1
|
Han M, Zarkani AA, Duan Y, Grimm M, Trotereau J, Virlogeux-Payant I, Schikora A. Bidirectional Comparisons Revealed Functional Patterns in Interaction between Salmonella enterica and Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:414. [PMID: 38337947 PMCID: PMC10857149 DOI: 10.3390/plants13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Plants may harbor the human pathogen Salmonella enterica. Interactions between S. enterica and different plant species have been studied in individual reports. However, disparities arising from the distinct experimental conditions may render a meaningful comparison very difficult. This study explored interaction patterns between different S. enterica strains including serovars Typhimurium 14028s and LT2 and serovar Senftenberg, and different plants (Arabidopsis, lettuce, and tomato) in one approach. Better persistence of S. enterica serovar Typhimurium strains was observed in all tested plants, whereas the resulting symptoms varied depending on plant species. Genes encoding pathogenesis-related proteins were upregulated in plants inoculated with Salmonella. Furthermore, transcriptome of tomato indicated dynamic responses to Salmonella, with strong and specific responses already 24 h after inoculation. By comparing with publicly accessible Arabidopsis and lettuce transcriptome results generated in a similar manner, constants and variables were displayed. Plants responded to Salmonella with metabolic and physiological adjustments, albeit with variability in reprogrammed orthologues. At the same time, Salmonella adapted to plant leaf-mimicking media with changes in biosynthesis of cellular components and adjusted metabolism. This study provides insights into the Salmonella-plant interaction, allowing for a direct comparison of responses and adaptations in both organisms.
Collapse
Affiliation(s)
- Min Han
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (M.H.)
- INRAE Val de Loire, Université de Tours, L’Unité Mixte de Recherche Infectiologie et Santé Publique (UMR ISP), 37380 Nouzilly, France
| | - Azhar A. Zarkani
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (M.H.)
| | - Yongming Duan
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (M.H.)
| | - Maja Grimm
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (M.H.)
| | - Jérôme Trotereau
- INRAE Val de Loire, Université de Tours, L’Unité Mixte de Recherche Infectiologie et Santé Publique (UMR ISP), 37380 Nouzilly, France
| | - Isabelle Virlogeux-Payant
- INRAE Val de Loire, Université de Tours, L’Unité Mixte de Recherche Infectiologie et Santé Publique (UMR ISP), 37380 Nouzilly, France
| | - Adam Schikora
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (M.H.)
| |
Collapse
|
2
|
Esmael A, Al-Hindi RR, Albiheyri RS, Alharbi MG, Filimban AAR, Alseghayer MS, Almaneea AM, Alhadlaq MA, Ayubu J, Teklemariam AD. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms 2023; 11:microorganisms11030753. [PMID: 36985326 PMCID: PMC10056104 DOI: 10.3390/microorganisms11030753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant’s intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant–HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans.
Collapse
Affiliation(s)
- Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (A.E.); (R.R.A.)
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.E.); (R.R.A.)
| | - Raed S. Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A. R. Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazen S. Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M. Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Meshari Ahmed Alhadlaq
- Molecular Biology Section, Reference Laboratory for Microbiology Department, Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Jumaa Ayubu
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Li WJ, Li HZ, An XL, Lin CS, Li LJ, Zhu YG. Effects of manure fertilization on human pathogens in endosphere of three vegetable plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120344. [PMID: 36206891 DOI: 10.1016/j.envpol.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pathogens can colonize plant endosphere and, be transferred into human beings through the food chain. However, our understanding of the influences of agricultural activities, such as fertilization, on endophytic microbial communities and human pathogens is still limited. Here, we conducted a microcosm experiment using the combination of 16 S rRNA gene amplicon sequencing and high-throughput qPCR array to reveal the effects of manure fertilization on microbiomes of soils and plants and how such impact is translated into endophytic pathogens. Our results showed that manure fertilization significantly altered soil microbiomes, whereas with less influence on endophytic microbial communities. Soil is a vital source of both bacterial communities and human pathogens for the plant endosphere. The abundance of pathogens was increased both in soils and endosphere under manure fertilization. These findings provide an integrated understanding of the impact of manure fertilization on endophytic pathogens.
Collapse
Affiliation(s)
- Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Chen-Shuo Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Li-Juan Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Xylia P, Chrysargyris A, Botsaris G, Skandamis P, Tzortzakis N. Salmonella Enteritidis survival in different temperatures and nutrient solution pH levels in hydroponically grown lettuce. Food Microbiol 2022; 102:103898. [PMID: 34809930 DOI: 10.1016/j.fm.2021.103898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/04/2022]
Abstract
Due to climate change, with contaminated and less fertile soils, and intense weather phenomena, a turn towards hydroponic vegetable production has been made. Hydroponic cultivation of vegetables is considered to be a clean, safe and environmentally friendly growing technique; however, incidence of microbial contamination i.e. foodborne pathogens, might occur, endangering human health. The aim of this study was to investigate the effects of different plant growth stages, pH (values 5, 6, 7, 8) and bacterial inoculum levels (3 and 6 log cfu/mL) on hydroponically cultivated lettuce spiked with Salmonella Enteritidis. The results revealed that the pH and inoculum levels affected the internalization and survival of the pathogen in the hydroponic environment and plant tissue. Younger plants were found to be more susceptible to pathogen internalization compared to older ones. Under the current growing conditions (hydroponics, pH and inoculum levels), no leaf internalization was observed at all lettuce growth stages, despite the bacterium presence in the hydroponic solution. Noticeably, bacteria load at the nutrient solution was lower in low pH levels. These results showed that bacterium presence initiates plant response as indicated by the increased phenols, antioxidants and damage index markers (H2O2, MDA) in order for the plant to resist contamination by the invader. Nutrient solution management can result in Taylor-made recipes for plant growth and possible controlling the survival and growth of S. Enteritidis by pH levels.
Collapse
Affiliation(s)
- Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - George Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Panagiotis Skandamis
- Faculty of Food Science & Technology, Agricultural University of Athens, Athens, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
5
|
Zwe YH, Ten MMZ, Pang X, Wong CH, Li D. Differential Survivability of Two Genetically Similar Salmonella Thompson Strains on Pre-harvest Sweet Basil ( Ocimum basilicum) Leaves. Front Microbiol 2021; 12:740983. [PMID: 34950113 PMCID: PMC8689135 DOI: 10.3389/fmicb.2021.740983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Although conventionally considered an animal pathogen, recent evidence increasingly suggests that fresh produce may act as significant transmission vehicles and alternative hosts to Salmonella. This study reports the differential survivability of two genetically similar Salmonella Thompson strains (ST 889B and ST 688C) on the adaxial surface of pre-harvest basil (Ocimum basilicum) leaves. Upon inoculation, two distinct phenomena, a dried water-print or a macroscopic lesion, were observed within 24 h. ST 889B survived better than ST 688C on healthy-looking leaves without lesions, possibly due to its higher biofilm-forming ability. Both strains survived better on the leaves with lesions than on the healthy-looking leaves (ST 688C: 4.39 ± 0.68 vs. 2.18 ± 0.29; ST 889B: 4.78 ± 0.12 vs. 2.83 ± 0.18 log CFU per sample at 6 days post-inoculation). ST 889B caused the formation of lesions at a higher frequency [70/117 leaves (59.8%)] than ST 688C [35/96 leaves (36.5%)]. Thus, we highlighted two distinct Salmonella survival strategies in the basil pathosystem and demonstrated gene expression polymorphism (variations in the expression of the same set of genes) as an indispensable strategy in the colonization of plants as hosts by the human pathogens.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Michelle Mei Zhen Ten
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xinyi Pang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Chun Hong Wong
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Chalupowicz L, Manulis-Sasson S, Barash I, Elad Y, Rav-David D, Brandl MT. Effect of Plant Systemic Resistance Elicited by Biological and Chemical Inducers on the Colonization of the Lettuce and Basil Leaf Apoplast by Salmonella enterica. Appl Environ Microbiol 2021; 87:e0115121. [PMID: 34613760 PMCID: PMC8612278 DOI: 10.1128/aem.01151-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Mitigation strategies to prevent microbial contamination of crops are lacking. We tested the hypothesis that induction of plant systemic resistance by biological (induced systemic resistance [ISR]) and chemical (systemic acquired resistance [SAR]) elicitors reduces endophytic colonization of leaves by Salmonella enterica serovars Senftenberg and Typhimurium. S. Senftenberg had greater endophytic fitness than S. Typhimurium in basil and lettuce. The apoplastic population sizes of serovars Senftenberg and Typhimurium in basil and lettuce, respectively, were significantly reduced approximately 10- to 100-fold by root treatment with microbial inducers of systemic resistance compared to H2O treatment. Rhodotorula glutinis effected the lowest population increases of S. Typhimurium in lettuce and S. Senftenberg in basil leaves, respectively 120- and 60-fold lower than those seen with the H2O treatment over 10 days postinoculation. Trichoderma harzianum and Pichia guilliermondii did not have any significant effect on S. Senftenberg in the basil apoplast. The chemical elicitors acidobenzolar-S-methyl and dl-β-amino-butyric acid inhibited S. Typhimurium multiplication in the lettuce apoplast 10- and 2-fold, respectively, compared to H2O-treated plants. All ISR and SAR inducers applied to lettuce roots in this study increased leaf expression of the defense gene PR1, as did Salmonella apoplastic colonization in H2O-treated lettuce plants. Remarkably, both acidobenzolar-S-methyl upregulation and R. glutinis upregulation of PR1 were repressed by the presence of Salmonella in the leaves. However, enhanced PR1 expression was sustained longer and at greater levels upon elicitor treatment than by Salmonella induction alone. These results serve as a proof of concept that priming of plant immunity may provide an intrinsic hurdle against the endophytic establishment of enteric pathogens in leafy vegetables. IMPORTANCE Fruit and vegetables consumed raw have become an important vehicle of foodborne illness despite a continuous effort to improve their microbial safety. Salmonella enterica has caused numerous recalls and outbreaks of infection associated with contaminated leafy vegetables. Evidence is increasing that enteric pathogens can reach the leaf apoplast, where they confront plant innate immunity. Plants may be triggered for induction of their defense signaling pathways by exposure to chemical or microbial elicitors. This priming for recognition of microbes by plant defense pathways has been used to inhibit plant pathogens and limit disease. Given that current mitigation strategies are insufficient in preventing microbial contamination of produce and associated outbreaks, we investigated the effect of plant-induced resistance on S. enterica colonization of the lettuce and basil leaf apoplast in order to gain a proof of concept for the use of such an intrinsic approach to inhibit human pathogens in leafy vegetables.
Collapse
Affiliation(s)
- L. Chalupowicz
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - S. Manulis-Sasson
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - I. Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, University of Tel Aviv, Tel-Aviv, Israel
| | - Y. Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - D. Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - M. T. Brandl
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, California, USA
| |
Collapse
|
7
|
Draft Genome Sequence of a Salmonella enterica subsp. enterica Serotype Choleraesuis Strain Isolated from the Pulp of Muskmelons. Microbiol Resour Announc 2021; 10:10/10/e00009-21. [PMID: 33707316 PMCID: PMC7953279 DOI: 10.1128/mra.00009-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Choleraesuis is a foodborne pathogen with zoonotic potential. We report the draft genome sequence and a closed plasmid sequence from a plant-internalized S. Choleraesuis strain that was isolated from the pulp of a Spanish Galia melon purchased from a German supermarket in 2015. Salmonella enterica subsp. enterica serotype Choleraesuis is a foodborne pathogen with zoonotic potential. We report the draft genome sequence and a closed plasmid sequence from a plant-internalized S. Choleraesuis strain that was isolated from the pulp of a Spanish Galia melon purchased from a German supermarket in 2015.
Collapse
|
8
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Arienzo A, Murgia L, Fraudentali I, Gallo V, Angelini R, Antonini G. Microbiological Quality of Ready-to-Eat Leafy Green Salads during Shelf-Life and Home-Refrigeration. Foods 2020; 9:foods9101421. [PMID: 33049952 PMCID: PMC7601731 DOI: 10.3390/foods9101421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
The market of ready-to-eat leafy green salads is experiencing a noticeable growth in Europe. Since they are intended to be consumed without additional treatments, these ready-to-eat products are associated with a high microbiological risk. The aim of this work was to evaluate the microbiological quality and safety of ready-to-eat leafy green salads sold in widespread supermarket chains in Lazio, Italy, on the packaging date during shelf-life and during home-refrigeration. The study also aimed to determine the differences between low-, medium-, and high-cost products. Salmonella spp. and L. monocytogenes were chosen as safety indicators as specified by European regulations while total aerobic mesophilic bacteria and Escherichia coli were chosen as quality indicators as suggested by national guidelines. Analyses were performed following the ISO standards and in parallel for the evaluation of total aerobic mesophilic bacteria, with an alternative colorimetric system, the Micro Biological Survey method, in order to propose a simple, affordable and accurate alternative for testing the microbiological quality of products, especially suitable for small and medium enterprises and on-site analyses. The study revealed high, unsatisfactory, total bacterial loads in all analyzed samples on the packaging date and expiry date and a very high prevalence of Salmonella spp. (67%) regardless of the selected varieties and cost categories; L. monocytogenes was not recovered aligning with the results obtained in other studies.
Collapse
Affiliation(s)
- Alyexandra Arienzo
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (A.A.); (I.F.); (R.A.)
| | - Lorenza Murgia
- Interuniversity Consortium INBB National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy; (L.M.); (V.G.)
| | - Ilaria Fraudentali
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (A.A.); (I.F.); (R.A.)
| | - Valentina Gallo
- Interuniversity Consortium INBB National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy; (L.M.); (V.G.)
| | - Riccardo Angelini
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (A.A.); (I.F.); (R.A.)
| | - Giovanni Antonini
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (A.A.); (I.F.); (R.A.)
- Interuniversity Consortium INBB National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy; (L.M.); (V.G.)
- Correspondence:
| |
Collapse
|
10
|
Burris KP, Simmons OD, Webb HM, Moore RG, Jaykus LA, Zheng J, Reed E, Ferreira CM, Brown E, Bell RL. Salmonella enterica colonization and fitness in pre-harvest cantaloupe production. Food Microbiol 2020; 93:103612. [PMID: 32912584 DOI: 10.1016/j.fm.2020.103612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
Cantaloupes have emerged as significant vehicles of widespread foodborne illness outbreaks caused by bacterial pathogens, including Salmonella. The purpose of this study was to investigate the efficiency of Salmonella colonization and internalization in cantaloupes by relevant routes of contamination. Cantaloupe plants (Cucumis melo 'reticulatus') from two cultivars 'Athena' (Eastern) and 'Primo' (Western) were grown from commercial seed. Plants were maintained in the NCSU BSL-3P phytotron greenhouse. Salmonella enterica (a cocktail of cantaloupe-associated outbreak serovars Javiana, Newport, Panama, Poona and Typhimurium) contamination was introduced via blossoms or soil at ca. 4.4 log10 CFU/blossom or 8.4 log10 CFU/root zone, respectively. Cantaloupes were analyzed for Salmonella by enrichment in accordance with modified FDA-BAM methods. Five randomly chosen colonies from each Salmonella-positive sample were typed using the Agilent 2100 bioanalyzer following multiplex PCR. Data were analyzed for prevalence of contamination and serovar predominance in fruit, stems and soil. Of the total cantaloupe fruit harvested from Salmonella-inoculated blossoms (n = 63), 89% (56/63) were externally contaminated and 73% (46/63) had Salmonella internalized into the fruit. Serovar Panama was the most commonly isolated from the surface of fruit while S. Panama and S. Poona were the most prevalent inside the fruit. When soil was inoculated with Salmonella at one day post-transplant, 13% (8/60) of the plants were shown to translocate the organism to the lower stem (ca. 4 cm) by 7 days post-inoculation (dpi). We observed Salmonella persistence in the soil up to 60 dpi with S. Newport being the predominant serovar at 10 and 20 dpi. These data demonstrate that contaminated soil and blossoms can lead to Salmonella internalization into the plant or fruit at a relatively high frequency.
Collapse
Affiliation(s)
- Kellie P Burris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA; Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA.
| | - Otto D Simmons
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Hannah M Webb
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Robin Grant Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jie Zheng
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Elizabeth Reed
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Christina M Ferreira
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Eric Brown
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Rebecca L Bell
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| |
Collapse
|
11
|
Burris KP, Simmons OD, Webb HM, Deese LM, Moore RG, Jaykus LA, Zheng J, Reed E, Ferreira CM, Brown EW, Bell RL. Colonization and Internalization of Salmonella enterica and Its Prevalence in Cucumber Plants. Front Microbiol 2020; 11:1135. [PMID: 32547530 PMCID: PMC7273826 DOI: 10.3389/fmicb.2020.01135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
Consumption of cucumbers (Cucumis sativus var. sativus) has been linked to several foodborne outbreaks involving Salmonella enterica. The purpose of this work was to investigate the efficiency of colonization and internalization of S. enterica into cucumber plants by various routes of contamination. Produce-associated outbreak strains of Salmonella (a cocktail of serovars Javiana, Montevideo, Newport, Poona, and Typhimurium) were introduced to three cultivars of cucumber plants (two slicing cultivars and one pickling) via blossoms (ca. 6.4 log10 CFU/blossom, 4.5 log10 CFU/blossom, or 2.5 log10 CFU/blossom) or soil (ca. 8.3 log10 CFU/root zone) and were analyzed for prevalence of Salmonella contamination (internal and external) and serovar predominance in fruit and stems. Of the total slicing fruit harvested from Salmonella-inoculated blossoms (ca. 6.4, 4.5, or 2.5 log10 CFU/blossom), 83.9% (47/56), 81.4% (48/59) or 71.2% (84/118) were found colonized and 67.9% (38/56), 35.6% (21/59) or 22.0% (26/118) had Salmonella internalized into the fruit, respectively. S. Poona was the most prevalent serovar isolated on or in cucumber fruits at all inoculation levels. When soil was inoculated at 1 day post-transplant (dpt), 8% (10/120) of the plants were shown to translocate Salmonella to the lower stem 7 days post-inoculation (dpi). Results identified blossoms as an important route by which Salmonella internalized at a high percentage into cucumbers, and S. Poona, the same strain isolated from the 2015 outbreak of cucumbers imported from Mexico, was shown to be well-adapted to the blossom niche.
Collapse
Affiliation(s)
- Kellie P. Burris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Otto D. Simmons
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Hannah M. Webb
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Lauren M. Deese
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Robin Grant Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Christina M. Ferreira
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Rebecca L. Bell
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
12
|
De Franciscis P, Colacurci N, Riemma G, Conte A, Pittana E, Guida M, Schiattarella A. A Nutraceutical Approach to Menopausal Complaints. ACTA ACUST UNITED AC 2019; 55:medicina55090544. [PMID: 31466381 PMCID: PMC6780855 DOI: 10.3390/medicina55090544] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
The menopausal transition, or perimenopause, is characterized by menstrual irregularities, vasomotor symptoms, sleep disturbances, mood symptoms, and urogenital tract atrophy. These changes can also affect the quality of life and one’s self-esteem. Hormone replacement therapy (HRT) is considered the best option to achieve therapeutic relief of different menopausal symptoms but is usually restricted to moderate or severe symptoms. Moreover, many women refuse HRT for a variety of reasons concerning the fear of cancer and other adverse effects. According to these considerations, new topics are emerging: Dissatisfaction with drug costs and conventional healthcare, desire for personalized medicines, and the public perception that “natural is good”. In this context, nonhormonal therapies are mostly evolving, and it is not unusual that women often request a “natural” approach for their symptoms. The aim of this study is to investigate nonhormonal therapies that have been identified to reduce the menopausal symptoms.
Collapse
Affiliation(s)
- Pasquale De Franciscis
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nicola Colacurci
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gaetano Riemma
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Conte
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Erika Pittana
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II", 80138 Naples, Italy
| | - Antonio Schiattarella
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
13
|
Karmakar K, Nath U, Nataraja KN, Chakravortty D. Root mediated uptake of Salmonella is different from phyto-pathogen and associated with the colonization of edible organs. BMC PLANT BIOLOGY 2018; 18:344. [PMID: 30537948 PMCID: PMC6290541 DOI: 10.1186/s12870-018-1578-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pre-harvest contamination of fruits and vegetables by Salmonella in fields is one of the causes of food-borne outbreaks. Natural openings like stomata, hydathodes and fruit cracks are known to serve as entry points. While there are reports indicating that Salmonella colonize and enter root through lateral root emerging area, further investigations regarding how the accessibility of Salmonella to lateral root is different from phyto-pathogenic bacteria, the efficacy of lateral root to facilitate entry have remained unexplored. In this study we attempted to investigate the lateral root mediated entry of Salmonella, and to bridge this gap in knowledge. RESULTS Unlike phytopathogens, Salmonella cannot utilize cellulose as the sole carbon source. This negates the fact of active entry by degrading plant cellulose and pectin. Endophytic Salmonella colonization showed a high correlation with number of lateral roots. When given equal opportunity to colonize the plants with high or low lateral roots, Salmonella internalization was found higher in the plants with more lateral roots. However, the epiphytic colonization in both these plants remained unaltered. To understand the ecological significance, we induced lateral root production by increasing soil salinity which made the plants susceptible to Salmonella invasion and the plants showed higher Salmonella burden in the aerial organs. CONCLUSION Salmonella, being unable to degrade plant cell wall material relies heavily on natural openings. Therefore, its invasion is highly dependent on the number of lateral roots which provides an entry point because of the epidermis remodeling. Thus, when number of lateral root was enhanced by increasing the soil salinity, plants became susceptible to Salmonella invasion in roots and its transmission to aerial organs.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore, 560065 India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
14
|
Zhang Y, Jewett C, Gilley J, Bartelt-Hunt SL, Snow DD, Hodges L, Li X. Microbial communities in the rhizosphere and the root of lettuce as affected by Salmonella-contaminated irrigation water. FEMS Microbiol Ecol 2018; 94:fiy135. [PMID: 30010741 DOI: 10.1093/femsec/fiy135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023] Open
Abstract
Reclaimed wastewater is increasingly used as a source of irrigation water in croplands. The enteric pathogens in reclaimed wastewater may accumulate in soil and plants and cause food safety concerns. The objective of this study was to determine the effects of irrigation water containing Salmonella on the microbial communities in the rhizosphere and in the root of lettuce. The effects were also examined with three variables (soil texture, lettuce cultivar and harvest time) in a factorial design. Analyses of the 16S rRNA gene sequences show that the microbial communities in the root were significantly different from those in the rhizosphere, although ∼80% of the microbes in the root originated from the rhizosphere. Salmonella in irrigation water significantly altered the structure of the microbial community in the rhizosphere, but not in the root. Salmonella internalized in lettuce root was observed when contaminated water was used for irrigation. Compared to lettuce cultivar and harvest time, soil texture played a more significant role in shaping the bacterial communities in the rhizosphere and in the root. Results from this study could advance understanding about the long-term impact of reclaimed wastewater as a source of irrigation water on the microbiota associated with leafy green vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | - Laurie Hodges
- Deptartment of Agronomy & Horticulture, University of Nebraska-Lincoln
| | - Xu Li
- Department of Civil Engineering
| |
Collapse
|
15
|
Cowles KN, Groves RL, Barak JD. Leafhopper-Induced Activation of the Jasmonic Acid Response Benefits Salmonella enterica in a Flagellum-Dependent Manner. Front Microbiol 2018; 9:1987. [PMID: 30190716 PMCID: PMC6115507 DOI: 10.3389/fmicb.2018.01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Enteric human pathogens such as Salmonella enterica are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. S. enterica survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, S. enterica is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce. Although S. enterica successfully persists in the plant environment, phytobacterial infection by Pectobacterium carotovorum or Xanthomonas spp. increases S. enterica survival and infrequently leads to growth on infected plants. The co-association of phytophagous insects, such as the Aster leafhopper, Macrosteles quadrilineatus, results in S. enterica populations that persist at higher levels for longer periods of time when compared to plants treated with S. enterica alone. We hypothesized that leafhoppers increase S. enterica persistence by altering the plant defense response to the benefit of the bacteria. Leafhopper infestation activated the jasmonic acid (JA) defense response while S. enterica colonization triggered the salicylic acid (SA) response. In tomato plants co-treated with S. enterica and leafhoppers, both JA- and SA-inducible genes were activated, suggesting that the presence of leafhoppers may affect the crosstalk that occurs between the two immune response pathways. To rule out the possibility that leafhoppers provide additional benefits to S. enterica, plants were treated with a chemical JA analog to activate the immune response in the absence of leafhoppers. Although bacterial populations continue to decline over time, analog treatment significantly increased bacterial persistence on the leaf surface. Bacterial mutant analysis determined that the bacterial flagellum, whether functional or not, was required for increased S. enterica survival after analog treatment. By investigating the interaction between this human pathogen, a common phytophagous insect, and their plant host, we hope to elucidate the mechanisms promoting S. enterica survival on plants and provide information to be used in the development of new food safety intervention strategies.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Cox CE, Brandl MT, de Moraes MH, Gunasekera S, Teplitski M. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals. Front Microbiol 2018; 8:2668. [PMID: 29375530 PMCID: PMC5770404 DOI: 10.3389/fmicb.2017.02668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022] Open
Abstract
The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella, similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula. M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella, and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae, suggesting a broad ecological role of the IpdC-catalyzed pathway.
Collapse
Affiliation(s)
- Clayton E Cox
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Marcos H de Moraes
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States
| | | | - Max Teplitski
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States.,Smithsonian Marine Station, Ft. Pierce, FL, United States
| |
Collapse
|
17
|
Markland SM, Bais H, Kniel KE. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa. Foodborne Pathog Dis 2017; 14:432-439. [PMID: 28504573 DOI: 10.1089/fpd.2016.2216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.
Collapse
Affiliation(s)
- Sarah M Markland
- 1 Department of Animal and Food Sciences, University of Delaware , Newark, Delaware
| | - Harsh Bais
- 2 Department of Plant and Soil Sciences, University of Delaware , Newark, Delaware
| | - Kalmia E Kniel
- 1 Department of Animal and Food Sciences, University of Delaware , Newark, Delaware
| |
Collapse
|
18
|
Bernstein N, Sela (Saldinger) S, Dudai N, Gorbatsevich E. Salinity Stress Does Not Affect Root Uptake, Dissemination and Persistence of Salmonella in Sweet-basil ( Ocimum basilicum). FRONTIERS IN PLANT SCIENCE 2017; 8:675. [PMID: 28512466 PMCID: PMC5411819 DOI: 10.3389/fpls.2017.00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/12/2017] [Indexed: 05/25/2023]
Abstract
Crop produce can be contaminated in the field during cultivation by bacterial human pathogens originating from contaminated soil or irrigation water. The bacterial pathogens interact with the plant, can penetrate the plant via the root system and translocate and survive in above-ground tissues. The present study is first to investigate effects of an abiotic stress, salinity, on the interaction of plants with a bacterial human pathogen. The main sources of human bacterial contamination of plants are manures and marginal irrigation waters such as treated or un-treated wastewater. These are often saline and induce morphological, chemical and physiological changes in plants that might affect the interaction between the pathogens and the plant and thereby the potential for plant contamination. This research studied effects of salinity on the internalization of the bacterial human pathogen Salmonella enterica serovar Newport via the root system of sweet-basil plants, dissemination of the bacteria in the plant, and kinetics of survival in planta. Irrigation with 30 mM NaCl-salinity induced typical salt-stress effects on the plant: growth was reduced, Na and Cl concentrations increased, K and Ca concentrations reduced, osmotic potential and anti-oxidative activity were increased by 30%, stomatal conductance was reduced, and concentrations of essential-oils in the plants increased by 26%. Despite these physical, chemical and morphological changes in the plants, root internalization of the bacteria and its translocation to the shoot were not affected, and neither was the die-off rate of Salmonella in planta. The results demonstrate that the salinity-induced changes in the sweet-basil plants did not affect the interaction between Salmonella and the plant and thereby the potential for crop contamination.
Collapse
Affiliation(s)
- Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani CenterRishon LeZiyyon, Israel
| | - Shlomo Sela (Saldinger)
- Department of Food Quality and Safety, Agricultural Research Organization, Volcani CenterRishon LeZiyyon, Israel
| | - Nativ Dudai
- Unit of Medicinal and Aromatic Plants, Newe Ya’ar Research Center, Agriculture Research OrganizationRamat Yishay, Israel
| | - Elena Gorbatsevich
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani CenterRishon LeZiyyon, Israel
- Department of Food Quality and Safety, Agricultural Research Organization, Volcani CenterRishon LeZiyyon, Israel
| |
Collapse
|
19
|
Zhang Y, Sallach JB, Hodges L, Snow DD, Bartelt-Hunt SL, Eskridge KM, Li X. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:523-31. [PMID: 26552531 DOI: 10.1016/j.envpol.2015.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Brett Sallach
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Laurie Hodges
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Kent M Eskridge
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
20
|
Deering AJ, Jack DR, Pruitt RE, Mauer LJ. Movement of Salmonella serovar Typhimurium and E. coli O157:H7 to Ripe Tomato Fruit Following Various Routes of Contamination. Microorganisms 2015; 3:809-25. [PMID: 27682118 PMCID: PMC5023275 DOI: 10.3390/microorganisms3040809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
Salmonella serovars have been associated with the majority of foodborne illness outbreaks involving tomatoes, and E. coli O157:H7 has caused outbreaks involving other fresh produce. Contamination by both pathogens has been thought to originate from all points of the growing and distribution process. To determine if Salmonella serovar Typhimurium and E. coli O157:H7 could move to the mature tomato fruit of different tomato cultivars following contamination, three different contamination scenarios (seed, leaf, and soil) were examined. Following contamination, each cultivar appeared to respond differently to the presence of the pathogens, with most producing few fruit and having overall poor health. The Micro-Tom cultivar, however, produced relatively more fruit and E. coli O157:H7 was detected in the ripe tomatoes for both the seed- and leaf- contaminated plants, but not following soil contamination. The Roma cultivar produced fewer fruit, but was the only cultivar in which E. coli O157:H7 was detected via all three routes of contamination. Only two of the five cultivars produced tomatoes following seed-, leaf-, and soil- contamination with Salmonella Typhimurium, and no Salmonella was found in any of the tomatoes. Together these results show that different tomato cultivars respond differently to the presence of a human pathogen, and for E. coli O157:H7, in particular, tomato plants that are either contaminated as seeds or have a natural opening or a wound, that allows bacteria to enter the leaves can result in plants that have the potential to produce tomatoes that harbor internalized pathogenic bacteria.
Collapse
Affiliation(s)
- Amanda J Deering
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Dan R Jack
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Robert E Pruitt
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA.
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
21
|
Sallach JB, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:269-277. [PMID: 25483595 DOI: 10.1016/j.envpol.2014.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce.
Collapse
Affiliation(s)
- J Brett Sallach
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Yuping Zhang
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA
| | - Laurie Hodges
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, 377N PLSH, Lincoln, NE 68583-0724, USA.
| | - Daniel Snow
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE 68583-0844, USA.
| | - Xu Li
- University of Nebraska-Lincoln, Department of Civil Engineering, N104 SLNK, Lincoln, NE 68588-0531, USA.
| | - Shannon Bartelt-Hunt
- University of Nebraska-Lincoln, Department of Civil Engineering, 203B Peter Kiewit Institute, Omaha, NE 68182-0178, USA.
| |
Collapse
|
22
|
Schleker S, Kshirsagar M, Klein-Seetharaman J. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions. Front Microbiol 2015; 6:45. [PMID: 25674082 PMCID: PMC4309195 DOI: 10.3389/fmicb.2015.00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is the most frequent foodborne disease worldwide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs) between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.
Collapse
Affiliation(s)
- Sylvia Schleker
- Klein-Seetharaman Laboratory, Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick , Coventry, UK ; Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn , Bonn, Germany
| | - Meghana Kshirsagar
- Language Technologies Institute, School of Computer Science, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Judith Klein-Seetharaman
- Klein-Seetharaman Laboratory, Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick , Coventry, UK
| |
Collapse
|
23
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
24
|
Barzman M, Lamichhane JR, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah JL, Messean A. Research and Development Priorities in the Face of Climate Change and Rapidly Evolving Pests. SUSTAINABLE AGRICULTURE REVIEWS 2015. [DOI: 10.1007/978-3-319-16742-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 2014; 7:496-516. [PMID: 25351039 PMCID: PMC4265070 DOI: 10.1111/1751-7915.12186] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.
Collapse
Affiliation(s)
- Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of TechnologyHaifa, 32000, Israel
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
26
|
Zhang Y, Nandakumar R, Bartelt-Hunt SL, Snow DD, Hodges L, Li X. Quantitative proteomic analysis of the Salmonella-lettuce interaction. Microb Biotechnol 2014; 7:630-7. [PMID: 24512637 PMCID: PMC4265081 DOI: 10.1111/1751-7915.12114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Civil Engineering, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Renu Nandakumar
- Proteomics and Metabolomics Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | | | - Daniel D Snow
- School of Natural Resources, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Laurie Hodges
- Deptartment of Agronomy & Horticulture, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-LincolnLincoln, NE, 68588, USA
| |
Collapse
|
27
|
Chitarra W, Decastelli L, Garibaldi A, Gullino ML. Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. Int J Food Microbiol 2014; 189:139-45. [PMID: 25150671 DOI: 10.1016/j.ijfoodmicro.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/21/2014] [Accepted: 08/02/2014] [Indexed: 11/23/2022]
Abstract
Outbreaks of foodborne illness, resulting from the consumption of fresh produce contaminated with human pathogens, are increasing. Potential uptake and persistence of human pathogens within edible parts of consumed fresh vegetables become an important issue in food safety. This study was conducted to assess the potential uptake and internalization of Escherichia coli O157:H7 and Listeria monocytogenes from an autoclaved substrate into edible parts of basil and baby salad plants (lettuce, cultivated rocket, wild rocket and corn salad) from 20 to 60-80days after inoculation, when plants are ready to be harvested and commercialized. Plants were grown in mesocosms under different temperature conditions (24°C and 30°C) and the growing substrate was inoculated using contaminated irrigation water (7logCFU/mL). E. coli O157:H7 could be internalized in the leaves of the tested leafy vegetables through the roots and persist up to the harvesting time with negligible differences between 24°C and 30°C. Significant decreases in pathogen titers were observed over time in the growing substrate on which the plants grew, until the last sampling time. In contrast, L. monocytogenes internalized and persisted only in lettuce mesocosms at 24°C. Neither pathogen was observed in basil leaves. Similarly, in basil growing substrates, enteric bacteria were undetectable at the end of the experiments, suggesting that basil plants may produce and release antimicrobial compounds active against both bacteria in root exudates. These results suggest that enteric bacteria are able to persist within baby salad leaves up to market representing a risk for consumer's health.
Collapse
Affiliation(s)
- Walter Chitarra
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Lucia Decastelli
- Zooprophylactic Institute of Piemonte, Liguria and Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Angelo Garibaldi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
28
|
Sharma K, Goss EM, Dickstein ER, Smith ME, Johnson JA, Southwick FS, van Bruggen AHC. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans. PLoS One 2014; 9:e108691. [PMID: 25285444 PMCID: PMC4186819 DOI: 10.1371/journal.pone.0108691] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
| | - Erica M. Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogen Institute, University of Florida, Gainesville, Florida, United States of America
| | - Ellen R. Dickstein
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
| | - Matthew E. Smith
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
| | - Judith A. Johnson
- Emerging Pathogen Institute, University of Florida, Gainesville, Florida, United States of America
| | - Frederick S. Southwick
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ariena H. C. van Bruggen
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogen Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
29
|
Gautam D, Dobhal S, Payton ME, Fletcher J, Ma LM. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila. PLoS One 2014; 9:e105248. [PMID: 25147942 PMCID: PMC4141780 DOI: 10.1371/journal.pone.0105248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 11/18/2022] Open
Abstract
Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.
Collapse
Affiliation(s)
- Dhiraj Gautam
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shefali Dobhal
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Mark E. Payton
- Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Li Maria Ma
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
30
|
Melotto M, Panchal S, Roy D. Plant innate immunity against human bacterial pathogens. Front Microbiol 2014; 5:411. [PMID: 25157245 PMCID: PMC4127659 DOI: 10.3389/fmicb.2014.00411] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Shweta Panchal
- Department of Biology, University of TexasArlington, TX, USA
| | - Debanjana Roy
- Department of Biology, University of TexasArlington, TX, USA
| |
Collapse
|
31
|
Lim JA, Lee DH, Heu S. The interaction of human enteric pathogens with plants. THE PLANT PATHOLOGY JOURNAL 2014; 30:109-16. [PMID: 25288993 PMCID: PMC4174842 DOI: 10.5423/ppj.rw.04.2014.0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/10/2014] [Accepted: 05/10/2014] [Indexed: 05/16/2023]
Abstract
There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens-such as Salmonella-can overcome this defense mechanism.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| |
Collapse
|
32
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
33
|
Pollard S, Barak J, Boyer R, Reiter M, Gu G, Rideout S. Potential Interactions between Salmonella enterica and Ralstonia solanacearum in tomato plants. J Food Prot 2014; 77:320-4. [PMID: 24490928 DOI: 10.4315/0362-028x.jfp-13-209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the past decade, the Eastern Shore of Virginia (ESV) has been implicated in at least four outbreaks of salmonellosis associated with tomato, all originating from the same serovar, Salmonella enterica serovar Newport. In addition to Salmonella Newport contamination, the devastating plant disease bacterial wilt, caused by the phytopathogen Ralstonia solanacearum, threatens the sustainability of ESV tomato production. Bacterial wilt is present in most ESV tomato fields and causes devastating yield losses each year. Although the connection between bacterial wilt and tomato-related salmonellosis outbreaks in ESV is of interest, the relationship between the two pathogens has never been investigated. In this study, tomato plants were root dip inoculated with one of four treatments: (i) 8 log CFU of Salmonella Newport per ml, (ii) 5 log CFU of R. solanacearum per ml, (iii) a coinoculation of 8 log CFU of Salmonella Newport per ml plus 5 log CFU of R. solanacearum per ml, and (iv) sterile water as control. Leaf, stem, and fruit samples were collected at the early-green-fruit stage, and S. enterica contamination in the internal tissues was detected. S. enterica was recovered in 1.4 and 2.9% of leaf samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. S. enterica was recovered from 1.7 and 3.5% of fruit samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. There were significantly more stem samples from plants coinoculated with Salmonella Newport plus R. solanacearum that were positive for S. enterica (18.6%) than stem samples collected from plants inoculated with Salmonella Newport only (5.7%). Results suggested that R. solanacearum could influence S. enterica survival and transportation throughout the internal tissues of tomato plants.
Collapse
Affiliation(s)
- Stephanie Pollard
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420, USA
| | - Jeri Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Renee Boyer
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Mark Reiter
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420, USA
| | - Ganyu Gu
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420, USA
| | - Steven Rideout
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420, USA.
| |
Collapse
|
34
|
Meng F, Altier C, Martin GB. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ Microbiol 2013; 15:2418-30. [PMID: 23517029 DOI: 10.1111/1462-2920.12113] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
Despite increasing incidences of human salmonellosis caused by consumption of contaminated vegetables, relatively little is known about how the plant immune system responds to and may inhibit Salmonella colonization. Here we show that Salmonella Typhimurium activates the plant immune system primarily due to its recognition of the flg22 region in Salmonella flagellin. Several previously identified plant genes that play a role in immunity were found to affect the host response to Salmonella. The Salmonella flg22 (Seflg22) peptide induced the immune response in leaves which effectively restricted the growth of Salmonella as well as the plant pathogenic bacterium, Pseudomonas syringae pv. tomato. Induction of immune responses by Seflg22 was dependent on the plant FLS2 receptor. Salmonella multiplied poorly on plant tissues similar to other bacteria which are non-pathogenic to plants. However, Salmonella populations increased significantly when co-inoculated with P. syringae pv. tomato but not when co-inoculated with a type III secretion system mutant of this pathogen. Our results suggest that Salmonella benefits from the immune-suppressing effects of plant pathogenic bacteria, and this growth enhancement may increase the risk of salmonellosis.
Collapse
Affiliation(s)
- Fanhong Meng
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
35
|
Yin X, Zhou H, Gong J. Effects of culture conditions and tomato, spinach and lettuce lysates on adherence to intestinal epithelial cells of Salmonella Typhimurium PT 193. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Kisluk G, Kalily E, Yaron S. Resistance to essential oils affects survival of Salmonella enterica serovars in growing and harvested basil. Environ Microbiol 2013; 15:2787-98. [PMID: 23648052 DOI: 10.1111/1462-2920.12139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Abstract
The number of outbreaks of food-borne illness associated with consumption of fresh products has increased. A recent and noteworthy outbreak occurred in 2007. Basil contaminated with Salmonella enterica serovar Senftenberg was the source of this outbreak. Since basil produces high levels of antibacterial compounds the aim of this study was to investigate if the emerging outbreak reflects ecological changes that occurred as a result of development of resistance to ingredients of the basil oil. We irrigated basil plants with contaminated water containing two Salmonella serovars, Typhimurium and Senftenberg, and showed that Salmonella can survive on the basil plants for at least 100 days. S. Senftenberg counts in the phyllosphere were significantly higher than S. Typhimurium, moreover, S. Senftenberg was able to grow on stored harvested basil leaves. Susceptibility experiments demonstrated that S. Senftenberg is more resistant to basil oil and to its antimicrobial constituents: linalool, estragole and eugenol. This may indicate that S. Senftenberg had adapted to the basil environment by developing resistance to the basil oil. The emergence of resistant pathogens has a significant potential to change the ecology, and opens the way for pathogens to survive in new niches in the environment such as basil and other plants.
Collapse
Affiliation(s)
- Guy Kisluk
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
37
|
Ge C, Lee C, Lee J. Localization of viable Salmonella typhimurium internalized through the surface of green onion during preharvest. J Food Prot 2013; 76:568-74. [PMID: 23575116 DOI: 10.4315/0362-028x.jfp-12-374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Internalization of pathogens poses a tremendous health risk in the consumption of raw fresh produce, because conventional washing cannot remove pathogens effectively after internalization occurs. We investigated (i) the pattern of Salmonella internalization in different parts of green onions when it was contaminated on their surfaces, and (ii) whether environmental factors (extreme weather) affect the extent of Salmonell a internalization. Green onions were surface contaminated with three different levels of Salmonella Typhimurium (1, 3, and 5 log CFU per green onion). Each contamination group was irrigated with three different water volumes to mimic water stress and to determine if Salmonella Typhimurium internalization was localized in different parts of the plant. The plants were collected 2 days after contamination, and surface bacteria were inactivated with ethanol and silver nitrate. The plants were then cut into two parts, upper and lower. The internalized Salmonella Typhimurium in each part was visualized and confirmed with a laser scanning confocal microscope and was quantified with the plate count method and real-time quantitative PCR (qPCR). The results indicate that Salmonella Typhimurium can be taken up through the plant surface and transported from the upper to the lower part of the plant. The level of viable internalized Salmonella Typhimurium (plate count) was higher in the lower part than the level in the upper leafy part, especially when the leaves were contaminated with a high concentration of Salmonella (5 log CFU, P < 0.05), whereas the total internalized Salmonella Typhimurium (by qPCR) was higher in the upper part (P < 0.05) at the same contamination level. The discrepancy between these results suggests that most internalized Salmonella lost viability in the upper part but survived in the lower part. Water stress did not significantly change the extent of internalization in either location of green onion, whether detected via plate count or qPCR when the contamination occurred on the surface.
Collapse
Affiliation(s)
- Chongtao Ge
- Department of Food Science and Technology, The Ohio State University, 110 Parker Building, 2015 Fyffe Road, Columbus, Ohio 43210-1007, USA
| | | | | |
Collapse
|
38
|
Hou Z, Fink RC, Radtke C, Sadowsky MJ, Diez-Gonzalez F. Incidence of naturally internalized bacteria in lettuce leaves. Int J Food Microbiol 2013; 162:260-5. [PMID: 23454817 DOI: 10.1016/j.ijfoodmicro.2013.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Lettuce is the fresh leafy vegetable most frequently involved in foodborne disease outbreaks. Human bacterial pathogens may be experimentally internalized into lettuce plants, but the occurrence of natural microflora inside lettuce leaves has not been elucidated. To characterize the endophytic microorganism residing in commercial lettuce leaves, two separate studies were conducted. First, a total of 30 and 25 heads of romaine and red leaf lettuce, respectively, served as the source of individual leaves which were surface sterilized, stomached, enriched in BHI broth for 24h and plated onto BHI agar for non-selective isolation of internalized microorganism. In a separate survey, 80 heads of each of the two types of lettuce were similarly processed, except that GN broth and MacConkey agar (MCA) were used for isolation of Gram negative bacteria. Thirty-eight out of 100 leaves were positive for internalized microorganisms, and Bacillus, Pseudomonas and Pantoea were the genera most frequently found in both types of lettuce. Members of the genus Erwinia were isolated from romaine lettuce only. In the second study, 21 and 60% of romaine and red leaf lettuce heads, respectively, had internalized bacteria capable of growing on MCA. Among the Gram negative strains, Pseudomonas and Pantoea genera were most frequently isolated. Enterobacter isolates were obtained from three red leaf samples. In summary, spore-forming bacteria and traditional epiphytic bacterial genera were frequently detected in surface-sterilized commercial lettuce leaves. Despite the common occurrence of internalized bacteria, only Enterobacter was related to Escherichia coli O157:H7 and Salmonella.
Collapse
Affiliation(s)
- Zhe Hou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
39
|
Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, Holden NJ. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. PHYTOPATHOLOGY 2013; 103:333-40. [PMID: 23506361 DOI: 10.1094/phyto-08-12-0209-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.
Collapse
|
40
|
Mahovic M, Gu G, Rideout S. Effects of pesticides on the reduction of plant and human pathogenic bacteria in application water. J Food Prot 2013; 76:719-22. [PMID: 23575141 DOI: 10.4315/0362-028x.jfp-12-440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overhead spray applications of in-field tomato treatments dissolved in aqueous solutions have specific pest targets (fungal, bacterial, insect, or other). Any organism present in the solution or on treated plant surfaces that is not a specific target of the application is unlikely inactivated and can instead be spread through the phyllosphere. In this laboratory study, commercially labeled pesticides (including Actigard 50WG, Bravo Weather Stik 6F, Cabrio 20EG, Kasumin, Kocide 3000 46WG, Oxidate 27L, Penncozeb 75DF, ProPhyt 54.5L, Stimplex 100L, Firewall, 22.4WP, and Tanos 50DF) in common use in commercial tomato production fields of the Eastern Shore of Virginia were investigated for activity against in vitro bacterial contamination of pesticide application waters. Pesticides of interest were tank mixed individually with one of the plant pathogens Ralstonia solanacearum, Xanthomonas campestris pv. vesicatoria, Pseudomonas syringae pv. tomato, Erwinia carotovora subsp. carotovora, or one of two serovars (Newport and Montevideo) of the human pathogen Salmonella enterica to assess reduction values during the average time between mixing and initial application. Observations suggested that while some treatments had a noticeable effect on population levels, only the oxidizer, peroxyacetic acid, showed significant and consistent levels of suppression against all bacteria investigated, at levels that could have practical implications.
Collapse
Affiliation(s)
- Michael Mahovic
- Virginia Tech, Eastern Shore Agricultural Research and Extension Center, Painter, Virginia 23420, USA
| | | | | |
Collapse
|
41
|
Gu G, Cevallos-Cevallos JM, Vallad GE, van Bruggen AHC. Organically managed soils reduce internal colonization of tomato plants by Salmonella enterica serovar Typhimurium. PHYTOPATHOLOGY 2013; 103:381-388. [PMID: 23506364 DOI: 10.1094/phyto-04-12-0072-fi] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A two-phase experiment was conducted twice to investigate the effects of soil management on movement of Salmonella enterica Typhimurium in tomato plants. In the first phase, individual leaflets of 84 tomato plants grown in conventional or organic soils were dip inoculated two to four times before fruiting with either of two Salmonella Typhimurium strains (10(9) CFU/ml; 0.025% [vol/vol] Silwet L-77). Inoculated and adjacent leaflets were tested for Salmonella spp. densities for 30 days after each inoculation. Endophytic bacterial communities were characterized by polymerase chain reaction denaturing gradient gel electrophoresis before and after inoculation. Fruit and seed were examined for Salmonella spp. incidence. In phase 2, extracted seed were planted in conventional soil, and contamination of leaves and fruit of the second generation was checked. More Salmonella spp. survived in inoculated leaves on plants grown in conventional than in organic soil. The soil management effect on Salmonella spp. survival was confirmed for tomato plants grown in two additional pairs of soils. Endophytic bacterial diversities of tomato plants grown in conventional soils were significantly lower than those in organic soils. All contaminated fruit (1%) were from tomato plants grown in conventional soil. Approximately 5% of the seed from infested fruit were internally contaminated. No Salmonella sp. was detected in plants grown from contaminated seed.
Collapse
Affiliation(s)
- Ganyu Gu
- Department of Plant Pathology, University of Florida, Gainseville, FL, USA
| | | | | | | |
Collapse
|
42
|
Gu G, Cevallos-Cevallos JM, van Bruggen AHC. Ingress of Salmonella enterica Typhimurium into tomato leaves through hydathodes. PLoS One 2013; 8:e53470. [PMID: 23320087 PMCID: PMC3540056 DOI: 10.1371/journal.pone.0053470] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/30/2012] [Indexed: 11/23/2022] Open
Abstract
Internal contamination of Salmonella in plants is attracting increasing attention for food safety reasons. In this study, three different tomato cultivars “Florida Lanai”, “Crown Jewel”, “Ailsa Craig” and the transgenic line Sp5 of “Ailsa Craig” were inoculated with 1 µl GFP-labeled Salmonella Typhimurium through guttation droplets at concentrations of 109 or 107 CFU/ml. Survival of Salmonella on/in tomato leaves was detected by both direct plating and enrichment methods. Salmonella cells survived best on/in the inoculated leaves of cultivar “Ailsa Craig” and decreased fastest on/in “Florida Lanai” leaves. Increased guttation in the abscisic acid over-expressing Sp5 plants may have facilitated the entrance of Salmonella into leaves and the colonization on the surface of tomato leaves. Internalization of Salmonella Typhimurium in tomato leaves through guttation drop inoculation was confirmed by confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can enter tomato leaves through hydathodes and move into the vascular system, which may result in the internal translocation of the bacteria inside plants.
Collapse
Affiliation(s)
- Ganyu Gu
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: Ganyu Gu, (GG); (AHCvB)
| | - Juan M. Cevallos-Cevallos
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Ariena H. C. van Bruggen
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: Ganyu Gu, (GG); (AHCvB)
| |
Collapse
|
43
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
44
|
Lopez-Velasco G, Sbodio A, Tomás-Callejas A, Wei P, Tan KH, Suslow TV. Assessment of root uptake and systemic vine-transport of Salmonella enterica sv. Typhimurium by melon (Cucumis melo) during field production. Int J Food Microbiol 2012; 158:65-72. [PMID: 22824339 DOI: 10.1016/j.ijfoodmicro.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
Among melons, cantaloupes are most frequently implicated in outbreaks and surveillance-based recalls due to Salmonella enterica. There is limited but compelling evidence that associates irrigation water quality as a significant risk of preharvest contamination of melons. However, the potential for root uptake from water and soil and subsequent systemic transport of Salmonella into melon fruit is uncharacterized. The aim of this work was to determine whether root uptake of S. enterica results in systemic transport to fruit at high doses of applied inoculum through sub-surface drip and furrow irrigation during field production of melons. Cantaloupe and honeydew were grown under field conditions, in a silt clay loam soil using standard agronomic practices for California. An attenuated S. enterica sv. Typhimurium strain was applied during furrow irrigation and, in separate plots, buried drip-emitter lines delivered the inoculum directly into the established root zone. Contamination of the water resulted in soil contamination within furrows however Salmonella was not detected on top of the beds or around melon roots of furrow-irrigated rows demonstrating absence of detectable lateral transfer across the soil profile. In contrast, positive detection of the applied isolate occurred in soil and the rhizosphere in drip injected plots; survival of Salmonella was at least 41 days. Despite high populations of the applied bacteria in the rhizosphere, after surface disinfection, internalized Salmonella was not detected in mature melon fruit (n=485). Contamination of the applied Salmonella was detected on the rind surface of melons if fruit developed in contact with soil on the sides of the inoculated furrows. Following an unusual and heavy rain event during fruit maturation, melons collected from the central area of the beds, were shown to harbor the furrow-applied Salmonella. Delivery of Salmonella directly into the peduncle, after minor puncture wounding, resulted in detection of applied Salmonella in the sub-rind tissue below the fruit abscission zone. Results indicate that Salmonella internalization from soil and vascular systemic transport to fruit is unlikely to occur from irrigation water in CA production regions, even if substantially above normal presumptive levels of contamination. Although contaminated irrigation water and subsequently soil in contact with fruit remains a concern for contamination of the external rind, results suggest an acceptable microbial indicator threshold and critical limit for the presence of Salmonella in applied water may be possible by defining appropriate microbiological standards for melon irrigation in California and regions with similar climate, soil texture, and crop management practices.
Collapse
Affiliation(s)
- Gabriela Lopez-Velasco
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
45
|
Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microbiol 2012; 78:5882-9. [PMID: 22706044 DOI: 10.1128/aem.01095-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.
Collapse
|
46
|
Üstün Ş, Müller P, Palmisano R, Hensel M, Börnke F. SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2012; 194:1046-1060. [PMID: 22471508 DOI: 10.1111/j.1469-8137.2012.04124.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type III effector proteins (T3Es) of many Gram-negative pathogenic bacteria manipulate highly conserved cellular processes, indicating conservation in virulence mechanisms during the infection of hosts of divergent evolutionary origin. In order to identify conserved effector functions, we used a cross-kingdom approach in which we expressed selected T3Es from the mammalian pathogen Salmonella enterica in leaves of Nicotiana benthamiana and searched for possible virulence or avirulence phenotypes. We show that the T3E SseF of S. enterica triggers hypersensitive response (HR)-like symptoms, a hallmark of effector-triggered immunity in plants, either when transiently expressed in leaves of N. benthamiana by Agrobacterium tumefaciens infiltration or when delivered by Xanthomonas campestris pv vesicatoria (Xcv) through the type III secretion system. The ability of SseF to elicit HR-like symptoms was lost upon silencing of suppressor of G2 allele of skp1 (SGT1), indicating that the S. enterica T3E is probably recognized by an R protein in N. benthamiana. Xcv translocating an AvrRpt2-SseF fusion protein was restricted in multiplication within leaves of N. benthamiana. Bacterial growth was not impaired but symptom development was rather accelerated in a compatible interaction with susceptible pepper (Capsicum annuum) plants. We conclude that the S. enterica T3E SseF is probably recognized by the plant immune system in N. benthamiana, resulting in effector-triggered immunity.
Collapse
Affiliation(s)
- Şuayib Üstün
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Petra Müller
- Infektionsbiologische Abteilung im Mikrobiologischen Institut, Universitätsklinikum Erlangen, Wasserturmstr. 3-5, 91054 Erlangen, Germany
| | - Ralf Palmisano
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Michael Hensel
- Infektionsbiologische Abteilung im Mikrobiologischen Institut, Universitätsklinikum Erlangen, Wasserturmstr. 3-5, 91054 Erlangen, Germany
| | - Frederik Börnke
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
47
|
Barak JD, Schroeder BK. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:241-66. [PMID: 22656644 DOI: 10.1146/annurev-phyto-081211-172936] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Collapse
Affiliation(s)
- Jeri D Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
48
|
Oliveira M, Viñas I, Usall J, Anguera M, Abadias M. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int J Food Microbiol 2012; 156:133-40. [PMID: 22483400 DOI: 10.1016/j.ijfoodmicro.2012.03.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7 outbreaks associated with produce consumption have brought attention to contaminated compost manure, and polluted irrigation water as potential sources of pathogens for the contamination of these crops. The aim of this study was to determine the potential transfer of E. coli O157:H7 from soil fertilized with contaminated compost or irrigated with contaminated water to edible parts of lettuce together with its persistence in soil under field conditions in two different seasons (fall and spring). Moreover, its survival on lettuce sprinkled with contaminated irrigation water was evaluated, as well as the prevalence of aerobic mesophilic, Enterobacteriaceae and Pseudomonadaceae in control lettuce samples. Four treatments, contaminated compost, surface and sprinkle irrigation with contaminated water and uninoculated pots, were used in this work. Contaminated compost was applied to soil in the pots before lettuce was transplanted and contaminated irrigation water was applied twice and three times on the plants after the seedlings were transplanted, for sprinkle and surface irrigation, respectively. E. coli O157:H7 survived in soil samples for 9 weeks at levels, 4.50 log cfu gdw(-1) (dw, dry weight) in fall and 1.50 log cfu gdw(-1) in spring. The pathogen survives better in fall, indicating an important influence of environmental factors. E. coli O157:H7 population in lettuce leaves after sprinkle irrigation was very high (between 10(3) and 10(6) cfu g(-1)), but decreased to undetectable levels at field conditions. There was also transfer of E. coli O157:H7 from soil contaminated with compost or irrigated with contaminated water to lettuce leaves, mainly to the outer ones. The mean counts for aerobic mesophilic, Enterobacteriaceae and Pseudomonadaceae populations were also influenced by environmental conditions; higher levels were observed under fall conditions than in spring conditions. Contamination of lettuce plants in the field can occur through both contaminated composted manure and irrigation water and persist for several months.
Collapse
Affiliation(s)
- M Oliveira
- University of Lleida, XaRTA-Postharvest, Rovira Roure 191, 25198-Lleida, Spain
| | | | | | | | | |
Collapse
|
49
|
Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella. TRENDS IN PLANT SCIENCE 2012; 17:245-249. [PMID: 22513107 DOI: 10.1016/j.tplants.2012.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Recent findings show that many human pathogenic bacteria can use multiple host organisms. For example, Salmonella Typhimurium can use plants as alternative hosts to humans and other animals. These bacteria are able to adhere to plant surfaces and actively infect the interior of plants. Similarly to the infection of animal cells, S. Typhimurium suppresses plant defense responses by a type III secretion mechanism, indicating that these bacteria possess a dedicated multi-kingdom infection strategy, raising the question of host specificity. In addition, evidence is accumulating that the interaction of Salmonella with plants is an active process with different levels of specificity, because different Salmonella serovars show variations in pathogenicity, and different plant species reveal various levels of resistance towards these bacteria.
Collapse
Affiliation(s)
- Adam Schikora
- Institute for Plant Pathology and Applied Zoology, Research Centre for BioSystems, Land Use and Nutrition, JL University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
50
|
|