid IgG antibodies, RT-PCR testing, and electronic medical record (EMR) diagnoses. Maternal demographic and medical data were ascertained from the EMR and/or self-report survey. MAIN OUTCOME MEASURES The primary outcome was HDP defined using the American College of Obstetrics and Gynecology diagnostic criteria. Covariates included maternal age ≥ 35 years, BMI ≥ 30, high social vulnerability index based on patient zip code, maternal chronic hypertension, pregestational diabetes, and nulliparity. Univariable and multivariable logistic regression was used to examine the association between antenatal SARS-CoV-2 infection and HDP. RESULTS Among the 2402 participants, 15.4 % (369) were infected with SARS-CoV-2 during pregnancy and 18.2 % (67/369) of those exposed developed an HDP. In participants without evidence of antenatal SARS-COV-2 infection, 18.0 % (365/2033) developed an HDP. In an adjusted multivariable model, antenatal SARS-CoV-2 infection was not associated with HDP (aOR 0.89; 95 % CI, 0.65-1.22). CONCLUSIONS This study did not find an increased risk of HDP associated with antenatal SARS-CoV-2 infection in a diverse prospective cohort.
Collapse
Affiliation(s)
- Alexandra N Mills
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Bethany Dubois
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Corina Lesseur
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rushna Tubassum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elianna Kaplowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Natalie Boychuk
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Toni Stern
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Teresa Janevic
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Rebecca H Jessel
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, New York University Langone Health, New York, New York, USA
| |
Collapse
|
5
|
Kovács Á, Hérincs Z, Papp K, Kaczmarek JZ, Larsen DN, Stage P, Bereczki L, Ujhelyi E, Pfeil T, Prechl J. In-depth immunochemical characterization of the serum antibody response using a dual-titration microspot assay. Front Immunol 2025; 16:1494624. [PMID: 40070838 PMCID: PMC11893856 DOI: 10.3389/fimmu.2025.1494624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Antigen specific humoral immunity can be characterized by the analysis of serum antibodies. While serological assays for the measurement of specific antibody levels are available, these are not quantitative in the biochemical sense. Yet, understanding humoral immune responses quantitatively on the systemic level would need a universal, complete, quantitative, comparable measurement method of antigen specific serum antibodies of selected immunoglobulin classes. Here we describe a fluorescent, dual-titration immunoassay, which provides the biochemical parameters that are both necessary and sufficient to quantitatively characterize the humoral immune response. For validation of theory, we used recombinant receptor binding domain of SARS-CoV-2 as antigen on microspot arrays and varied the concentration of both the antigen and the serum antibodies from infected persons to obtain a measurement matrix of binding data. Both titration curves were simultaneously fitted using an algorithm based on the generalized logistic function and adapted for analyzing biochemical variables of binding. We obtained equilibrium affinity constants and concentrations for distinct antibody classes. These variables reflect the quality and the effective quantity of serum antibodies, respectively. The proposed fluorescent dual-titration microspot immunoassay can generate truly quantitative serological data that is suitable for immunological, medical and systems biological analysis.
Collapse
Affiliation(s)
- Ágnes Kovács
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | - Daniel Nyberg Larsen
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pernille Stage
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
| | | | | | - Tamás Pfeil
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
- HUN-REN–ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary
| | | |
Collapse
|
6
|
Trimbake D, Singh D, K. YG, Babar P, S. VD, Tripathy AS. Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19. J Immunol Res 2025; 2025:9743866. [PMID: 39963186 PMCID: PMC11832264 DOI: 10.1155/jimr/9743866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Research on long-term follow-up in individuals who have recovered from coronavirus disease-19 (COVID-19) would yield insights regarding their immunity status and identify those who need booster vaccinations. This study evaluated the longevity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular and humoral memory responses, as well as T cell effector functionalities, at 1-2 months (n = 40), 8-9 months (n = 40), and 12 months/1 year (n = 27) following recovery from SARS-CoV-2 infection. CTL response by enzyme-linked immunospot (ELISPOT); levels of cytokine by Bio-Plex, natural killer (NK), CD4+ helper, and CD8+ cytotoxic T cell functionalities using flow cytometry; anti-SARS-CoV-2 IgG by ELISA; and levels of neutralizing antibodies (NAbs) by surrogate virus NAb assay were assessed. The levels of SARS-CoV-2-specific IgG and NAb at 1-2 and 8-9 months postrecovery were hand in hand and appeared declining. SARS-CoV-2-specific B, memory B and plasma cells, and T cells sustained up to 8-9 months. Increased expression of CD107a/IFN-γ by NK cells and cytotoxic T cells at 8-9 months could be indicative of SARS-CoV-2-specific effector functions. Recovered individuals with positive and negative IgG antibody status displayed T cell response up to 1 year and 8-9 months, respectively, emphasizing the durabilty of effector immunity up to 8-9 months regardless of IgG antibody status. Overall, the recovered individuals exhibited robust immunological memory, sustained T cell response with effector functionality against SARS-CoV-2 that persists for at least 8-9 months.
Collapse
Affiliation(s)
- Diptee Trimbake
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Dharmendra Singh
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Yogesh Gurav K.
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Prasad Babar
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| | - Varsha Dange S.
- Department of Medicine, Pimpri Chinchwad Municipal Corporation, Pimpri, Pune 411018, Maharashtra, India
| | - Anuradha S. Tripathy
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, India
| |
Collapse
|
7
|
Salamony A, Abdelsalam M, Elguindy N, Roshdy WH, Youssef A, Shamikh Y. Vitamin D as an Adjuvant Immune Enhancer to SARS-Cov-2 Vaccine. Curr Microbiol 2025; 82:122. [PMID: 39918738 DOI: 10.1007/s00284-025-04095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/16/2024] [Indexed: 02/09/2025]
Abstract
The SARS-CoV-2 vaccine is an important keystone in fighting against the virus. The vaccination alone could not prevent all SARS-CoV-2 viral infections or even its spread, especially after the emergence of newly mutant strains. The immune response to the SARS-CoV-2 vaccines varies greatly from one person to another. Age, along with adequate micronutrients, especially vitamin D, are major factors influencing immunity. We aimed to analyze SARS-CoV-2 vaccine neutralization potency and the total IgG antibodies along with 25-hydroxy-cholecalciferol concentrations in a cohort of healthy Egyptian vaccinated adults. 196 individuals were included; 145 females and 51 males, with an age range between 22 and 59 years old, from the first time of vaccination and over 16 weeks long. Three blood samples were taken from each individual at three time points; before the 1st dose of vaccination, before the 2nd dose of vaccination, and after 8 weeks of complete vaccination. The samples were analyzed using a chemiluminescent immunoassay to measure vitamin D level and titer of neutralizing and IgG antibodies. A lower level of neutralizing antibodies was detected in deficient and insufficient vitamin D-vaccinated individuals. However, a sufficient titer was detected in individuals with normal vitamin D. Vitamin D deficiency is associated with a suppressed immune response against SARS-CoV-2 despite vaccination. Thus, we made inquiries about using vitamin D as an adjuvant to SARS-CoV-2 vaccination, and its relation with the production of anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Azza Salamony
- Virology Department, Central Public Health Laboratories (CPHL), Ministry of Health and Population, Cairo, 11613, Egypt
- Egypt Center for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Maha Abdelsalam
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Allied Health Science, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Nancy Elguindy
- Genomic Surveillance and Research Unit (GSR), (CPHL), Ministry of Health and Population, Cairo, Egypt
| | - Wael H Roshdy
- Genomic Surveillance and Research Unit (GSR), (CPHL), Ministry of Health and Population, Cairo, Egypt
| | - Amr Youssef
- Egypt Center for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
- Ministry of Health and Population, Cairo, Egypt
| | - Yara Shamikh
- Virology Department, Central Public Health Laboratories (CPHL), Ministry of Health and Population, Cairo, 11613, Egypt
- Egypt Center for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| |
Collapse
|
8
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Takayama Y, Shimakawa Y, Aizawa Y, Butcher C, Chibana N, Collins M, Kamegai K, Kim TG, Koyama S, Matsuyama R, Matthews MM, Mori T, Nagamoto T, Narita M, Omori R, Shibata N, Shibata S, Shiiki S, Takakura S, Toyozato N, Tsuchiya H, Wolf M, Yamamoto T, Yokoyama S, Yonaha S, Mizumoto K. SARS-CoV-2 IgG Seroprevalence in the Okinawa Main Island and Remote Islands in Okinawa, Japan, 2020-2021. Jpn J Infect Dis 2025; 78:8-18. [PMID: 39343560 DOI: 10.7883/yoken.jjid.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We estimated the seroprevalence of anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) immunoglobulin G (IgG) in different island groups in Okinawa. A cross-sectional serosurvey was conducted over three periods between July 2020 and February 2021. A total of 2,683 serum samples were collected from six referral medical centers, each covering a separate region in Okinawa. In the main island, the seroprevalence was 0.0% (0/392; 95% confidence interval (CI), 0.0- 0.9%), 0.6% (8/1,448, 0.2-1.1%), and 1.4% (8/582, 0.6-2.7%) during the 1st, 2nd, and 3rd serosurvey, respectively. In remote islands, the seroprevalence was 0.0% (0/144; 95% CI, 0.0-2.5%) and 1.6% (2/123, 0.2-5.8%) during the 2nd and 3rd survey, respectively. The case detection ratio was 2.7 (95% CI, 1.3-5.3) in the main island and 2.8 (0.7-11.1) in remote islands during the 3rd survey. The case detection ratio was the highest in individuals aged 20-29 years (8.3; 95% CI, 3.3-21.4) in the main island and in those aged 50-59 years (14.1; 2.1-92.7) in remote islands, suggesting underreporting of clinical cases by the surveillance system in these subgroups. A serosurvey conducted during an emerging infectious disease epidemic can be useful for validating the reliability of the surveillance system by providing case detection ratio.
Collapse
Affiliation(s)
- Yoshihiro Takayama
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Yusuke Shimakawa
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Institut Pasteur, France
- Pasteur International Unit at Kumamoto University/National Center for Global Health and Medicine, Japan
| | | | - Christian Butcher
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Naomi Chibana
- Division of Internal Medicine, Naha City Hospital, Japan
| | - Mary Collins
- Research Support Division, Occupational Health and Safety, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kohei Kamegai
- Division of Infectious Diseases, Okinawa Prefectural Yaeyama Hospital, Japan
| | - Tae Gyun Kim
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
- Vaccine Commercialization Center, Gyeongbuk Institute for Bio Industry, Republic of Korea
| | - Satoshi Koyama
- Emergency Department, Okinawa Prefectural Miyako Hospital, Japan
| | - Ryota Matsuyama
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Rakuno Gakuen Univerisity, Japan
| | - Melissa M Matthews
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Tomoari Mori
- Research Support Division, Occupational Health and Safety, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Tetsuharu Nagamoto
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Graduate School of Informatics, Kyoto University, Japan
| | - Masashi Narita
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Nambu Medical Center & Children's Medical Center, Japan
| | - Ryosuke Omori
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Noriko Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Japan
| | - Souichi Shiiki
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
| | - Shunichi Takakura
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
| | - Naoki Toyozato
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
- Emergency and Critical Care Center, Okinawa Prefectural Chubu Hospital, Japan
| | - Hiroyuki Tsuchiya
- Department of Emergency and Critical Care Medicine, Okinawa Prefectural Nambu Medical Center & Children's Medical Center, Japan
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
| | - Taro Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Shuhei Yokoyama
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Prefectural Chubu Hospital, Japan
| | | | - Kenji Mizumoto
- Okinawa Prefecture Commission for Epidemiological and Statistical Analysis, Japan
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Japan
- Hakubi Center for Advanced Research, Kyoto University, Japan
| |
Collapse
|
10
|
Huang K, Li N, Li Y, Zhu J, Fan Q, Yang J, Gao Y, Liu Y, Gao S, Zhao P, Wei K, Deng C, Zuo C, Sun Z. Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4699-4710. [PMID: 39789795 DOI: 10.1021/acsami.4c20770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein. Notably, the cmRNA-1130 vaccine exhibits outstanding stability, remaining effective after six months of storage at 4 °C and multiple freeze-thaw cycles. In comparison with the commercial MC3 lipid, the nanoparticles formed from the degradable AX4 lipid revealed a much faster metabolic rate from the liver and spleen, affording negligible impairment to the hepatorenal function. Following intramuscular administration, cmRNA-1130 generates robust and sustained neutralizing antibodies and induces the activation of Delta RBD-specific CD4+ and CD8+ T effector memory cells (TEM) and Th1-biased T cells in mice. Featured with potent immune activation, high stability, and decent safety, vaccines formed from cmRNA and AX4 hold a huge clinical potential for the prophylaxis and treatment of different diseases.
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Na Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yingwen Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Jiafeng Zhu
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Qianyi Fan
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Jiali Yang
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yinjia Gao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yuping Liu
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Shufeng Gao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Peng Zhao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Ke Wei
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Zhenhua Sun
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| |
Collapse
|
11
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Hou CW, Williams S, Trivino-Soto G, Boyle V, Rainford D, Vicino S, Magee M, Chung Y, LaBaer J, Murugan V. The omicron variant of SARS-CoV-2 drove broadly increased seroprevalence in a public university setting. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003893. [PMID: 39752417 PMCID: PMC11698426 DOI: 10.1371/journal.pgph.0003893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/03/2024] [Indexed: 01/06/2025]
Abstract
Omicron is the comparatively most transmissible and contagious variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). We conducted a seroprevalence study from March 1-3, 2022, to investigate the seroprevalence of SARS-CoV-2 antibodies among individuals aged 18 years and older after the Omicron outbreak. The seroprevalence of anti-receptor binding domain (RBD) antibodies was found to be 96.3% (95% CI 95.2-97.2%) compared to 88.2% (95% CI 86.1-90%) in our previous serosurvey. For anti-nucleocapsid (NC) antibodies, the seroprevalence was 39.1% (95% CI 36.6-41.7%) compared to 19.7% (95% CI 17.5-22.2%) earlier. Individuals that experienced breakthrough infections exhibited the highest levels of anti-RBD antibodies. Additionally, saliva samples showed promise as a potential diagnostic biofluid for measuring antibody levels, as they exhibited a strong agreement with the data obtained from serum samples. The near doubling of anti-NC reactivity, a proxy for history of infection, reflects the contagiousness of the omicron variant, but may also have been influenced by a more relaxed approach to precautions in the spring of 2022. Serosurveys repeated at regular intervals monitor the trend of infections in the community, delineate the geographical spread of the infection, and may guide containment measures in communities, and prompt response to future outbreaks.
Collapse
Affiliation(s)
- Ching-Wen Hou
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Guillermo Trivino-Soto
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Veronica Boyle
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - David Rainford
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Selina Vicino
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Mitch Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
13
|
Kimotho J, Sein Y, Sayed S, Shah R, Mwai K, Saleh M, Wanjiku P, Mwacharo J, Nyagwange J, Karanja H, Kutima B, Gitonga JN, Mugo D, Karanu A, Moranga L, Oluoch V, Shah J, Mutiso J, Mburu A, Nneka Z, Betti P, Usyu Mutinda W, Issak Abdi A, Bejon P, Isabella Ochola-Oyier L, M.Warimwe G, Nduati EW, M. Ndungu F. Kinetics of naturally induced binding and neutralising anti-SARS-CoV-2 antibody levels and potencies among SARS-CoV-2 infected Kenyans with diverse grades of COVID-19 severity: an observational study. Wellcome Open Res 2024; 8:350. [PMID: 39640868 PMCID: PMC11617823 DOI: 10.12688/wellcomeopenres.19414.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Given the low levels of coronavirus disease 2019 (COVID-19) vaccine coverage in sub-Saharan Africa (sSA), despite high levels of natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) exposures, strategies for extending the breadth and longevity of naturally acquired immunity are warranted. Designing such strategies will require a good understanding of naturally acquired immunity. Methods We measured whole-spike immunoglobulin G (IgG) and spike-receptor binding domain (RBD) total immunoglobulins (Igs) on 585 plasma samples collected longitudinally over five successive time points within six months of COVID-19 diagnosis in 309 COVID-19 patients. We measured antibody-neutralising potency against the wild-type (Wuhan) SARS-CoV-2 pseudovirus in a subset of 51 patients over three successive time points. Binding and neutralising antibody levels and potencies were then tested for correlations with COVID-19 severities. Results Rates of seroconversion increased from day 0 (day of PCR testing) to day 180 (six months) (63.6% to 100 %) and (69.3 % to 97%) for anti-spike-IgG and anti-spike-RBD binding Igs, respectively. Levels of these binding antibodies peaked at day 28 (p<0.01) and were subsequently maintained for six months without significant decay (p>0.99). Similarly, antibody-neutralising potencies peaked at day 28 (p<0.01) but declined by three-fold, six months after COVID-19 diagnosis (p<0.01). Binding antibody levels were highly correlated with neutralising antibody potencies at all the time points analysed (r>0.60, p<0.01). Levels and potencies of binding and neutralising antibodies increased with disease severity. Conclusions Most COVID-19 patients generated SARS-CoV-2 specific binding antibodies that remained stable in the first six months of infection. However, the respective neutralising antibodies decayed three-fold by month-six of COVID-19 diagnosis suggesting that they are short-lived, consistent with what has been observed elsewhere in the world. Thus, regular vaccination boosters are required to sustain the high levels of anti-SARS-CoV-2 naturally acquired neutralising antibody potencies in our population.
Collapse
Affiliation(s)
- John Kimotho
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
| | - Yiakon Sein
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Shahin Sayed
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Reena Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Mansoor Saleh
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Perpetual Wanjiku
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Jedidah Mwacharo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - James Nyagwange
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Henry Karanja
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Bernadette Kutima
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - John N. Gitonga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Ann Karanu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Linda Moranga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Viviane Oluoch
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Jasmit Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Julius Mutiso
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Alfred Mburu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Zaitun Nneka
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Peter Betti
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | | | - Abdirahman Issak Abdi
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George M.Warimwe
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eunice W. Nduati
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francis M. Ndungu
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Oliveira K, Almeida A, Silva C, Brito M, Ribeiro E. SARS-CoV-2 Immunization Index in the Academic Community: A Retrospective Post-Vaccination Study. Infect Dis Rep 2024; 16:1084-1097. [PMID: 39728010 DOI: 10.3390/idr16060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic has revolutionized vaccine production and compelled a massive global vaccination campaign. This study aimed to estimate the positivity and levels of SARS-CoV-2 IgG antibodies acquired due to vaccination and infection in the academic population of a Portuguese university. METHODS Blood samples were collected and analyzed through the ELISA methodology, and statistical analysis was performed. RESULTS A total of 529 volunteers with at least one dose of the vaccine were enrolled in this study. Individuals without a prior COVID-19 diagnosis were divided into two groups: 350, who received a full vaccination, and 114, who received a full vaccination and a booster dose of the same vaccine (81) and mixed vaccines (33). Regarding the individuals who reported a prior SARS-CoV-2 infection, 31 received a full vaccination, and 34 received only one vaccination dose. Data analysis showed a higher level of IgG against SARS-CoV-2 in individuals who were younger, female, who received the Moderna vaccine, with recent post-vaccine administration, a mixed booster dose, and prior SARS-CoV-2 infection. CONCLUSIONS Assessing vaccination's effectiveness and group immunity is crucial for pandemic management, particularly in academic environments with high individual mobility, in order to define groups at risk and redirect infection control strategies.
Collapse
Affiliation(s)
- Keltyn Oliveira
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Ana Almeida
- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Carina Silva
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Brito
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Edna Ribeiro
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| |
Collapse
|
15
|
Zhang H, Li B, Sun J, Zou L, Yi L, Lin H, Zhou P, Liang C, Zeng L, Zhuang X, Liu Z, Lu J, He J, Yuan R. Immune evasion after SARS-CoV-2 Omicron BA.5 and XBB.1.9 endemic observed from Guangdong Province, China from 2022 to 2023. Virol J 2024; 21:298. [PMID: 39568037 PMCID: PMC11577657 DOI: 10.1186/s12985-024-02573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND From 2022 to 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by Omicron variants spread rapidly in Guangdong Province, resulting in over 80% of the population being infected. RESULTS To investigate the levels of neutralizing antibodies (NAbs) in individuals following the rapid pandemic and to evaluate the cross-protection against currently circulating variants of SARS-CoV-2 in China, neutralization assay and magnetic particle chemiluminescence method were used to test the 117 serum samples from individuals who had recovered 4 weeks post-infection. The results indicated that the levels of NAbs against prototype and Omicron variants BA.5 were significantly higher than those against Omicron variants BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5, regardless of whether the infection was primary or secondary. CONCLUSIONS The cross-protection provided by NAbs induced by prototype and Omicron BA.5 variants was limited when challenged by BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5 variants. This indicates that we should pay more attention to the risk of multiple infection from any novel Omicron variants that may emerge in the near future.
Collapse
Affiliation(s)
- Huan Zhang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Baisheng Li
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jiufeng Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Lirong Zou
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Lina Yi
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Huifang Lin
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Pingping Zhou
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Chumin Liang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Lilian Zeng
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xue Zhuang
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zhe Liu
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jing Lu
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianfeng He
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Runyu Yuan
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
16
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
17
|
Shang J, Li H, Liu X, Sun S, Huan S, Xiong B. Single-particle rotational sensing for analyzing the neutralization activity of antiviral antibodies. Talanta 2024; 279:126606. [PMID: 39089080 DOI: 10.1016/j.talanta.2024.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Due to the pathogen-specific targeting, neutralization capabilities, and enduring efficacy, neutralizing antibodies (NAs) have received widespread attentions as a critical immunotherapeutic strategy against infectious viruses. However, because of the high variability and complexity of pathogens, rapid determination of neutralization activity of antiviral antibodies remains a challenge. Here, we report a new method, named as out-of-plane polarization imaging based single-particle rotational sensing, for rapid analysis of neutralization activity of antiviral antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the spike protein functionalized gold nanorods (AuNRs) and angiotensin-converting enzyme 2 (ACE2) coated gold nanoparticles (AuNPs) as the rotational sensors and chaperone probes, we demonstrated the single-particle rotational sensing strategy for the measurement of rotational diffusion coefficient of the chaperone-bound rotational sensors caused by the specific spike protein-ACE2 interactions. This enables us to measure the neutralizing activity of neutralizing antibody from the analysis of dose-dependent changes in rotational diffusion coefficient (Dr) of the rotational sensors upon the treatment of SARS-CoV-2 antibody. With this technique, we achieved the quantitative determination of neutralization activity of a commercially available SARS-CoV-2 antibody (IC50, 294.1 ng/mL) with satisfying accuracy and anti-interference ability. This simple and robust method holds the potential for rapid and accurate evaluation of neutralization activity against different pathogenic viruses.
Collapse
Affiliation(s)
- Jinhui Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xixuan Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shijie Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyan Huan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Bin Xiong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
18
|
Sharma S, Roy D, Cherian S. In-silico evaluation of the T-cell based immune response against SARS-CoV-2 omicron variants. Sci Rep 2024; 14:25413. [PMID: 39455652 PMCID: PMC11511884 DOI: 10.1038/s41598-024-75658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
During of COVID-19 pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved, resulting in the emergence of several new variants of concerns (VOCs) with numerous mutations. These VOCs dominate in various regions due to increased transmissibility and antibody evasion, potentially reducing vaccine effectiveness. Nonetheless, it remains uncertain whether the recent SARS-CoV-2 VOCs have the ability to circumvent the T cell immunity elicited by either COVID-19 vaccination or natural infection. To address this, we conducted in-silico analysis to examine the impact of VOC-specific mutations at the epitope level and T cell cross-reactivity with the ancestral SARS-CoV-2. According to the in-silico investigation, T cell responses triggered by immunization or prior infections still recognize the variants in spite of mutations. These variants are expected to either maintain their dominant epitope HLA patterns or bind with new HLAs, unlike the epitopes of the ancestral strain. Our findings indicate that a significant proportion of immuno-dominant CD8 + and CD4 + epitopes are conserved across all the variants, implying that existing vaccines might maintain efficacy against new variations. However, further in-vitro and in-vivo studies are needed to validate the in-silico results and fully elucidate immune sensitivities to VOCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Diya Roy
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India.
| |
Collapse
|
19
|
Luo M, Zhou R, Tang B, Liu H, Chen B, Liu N, Mo Y, Zhang P, Lee YL, Ip JD, Wing-Ho Chu A, Chan WM, Man HO, Chen Y, To KKW, Yuen KY, Dang S, Chen Z. Ultrapotent class I neutralizing antibodies post Omicron breakthrough infection overcome broad SARS-CoV-2 escape variants. EBioMedicine 2024; 108:105354. [PMID: 39341153 PMCID: PMC11470419 DOI: 10.1016/j.ebiom.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The spread of emerging SARS-CoV-2 immune escape sublineages, especially JN.1 and KP.2, has resulted in new waves of COVID-19 globally. The evolving memory B cell responses elicited by the parental Omicron variants to subvariants with substantial antigenic drift remain incompletely investigated. METHODS Using the single B cell antibody cloning technology, we isolated single memory B cells, delineated the B cell receptor repertoire and conducted the pseudovirus-based assay for recovered neutralizing antibodies (NAb) screening. We analyzed the cryo-EM structures of top broadly NAbs (bnAbs) and evaluated their in vivo efficacy (golden Syrian hamster model). FINDINGS By investigating the evolution of human B cell immunity, we discovered a new panel of bnAbs arising from vaccinees after Omicron BA.2/BA.5 breakthrough infections. Two lead bnAbs neutralized major Omicron subvariants including JN.1 and KP.2 with IC50 values less than 10 ng/mL, representing ultrapotent receptor binding domain (RBD)-specific class I bnAbs. They belonged to the IGHV3-53/3-66 clonotypes instead of evolving from the pre-existing vaccine-induced IGHV1-58/IGKV3-20 bnAb ZCB11. Despite sequence diversity, they targeted previously unrecognized, highly conserved conformational epitopes in the receptor binding motif (RBM) for ultrapotent ACE2 blockade. The lead bnAb ZCP3B4 not only protected the lungs of hamsters intranasally challenged with BA.5.2, BQ.1.1 and XBB.1.5 but also prevented their contact transmission. INTERPRETATION Our findings demonstrated that class I bnAbs have evolved an ultrapotent mode of action protecting against highly transmissible and broad Omicron escape variants, and their epitopes are potential targets for novel bnAbs and vaccine development. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Bingjie Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pengfei Zhang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ye Lim Lee
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jonathan Daniel Ip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Allen Wing-Ho Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China; HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, People's Republic of China.
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
20
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
21
|
Nguyen K, Relja B, Epperson M, Park SH, Thornburg NJ, Costantini VP, Vinjé J. Salivary immune responses after COVID-19 vaccination. PLoS One 2024; 19:e0307936. [PMID: 39226256 PMCID: PMC11371244 DOI: 10.1371/journal.pone.0307936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection.
Collapse
Affiliation(s)
- Kenny Nguyen
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
| | - Boris Relja
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
- Cherokee Nation Assurance, Arlington, VA, United States of America
| | - Monica Epperson
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - So Hee Park
- Eagle Global Scientific, LLC, Atlanta, GA, United States of America
| | - Natalie J. Thornburg
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Veronica P. Costantini
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jan Vinjé
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
22
|
Karismananda, Hasyim AA, Sakamoto A, Yamagata K, Zainal KH, Suparman DDN, Yustisia I, Hardjo M, Kadir S, Iyori M, Yoshida S, Yusuf Y. Long-Term Immunity against SARS-CoV-2 Wild-Type and Omicron XBB.1.5 in Indonesian Residents after Vaccination and Infection. Antibodies (Basel) 2024; 13:72. [PMID: 39311377 PMCID: PMC11417924 DOI: 10.3390/antib13030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
In the post-pandemic era, evaluating long-term immunity against COVID-19 has become increasingly critical, particularly in light of continuous SARS-CoV-2 mutations. This study aimed to assess the long-term humoral immune response in sera collected in Makassar. We measured anti-RBD IgG levels and neutralization capacity (NC) against both the Wild-Type (WT) Wuhan-Hu and Omicron XBB.1.5 variants across groups of COVID-19-vaccinated individuals with no booster (NB), single booster (SB), and double booster (DB). The mean durations since the last vaccination were 25.11 months, 19.24 months, and 16.9 months for the NB, SB, and DB group, respectively. Additionally, we evaluated the effect of breakthrough infection (BTI) history, with a mean duration since the last confirmed infection of 21.72 months. Our findings indicate fair long-term WT antibody (Ab) titers, with the DB group showing a significantly higher level than the other groups. Similarly, the DB group demonstrated the highest anti-Omicron XBB.1.5 Ab titer, yet it was insignificantly different from the other groups. Although the level of anti-WT Ab titers was moderate, we observed near-complete (96-97%) long-term neutralization against the WT pseudo-virus for all groups. There was a slight decrease in NC against Omicron XBB.1.5 compared to the WT among all groups, as DB group, SB group, and NB group showed 80.71 ± 3.9%, 74.29 ± 6.7%, and 67.2 ± 6.3% neutralization activity, respectively. A breakdown analysis based on infection and vaccine status showed that booster doses increase the NC against XBB.1.5, particularly in individuals without BTI. Individuals with BTI demonstrate a better NC compared to their counterpart uninfected individuals with the same number of booster doses. Our findings suggest that long-term immunity against SARS-CoV-2 persists and is effective against the mutant variant. Booster doses enhance the NC, especially among uninfected individuals.
Collapse
Affiliation(s)
- Karismananda
- Master Program of Biomedical Science, Graduate School of Hasanuddin University, Makassar 90245, Indonesia; (K.); (I.Y.); (M.H.); (S.K.)
| | - Ammar Abdurrahman Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (K.Y.); (K.H.Z.); (S.Y.)
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (K.Y.); (K.H.Z.); (S.Y.)
| | - Kyouhei Yamagata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (K.Y.); (K.H.Z.); (S.Y.)
| | - Kartika Hardianti Zainal
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (K.Y.); (K.H.Z.); (S.Y.)
| | | | - Ika Yustisia
- Master Program of Biomedical Science, Graduate School of Hasanuddin University, Makassar 90245, Indonesia; (K.); (I.Y.); (M.H.); (S.K.)
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Marhaen Hardjo
- Master Program of Biomedical Science, Graduate School of Hasanuddin University, Makassar 90245, Indonesia; (K.); (I.Y.); (M.H.); (S.K.)
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Syahrijuita Kadir
- Master Program of Biomedical Science, Graduate School of Hasanuddin University, Makassar 90245, Indonesia; (K.); (I.Y.); (M.H.); (S.K.)
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Mitsuhiro Iyori
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo 202-8585, Japan;
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, Kanazawa 920-1192, Japan; (A.A.H.); (K.Y.); (K.H.Z.); (S.Y.)
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
23
|
Madhavan R, Paul JS, Babji S, Thamizh I, Kumar D, Khakha SA, Rennie A, Kumar K, Dhanapal P, Saravanan P, Kumar A, Immanuel S, Gandhi V, Kumar A, Babu JJ, Gangadharan NT, Jagadeesan P, John E, Jamora C, Palakodeti D, Bhati R, Thambidurai SD, Suvatha A, George A, Kang G, John J. SARS-CoV-2 infections before, during, and after the Omicron wave: a 2-year Indian community cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 28:100470. [PMID: 39263629 PMCID: PMC11388673 DOI: 10.1016/j.lansea.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Background We measured the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and re-infections in an adult community-based cohort in southern India. Methods We conducted a 2-year follow-up on 1229 participants enrolled between May and October 2021. Participants provided vaccination histories, weekly saliva samples, and blood samples at 0, 6, 12, and 24 months. Salivary reverse transcription polymerase chain reaction (RT-PCR) and Meso-Scale Discovery panels were used for SARS-CoV-2 detection and anti-spike, anti-nucleocapsid immunoglobulin G quantification. Whole genome sequencing was performed on a subset of positive samples. SARS-CoV-2 infection incidence was measured across Pre-Omicron (May-December 2021), Omicron-I (December 2021-June 2022), and Omicron-II (July 2022-October 2023) periods. Findings In total, 1166 (95%) participants with 83% seropositivity at baseline completed the follow-up, providing 2205 person-years of observation. Utilizing both RT-PCR and serology we identified 1306 infections and yielded an incidence rate of 591.3 per 1000 person-years (95% confidence interval, 559.6-624.3), which peaked during Omicron-I at 1418.1 per 1000 person-years (95% confidence interval, 1307.4-1535.6). During Omicron-I and II, neither prior infection nor vaccination conferred protection against infection. Overall, 74% of infections were asymptomatic. Interpretation Integrated RT-PCR and serology revealed significant SARS-CoV-2 infection frequency, highlighting the prevalence of asymptomatic cases among previously infected or vaccinated individuals. This underscores the effectiveness of combining surveillance strategies when monitoring pandemic trends and confirms the role of non-invasive sampling in ensuring participant compliance, reflecting national transmission patterns. Funding The study was funded by the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jackwin Sam Paul
- Department of Community Health, Christian Medical College, Vellore, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Isai Thamizh
- Department of Community Health, Christian Medical College, Vellore, India
| | - Dilesh Kumar
- Department of Community Health, Christian Medical College, Vellore, India
| | | | - Aarene Rennie
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Keerthana Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Pavithra Dhanapal
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Poornima Saravanan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ajith Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sushil Immanuel
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Vaishnavi Gandhi
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Anand Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Johnson John Babu
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Nandu Thrithamarassery Gangadharan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Premkumar Jagadeesan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Elizabeth John
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Colin Jamora
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Dasaradhi Palakodeti
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Rubina Bhati
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Saranya Devi Thambidurai
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Arati Suvatha
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Anna George
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, India
| |
Collapse
|
24
|
Almubarak HF, Tan W, Hoffmann AD, Sun Y, Wei J, El-Shennawy L, Squires JR, Dashzeveg NK, Simonton B, Jia Y, Iyer R, Xu Y, Nicolaescu V, Elli D, Randall GC, Schipma MJ, Swaminathan S, Ison MG, Liu H, Fang D, Shen Y. Novel antibody language model accelerates IgG screening and design for broad-spectrum antiviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582176. [PMID: 38496411 PMCID: PMC10942297 DOI: 10.1101/2024.03.01.582176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Therapeutic antibodies have become one of the most influential therapeutics in modern medicine to fight against infectious pathogens, cancer, and many other diseases. However, experimental screening for highly efficacious targeting antibodies is labor-intensive and of high cost, which is exacerbated by evolving antigen targets under selective pressure such as fast-mutating viral variants. As a proof-of-concept, we developed a machine learning-assisted antibody generation pipeline AbGen that greatly accelerates the screening and re-design of immunoglobulins G (IgGs) against a broad spectrum of SARS-CoV-2 coronavirus variant strains. Our AbGen centers around a novel antibody language model (AbLM) that is pretrained on 12 million generic protein domain sequences and fine-tuned on 4,000+ paired VH-VL sequences, with IgG-specific CDR-masking and VH-VL cross-attention. AbLM provides a latent space of IgG sequence embeddings for AbGen, including (a) landscapes of IgGs' activities in neutralizing the wild-type virus are analyzed through structure prediction for IgG and IgG-antigen (viral protein spike's receptor binding domain, RBD) interactions; and (b) landscapes of IgGs' susceptibility in neutralizing variant viruses are predicted through Gaussian process regression, despite that as few as 14 clinical antibodies' responses to variants of concern are available. The AbGen pipeline was applied to over 1300 IgG sequences we collected from RBD-binding B cells of convalescent patients. With experimental validations, AbGen efficiently prioritized IgG candidates against a broad spectrum of viral variants (wildtype, Delta, and Omicron), preventing the infection of host cells in vitro and hACE2 transgenic mice in vivo. Compared to other existing protein language models that require 10-100 times more model parameters, AbLM improved the precision from around 50% to 75% to predict IgGs with low variant susceptibility. Furthermore, AbGen enables structure-based computational protein redesign for selected IgG clones with single amino acid substitutions at the RBD-binding interface that doubled the IgG blockade efficacy for one of the severe, therapy-resistant strains - Delta (B.1.617). Our work expedites applications of artificial intelligence in antibody screen and re-design combining data-driven protein language models and Kriging for antibody sequence analysis and activity prediction, in synergy with physics-driven protein docking and design for antibody-antigen interface analyses and functional optimization.
Collapse
Affiliation(s)
- Hannah Faisal Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| | - Andrew D. Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Joshua R. Squires
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Nurmaa K. Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Brooke Simonton
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yanan Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Vlad Nicolaescu
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Derek Elli
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Glenn C. Randall
- Howard T. Ricketts Laboratory and Department of Microbiology, the University of Chicago, Chicago, IL 60637
| | - Matthew J. Schipma
- NUseq Core Facility, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Suchitra Swaminathan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | | | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
25
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
26
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
27
|
Nel I, Ithayakumar A, Blumenthal N, Duneton C, Khourouj VGE, Viala J, Dollfus C, Baudouin V, Guilmin-Crepon S, Theodorou I, Carcelain G. Strategies to determine positive anti-SARS-CoV-2 memory T lymphocyte response during the evolution of an epidemic. J Immunol Methods 2024; 531:113712. [PMID: 38906414 DOI: 10.1016/j.jim.2024.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
During SARS-CoV-2 pandemic, the assessment of immune protection of people at risk of severe infection was an important goal. The appearance of VOCs (Variant of Concern) highlighted the limits of evaluating immune protection through the humoral response. While the humoral response partly loses its neutralizing activity, the anti-SARS-CoV-2 memory T cell response strongly cross protects against VOCs becoming an indispensable tool to assess immune protection. We compared two techniques available in laboratory to evaluate anti-SARS-CoV-2 memory T cell response in a cohort of infected or vaccinated patients with different levels of risk to develop a severe disease: the ELISpot assay and the T-Cell Lymphocyte Proliferation Assay respectively exploring IFNγ production and cell proliferation. We showed that the ELISpot assay detected more anti-Spike memory T cell response than the Lymphocyte Proliferation Assay. We next observed that the use of two different suppliers as antigenic source in the ELISpot assay did not affect the detection of anti-Spike memory T cell response. Finally, we explored a new approach for defining the positivity threshold, using unsupervised mixed Gaussian modeling, challenging the traditional ROC curve used by the supplier. That will be helpful in endemic situation where it could be difficult to recruit "negative" patients.
Collapse
Affiliation(s)
- Isabelle Nel
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France
| | | | | | - Charlotte Duneton
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France; Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | | | - Jérôme Viala
- Department of Pediatric Gastroenterology, Robert-Debré Hospital, APHP, Paris, France
| | - Catherine Dollfus
- Pediatric Hematology and Oncology Department, Trousseau Hospital, APHP, Paris, France
| | - Véronique Baudouin
- Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | - Sophie Guilmin-Crepon
- Clinical Epidemiology Unit, Inserm CIC-EC 1426, Robert-Debré Hospital, APHP, Paris, France
| | | | - Guislaine Carcelain
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France.
| |
Collapse
|
28
|
Roohi A, Gharagozlou S. Vitamin D supplementation and calcium: Many-faced gods or nobody in fighting against Corona Virus Disease 2019. Clin Nutr ESPEN 2024; 62:172-184. [PMID: 38901939 DOI: 10.1016/j.clnesp.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
In December 2019, Corona Virus Disease 2019 (COVID-19) was first identified and designated as a pandemic in March 2020 due to rapid spread of the virus globally. At the beginning of the pandemic, only a few treatment options, mainly focused on supportive care and repurposing medications, were available. Due to its effects on immune system, vitamin D was a topic of interest during the pandemic, and researchers investigated its potential impact on COVID-19 outcomes. However, the results of studies about the impact of vitamin D on the disease are inconclusive. In the present narrative review, different roles of vitamin D regarding the COVID-19 have been discussed to show that vitamin D supplementation should be recommended carefully.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
29
|
Ardyanto TD, Khariri K, Agus TP, Soebandrio A. Post COVID-19 vaccination binding and neutralizing antibody with or without previous infection: An 18-month longitudinal study in Indonesia. NARRA J 2024; 4:e1071. [PMID: 39280276 PMCID: PMC11394176 DOI: 10.52225/narra.v4i2.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Due to the persisting development of SARS-CoV-2 variants, studies on the kinetics, duration, and function of antibodies are essential for vaccine development and long-term immunity prediction. This longitudinal study examined post-vaccination antibody responses in people after receiving CoronaVac or ChAdOx1 vaccines with or without a history of SARS-CoV-2 infection. Conducted in Indonesia between August 2021 and May 2023, this study involved 121 participants divided into two groups based on the received vaccine types and monitored for 18 months post-second dose vaccination by assessing the binding antibody (BAb) level and neutralizing antibody (NAb) inhibition rate at six time points. The study also documented the participants' age, gender, and body mass index (BMI). Before the first dose vaccination, 85 (70.2%) participants were reactive BAb (defined by BAb level ≥50 AU/mL) indicating a history of infection. In the CoronaVac group, only 53.1% were reactive BAb. However, 100% of participants were positive NAb (defined by NAb inhibition rate ≥30%), which indicates a past history of infection with low initial or rapidly decreasing BAb levels. In the ChAdOx1 group, 81.9% of participants were reactive, while only 54.2% were positive NAb, suggesting a recent infection with a high BAb level but a relatively low NAb inhibition rate. During the 18 months post-second dose vaccination, the BAb levels fluctuated. However, 100% of participants were positive NAb. No significant difference in antibody response was documented among participants with or without infection history. Also, no significant impact was presented by the factors of sex, age, and BMI. The findings highlight the crucial of the vaccine in public health and how vaccination strategies could be optimized effectively during and after the post-pandemic.
Collapse
Affiliation(s)
- Tonang D Ardyanto
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Khariri Khariri
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Telly P Agus
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
30
|
Ricketson LJ, Doucette EJ, Alatorre I, Tarannum T, Gray J, Booth W, Tipples G, Charlton C, Kanji JN, Fonseca K, Kellner JD. Pediatric antibody responses to SARS-CoV-2 after infection and vaccination in Calgary, Canada. BMC Infect Dis 2024; 24:705. [PMID: 39026179 PMCID: PMC11256562 DOI: 10.1186/s12879-024-09615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND There are few reports of longitudinal serologic responses in children following Sars-CoV-2 infection and vaccination. This study describes longitudinal SARS-CoV-2 antibody responses following infection, vaccination, or both (hybrid immunity) in a cohort of Canadian children. The objectives of our study were to compare antibody levels following SARS-CoV-2 infection, vaccination, and hybrid immunity and to examine antibody decline after final antigen exposure. METHODS The Alberta Childhood COVID-19 Cohort (AB3C) study was a prospective longitudinal cohort study conducted from July 2020 to September 2022 with repeat sampling across 5 visits. Children under 18 years of age were enrolled for serial measurement of antibody responses to SARS-CoV-2 virus vaccine and infection. RESULTS The final sample size was 919; participants were 50.5% female, 48.2% were > 12 years and 88.5% were white ethnicity. The median peak spike IgG level of those with only infection was not different from those with no vaccination or infection (233 AU/mL (IQR: 99-944 AU/mL) vs. 3 AU/mL (IQR: 1-5 AU/mL; P = 0.1765). Participants with infections after vaccination had higher IgG levels than those where infection preceded vaccination (median: 36,660 (IQR: 22,084 - 40,000 AU/mL) vs. 17,461 AU/mL (IQR: 10,617 - 33,212 AU/mL); P < 0.0001). In a linear mixed methods model, children with infection-only had low levels of antibody that stayed stable over the study duration without further antigen exposures. Those with infection after vaccination had the slowest rate of antibody decline over time at 4% (95%CI: 2-5%) per week, compared with children where infection preceded vaccine 7% (95%CI: 6-8%) per week. CONCLUSIONS Children with hybrid immunity conferred through vaccination (2 + doses) followed by a SARS-CoV-2 infection had the highest and longest lasting antibody levels, compared to children who had an infection followed by vaccination, vaccination-only, or infection-only. The longer-term clinical importance of these findings, related to prevention of repeated infections and severe outcomes and need for further vaccine doses, is not yet known.
Collapse
Affiliation(s)
- Leah J Ricketson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emily J Doucette
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Isabella Alatorre
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarannum Tarannum
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joslyn Gray
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William Booth
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carmen Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jamil N Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Kevin Fonseca
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - James D Kellner
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Gupta S, Su H, Agrawal S, Demirdag Y, Tran M, Gollapudi S. Adaptive Cellular Responses following SARS-CoV-2 Vaccination in Primary Antibody Deficiency Patients. Pathogens 2024; 13:514. [PMID: 38921811 PMCID: PMC11206773 DOI: 10.3390/pathogens13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiencies, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA 92697, USA; (H.S.); (S.A.); (Y.D.); (M.T.); (S.G.)
| | | | | | | | | | | |
Collapse
|
32
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
33
|
Walmsley S, Nabipoor M, Qi F, Lovblom LE, Ravindran R, Colwill K, Dayam RM, Tursun TR, Silva A, Gingras AC. Declining Levels of Neutralizing Antibodies to SARS-CoV-2 Omicron Variants Are Enhanced by Hybrid Immunity and Original/Omicron Bivalent Vaccination. Vaccines (Basel) 2024; 12:564. [PMID: 38932293 PMCID: PMC11209254 DOI: 10.3390/vaccines12060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
We determined neutralizing antibody levels to the ancestral Wuhan SARS-CoV-2 strain and three Omicron variants, namely BA.5, XBB.1.5, and EG.5, in a heavily vaccinated cohort of 178 adults 15-19 months after the initial vaccine series and prospectively after 4 months. Although all participants had detectable neutralizing antibodies to Wuhan, the proportion with detectable neutralizing antibodies to the Omicron variants was decreased, and the levels were lower. Individuals with hybrid immunity at the baseline visit and those receiving the Original/Omicron bivalent vaccine between the two sampling times demonstrated increased neutralizing antibodies to all strains. Both a higher baseline neutralizing antibody titer to Omicron BA.5 and hybrid immunity were associated with protection against a breakthrough SARS-CoV-2 infection during a 4-month period of follow up during the Omicron BA.5 wave. Neither were associated with protection from a breakthrough infection at 10 months follow up. Receipt of an Original/Omicron BA.4/5 vaccine was associated with protection from a breakthrough infection at both 4 and 10 months follow up. This work demonstrates neutralizing antibody escape with the emerging Omicron variants and supports the use of additional vaccine doses with components that match circulating SARS-CoV-2 variants. A threshold value for neutralizing antibodies for protection against reinfection cannot be determined.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Amanda Silva
- DATA Team, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | |
Collapse
|
34
|
Ventura-Enríquez Y, Cortina-De la Rosa E, Díaz-Padilla E, Murrieta S, Segundo-Martínez S, Fernández-Sánchez V, Vargas-De-León C. Immunogenicity of Two Doses of BNT162b2 mRNA COVID-19 Vaccine with a ChAdOx1-S Booster Dose among Navy Personnel in Mexico. Viruses 2024; 16:551. [PMID: 38675894 PMCID: PMC11054223 DOI: 10.3390/v16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Booster doses of the SARS-CoV-2 vaccine have been recommended to improve and prolong immunity, address waning immunity over time, and contribute to the control of the COVID-19 pandemic. A heterologous booster vaccine strategy may offer advantages over a homologous approach. To compare the immunogenicity of two doses of BNT162b2 mRNA COVID-19 vaccine with a ChAdOx1-S booster dose, immunoglobulin G (IgG) anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody titers (Ab) were compared over 1 year and post-booster vaccination. Results showed that, at 3- to 9-month assessments in vaccinated subjects, an-ti-N Ab were undetectable in participants with no history of COVID-19. In contrast, anti-S Ab measurements were lower than those with COVID-19, and a decrease was observed during the 9 months of observation. After booster vaccination, no differences were found in anti-S between participants who reported a history of COVID-19 and those who did not. Anti-S levels were higher after booster vaccination measurement vs. at 9 months in participants with COVID-19 and without COVID-19, i.e., independent of an infection history. Vaccine administration elicited a response of higher anti-S IgG levels in those infected before vaccination, although levels decreased during the first nine months. IgG anti-N titers were higher in participants with a history of declared infection and who were asymptomatic. The ChAdOx1-S booster increased anti-S Ab levels in participants regardless of whether they had been infected or not to a significantly higher value than with the first two vaccines. These findings underscore the importance of booster vaccination in eliciting a robust and sustained immune response against COVID-19, regardless of the prior infection status.
Collapse
Affiliation(s)
- Yanet Ventura-Enríquez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Evelyn Cortina-De la Rosa
- Departamento de Hematología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Elizabeth Díaz-Padilla
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sandra Murrieta
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Silvia Segundo-Martínez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Verónica Fernández-Sánchez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
- Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 54090, Mexico
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
- Laboratorio de Modelación Bioestadística Para la Salud, Sección de Estudios de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
35
|
Sehgal ANA, Safran J, Kratzer B, Gattinger P, Stieger RB, Musiejovsky L, Trapin D, Ettel P, Körmöczi U, Rottal A, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier-Pfistershammer K, Perkmann T, Wiedermann U, Valenta R, Pickl WF. Flow Cytometry-Based Measurement of Antibodies Specific for Cell Surface-Expressed Folded SARS-CoV-2 Receptor-Binding Domains. Vaccines (Basel) 2024; 12:377. [PMID: 38675759 PMCID: PMC11053794 DOI: 10.3390/vaccines12040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.
Collapse
Affiliation(s)
- Al Nasar Ahmed Sehgal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Jera Safran
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert B. Stieger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Laszlo Musiejovsky
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Paul Ettel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Ulrike Körmöczi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Arno Rottal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Kristina Borochova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yulia Dorofeeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Inna Tulaeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Milena Weber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
36
|
Escalera A, Rojo-Fernandez A, Rombauts A, Abelenda-Alonso G, Carratalà J, García-Sastre A, Aydillo T. SARS-CoV-2 infection induces robust mucosal antibody responses in the upper respiratory tract. iScience 2024; 27:109210. [PMID: 38433913 PMCID: PMC10906537 DOI: 10.1016/j.isci.2024.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Despite multiple research efforts to characterize coronavirus disease 2019 (COVID-19) in humans, there is no clear data on the specific role of mucosal immunity on COVID-19 disease. Here, we longitudinally profile the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal HCoV-OC43 S proteins in serum and nasopharyngeal swabs from COVID-19 patients. Results showed that specific antibody responses against SARS-CoV-2 and HCoV-OC43 S proteins can be detected in the upper respiratory tract. We found that COVID-19 patients mounted a robust mucosal antibody response against SARS-CoV-2 S with specific secretory immunoglobulin A (sIgA), IgA, IgG, and IgM antibody subtypes detected in the nasal swabs. Additionally, COVID-19 patients showed IgG, IgA, and sIgA responses against HCoV-OC43 S in the local mucosa, whereas no specific IgM was detected. Interestingly, mucosal antibody titers against SARS-CoV-2 peaked at day 7, whereas HCoV-OC43 titers peaked earlier at day 3 post-recruitment, suggesting an immune memory recall to conserved epitopes of beta-HCoVs in the upper respiratory tract.
Collapse
Affiliation(s)
- Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaya Rojo-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Rombauts
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCII), 28029 Madrid, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCII), 28029 Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
37
|
Tomeo-Martín BD, Delgado-Bonet P, Cejalvo T, Herranz S, Perisé-Barrios AJ. A Comprehensive Study of Cellular and Humoral Immunity in Dogs Naturally Exposed to SARS-CoV-2. Transbound Emerg Dis 2024; 2024:9970311. [PMID: 40303184 PMCID: PMC12016888 DOI: 10.1155/2024/9970311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 05/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the causal agent behind coronavirus disease 2019 (COVID-19), a disease declared pandemic in 2020. Because of the zoonotic origin of SARS-CoV-2 and the close contact kept by domestic dogs with their owners, it became imperative to understand the role of dogs in the epidemiology of the disease and in the virus transmission. In the present study, we determined the presence of virus and described the long-term immune effects of SARS-CoV-2 in 24 dogs exposed to SARS-CoV-2 in the domestic environment. Our findings highlight that only a subset of dogs, naturally exposed to SARS-CoV-2, exhibit a humoral response to the new virus (close to 17% had IgM antibodies and close to 33% has IgG antibodies). We identified for the first time SARS-CoV-2-specific IFN-γ-secreting cells in dogs (approximately in half of our dogs). While 56% of dogs maintained humoral response 8 months, only 22% of dogs maintained cellular response after 4 and 8 months. Although some alterations in blood parameters and proinflammatory cytokines were described, there was no evidence indicating an exacerbated cytokine release process. Considering that none of the animals enrolled in this study showed viral shedding and presented specific immune responses, it is reasonable to propose that the canine immune system in certain companion dogs is effective at blocking the negative effects of viral replication, thereby suggesting that dogs would not be potential transmitters of this pathogen to the other dogs or other species and could aid in promoting collective immunity.
Collapse
Affiliation(s)
| | - Pablo Delgado-Bonet
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
- Small Animal Hospital, University of Glasgow, Scotland, UK
| | - Teresa Cejalvo
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
| | - Sandra Herranz
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
| | | |
Collapse
|
38
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
39
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
40
|
Chen Z, Yuan Y, Hu Q, Zhu A, Chen F, Li S, Guan X, Lv C, Tang T, He Y, Cheng J, Zheng J, Hu X, Zhao J, Zhao J, Sun J. SARS-CoV-2 immunity in animal models. Cell Mol Immunol 2024; 21:119-133. [PMID: 38238440 PMCID: PMC10806257 DOI: 10.1038/s41423-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.
Collapse
Affiliation(s)
- Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Chao Lv
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xiaoyu Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
41
|
Horbach IS, de Souza Azevedo A, Schwarcz WD, Alves NDS, de Moura Dias B, Setatino BP, da Cruz Moura L, de Souza AF, Denani CB, da Silva SA, Pimentel TG, de Oliveira Silva Ferreira V, Azamor T, Ano Bom APD, da Penha Gomes Gouvea M, Mill JG, Valim V, Polese J, Campi-Azevedo AC, Peruhype-Magalhães V, Teixeira-Carvalho A, Martins-Filho OA, de Lima SMB, de Sousa Junior IP. Plaque Reduction Neutralization Test (PRNT) Accuracy in Evaluating Humoral Immune Response to SARS-CoV-2. Diseases 2024; 12:29. [PMID: 38248380 PMCID: PMC10814169 DOI: 10.3390/diseases12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Massive vaccination positively impacted the SARS-CoV-2 pandemic, being a strategy to increase the titers of neutralizing antibodies (NAbs) in the population. Assessing NAb levels and understanding the kinetics of NAb responses is critical for evaluating immune protection. In this study, we optimized and validated a PRNT50 assay to assess 50% virus neutralization and evaluated its accuracy to measure NAbs to the original strain or variant of SARS-CoV-2. The optimal settings were selected, such as the cell (2 × 105 cells/well) and CMC (1.5%) concentrations and the viral input (~60 PFU/well) for PRNT-SARS-CoV-2 with cut-off point = 1.64 log5 based on the ROC curve (AUC = 0.999). The validated PRNT-SARS-CoV-2 assay presented high accuracy with an intraassay precision of 100% for testing samples with different NAb levels (low, medium, and high titers). The method displays high selectivity without cross-reactivity with dengue (DENV), measles (MV), zika (ZIKV), and yellow fever (YFV) viruses. In addition, the standardized PRNT-SARS-CoV-2 assay presented robustness when submitted to controlled variations. The validated PRNT assay was employed to test over 1000 specimens from subjects with positive or negative diagnoses for SARS-CoV-2 infection. Patients with severe COVID-19 exhibited higher levels of NAbs than those presenting mild symptoms for both the Wuhan strain and Omicron. In conclusion, this study provides a detailed description of an optimized and validated PRNT50 assay to monitor immune protection and to subsidize surveillance policies applied to epidemiologic studies of COVID-19.
Collapse
Affiliation(s)
- Ingrid Siciliano Horbach
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Nathalia dos Santos Alves
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Brenda de Moura Dias
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Bruno Pimenta Setatino
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Luma da Cruz Moura
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Ariane Faria de Souza
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Caio Bidueira Denani
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Stephanie Almeida da Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Thiago Goes Pimentel
- Núcleo de Apoio Administrativo VDINV, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Victor de Oliveira Silva Ferreira
- Seção de Validação Analítica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Tamiris Azamor
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Maria da Penha Gomes Gouvea
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - José Geraldo Mill
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Valéria Valim
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Jessica Polese
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal do Espírito Santo, Vitória 29500-000, Brazil;
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-clínico (DEDEP), Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | | |
Collapse
|
42
|
Fajfr M, Pajer P, Ruzek D, Sleha R, Janovska S, Bohonek M, Kabickova H, Kubicková P, Stefanik M, Strakova P, Bostik P. Multicentric evaluation of sensitivity of eight commercial anti-SARS-CoV-2 antibody assays and their correlation to virus neutralization titers in seropositive subjects. Sci Rep 2024; 14:1421. [PMID: 38228735 PMCID: PMC10792077 DOI: 10.1038/s41598-024-51968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Diagnosis of SARS-CoV-2 virus is mainly based on direct detection. Determination of specific antibodies has been used mostly for epidemiological reasons. However, select immunoassays showed good correlation to plaque reduction virus neutralization test (PRNT) in smaller patient cohorts, which suggests their potential as predictors of virus neutralization titer. A total of 3,699 samples from Covid-19 patients were included in the multicentric study performed in the Czech Republic. Anti-SARS-CoV-2 antibody levels were evaluated by 8 commercial antibody assays. Simultaneously, PRNT evaluations were performed with the SARS-CoV-2 B.1.258 variant. All immunoassays showed an overall high true positive diagnostic value ranging from 79.17 to 98.04%. Several commercial EIA methods showed highly positive correlation between the assay results and PRNT levels, e.g., Liaison CoV-2 TrimericS IgG DiaSorin (Spearman r = 0.8833; Architect SASRS-CoV-2 IgG Abbott (r = 0.7298); NovaLisa SARS-CoV-2 IgG NovaTec (r = 0.7103) and Anti-SARS-CoV-2 ELISA IgG Euroimmun (r = 0.7094). While this correlation was less positive for other assays, those, conversely, presented higher true positive values. For most immunoassays, the positive percent agreement of the results was ≥ 95% in sera exhibiting PRNT levels of 1:80 and higher. The assays tested have shown variable correlation to PRNT. Those possessing high positive predictive values serve well as qualitative tests, while others can be utilised as quantitative tests highly predictive of neutralization antibody levels.
Collapse
Affiliation(s)
- Miroslav Fajfr
- Institute of Clinical Microbiology, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Petr Pajer
- Military Health Institute, Prague, Czech Republic
| | - Daniel Ruzek
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Sleha
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Sylva Janovska
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Milos Bohonek
- Department of Hematology and Blood Transfusion, Military University Hospital Prague, Praha, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | | | - Michal Stefanik
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Department of Hematology and Blood Transfusion, Military University Hospital Prague, Praha, Czech Republic
| | - Petra Strakova
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Bostik
- Institute of Clinical Microbiology, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic.
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
43
|
Singh G, Abbad A, Kleiner G, Srivastava K, Gleason C, Carreño JM, Simon V, Krammer F. The post-COVID-19 population has a high prevalence of cross-reactive antibodies to spikes from all Orthocoronavirinae genera. mBio 2024; 15:e0225023. [PMID: 38112467 PMCID: PMC10790767 DOI: 10.1128/mbio.02250-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Xie H, Zhang J, Luo R, Qi Y, Lin Y, Han C, Li X, Zeng D. IgG antibody response to SARS-CoV-2 infection and its influencing factors in lymphoma patients. BMC Immunol 2024; 25:5. [PMID: 38218761 PMCID: PMC10788029 DOI: 10.1186/s12865-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The ability of generating effective humoral immune responses to SARS-CoV-2 infection has not been clarified in lymphoma patients. The study aimed to investigate the antibody (Ab) production after SARS-Cov-2 infection and clarify the factors affecting the Ab generation in these patients. PATIENTS & METHODS 80 lymphoma patients and 51 healthy controls were included in this prospective observational study. Clinical factors and treatment regimens affecting Ab positive rate (APR) and Ab levels were analyzed by univariate and multivariate methods. RESULTS The anti-SARS-CoV-2 IgG APR and Ab levels in lymphoma patients were significantly lower than those in healthy controls. Lymphoma patients with COVID-19 vaccination had significantly higher APR and Ab levels compared with those without vaccination. Additionally, the use of dexamethasone for COVID-19 treatment had a negative impact on Ab levels. For the impact of treatment regimens on the APR and Ab levels, the results showed that patients treated with ≥ 6 times CD20 monoclonal Ab (mAb) and patients treated with autologous hematopoietic stem cell transplantation (ASCT) prior to infection produced a statistically lower APR and Ab levels compared with those treated with 1-5 times CD20 mAb and those treated without ASCT, respectively. Furthermore, multiple regression analysis indicated that the number of anti-CD20 treatment was an independent predictor for both APR and Ab levels. CONCLUSIONS Humoral immune response to SARS-CoV-2 infection was impaired in lymphoma patients partly due to anti-CD20 and ASCT treatment. COVID-19 vaccination may be more needed for these patients.
Collapse
Affiliation(s)
- Huan Xie
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Ran Luo
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Changhao Han
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xi Li
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Army Medical University, No. 10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
45
|
Santoni M, Gutierrez-Valdes N, Pivotto D, Zanichelli E, Rosa A, Sobrino-Mengual G, Balieu J, Lerouge P, Bardor M, Cecchetto R, Compri M, Mazzariol A, Ritala A, Avesani L. Performance of plant-produced RBDs as SARS-CoV-2 diagnostic reagents: a tale of two plant platforms. FRONTIERS IN PLANT SCIENCE 2024; 14:1325162. [PMID: 38239207 PMCID: PMC10794598 DOI: 10.3389/fpls.2023.1325162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.
Collapse
Affiliation(s)
| | | | - Denise Pivotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Zanichelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Guillermo Sobrino-Mengual
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
- Applied Plant Biotechnology Group, Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Monica Compri
- Azienda Ospedaliera Universitaria, UOC Microbiologia e Virologia, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
46
|
McKendry R, Lemm NM, Papargyris L, Chiu C. Human Challenge Studies with Coronaviruses Old and New. Curr Top Microbiol Immunol 2024; 445:69-108. [PMID: 35181805 DOI: 10.1007/82_2021_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.
Collapse
Affiliation(s)
- Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
47
|
Wondeu ALD, Abakar MF, Frasca F, Nodjikouambaye AZ, Abdelrazakh F, Naibei N, Dzomo GRT, Djimtoibaye D, Mad‐Toingue J, Scagnolari C, Antonelli G, Linardos G, Russo C, Perno CF, Yandai FH, Atturo S, Hiscott J, Colizzi V, Cappelli G, Ngueadoum N, Haroun A, Choua O, Moussa AM. Presence of neutralizing SARS-CoV-2 antibodies in asymptomatic population of N'Djamena, Chad. Immun Inflamm Dis 2024; 12:e1154. [PMID: 38270301 PMCID: PMC10790679 DOI: 10.1002/iid3.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Neutralizing antibodies (NAbs) are an important specific defence against viral infections, as these antibodies bind to specific receptor(s) and block the viral entry. NAbs assessments are therefore useful in determining individual or herd immunity to SARS-CoV-2. This study aims to deepen the investigation by assessing the positivity rate of neutralizing anti-spike antibodies to understand the real protection of the studied population against SARS-CoV-2. METHODS This study involved 260 plasma samples from a larger cohort of 2,700 asymptomatic volunteer donors, enrolled between August and October 2021 in health facilities of N'Djamena. In this study four different kits and techniques including the pseudotype assay have been used and compared with detect the SARS-CoV-2 antibodies. Pseudotyped vesicular stomatitis virus (VSV), was used both the identify and measure the NAbs that to evaluate the performance of two cheaper and easy to use commercial kits, specific for the detection of receptor-binding domain antibodies (anti-RBD) against the SARS-CoV-2 spike protein. RESULTS The VSV spike neutralization assay showed that 59.0% (n = 59) samples were positive for NAbs with titers ranging from 1:10 to 1:4800. While 23 out the 41 negative NAbs samples were detected positive using anti-RBD (Abbott) test. Furthermore, a direct and significant strong correlation was found between NAbs and anti-RBD, specifically with Abbott kit. Taken together, the Roche and Abbott methods indicated agreement at the high concentrations of antibodies with the VSV-pseudovirus method. Abbott and Roche indicated a good sensitivity, but the Abbott system test appeared to have better specificity than the Roche test. CONCLUSION Our findings indicated a high presence of NAbs against SARS-CoV-2 spike protein among asymptomatic individuals in N'Djamena. This could be one of the reasons for the low severity of Covid-19 observed in this area, given the key role of NAbs in blocking SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Andrillene Laure Deutou Wondeu
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Department of Biology and Interdepartmental Centre for Comparative MedicineUniversity of Rome Tor VergataRomeItaly
- Laboratory of Molecular Biology and ImmunopathologyEvangelical University of CameroonMbouo‐BandjounCameroon
| | | | - Federica Frasca
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Aleyo Zita Nodjikouambaye
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Fatima Abdelrazakh
- Institut de Recherche en Elevage pour le Développement (IRED)N'DjamenaChad
| | - Nathan Naibei
- Communauté des Amis de l'Informatique pour le Développement (CAID‐Tchad)N'DjamenaChad
| | - Guy Rodrigue Takoudjou Dzomo
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Djallaye Djimtoibaye
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - Joseph Mad‐Toingue
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular MedicineSapienza University of RomeItaly
| | - Giulia Linardos
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Cristina Russo
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Carlo Federico Perno
- Virology and Mycobacteriology Unit, “Bambino Gesù” Children Hospital—Healthcare and Research Institute—RomeRomeItaly
| | - Fissou Henry Yandai
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
| | - Sabrina Atturo
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
| | - John Hiscott
- Institute Pasteur Cenci‐Bolognetti FoundationRomeItaly
| | - Vittorio Colizzi
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Department of Biology and Interdepartmental Centre for Comparative MedicineUniversity of Rome Tor VergataRomeItaly
- Laboratory of Molecular Biology and ImmunopathologyEvangelical University of CameroonMbouo‐BandjounCameroon
| | - Giulia Cappelli
- Institute for Biological SystemsNational Research CouncilRomeItaly
| | - Nambatibe Ngueadoum
- Direction Générale des Laboratoires, Pharmacie & Médicaments, Ministère de la Santé PubliqueN'DjamenaChad
| | - Alsadick Haroun
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
- Direction Générale des Laboratoires, Pharmacie & Médicaments, Ministère de la Santé PubliqueN'DjamenaChad
| | - Ouchemi Choua
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| | - Ali Mahamat Moussa
- Laboratoire des Grandes Epidémies Tropicales (LAGET)Complexe Hospitalo‐Universitaire le Bon SamaritainN'DjamenaChad
- Centre Hospitalier Universitaire de Référence Nationale (CHU‐RN)N'DjamenaChad
- Coordination nationale de riposte sanitaire contre la Covid‐19, Ministère de la Santé PubliqueN'DjamenaChad
| |
Collapse
|
48
|
Fung CYJ, Scott M, Lerner-Ellis J, Taher J. Applications of SARS-CoV-2 serological testing: impact of test performance, sample matrices, and patient characteristics. Crit Rev Clin Lab Sci 2024; 61:70-88. [PMID: 37800891 DOI: 10.1080/10408363.2023.2254390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Laboratory testing has been a key tool in managing the SARS-CoV-2 global pandemic. While rapid antigen and PCR testing has proven useful for diagnosing acute SARS-CoV-2 infections, additional testing methods are required to understand the long-term impact of SARS-CoV-2 infections on immune response. Serological testing, a well-documented laboratory practice, measures the presence of antibodies in a sample to uncover information about host immunity. Although proposed applications of serological testing for clinical use have previously been limited, current research into SARS-CoV-2 has shown growing utility for serological methods in these settings. To name a few, serological testing has been used to identify patients with past infections and long-term active disease and to monitor vaccine efficacy. Test utility and result interpretation, however, are often complicated by factors that include poor test sensitivity early in infection, lack of immune response in some individuals, overlying infection and vaccination responses, lack of standardization of antibody titers/levels between instruments, unknown titers that confer immune protection, and large between-individual biological variation following infection or vaccination. Thus, the three major components of this review will examine (1) factors that affect serological test utility: test performance, testing matrices, seroprevalence concerns and viral variants, (2) patient factors that affect serological response: timing of sampling, age, sex, body mass index, immunosuppression and vaccination, and (3) informative applications of serological testing: identifying past infection, immune surveillance to guide health practices, and examination of protective immunity. SARS-CoV-2 serological testing should be beneficial for clinical care if it is implemented appropriately. However, as with other laboratory developed tests, use of SARS-CoV-2 serology as a testing modality warrants careful consideration of testing limitations and evaluation of its clinical utility.
Collapse
Affiliation(s)
- Chun Yiu Jordan Fung
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Mackenzie Scott
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Rak A, Isakova-Sivak I, Rudenko L. Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines (Basel) 2023; 11:1810. [PMID: 38140214 PMCID: PMC10747980 DOI: 10.3390/vaccines11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The new SARS-CoV-2 coronavirus, which emerged in late 2019, is a highly variable causative agent of COVID-19, a contagious respiratory disease with potentially severe complications. Vaccination is considered the most effective measure to prevent the spread and complications of this infection. Spike (S) protein-based vaccines were very successful in preventing COVID-19 caused by the ancestral SARS-CoV-2 strain; however, their efficacy was significantly reduced when coronavirus variants antigenically different from the original strain emerged in circulation. This is due to the high variability of this major viral antigen caused by escape from the immunity caused by the infection or vaccination with spike-targeting vaccines. The nucleocapsid protein (N) is a much more conserved SARS-CoV-2 antigen than the spike protein and has therefore attracted the attention of scientists as a promising target for broad-spectrum vaccine development. Here, we summarized the current data on various N-based COVID-19 vaccines that have been tested in animal challenge models or clinical trials. Despite the high conservatism of the N protein, escape mutations gradually occurring in the N sequence can affect its protective properties. During the three years of the pandemic, at least 12 mutations have arisen in the N sequence, affecting more than 40 known immunogenic T-cell epitopes, so the antigenicity of the N protein of recent SARS-CoV-2 variants may be altered. This fact should be taken into account as a limitation in the development of cross-reactive vaccines based on N-protein.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (I.I.-S.); (L.R.)
| | | | | |
Collapse
|
50
|
Berry AA, Tjaden AH, Renteria J, Friedman-Klabanoff D, Hinkelman AN, Gibbs MA, Ahmed A, Runyon MS, Schieffelin J, Santos RP, Oberhelman R, Bott M, Correa A, Edelstein SL, Uschner D, Wierzba TF. Persistence of antibody responses to COVID-19 vaccines among participants in the COVID-19 Community Research Partnership. Vaccine X 2023; 15:100371. [PMID: 37649617 PMCID: PMC10462856 DOI: 10.1016/j.jvacx.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction High levels of immunity to SARS-CoV-2 in the community correlate with protection from COVID-19 illness. Measuring COVID-19 antibody seroprevalence and persistence may elucidate the level and length of protection afforded by vaccination and infection within a population. Methods We measured the duration of detectable anti-spike antibodies following COVID-19 vaccination in a multistate, longitudinal cohort study of almost 13,000 adults who completed daily surveys and submitted monthly dried blood spots collected at home. Results Overall, anti-spike antibodies persisted up to 284 days of follow-up with seroreversion occurring in only 2.4% of the study population. In adjusted analyses, risk of seroreversion increased with age (adults aged 55-64: adjusted hazard ratio [aHR] 2.19 [95% confidence interval (CI): 1.22, 3.92] and adults aged > 65: aHR 3.59 [95% CI: 2.07, 6.20] compared to adults aged 18-39). Adults with diabetes had a higher risk of seroreversion versus nondiabetics (aHR 1.77 [95% CI: 1.29, 2.44]). Decreased risk of seroreversion was shown for non-Hispanic Black versus non-Hispanic White (aHR 0.32 [95% CI: 0.13, 0.79]); college degree earners versus no college degree (aHR 0.61 [95% CI: 0.46, 0.81]); and those who received Moderna mRNA-1273 vaccine versus Pfizer-BioNTech BNT162b2 (aHR 0.35 [95% CI: 0.26, 0.47]). An interaction between healthcare worker occupation and sex was detected, with seroreversion increased among male, non-healthcare workers. Conclusion We established that a remote, longitudinal, multi-site study can reliably detect antibody durability following COVID-19 vaccination. The survey platform and measurement of antibody response using at-home collection at convenient intervals allowed us to explore sociodemographic factors and comorbidities and identify predictors of antibody persistence, which has been demonstrated to correlate with protection against disease. Our findings may help inform public health interventions and policies to protect those at highest risk for severe illness and assist in determining the optimal timing of booster doses.Clinical trials registry: NCT04342884.
Collapse
Affiliation(s)
- Andrea A. Berry
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley H. Tjaden
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Jone Renteria
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - DeAnna Friedman-Klabanoff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy N. Hinkelman
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | | | | | | | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Richard Oberhelman
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Bott
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L. Edelstein
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Diane Uschner
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Thomas F. Wierzba
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | |
Collapse
|