1
|
Ríos Colombo NS, Paul Ross R, Hill C. Synergistic and off-target effects of bacteriocins in a simplified human intestinal microbiome: implications for Clostridioides difficile infection control. Gut Microbes 2025; 17:2451081. [PMID: 39817466 PMCID: PMC11740676 DOI: 10.1080/19490976.2025.2451081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Clostridioides difficile is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against C. difficile. We engineered Lactococcus lactis strains to produce these bacteriocins individually or in combination, aiming to enhance their activity against C. difficile. Our results show that lacticin 3147 and pediocin PA-1 display synergy, resulting in higher anti-C. difficile activity. We then evaluated the effects of these L. lactis strains in a Simplified Human Intestinal Microbiome (SIHUMI-C) model, a bacterial consortium of eight diverse human gut species that includes C. difficile. After introducing the bacteriocin-producing L. lactis strains into SIHUMI-C, samples were collected over 24 hours, and the genome copies of each species were assessed using qPCR. Contrary to expectations, the combined bacteriocins increased C. difficile levels in the consortium despite showing synergy against C. difficile in agar-based screening. This can be rationally explained by antagonistic inter-species interactions within SIHUMI-C, providing new insights into how broad-spectrum antimicrobials might fail to control targeted species in complex gut microbial communities. These findings highlight the need to mitigate off-target effects in complex gut microbiomes when developing bacteriocin-based therapies with potential clinical implications for infectious disease treatment.
Collapse
Affiliation(s)
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Horill S, Zhou XK, Jin W. Probiotics as a possible novel therapeutic option to mitigate perioperative neurocognitive disorders: A review exploring the latest research findings. J Clin Anesth 2025; 103:111801. [PMID: 40043583 DOI: 10.1016/j.jclinane.2025.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 05/16/2025]
Abstract
Perioperative neurocognitive disorders (PND) refer to a constellation of symptoms that primarily affect the elderly and typically manifest as common complications after exposure to surgery and anesthesia. PND is associated with high morbidity, mortality, and progression to neurodegenerative diseases, thus exerting significant financial strains on families as well as the healthcare system. Given that an ageing global population is an inevitable trend and, with the latest advances in the healthcare system, an ever-growing number of elderly people present for surgery and anesthesia, PND is of prominent concern. The two-way communication between the intestinal flora and the brain, also known as the microbiota-gut-brain axis, plays an important role in central nervous system development, and multiple studies have highlighted the influence exerted by gut microbiome in both health and disease. Pertinent studies have corroborated the fact that anesthesia and surgery disrupt the harmony of the gut ecology, which sets off a cascade of events that initiate neuroinflammation, eventually leading to PND. Probiotics, which are live microorganisms that promote the host's health, have been shown as a viable option to restore or minimise the disruption of gut flora. Evidence exists that probiotics exhibit immunomodulatory and anti-inflammatory benefits. Given the effectiveness of probiotics in reducing neuroinflammation, research has also focused on their impact on the development of PND. This review aims to compile the data from relevant clinical trials focusing on the influence of probiotics on PND to determine whether the derived findings might be applied for the prevention and treatment of PND.
Collapse
Affiliation(s)
- Smita Horill
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xiao-Kai Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wenjie Jin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
3
|
Chen Y, Zhu F, Yu G, Peng N, Li X, Ge M, Yang L, Dong W. Bifidobacterium bifidum postbiotics prevent Salmonella Pullorum infection in chickens by modulating pyroptosis and enhancing gut health. Poult Sci 2025; 104:104968. [PMID: 40043668 PMCID: PMC11927735 DOI: 10.1016/j.psj.2025.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
The overuse of antibiotics in poultry farming has led to the emergence of multidrug-resistant pathogens, posing severe threats to animal health and public safety. Salmonella Pullorum (S. Pullorum), a host-specific pathogen targeting poultry, causes high mortality in chicks and disrupts intestinal health. This study evaluated the protective effects of Bifidobacterium bifidum postbiotics (BbP) against S. Pullorum infection, focusing on their mechanisms in regulating pyroptosis, restoring intestinal barrier function, and modulating gut microbiota. Both in vivo (chickens challenged with S. Pullorum) and in vitro (chicken small intestinal epithelial cells, CSIEC) models were used to assess the effects of BbP and its components (bacterial lysates or metabolites). Results showed that BbP significantly improved growth performance in infected chickens, reducing mortality from 66.66 % to 8.33 %. BbP effectively suppressed the expression of pyroptosis-related proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1 (cysteine-aspartic acid protease-1), and Gasdermin D N-terminal (GSDMD-N), and reduced inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-8 (IL-8), while increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10) and interleukin-4 (IL-4), thereby mitigating inflammation. Furthermore, BbP restored intestinal barrier function by upregulating the expression of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1. The cecal microbiota diversity was also improved by BbP, with a decrease in the abundance of harmful bacteria (e.g., Escherichia-Shigella) and an enrichment of beneficial bacteria (e.g., Lactobacillus and Ruminococcus). These findings demonstrate that BbP provides significant protection against S. Pullorum infection by modulating pyroptosis, protecting the intestinal barrier, and restoring microbial balance. As an effective antibiotic alternative, BbP shows promise for the prevention and control of S. Pullorum infections in poultry farming.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Fuqiang Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Guobi Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Nana Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Xinying Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Lei Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Wei Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
4
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
5
|
Miyauchi-Tavares TM, Silva EN, dos Santos JA, Sousa PV, Braga MFT, Carminatti CM, Lanza VB, Fagundes BC, Novaes RD, de Almeida LA, Corsetti PP. Amoxicillin-induced bacterial gut dysbiosis decreases IL-1β and IL-6 expression but exacerbate lung inflammatory response against Mycobacterium bovis-Bacille Calmette-Guérin (BCG). PLoS One 2025; 20:e0319382. [PMID: 40009606 PMCID: PMC11864530 DOI: 10.1371/journal.pone.0319382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Tuberculosis is one of the leading causes of global mortality, and the standard, prolonged, and intensive treatment can affect intestinal homeostasis. This study investigated amoxicillin-induced bacterial gut dysbiosis and its impact on the immune response of C57BL/6 mice to pulmonary infection by Mycobacterium bovis-BCG. It was observed that amoxicillin treatment resulted in bacterial gut dysbiosis, characterized by an increase in the phylum Proteobacteria and a reduction in Bacteroidetes and Firmicutes. This alteration was associated with a decrease in the animals' body weight and a reduction in the expression of pro-inflammatory cytokines such as IL-1β and IL-6, suggesting a compromised immune response. Additionally, microstructural analysis revealed significant alterations in the caecum and pulmonary structure of the mice, indicating tissue damage associated with intestinal dysbiosis. The results indicate that amoxicillin-induced bacterial gut dysbiosis may negatively affect pulmonary immunity and exacerbate M. bovis-BCG infection, highlighting the need to consider the impacts of intestinal microbiota on the development and control of tuberculosis. This study contributes to the understanding of the interaction between intestinal microbiota, antibiotic treatment, and immunity in pulmonary infections.
Collapse
Affiliation(s)
| | - Evandro Neves Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Joyce Alves dos Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Priscila V. Sousa
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Marcos F. Teodoro Braga
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Caroline M. Carminatti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Victoria B. Lanza
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Bruna C. Fagundes
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | | | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| |
Collapse
|
6
|
Tjaden NEB, Liou MJ, Sax SE, Lassoued N, Lou M, Schneider S, Beigel K, Eisenberg JD, Loeffler E, Anderson SE, Yan G, Litichevskiy L, Dohnalová L, Zhu Y, Jin DMJC, Raab J, Furth EE, Thompson Z, Rubenstein RC, Pilon N, Thaiss CA, Heuckeroth RO. Dietary manipulation of intestinal microbes prolongs survival in a mouse model of Hirschsprung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637436. [PMID: 39990395 PMCID: PMC11844371 DOI: 10.1101/2025.02.10.637436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Enterocolitis is a common and potentially deadly manifestation of Hirschsprung disease (HSCR) but disease mechanisms remain poorly defined. Unexpectedly, we discovered that diet can dramatically affect the lifespan of a HSCR mouse model ( Piebald lethal , sl/sl ) where affected animals die from HAEC complications. In the sl/sl model, diet alters gut microbes and metabolites, leading to changes in colon epithelial gene expression and epithelial oxygen levels known to influence colitis severity. Our findings demonstrate unrecognized similarity between HAEC and other types of colitis and suggest dietary manipulation could be a valuable therapeutic strategy for people with HSCR. Abstract Hirschsprung disease (HSCR) is a birth defect where enteric nervous system (ENS) is absent from distal bowel. Bowel lacking ENS fails to relax, causing partial obstruction. Affected children often have "Hirschsprung disease associated enterocolitis" (HAEC), which predisposes to sepsis. We discovered survival of Piebald lethal ( sl/sl ) mice, a well-established HSCR model with HAEC, is markedly altered by two distinct standard chow diets. A "Protective" diet increased fecal butyrate/isobutyrate and enhanced production of gut epithelial antimicrobial peptides in proximal colon. In contrast, "Detrimental" diet-fed sl/sl had abnormal appearing distal colon epithelium mitochondria, reduced epithelial mRNA involved in oxidative phosphorylation, and elevated epithelial oxygen that fostered growth of inflammation-associated Enterobacteriaceae . Accordingly, selective depletion of Enterobacteriaceae with sodium tungstate prolonged sl/sl survival. Our results provide the first strong evidence that diet modifies survival in a HSCR mouse model, without altering length of distal colon lacking ENS. Highlights Two different standard mouse diets alter survival in the Piebald lethal ( sl/sl ) mouse model of Hirschsprung disease, without impacting extent of distal colon aganglionosis (the region lacking ENS). Piebald lethal mice fed the "Detrimental" diet had many changes in colon epithelial transcriptome including decreased mRNA for antimicrobial peptides and genes involved in oxidative phosphorylation. Detrimental diet fed sl/sl also had aberrant-appearing mitochondria in distal colon epithelium, with elevated epithelial oxygen that drives lethal Enterobacteriaceae overgrowth via aerobic respiration. Elimination of Enterobacteriaceae with antibiotics or sodium tungstate improves survival of Piebald lethal fed the "Detrimental diet". Graphical abstract
Collapse
|
7
|
Zohalinezhad ME, Barkhori S, Zekavat OR, Namjoyan F, Bordbar M, Hashempur MH. Mitigating digestive complications and neutropenia in pediatric leukemia through a Persian medicine product of whole wheat-based dietary intervention: a randomized triple-blind placebo-controlled trial. Support Care Cancer 2025; 33:117. [PMID: 39847133 DOI: 10.1007/s00520-025-09177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Leukemia is a prevalent cancer that severely affects children, and standard chemotherapy often leads to severe gastrointestinal symptoms and neutropenia. This study aimed to discover alternative treatments to prevent neutropenia in pediatric leukemia patients and minimize chemotherapy-related complications. This randomized, placebo-controlled trial was conducted on 52 children between the ages of 3 and 18 years who were suffering from acute leukemia and undergoing chemotherapy. The study included a case and control group. A traditional wheat bran product called "Wheat Saviq" was given to the case group with Jollab syrup, while refined wheat flour and a placebo were given to the control group. For 1 month, both groups received a daily dose. Symptoms, weight, and blood cell count were measured before and after the trial. After the intervention, the pain, constipation, and bloating scores in the intervention group were lower than in the control group. Furthermore, the intervention group significantly increased white blood cells (WBC) and red blood cells (RBC). These findings suggest that incorporating wheat bran into the diet of pediatric leukemia patients has great potential in alleviating gastrointestinal symptoms and enhancing immune function. This randomized trial showed that consuming Wheat "Saviq" and Jollab syrup effectively reduced gastrointestinal symptoms and improved certain laboratory findings in children with leukemia undergoing chemotherapy. Furthermore, the results align with traditional Persian medicine (TPM) texts and further support the potential benefits of wheat bran for digestion and immune system health. IRCT registration number: IRCT20220410054474N1. Registration date: 2022-05-24, 1401/03/03.
Collapse
Affiliation(s)
- Mohammad Ebrahim Zohalinezhad
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saba Barkhori
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Reza Zekavat
- Department of Pediatric Hematology and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Foroogh Namjoyan
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmacognosy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Bordbar
- Department of Pediatric Hematology and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Xu F, Wu Q, Yang L, Sun H, Li J, An Z, Li H, Wu H, Song J, Chen W, Wu W. Modification of gut and airway microbiota on ozone-induced airway inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176604. [PMID: 39353487 DOI: 10.1016/j.scitotenv.2024.176604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Ground-level ozone (O3) has been shown to induce airway inflammation, the underlying mechanisms remain unclear. The aim of this study was to determine whether gut and airway microbiota dysbiosis, and airway metabolic alterations were associated with O3-induced airway inflammation. Thirty-six 8-week-old male C57BL/6 N mice were divided into 2 groups: sterile water group and broad-spectrum antibiotics group (Abx). Each group was further divided into two subgroups, filtered air group (Air) and O3 group (O3), with 9 mice in each subgroup. Mice in the Air and O3 groups were exposed to filtered air or 1 ppm O3, 4 h/d for 5 consecutive days, respectively. Mice in Abx + Air and Abx + O3 groups were exposed to filtered air or O3, respectively, after drinking broad-spectrum Abx. 24 h after the final O3 exposure, mouse feces and bronchoalveolar lavage fluids (BALF) were collected and subjected to measurements of airway oxidative stress and inflammation biomarkers, 16S rRNA sequencing and metabolite profiling. Hematoxylin-eosin staining of lung tissues was applied to examine the pathological changes of lung tissue. The results showed that O3 exposure resulted in airway oxidative stress and inflammation, as well as gut and airway microbiota dysbiosis, and airway metabolism alteration. Abx pre-treatment markedly changed gut and airway microbiota and promoted O3-induced metabolic disorder and airway inflammation. Spearman correlation analyses indicated that inter-related gut and airway microbiota dysbiosis and airway metabolic disorder were associated with O3-induced airway inflammation. Together, inhaled O3 causes airway inflammation, which may implicate gut and airway microbiota dysbiosis and airway metabolic alterations.
Collapse
Affiliation(s)
- Fei Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
9
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Priyadarsini S, Mani P, Singh R, Nikhil KC, Sahoo PR, Kesavan M, Saxena M, Sahoo M, Saini M, Kumar A. Deletion of both anaerobic regulator genes fnr and narL compromises the colonization of Salmonella Typhimurium in mice model. World J Microbiol Biotechnol 2024; 40:373. [PMID: 39487264 DOI: 10.1007/s11274-024-04179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Salmonella Typhimurium (STM), a zoonotic pathogen, can adjust its metabolic pathway according to the variations in the partial pressure of atmospheric oxygen and nitrate via fumarate nitrate reductase regulator (Fnr) and NarL, the response regulator for nitrate reductase. Both Fnr and NarL have been individually reported to be the contributors of virulent phenotypes of STM. Hypoxia along with nitrate-rich environment are prevalent in macrophages and the Salmonella-induced inflammatory lumen of the host's large intestine activates both fnr and narL genes. In this study, the double (fnr and narL) knockout STM showed a synergistic reduction in the swimming (62%), swarming (84%) and biofilm density (86%) phenotypes anaerobically in association with its significant aerobic attenuation. The intracellular replication of the double mutant was reduced by 2.3 logs in chicken monocyte-derived macrophages. Furthermore, the competitive index of the double mutant in liver and spleen was found to be 0.3 and 0.44 respectively at 120 h post-infection (PI) in mice. Surprisingly, no double mutant could be recovered from the infected mouse liver 3 days PI. Histopathological findings showed moderate infiltration of mononuclear cells in the large intestine of mice infected with double mutant, but severe infiltration was seen with the wild-type strain.
Collapse
Affiliation(s)
- Swagatika Priyadarsini
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, India.
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| | - Pashupathi Mani
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- College of Veterinary and Animal Sceinces, Rani Laxmi Bai Central Agricultural University, Jhansi, India
| | - Rohit Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - K C Nikhil
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Pravas Ranjan Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - M Kesavan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Meeta Saxena
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Monalisa Sahoo
- ICAR-National Institute on Foot and Mouth Disease, Jatni, Bhubaneswar, Odisha, India
| | - Mohini Saini
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
11
|
Brödel AK, Charpenay LH, Galtier M, Fuche FJ, Terrasse R, Poquet C, Havránek J, Pignotti S, Krawczyk A, Arraou M, Prevot G, Spadoni D, Yarnall MTN, Hessel EM, Fernandez-Rodriguez J, Duportet X, Bikard D. In situ targeted base editing of bacteria in the mouse gut. Nature 2024; 632:877-884. [PMID: 38987595 PMCID: PMC11338833 DOI: 10.1038/s41586-024-07681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a β-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Bikard
- Eligo Bioscience, Paris, France.
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France.
| |
Collapse
|
12
|
Singh S, Koo OK. A Comprehensive Review Exploring the Protective Role of Specific Commensal Gut Bacteria against Salmonella. Pathogens 2024; 13:642. [PMID: 39204243 PMCID: PMC11356920 DOI: 10.3390/pathogens13080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. This review focuses on the interactions between Salmonella and the key commensal bacteria such as E. coli, Lactobacillus, Clostridium, Akkermansia, and Bacteroides. The review highlights the role of these gut bacteria and their synergy in combating Salmonella through several mechanistic interactions. These include the production of siderophores, which compete with Salmonella for essential iron; the synthesis of short-chain fatty acids (SCFAs), which exert antimicrobial effects and modulate the gut environment; the secretion of bacteriocins, which directly inhibit Salmonella growth; and the modulation of cytokine responses, which influences the host's immune reaction to infection. While much research has explored Salmonella, this review aims to better understand how specific gut bacteria engage with the pathogen, revealing distinct defense mechanisms tailored to each species and how their synergy may lead to enhanced protection against Salmonella. Furthermore, the combination of these commensal bacteria could offer promising avenues for bacteria-mediated therapy during Salmonella-induced gut infections in the future.
Collapse
Affiliation(s)
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
13
|
Weaver L, Troester A, Jahansouz C. The Impact of Surgical Bowel Preparation on the Microbiome in Colon and Rectal Surgery. Antibiotics (Basel) 2024; 13:580. [PMID: 39061262 PMCID: PMC11273680 DOI: 10.3390/antibiotics13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Preoperative bowel preparation, through iterations over time, has evolved with the goal of optimizing surgical outcomes after colon and rectal surgery. Although bowel preparation is commonplace in current practice, its precise mechanism of action, particularly its effect on the human gut microbiome, has yet to be fully elucidated. Absent intervention, the gut microbiota is largely stable, yet reacts to dietary influences, tissue injury, and microbiota-specific byproducts of metabolism. The routine use of oral antibiotics and mechanical bowel preparation prior to intestinal surgical procedures may have detrimental effects previously thought to be negligible. Recent evidence highlights the sensitivity of gut microbiota to antibiotics, bowel preparation, and surgery; however, there is a lack of knowledge regarding specific causal pathways that could lead to therapeutic interventions. As our understanding of the complex interactions between the human host and gut microbiota grows, we can explore the role of bowel preparation in specific microbiome alterations to refine perioperative care and improve outcomes. In this review, we outline the current fund of information regarding the impact of surgical bowel preparation and its components on the adult gut microbiome. We also emphasize key questions pertinent to future microbiome research and their implications for patients undergoing colorectal surgery.
Collapse
Affiliation(s)
- Lauren Weaver
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (L.W.); (A.T.)
| | - Alexander Troester
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (L.W.); (A.T.)
| | - Cyrus Jahansouz
- Division of Colon & Rectal Surgery, Department of Surgery, University of Minnesota, 420 Delaware St. SE, MMC 450, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Lee JY, Tiffany CR, Mahan SP, Kellom M, Rogers AWL, Nguyen H, Stevens ET, Masson HLP, Yamazaki K, Marco ML, Eloe-Fadrosh EA, Turnbaugh PJ, Bäumler AJ. High fat intake sustains sorbitol intolerance after antibiotic-mediated Clostridia depletion from the gut microbiota. Cell 2024; 187:1191-1205.e15. [PMID: 38366592 PMCID: PMC11023689 DOI: 10.1016/j.cell.2024.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Matthew Kellom
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Eric T Stevens
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kohei Yamazaki
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Maria L Marco
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Emiley A Eloe-Fadrosh
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Aitken JM, Aitken JE, Agrawal G. Mycobacterium avium ssp. paratuberculosis and Crohn's Disease-Diagnostic Microbiological Investigations Can Inform New Therapeutic Approaches. Antibiotics (Basel) 2024; 13:158. [PMID: 38391544 PMCID: PMC10886072 DOI: 10.3390/antibiotics13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the cause of Johne's disease (JD), which is a chronic infectious gastrointestinal disease of ruminants and is often fatal. In humans, MAP has been associated with Crohn's disease (CD) for over a century, without conclusive evidence of pathogenicity. Numerous researchers have contributed to the subject, but there is still a need for evidence of the causation of CD by MAP. An infectious aetiology in CD that is attributable to MAP can only be proven by bacteriological investigations. There is an urgency in resolving this question due to the rising global incidence rates of CD. Recent papers have indicated the "therapeutic ceiling" may be close in the development of new biologics. Clinical trial outcomes have demonstrated mild or inconsistent improvements in therapeutic interventions over the last decades when compared with placebo. The necessity to revisit therapeutic options for CD is becoming more urgent and a renewed focus on causation is essential for progress in identifying new treatment options. This manuscript discusses newer interventions, such as vaccination, FMT, dietary remediation and gut microbiome regulation, that will become more relevant as existing therapeutic options expire. Revisiting the MAP theory as a potential infectious cause of CD, rather than the prevailing concept of an "aberrant immune response" will require expanding the current therapeutic programme to include potential new alternatives, and combinations of existing treatments. To advance research on MAP in humans, it is essential for microbiologists and medical scientists to microscopically detect CWDM and to biologically amplify the growth by directed culture.
Collapse
Affiliation(s)
- John M Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Jack E Aitken
- Otakaro Pathways Ltd., Innovation Park, Christchurch 7675, New Zealand
| | - Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, Franklin-Wilkins Building, King's College London, London SE1 9NH, UK
| |
Collapse
|
16
|
Schuck LK, Neely WJ, Buttimer SM, Moser CF, Barth PC, Liskoski PE, Caberlon CDA, Valiati VH, Tozetti AM, Becker CG. Effects of grassland controlled burning on symbiotic skin microbes in Neotropical amphibians. Sci Rep 2024; 14:959. [PMID: 38200064 PMCID: PMC10781984 DOI: 10.1038/s41598-023-50394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change has led to an alarming increase in the frequency and severity of wildfires worldwide. While it is known that amphibians have physiological characteristics that make them highly susceptible to fire, the specific impacts of wildfires on their symbiotic skin bacterial communities (i.e., bacteriomes) and infection by the deadly chytrid fungus, Batrachochytrium dendrobatidis, remain poorly understood. Here, we address this research gap by evaluating the effects of fire on the amphibian skin bacteriome and the subsequent risk of chytridiomycosis. We sampled the skin bacteriome of the Neotropical species Scinax squalirostris and Boana leptolineata in fire and control plots before and after experimental burnings. Fire was linked with a marked increase in bacteriome beta dispersion, a proxy for skin microbial dysbiosis, alongside a trend of increased pathogen loads. By shedding light on the effects of fire on amphibian skin bacteriomes, this study contributes to our broader understanding of the impacts of wildfires on vulnerable vertebrate species.
Collapse
Affiliation(s)
- Laura K Schuck
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil.
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Shannon M Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Infectious Disease Dynamics and One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila F Moser
- Programa de Pos-Graduacão em Zoologia, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Priscila C Barth
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Paulo E Liskoski
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Carolina de A Caberlon
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Victor Hugo Valiati
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil
| | - Alexandro M Tozetti
- Programa de Pós-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022-750, Brazil.
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Infectious Disease Dynamics and One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Xu R, Feng N, Li Q, Wang H, Li L, Feng X, Su Y, Zhu W. Pectin supplementation accelerates post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential. THE ISME JOURNAL 2024; 18:wrae101. [PMID: 38857378 PMCID: PMC11203915 DOI: 10.1093/ismejo/wrae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
Antibiotic-induced gut dysbiosis (AID) presents a big challenge to host health, and the recovery from this dysbiosis is often slow and incomplete. AID is typically characterized by elevation in redox potential, Enterobacteriaceae load, and aerobic metabolism. In our previous study, a pectin-enriched diet was demonstrated to decrease fecal redox potential and modulate the gut microbiome. Therefore, we propose that pectin supplementation may modulate gut redox potential and favor post-antibiotic gut microbiome reconstitution from dysbiosis. In the present study, rats with AIDwere used to investigate the effects of pectin supplementation on post-antibiotic gut microbiome reconstitution from dysbiosis. The results showed that pectin supplementation accelerated post-antibiotic reconstitution of gut microbiome composition and function and led to enhancement of anabolic reductive metabolism and weakening of catabolic oxidative pathways. These results were corroborated by the measurement of redox potential, findings suggesting that pectin favors post-antibiotic recovery from dysbiosis. Pectin-modulated fecal microbiota transplantation accelerated the decrease in antibiotics-elevated redox potential and Enterobacteriaceae load similarly to pectin supplementation. Moreover, both pectin supplementation and Pectin-modulated fecal microbiota transplantation enriched anaerobic members, primarily from Lachnospiraceae orchestration with enhancement of microbial reductive metabolism in post-antibiotic rats. These findings suggested that pectin supplementation accelerated post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential and that the effect of pectin on redox potential was mediated by remodeling of the intestinal microbiota.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Feng
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
19
|
Joo MK, Shin YJ, Kim DH. Cefaclor causes vagus nerve-mediated depression-like symptoms with gut dysbiosis in mice. Sci Rep 2023; 13:15529. [PMID: 37726354 PMCID: PMC10509198 DOI: 10.1038/s41598-023-42690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Antibiotics are increasingly recognized as causing neuropsychiatric side effects including depression and anxiety. Alterations in central serotonin and 5-HT receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with gastrointestinal disorders. Nevertheless, it is still unclear how antibiotics can cause anxiety and depression. In this study, oral administration of cefaclor, a second-generation cephalosporin antibiotic, induced anxiety- and depression-like behaviors and colitis with gut microbiota alteration in mice. Cefaclor reduced serotonin levels and fluctuated 5-HT receptor mRNA expressions such as Htr1a, Htr1b, and Htr6 in the hippocampus. Vagotomy attenuated the cefaclor-induced anxiety- and depression-like symptoms, while the cefaclor-induced changes in gut bacteria alteration and colitis were not affected. Fluoxetine attenuated cefaclor-induced anxiety- and depression-like behaviors. Furthermore, fluoxetine decreased cefaclor-resistant Enterobacteriaceae and Enterococcaceae. Taken together, our findings suggest that the use of antibiotics, particularly, cefaclor may cause gut dysbiosis-dependent anxiety and depression through the microbiota-gut-blood-brain and microbiota-gut-vagus nerve-brain pathway. Targeting antibiotics-resistant pathogenic bacteria may be a promising therapeutic strategy for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
20
|
Bu Y, Zhao K, Xu Z, Zheng Y, Hua R, Wu C, Zhu C, Xia Y, Cheng X. Antibiotic-induced gut bacteria depletion has no effect on HBV replication in HBV immune tolerance mouse model. Virol Sin 2023:S1995-820X(23)00048-2. [PMID: 37141990 DOI: 10.1016/j.virs.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
Commensal microbiota is closely related to Hepatitis B virus (HBV) infection. Gut bacteria maturation accelerates HBV immune clearance in hydrodynamic injection (HDI) HBV mouse model. However, the effect of gut bacteria on HBV replication in recombinant adeno-associated virus (AAV)-HBV mouse model with immune tolerance remains obscure. We aim to investigate its role on HBV replication in AAV-HBV mouse model. C57BL/6 mice were administrated with broad-spectrum antibiotic mixtures (ABX) to deplete gut bacteria and intravenously injected with AAV-HBV to establish persistent HBV replication. Gut microbiota community was analyzed by fecal qPCR assay and 16S ribosomal RNA (rRNA) gene sequencing. HBV replication markers in blood and liver were determined by ELISA, qPCR assay and Western blot at indicated time points. Immune response in AAV-HBV mouse model was activated through HDI of HBV plasmid or poly(I:C) and then detected by quantifying the percentage of IFN-γ+/CD8+ T cells in the spleen via flow cytometry as well as the splenic IFN-γ mRNA level via qPCR assay. We found that antibiotic exposure remarkably decreased gut bacteria abundance and diversity. Antibiotic treatment failed to alter the levels of serological HBV antigens, intrahepatic HBV RNA transcripts and HBc protein in AAV-HBV mouse model, but contributed to HBsAg increase after breaking of immune tolerance. Overall, our data uncovered that antibiotic-induced gut bacteria depletion has no effect on HBV replication in immune tolerant AAV-HBV mouse model, providing new thoughts for elucidating the correlation between gut bacteria dysbiosis by antibiotic abuse and clinical chronic HBV infection.
Collapse
Affiliation(s)
- Yanan Bu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Rong Hua
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Chuanjian Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060; China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
| | - Xiaoming Cheng
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
21
|
Tanır Basaranoğlu S, Karaaslan A, Salı E, Çiftçi E, Gayretli Aydın ZG, Aldemir Kocabaş B, Kaya C, Şen Bayturan S, Kara SS, Yılmaz Çiftdoğan D, Çay Ü, Gundogdu Aktürk H, Çelik M, Ozdemir H, Somer A, Diri T, Yazar AS, Sütçü M, Tezer H, Karadag Oncel E, Kara M, Çelebi S, Özkaya Parlakay A, Karakaşlılar S, Arısoy ES, Tanır G, Tural Kara T, Devrim İ, Erat T, Aykaç K, Kaba Ö, Güven Ş, Yeşil E, Tekin Yılmaz A, Yaşar Durmuş S, Çağlar İ, Günay F, Özen M, Dinleyici EÇ, Kara A. Antibiotic associated diarrhea in outpatient pediatric antibiotic therapy. BMC Pediatr 2023; 23:121. [PMID: 36932373 PMCID: PMC10024443 DOI: 10.1186/s12887-023-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea is one of the most frequent side effects of antimicrobial therapy. We assessed the epidemiological data of antibiotic-associated diarrhea in pediatric patients in our region. METHODS The prospective multi-center study included pediatric patients who were initiated an oral antibiotic course in outpatient clinics and followed in a well-established surveillance system. This follow-up system constituded inclusion of patient by the primary physician, supply of family follow-up charts to the family, passing the demographics and clinical information of patient to the Primary Investigator Centre, and a close telephone follow-up of patients for a period of eight weeks by the Primary Investigator Centre. RESULTS A result of 758 cases were recruited in the analysis which had a frequency of 10.4% antibiotic-associated diarrhea. Among the cases treated with amoxicillin-clavulanate 10.4%, and cephalosporins 14.4% presented with antibiotic-associated diarrhea. In the analysis of antibiotic-associated diarrhea occurrence according to different geographical regions of Turkey, antibiotic-associated diarrhea episodes differed significantly (p = 0.014), particularly higher in The Eastern Anatolia and Southeastern Anatolia. Though most commonly encountered with cephalosporin use, antibiotic-associated diarrhea is not a frequent side effect. CONCLUSION This study on pediatric antibiotic-associated diarrhea displayed epidemiological data and the differences geographically in our region.
Collapse
Affiliation(s)
- Sevgen Tanır Basaranoğlu
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Ayşe Karaaslan
- Department of Pediatric Infectious Diseases, Istanbul Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Enes Salı
- Department of Pediatric Infectious Diseases, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Ergin Çiftçi
- Department of Pediatric Infectious Diseases, Ankara University, Ankara, Turkey
| | | | - Bilge Aldemir Kocabaş
- Department of Pediatric Infectious Diseases, Antalya Akdeniz University, Antalya, Turkey
| | - Cemil Kaya
- Department of Pediatrics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Semra Şen Bayturan
- Department of Pediatric Infectious Diseases, Manisa Celal Bayar University, Manisa, Turkey
| | - Soner Sertan Kara
- Department of Pediatric Infectious Diseases, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Dilek Yılmaz Çiftdoğan
- Department of Pediatric Infectious Diseases, Saglik Bilimleri University, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ümmühan Çay
- Department of Pediatric Infectious Diseases, Trabzon Kanuni Training and Research Hospital, Trabzon, Turkey
| | - Hacer Gundogdu Aktürk
- Department of Pediatric Infectious Diseases, Istanbul Zeynep Kamil Women and Children Training and Research Hospital, Istanbul, Turkey
| | - Melda Çelik
- Department of Pediatric Infectious Diseases, Ankara Kecioren Training and Research Hospital, Ankara, Turkey
| | - Halil Ozdemir
- Department of Pediatric Infectious Diseases, Ankara University, Ankara, Turkey
| | - Ayper Somer
- Department of Pediatric Infectious Diseases, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Tijen Diri
- Department of Pediatrics, Istanbul Acıbadem Atakent Hospital, Istanbul, Turkey
| | - Ahmet Sami Yazar
- Department of Pediatrics, Istanbul Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Sütçü
- Department of Pediatric Infectious Diseases, Konya Training and Research Hospital, Konya, Turkey
| | - Hasan Tezer
- Department of Pediatric Infectious Diseases, Ankara Gazi University, Ankara, Turkey
| | - Eda Karadag Oncel
- Department of Pediatric Infectious Diseases, Saglik Bilimleri University, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - Manolya Kara
- Department of Pediatric Infectious Diseases, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Solmaz Çelebi
- Department of Pediatric Infectious Diseases, Bursa Uludag University, Bursa, Turkey
| | - Aslınur Özkaya Parlakay
- Department of Pediatric Infectious Diseases, Ankara Yildirim Beyazit University, Ankara, Turkey
| | | | - Emin Sami Arısoy
- Department of Pediatric Infectious Diseases, Kocaeli University, Kocaeli, Turkey
| | - Gönül Tanır
- Department of Pediatric Infectious Diseases, Ankara Doktor Sami Ulus Women and Children Training and Research Hospital, Ankara, Turkey
| | - Tuğçe Tural Kara
- Department of Pediatric Infectious Diseases, Hatay State Hospital, Hatay, Turkey
| | - İlker Devrim
- Department of Pediatric Infectious Diseases, Izmir Doktor Behcet Uz Children's Hospital, İzmir, Turkey
| | - Tuğba Erat
- Department of Pediatric Infectious Diseases, Ankara University, Ankara, Turkey
| | - Kübra Aykaç
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey
| | - Özge Kaba
- Department of Pediatric Infectious Diseases, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Şirin Güven
- Department of Pediatrics, Istanbul Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Edanur Yeşil
- Department of Pediatric Infectious Diseases, Bursa Uludag University, Bursa, Turkey
| | - Ayşe Tekin Yılmaz
- Department of Pediatric Infectious Diseases, Kocaeli University, Kocaeli, Turkey
| | - Sevgi Yaşar Durmuş
- Department of Pediatric Infectious Diseases, Ankara Doktor Sami Ulus Women and Children Training and Research Hospital, Ankara, Turkey
| | - İlknur Çağlar
- Department of Pediatric Infectious Diseases, Izmir Doktor Behcet Uz Children's Hospital, İzmir, Turkey
| | - Fatih Günay
- Department of Pediatrics, Ankara University, Ankara, Turkey
| | - Metehan Özen
- Department of Pediatric Infectious Diseases, Istanbul Acıbadem Atakent Hospital, Istanbul, Turkey
| | | | - Ateş Kara
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey.
| |
Collapse
|
22
|
Banaszak M, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Association between Gut Dysbiosis and the Occurrence of SIBO, LIBO, SIFO and IMO. Microorganisms 2023; 11:573. [PMID: 36985147 PMCID: PMC10052891 DOI: 10.3390/microorganisms11030573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Gut microbiota is the aggregate of all microorganisms in the human digestive system. There are 1014 CFU/mL of such microorganisms in the human body, including bacteria, viruses, fungi, archaea and protozoa. The Firmicutes and Bacteroidetes bacteria phyla comprise 90% of the human gut microbiota. The microbiota support the healthy functioning of the human body by helping with digestion (mainly via short-chain fatty acids and amino acids) and producing short-chain fatty acids. In addition, it exhibits many physiological functions, such as forming the intestinal epithelium, intestinal integrity maintenance, the production of vitamins, and protection against pathogens. An altered composition or the number of microorganisms, known as dysbiosis, disrupts the body's homeostasis and can lead to the development of inflammatory bowel disease, irritable bowel syndrome, and metabolic diseases such as diabetes, obesity and allergies. Several types of disruptions to the gut microbiota have been identified: SIBO (Small Intestinal Bacterial Overgrowth), LIBO (Large Intestinal Bacterial Overgrowth), SIFO (Small Intestinal Fungal Overgrowth), and IMO (Intestinal Methanogen Overgrowth). General gastrointestinal problems such as abdominal pain, bloating, gas, diarrhoea and constipation are the main symptoms of dysbiosis. They lead to malabsorption, nutrient deficiencies, anaemia and hypoproteinaemia. Increased lipopolysaccharide (LPS) permeability, stimulating the inflammatory response and resulting in chronic inflammation, has been identified as the leading cause of microbial overgrowth in the gut. The subject literature is extensive but of limited quality. Despite the recent interest in the gut microbiome and its disorders, more clinical research is needed to determine the pathophysiology, effective treatments, and prevention of small and large intestinal microbiota overgrowth. This review was designed to provide an overview of the available literature on intestinal microbial dysbiosis (SIBO, LIBO, SIFO and IMO) and to determine whether it represents a real threat to human health.
Collapse
Affiliation(s)
- Michalina Banaszak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Poznan University of Medical Sciences Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dagmara Woźniak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Poznan University of Medical Sciences Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
23
|
Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G. Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 2022; 12:1037831. [PMID: 36419880 PMCID: PMC9678367 DOI: 10.3389/fonc.2022.1037831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer has a high mortality rate among malignant tumors, with metastases identified as the main cause of the high mortality. Dysbiosis of the gut microbiota has become a key factor in the development, treatment, and prognosis of breast cancer. The many microorganisms that make up the gut flora have a symbiotic relationship with their host and, through the regulation of host immune responses and metabolic pathways, are involved in important physiologic activities in the human body, posing a significant risk to health. In this review, we build on the interactions between breast tissue (including tumor tissue, tissue adjacent to the tumor, and samples from healthy women) and the microbiota, then explore factors associated with metastatic breast cancer and dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites, changes in the balance of the probiotic environment and diet. These factors highlight the existence of a complex relationship between host-breast cancer progression-gut flora. Suggesting that gut flora dysbiosis may be a host-intrinsic factor affecting breast cancer metastasis and progression not only informs our understanding of the role of microbiota dysbiosis in breast cancer development and metastasis, but also the importance of balancing gut flora dysbiosis and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
24
|
Liu Q, Zuo T, Lu W, Yeoh YK, Su Q, Xu Z, Tang W, Yang K, Zhang F, Lau LHS, Lui RNS, Chin ML, Wong R, Cheung CP, Zhu W, Chan PKS, Chan FKL, Lui GC, Ng SC. Longitudinal Evaluation of Gut Bacteriomes and Viromes after Fecal Microbiota Transplantation for Eradication of Carbapenem-Resistant Enterobacteriaceae. mSystems 2022; 7:e0151021. [PMID: 35642928 PMCID: PMC9239097 DOI: 10.1128/msystems.01510-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the role of fecal microbiota transplantation (FMT) in the decolonization of multidrug-resistant organisms (MDRO) is critical. Specifically, little is known about virome changes in MDRO-infected subjects treated with FMT. Using shotgun metagenomic sequencing, we characterized longitudinal dynamics of the gut virome and bacteriome in three recipients who successfully decolonized carbapenem-resistant Enterobacteriaceae (CRE), including Klebsiella spp. and Escherichia coli, after FMT. We observed large shifts of the fecal bacterial microbiota resembling a donor-like community after transfer of a fecal microbiota dominated by the genus Ruminococcus. We found a substantial expansion of Klebsiella phages after FMT with a concordant decrease of Klebsiella spp. and striking increase of Escherichia phages in CRE E. coli carriers after FMT. We also observed the CRE elimination and similar evolution of Klebsiella phage in mice, which may play a role in the collapse of the Klebsiella population after FMT. In summary, our pilot study documented bacteriome and virome alterations after FMT which mediate many of the effects of FMT on the gut microbiome community. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for multidrug-resistant organisms; however, introducing a complex mixture of microbes also has unknown consequences for landscape features of gut microbiome. We sought to understand bacteriome and virome alterations in patients undergoing FMT to treat infection with carbapenem-resistant Enterobacteriaceae. This finding indicates that transkingdom interactions between the virome and bacteriome communities may have evolved in part to support efficient FMT for treating CRE.
Collapse
Affiliation(s)
- Qin Liu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenqi Lu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi Su
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Keli Yang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Zhang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Louis H. S. Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Rashid N. S. Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Miu Ling Chin
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rity Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyi Zhu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K. S. Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K. L. Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace C. Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Wander K, Fujita M, Mattison SM, Duris M, Gauck M, Hopt T, Lacy K, Foligno A, Ulloa R, Dodge C, Mowo F, Kiwelu I, Mmbaga BT. Tradeoffs in milk immunity affect infant infectious disease risk. Evol Med Public Health 2022; 10:295-304. [PMID: 35769951 PMCID: PMC9233416 DOI: 10.1093/emph/eoac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background and objectives The human immune system has evolved to balance protection against infection with control of immune-mediated damage and tolerance of commensal microbes. Such tradeoffs between protection and harm almost certainly extend to the immune system of milk. Methodology Among breastfeeding mother-infant dyads in Kilimanjaro, Tanzania, we characterized in vitro proinflammatory milk immune responses to Salmonella enterica (an infectious agent) and Escherichia coli (a benign target) as the increase in interleukin-6 after 24 h of incubation with each bacterium. We characterized incident infectious diseases among infants through passive monitoring. We used Cox proportional hazards models to describe associations between milk immune activity and infant infectious disease. Results Among infants, risk for respiratory infections declined with increasing milk in vitro proinflammatory response to S. enterica (hazard ratio [HR]: 0.68; 95% confidence interval [CI]: 0.54, 0.86; P: 0.001), while risk for gastrointestinal infections increased with increasing milk in vitro proinflammatory response to E. coli (HR: 1.44; 95% CI: 1.05, 1.99; P: 0.022). Milk proinflammatory responses to S. enterica and E. coli were positively correlated (Spearman's rho: 0.60; P: 0.000). Conclusions and implications These findings demonstrate a tradeoff in milk immune activity: the benefits of appropriate proinflammatory activity come at the hazard of misdirected proinflammatory activity. This tradeoff is likely to affect infant health in complex ways, depending on prevailing infectious disease conditions. How mother-infant dyads optimize proinflammatory milk immune activity should be a central question in future ecological-evolutionary studies of the immune system of milk.
Collapse
Affiliation(s)
- Katherine Wander
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Masako Fujita
- Department of Anthropology, Michigan State University, East Lansing, MI, USA
| | - Siobhan M Mattison
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Margaret Duris
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Megan Gauck
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Tessa Hopt
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Katherine Lacy
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Angela Foligno
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Rebecca Ulloa
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Connor Dodge
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Frida Mowo
- Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Ireen Kiwelu
- Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
26
|
Tan J, Gong J, Liu F, Li B, Li Z, You J, He J, Wu S. Evaluation of an Antibiotic Cocktail for Fecal Microbiota Transplantation in Mouse. Front Nutr 2022; 9:918098. [PMID: 35719145 PMCID: PMC9204140 DOI: 10.3389/fnut.2022.918098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study aimed to evaluate the effect of an antibiotic cocktail on gut microbiota and provide a reference for establishing an available mouse model for fecal microbiota transplantation (FMT) of specific microbes. Design C57BL/6J mice (n = 24) had free access to an antibiotic cocktail containing vancomycin (0.5 g/L), ampicillin (1 g/L), neomycin (1 g/L), and metronidazole (1 g/L) in drinking water for 3 weeks. Fecal microbiota was characterized by 16S rDNA gene sequencing at the beginning, 1st week, and 3rd week, respectively. The mice were then treated with fecal microbiota from normal mice for 1 week to verify the efficiency of FMT. Results The diversity of microbiota including chao1, observed species, phylogenetic diversity (PD) whole tree, and Shannon index were decreased significantly (P < 0.05) after being treated with the antibiotic cocktail for 1 or 3 weeks. The relative abundance of Bacteroidetes, Actinobacteria, and Verrucomicrobia was decreased by 99.94, 92.09, and 100%, respectively, while Firmicutes dominated the microbiota at the phylum level after 3 weeks of treatment. Meanwhile, Lactococcus, a genus belonging to the phylum of Firmicutes dominated the microbiota at the genus level with a relative abundance of 80.63%. Further FMT experiment indicated that the fecal microbiota from the receptor mice had a similar composition to the donor mice after 1 week. Conclusion The antibiotic cocktail containing vancomycin, ampicillin, neomycin, and metronidazole eliminates microbes belonging to Bacteroidetes, Actinobacteria, and Verrucomicrobia, which can be recovered by FMT in mice.
Collapse
|
27
|
Effects of broad-spectrum antibiotics on the colonisation of probiotic yeast Saccharomyces boulardii in the murine gastrointestinal tract. Sci Rep 2022; 12:8862. [PMID: 35614092 PMCID: PMC9133042 DOI: 10.1038/s41598-022-12806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Mouse models are commonly used to study the colonisation profiles of microorganisms introduced to the gastrointestinal tract. Three commonly used mouse models include conventional, germ-free, and antibiotic-treated mice. However, colonisation resistance in conventional mice and specialised equipment for germ-free mice are usually limiting factors in their applications. In this study, we sought to establish a robust colonisation model for Saccharomyces boulardii, a probiotic yeast that has caught attention in the field of probiotics and advanced microbiome therapeutics. We characterised the colonisation of S. boulardii in conventional mice and mice treated with a cocktail of broad-spectrum antibiotics, including ampicillin, kanamycin, metronidazole and vancomycin. We found colonisation levels increased up to 10,000-fold in the antibiotic-treated mice compared to nonantibiotic-treated mice. Furthermore, S. boulardii was detected continuously in more than 75% of mice for 10 days after the last administration in antibiotic-treated mice, in contrast to in nonantibiotic-treated mice where S. boulardii was undetectable in less than 2 days. Finally, we demonstrated that this antibiotic cocktail can be used in two commonly used mouse strains, C57BL/6 and ob/ob mice, both achieving ~ 108 CFU/g of S. boulardii in faeces. These findings highlight that the antibiotic cocktail used in this study is an advantageous tool to study S. boulardii based probiotic and advanced microbiome therapeutics.
Collapse
|
28
|
Lovern SB, Van Hart R. Impact of oxytetracycline exposure on the digestive system microbiota of Daphnia magna. PLoS One 2022; 17:e0265944. [PMID: 35476627 PMCID: PMC9045634 DOI: 10.1371/journal.pone.0265944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotics are used to treat serious illness, but may also be used extraneously or as a preventative measure in many farm animals. This usage increases the potential for unintentional exposure to a variety of organisms. When antibiotics enter aquatic environments, Daphnia magna are especially vulnerable as they filter-feed in freshwater environments. Oxytetracycline (OTC) is a commonly-used broad-spectrum antibiotic used to treat a variety of mammalian diseases. In this study, the impact of OTC on D. magna mortality and gut biota were studied using both cultivation and sequencing-based approaches. Mortality rates were extremely low with the LD50 >2,000ppm. However, OTC impacted abundance and species diversity of intestinal microorganisms in the gut of the D. magna in abundance as well as species diversity. In control organisms, Pseudomonas putida and Aeromonas hydrophila were both present while only P. putida was found in OTC-exposed organisms. Disruption of the intestinal biota in D. magna could have implications on long-term survival, energy expenditure, and reproduction.
Collapse
Affiliation(s)
- Sarah B. Lovern
- Department of Life and Earth Science, Concordia University Wisconsin, Mequon, WI, United States of America
- * E-mail:
| | - Rochelle Van Hart
- Department of Life and Earth Science, Concordia University Wisconsin, Mequon, WI, United States of America
| |
Collapse
|
29
|
Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nat Commun 2022; 13:2296. [PMID: 35484157 PMCID: PMC9051133 DOI: 10.1038/s41467-022-29919-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan. Antimicrobial resistance represents an ongoing silent pandemic. Here, de Nies et al. show that a single antibiotic treatment leads to resistance in bacteria such as Akkermansia muciniphila and that integrons play a key role in mediating this resistance.
Collapse
|
30
|
Li M, Guo W, Dong Y, Wang W, Tian C, Zhang Z, Yu T, Zhou H, Gui Y, Xue K, Li J, Jiang F, Sarapultsev A, Wang H, Zhang G, Luo S, Fan H, Hu D. Beneficial Effects of Celastrol on Immune Balance by Modulating Gut Microbiota in Experimental Ulcerative Colitis Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:288-303. [PMID: 35609771 PMCID: PMC9684163 DOI: 10.1016/j.gpb.2022.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenzhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Jiang
- Institute of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region 999077, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Corresponding author.
| |
Collapse
|
31
|
Abstract
Necrotizing enterocolitis (NEC) is considered to be one of the most devastating intestinal diseases seen in neonatal intensive care. Measures to treat NEC are often too late, and we need effective preventative measures to alleviate the burden of this disease. The purpose of this review is to summarize currently used measures, and those showing future promise for prevention.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Duncan K, Carey-Ewend K, Vaishnava S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 2022; 13:1874815. [PMID: 33567985 PMCID: PMC8253138 DOI: 10.1080/19490976.2021.1874815] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mucus-associated bacterial communities are critical for determining disease pathology and promoting colonization resistance. Yet the key ecological properties of mucus resident communities remain poorly defined. Using an approach that combines in situ hybridization, laser microdissection and 16s rRNA sequencing of spatially distinct regions of the mouse gut lumen, we discovered that a dense microbial community resembling a biofilm is embedded in the mucus layer. The mucus-associated biofilm-like community excluded bacteria belonging to phylum Proteobacteria. Additionally, it was significantly more diverse and consisted of bacterial species that were unique to it. By employing germ-free mice deficient in T and B lymphocytes we found that formation of biofilm-like structure was independent of adaptive immunity. Instead the integrity of biofilm-like community depended on Gram-positive commensals such as Clostridia. Additionally, biofilm-like community in the mucus lost fewer Clostridia and showed smaller bloom of Proteobacteria compared to the lumen upon antibiotic treatment. When subjected to time-restricted feeding biofilm-like structure significantly enhanced in size and showed enrichment of Clostridia. Taken together our work discloses that mucus-associated biofilm-like community represents a specialized community that is structurally and compositionally distinct that excludes aerobic bacteria while enriching for anaerobic bacteria such as Clostridia, exhibits enhanced stability to antibiotic treatment and that can be modulated by dietary changes.
Collapse
Affiliation(s)
- Kellyanne Duncan
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Kelly Carey-Ewend
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States,CONTACT Shipra Vaishnava Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
33
|
Cao W, Liu F, Li RW, Chin Y, Wang Y, Xue C, Tang Q. Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
A Comprehensive Evaluation of Enterobacteriaceae Primer Sets for Analysis of Host-Associated Microbiota. Pathogens 2021; 11:pathogens11010017. [PMID: 35055964 PMCID: PMC8780275 DOI: 10.3390/pathogens11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Enterobacteriaceae is one of the most important bacterial groups within the Proteobacteria phylum. This bacterial group includes pathogens, commensal and beneficial populations. Numerous 16S rRNA gene PCR-based assays have been designed to analyze Enterobacteriaceae diversity and relative abundance, and, to the best of our knowledge, 16 primer pairs have been validated, published and used since 2003. Nonetheless, a comprehensive performance analysis of these primer sets has not yet been carried out. This information is of particular importance due to the recent taxonomic restructuration of Enterobacteriaceae into seven bacterial families. To overcome this lack of information, the identified collection of primer pairs (n = 16) was subjected to primer performance analysis using multiple bioinformatics tools. Herein it was revealed that, based on specificity and coverage of the 16S rRNA gene, these 16 primer sets could be divided into different categories: Enterobacterales-, multi-family-, multi-genus- and Enterobacteriaceae-specific primers. These results highlight the impact of taxonomy changes on performance of molecular assays and data interpretation. Moreover, they underline the urgent need to revise and update the molecular tools used for molecular microbial analyses.
Collapse
|
35
|
Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, Sano WH, Sebastian MM, Quinn RA, Belenky P. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep 2021; 37:110113. [PMID: 34910917 PMCID: PMC8722030 DOI: 10.1016/j.celrep.2021.110113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease both impact the structure and function of the gut microbiome. But how host and microbial metabolism interacts with ATB susceptibility to affect the resulting dysbiosis remains poorly understood. In a streptozotocin-induced model of hyperglycemia (HG), we use a combined metagenomic, metatranscriptomic, and metabolomic approach to profile changes in microbiome taxonomic composition, transcriptional activity, and metabolite abundance both pre- and post-ATB challenge. We find that HG impacts both microbiome structure and metabolism, ultimately increasing susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and ATB co-treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica infection model. Our data demonstrate that induced HG is sufficient to modify the cecal metabolite pool, worsen the severity of ATB dysbiosis, and decrease colonization resistance.
Collapse
Affiliation(s)
- Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachel L Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Claire E Brown
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Douglas V Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kerri Neugebauer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - William H Sano
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
36
|
Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med 2021; 53:750-761. [PMID: 34042554 PMCID: PMC8168766 DOI: 10.1080/07853890.2021.1925150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
The microbiota is a dynamic ecosystem that plays a major role in the host health. Numerous studies have reported that alterations in the intestinal microbiota (dysbiosis) may contribute to the pathogenesis of various common diseases such as diabetes, neuropsychiatric diseases, and cancer. However, emerging findings also suggest the existence of a gut-eye axis, wherein gut dysbiosis may be a crucial factor influencing the onset and progression of multiple ocular diseases, including uveitis, dry eye, macular degeneration, and glaucoma. Currently, supplementation with pre- and probiotics appears is the most feasible and cost-effective approach to restore the gut microbiota to a eubiotic state and prevent eye pathologies. In this review, we discuss the current knowledge on how gut microbiota may be linked to the pathogenesis of common eye diseases, providing therapeutic perspectives for future translational investigations within this promising research field.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Roberto dell’Omo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
37
|
Ruiz MJ, Sirini NE, Signorini ML, Etcheverría A, Zbrun MV, Soto LP, Zimmermann JA, Frizzo LS. Protective effect of Lactiplantibacillus plantarum LP5 in a murine model of colonisation by Campylobacter coli DSPV458. Benef Microbes 2021; 12:553-565. [PMID: 34590533 DOI: 10.3920/bm2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thermotolerant Campylobacter species are the leading cause of foodborne bacterial diarrheal disease worldwide. Campylobacter coli, abundant in pigs and pork products, have been identified as a source of human infection. In this study, we propose the use of Lactiplantibacillus plantarum LP5 as a probiotic to reduce colonisation of this intestinal pathogen in a murine colonisation model of C. coli DSPV458. Six-week-old adult female Balb/cCmedc mice were housed in groups: Control, Campy and Pro-Campy. Control and Pro-Campy groups received antibiotics for 5 days and the Campy group for 12 days. Pro-Campy group was inoculated for 7 days with 8.78 log10 cfu total of L. plantarum LP5 suspended in De Man, Rogosa and Sharpe broth. All groups were inoculated with 6.72 log10 cfu of C. coli DSPV458 suspended in brain heart infusion broth. L. plantarum LP5 was recovered only in the Pro- Campy group. C. coli DSPV458 was recovered at higher levels in the Control and Campy groups. The differences with the Pro-Campy group were significant. As regards faeces, Control and Campy groups reached 7.41 and 7.84 log10 cfu/g, respectively, and the Pro-Campy group only 4.62 log10 cfu/g. In the caecum, Control and Campy groups reached 8.01 and 9.26 log10cfu/g, respectively, and the Pro-Campy group only 4.51 log10 cfu/g. In the ileum, Control and Campy groups reached 3.43 and 3.26 log10 cfu/g, respectively, and the Pro-Campy group did not show detectable levels. The reduction of C. coli DSPV458 in the Pro-Campy group compared to the Control group in faeces, caecum and ileum was 99.55, 99.98 and 100%, respectively. Animals were maintained under normal health conditions, and haematological parameters were within the standard values for Balb/cCmedc. The incorporation of a probiotic generated a protective effect in the mice colonisation model. The protective effect would also apply to intestinal colonisation by indigenous enterobacteria. Therefore, the strategy used in this study is of great importance to understand the protection mechanisms in a murine model, as well as its application in food-producing animals.
Collapse
Affiliation(s)
- M J Ruiz
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil, Argentina
| | - N E Sirini
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Ruta 34 Km 227, 2300 Rafaela, Province of Santa Fe, Argentina
| | - A Etcheverría
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil, Argentina
| | - M V Zbrun
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - L P Soto
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| |
Collapse
|
38
|
Mamgain G, Patra P, Naithani M, Nath UK. The Role of Microbiota in the Development of Cancer Tumour Cells and Lymphoma of B and T Cells. Cureus 2021; 13:e19047. [PMID: 34853760 PMCID: PMC8608681 DOI: 10.7759/cureus.19047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Human body harbours enormous numbers of microbial organisms, including bacteria, viruses, and fungi which have a momentous role in well-being and illness in humans. Immune system shelters us from pathogenic bacteria, microorganisms found in human tissues have many benefits related to the functional movement of the host by regulating important procedures such as immunity, signalling, and breakdown. Lymphocytes assume a significant part in the reaction to bacterial colonization, primarily by prompting a safe reaction to obstruction or initiation. Most immunologically occupant cells have a place with the mucosal invulnerable framework and are continually motioned by dendritic cells or other Antigen introducing cells that gather intestinal samples. Thus, Microbiome is a key contributor to developing lymphoma and specific alterations to microbiome composition could attenuate the risk. There is an indication that microbial morphology can affect and control humanoids. The difference in the composition of these microorganisms is associated with tumour development. With the increased knowledge of the connection among the human microbiome and carcinogenesis, the use of these findings to prevent, predict or diagnose of lymphomas has attracted a great attention. In this article, we explored current knowledge of various microbial ecosystems, their connection with carcinogens and the potential for useful microorganisms to control and prevent B and T cell lymphoma.
Collapse
Affiliation(s)
- Garima Mamgain
- Medical Oncology and Haematology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Priyanka Patra
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, IND
| | - Manisha Naithani
- Biochemistry & Advanced Center of Continuous Professional Development, All India Institute of Medical Sciences, Rishikesh, IND
| | - Uttam Kumar Nath
- Medical Oncology and Haematology, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
39
|
McKee AM, Kirkup BM, Madgwick M, Fowler WJ, Price CA, Dreger SA, Ansorge R, Makin KA, Caim S, Le Gall G, Paveley J, Leclaire C, Dalby M, Alcon-Giner C, Andrusaite A, Feng TY, Di Modica M, Triulzi T, Tagliabue E, Milling SW, Weilbaecher KN, Rutkowski MR, Korcsmáros T, Hall LJ, Robinson SD. Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. iScience 2021; 24:103012. [PMID: 34522855 PMCID: PMC8426205 DOI: 10.1016/j.isci.2021.103012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota's function in regulating health has seen it linked to disease progression in several cancers. However, there is limited research detailing its influence in breast cancer (BrCa). This study found that antibiotic-induced perturbation of the gut microbiota significantly increases tumor progression in multiple BrCa mouse models. Metagenomics highlights the common loss of several bacterial species following antibiotic administration. One such bacteria, Faecalibaculum rodentium, rescued this increased tumor growth. Single-cell transcriptomics identified an increased number of cells with a stromal signature in tumors, and subsequent histology revealed an increased abundance of mast cells in the tumor stromal regions. We show that administration of a mast cell stabilizer, cromolyn, rescues increased tumor growth in antibiotic treated animals but has no influence on tumors from control cohorts. These findings highlight that BrCa-microbiota interactions are different from other cancers studied to date and suggest new research avenues for therapy development.
Collapse
Affiliation(s)
- Alastair M. McKee
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Benjamin M. Kirkup
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Matthew Madgwick
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Wesley J. Fowler
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Christopher A. Price
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Sally A. Dreger
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Rebecca Ansorge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Kate A. Makin
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Shabhonam Caim
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Gwenaelle Le Gall
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jack Paveley
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Charlotte Leclaire
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Matthew Dalby
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Cristina Alcon-Giner
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Simon W.F. Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katherine N. Weilbaecher
- Department of Internal Medicine, Division of Molecular Oncology, Washington University in St Louis, St. Louis, MO, 63110, USA
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tamás Korcsmáros
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Lindsay J. Hall
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
40
|
Bonanomi G, Idbella M, Abd-ElGawad AM. Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut. SUSTAINABILITY 2021; 13:7608. [DOI: 10.3390/su13147608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Both soil and the human gut support vast microbial biodiversity, in which the microbiota plays critical roles in regulating harmful organisms. However, the functional link between microbiota taxonomic compositions and disease suppression has not been explained yet. Here, we provide an overview of pathogen regulation in soil and mammals gut, highlighting the differences and the similarities between the two systems. First, we provide a review of the ecological mechanisms underlying the regulation of soil and pathogens, as well as the link between disease suppression and soil health. Particular emphasis is thus given to clarifying how soil and the gut microbiota are associated with organic amendment and the human diet, respectively. Moreover, we provide several insights into the importance of organic amendment and diet composition in shaping beneficial microbiota as an efficient way to support crop productivity and human health. This review also discusses novel ways to functionally characterize organic amendments and the proper operational combining of such materials with beneficial microbes for stirring suppressive microbiota against pathogens. Furthermore, specific examples are given to describe how agricultural management practices, including the use of antibiotics and fumigants, hinder disease suppression by disrupting microbiota structure, and the potentiality of entire microbiome transplant. We conclude by discussing general strategies to promote soil microbiota biodiversity, the connection with plant yield and health, and their possible integration through a “One Health” framework.
Collapse
|
41
|
Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect Dis 2021; 7:1126-1142. [PMID: 33176423 DOI: 10.1021/acsinfecdis.0c00634] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer M. Auchtung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln Nebraska 68588, United States
| | - Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Wenly Ruan
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| |
Collapse
|
42
|
Wang X, Kong X, Qin Y, Zhu X, Qu D, Han J. Milk phospholipid supplementation mediates colonization resistance of mice against Salmonella infection in association with modification of gut microbiota. Food Funct 2021; 11:6078-6090. [PMID: 32568318 DOI: 10.1039/d0fo00883d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gut microbiota-mediated colonization resistance against enteropathogens is known to be greatly influenced by bioactive food compounds. This work aims to investigate the effects of milk phospholipid (MP) supplementation on the colonization resistance of mice to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, with the focus mainly on the change of gut microbiota. Comparative microbiota analysis based on 16S rRNA gene sequence data of mice under different MP supplementation situations allowed us to identify specific microbiota characteristics associated with the varying degree of susceptibility to S. Typhimurium infection. We found that a moderate dietary intake of MPs (0.05 wt%) significantly increased the relative abundance of Bacteroides spp. (p < 0.05) and the propionate level (p < 0.05) in the mouse colon and enhanced colonization resistance against S. Typhimurium infection, when compared with the un-supplemented S. Typhimurium-infected mice, whereas excessive MP supplementation (0.25 wt%) did not significantly change the level of Bacteroides spp. (p > 0.05) and propionate (p > 0.05) and even enhanced the susceptibility and severity of S. Typhimurium infection. Furthermore, the inhibitory effects of Bacteroides spp. and propionate on S. Typhimurium intestinal colonization were verified in an ex vivo S. Typhimurium-infected 3D colonoid culture system. Our results showed that the supplementation of nutraceuticals may not always be the more the better, particularly under specific pathological conditions, and identification of specific gut microbiota characteristics may have the potential to become an indicator of appropriate supplementation in specific cases.
Collapse
Affiliation(s)
- Xiu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China and Nanhu College, Jiaxing University, Jiaxing 314001, China.
| | - Xiunan Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
43
|
O'Keeffe KR, Halliday FW, Jones CD, Carbone I, Mitchell CE. Parasites, niche modification and the host microbiome: A field survey of multiple parasites. Mol Ecol 2021; 30:2404-2416. [PMID: 33740826 DOI: 10.1111/mec.15892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.
Collapse
Affiliation(s)
- Kayleigh R O'Keeffe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fletcher W Halliday
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:2759-2771. [PMID: 33824633 PMCID: PMC8017513 DOI: 10.1007/s10311-021-01224-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/12/2021] [Indexed: 05/06/2023]
Abstract
Prevention is better than cure. A milestone of the anthropocene is the emergence of a series of epidemics and pandemics often characterized by the transmission of a pathogen from animals to human in the past two decades. In particular, the coronavirus disease 2019 (COVID-19) has made a profound impact on emergency responding and policy-making in a public health crisis. Classical solutions for controlling the virus, such as travel restrictions, lockdowns, repurposed drugs and vaccines, are socially unpopular and medically limited by the fast mutation and adaptation of the virus. This is exacerbated by microbial resistance to therapeutic drugs and the slowness of vaccine development. In other words, microbial pathogens are somehow 'smarter' and faster than us, thus calling for more intelligent cures to combat future pandemics. Here, we compare therapeutics for COVID-19 such as synthetic drugs, vaccines, antibodies and phages. We present the strength and limitations of antibiotic and antiviral drugs, vaccines, and antibody-based therapeutics. We describe smarter, cheaper and preventive cures such as bacteriophages, food medicine using probiotics and prebiotics, sports, healthy diet, music, yoga, Tai Chi, dance, reading, knitting, cooking and outdoor activities. Some of these preventive cures have been intuitively developed since thousands of years ago, as illustrated by the fascinating similarity of the Chinese characters for 'music' and 'herbal medicine.'
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille University, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
45
|
Gaudino SJ, Beaupre M, Lin X, Joshi P, Rathi S, McLaughlin PA, Kempen C, Mehta N, Eskiocak O, Yueh B, Blumberg RS, van der Velden AWM, Shroyer KR, Bialkowska AB, Beyaz S, Kumar P. IL-22 receptor signaling in Paneth cells is critical for their maturation, microbiota colonization, Th17-related immune responses, and anti-Salmonella immunity. Mucosal Immunol 2021; 14:389-401. [PMID: 33060802 PMCID: PMC7946635 DOI: 10.1038/s41385-020-00348-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Interleukin-22 (IL-22) signaling in the intestines is critical for promoting tissue-protective functions. However, since a diverse array of cell types (absorptive and secretory epithelium as well as stem cells) express IL-22Ra1, a receptor for IL-22, it has been difficult to determine what cell type(s) specifically respond to IL-22 to mediate intestinal mucosal host defense. Here, we report that IL-22 signaling in the small intestine is positively correlated with Paneth cell differentiation programs. Our Il22Ra1fl/fl;Lgr5-EGFP-creERT2-specific knockout mice and, independently, our lineage-tracing findings rule out the involvement of Lgr5+ intestinal stem cell (ISC)-dependent IL-22Ra1 signaling in regulating the lineage commitment of epithelial cells, including Paneth cells. Using novel Paneth cell-specific IL-22Ra1 knockout mice (Il22Ra1fl/fl;Defa6-cre), we show that IL-22 signaling in Paneth cells is required for small intestinal host defense. We show that Paneth cell maturation, antimicrobial effector function, expression of specific WNTs, and organoid morphogenesis are dependent on cell-intrinsic IL-22Ra1 signaling. Furthermore, IL-22 signaling in Paneth cells regulates the intestinal commensal bacteria and microbiota-dependent IL-17A immune responses. Finally, we show ISC and, independently, Paneth cell-specific IL-22Ra1 signaling are critical for providing immunity against Salmonella enterica serovar Typhimurium. Collectively, our findings illustrate a previously unknown role of IL-22 in Paneth cell-mediated small intestinal host defense.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael Beaupre
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xun Lin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Preet Joshi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sonika Rathi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Patrick A McLaughlin
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cody Kempen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Neil Mehta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Brian Yueh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Richard S Blumberg
- Department of Gastroenterology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Adrianus W M van der Velden
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
46
|
Effects of Essential Oils-Based Supplement and Salmonella Infection on Gene Expression, Blood Parameters, Cecal Microbiome, and Egg Production in Laying Hens. Animals (Basel) 2021; 11:ani11020360. [PMID: 33535430 PMCID: PMC7912222 DOI: 10.3390/ani11020360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
One of the main roles in poultry resistance to infections caused by Salmonella is attributed to host immunity and intestinal microbiota. We conducted an experiment that involved challenging Lohmann White laying hens with Salmonella Enteritidis (SE), feeding them a diet supplemented with an EOs-based phytobiotic Intebio®. At 1 and 7 days post-inoculation, the expression profiles of eight genes related to immunity, transport of nutrients in the intestine, and metabolism were examined. Cecal microbiome composition and blood biochemical/immunological indices were also explored and egg production traits recorded. As a result, the SE challenge of laying hens and Intebio® administration had either a suppressive or activating effect on the expression level of the studied genes (e.g., IL6 and BPIFB3), the latter echoing mammalian/human tissue-specific expression. There were also effects of the pathogen challenge and phytobiotic intake on the cecal microbiome profiles and blood biochemical/immunological parameters, including those reflecting the activity of the birds' immune systems (e.g., serum bactericidal activity, β-lysine content, and immunoglobulin levels). Significant differences between control and experimental subgroups in egg performance traits (i.e., egg weight/number/mass) were also found. The phytobiotic administration suggested a positive effect on the welfare and productivity of poultry.
Collapse
|
47
|
Pu J, Yuan Q, Yan H, Tian G, Chen D, He J, Zheng P, Yu J, Mao X, Huang Z, Luo J, Luo Y, Yu B. Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B 1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs. Animals (Basel) 2021; 11:336. [PMID: 33572697 PMCID: PMC7911249 DOI: 10.3390/ani11020336] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of chronic exposure to low levels of dietary aflatoxin B1 (AFB1) on growth performance, apparent total tract digestibility and intestinal health in pigs. In a 102-day experiment, fourteen barrows (Duroc×Landrace×Yorkshire, initial BW = 38.21 ± 0.45 kg) were randomly divided into control (CON, basal diet) and AFB1 groups (the basal diet supplemented with 280 μg/kg AFB1). Results revealed that the AFB1 exposure decreased the final BW, ADFI and ADG in pigs (p < 0.10). AFB1 exposure also decreased the apparent total tract digestibility of dry mater and gross energy at 50 to 75 kg and 105 to 135 kg stages, and decreased the apparent total tract digestibility of ether extract at 75 to 105 kg stage (p < 0.05). Meanwhile, AFB1 exposure increased serum diamine oxidase activity and reduced the mRNA abundance of sodium-glucose cotransporter 1, solute carrier family 7 member 1 and zonula occluden-1 in the jejunal mucosa (p < 0.05). Furthermore, AFB1 exposure decreased superoxide dismutase activity (p < 0.05) and increased 8-hydroxy-2'-deoxyguanosine content (p < 0.10) in jejunal mucosa. AFB1 exposure also increased tumor necrosis factor-α, interleukin-1β and transforming growth factor-β mRNA abundance in jejunal mucosa and upregulated Escherichia coli population in colon (p < 0.05). The data indicated that chronic exposure to low levels of dietary AFB1 suppressed growth performance, reduced the apparent total tract digestibility and damaged intestinal barrier integrity in pigs, which could be associated with the decreased intestinal antioxidant capacity and the increased pro-inflammatory cytokine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan 625014, China; (J.P.); (Q.Y.); (H.Y.); (G.T.); (D.C.); (J.H.); (P.Z.); (J.Y.); (X.M.); (Z.H.); (J.L.); (Y.L.)
| |
Collapse
|
48
|
Ruiz-López MJ. Mosquito Behavior and Vertebrate Microbiota Interaction: Implications for Pathogen Transmission. Front Microbiol 2020; 11:573371. [PMID: 33362732 PMCID: PMC7755997 DOI: 10.3389/fmicb.2020.573371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023] Open
Abstract
The microbiota is increasingly recognized for its ability to influence host health and individual fitness through multiple pathways, such as nutrient synthesis, immune system development, and even behavioral processes. Most of these studies though focus on the direct effects microbiota has on its host, but they do not consider possible interactions with other individuals. However, host microbiota can change not only host behavior but also the behavior of other individuals or species toward the host. For example, microbes can have an effect on animal chemistry, influencing animal behaviors mediated by chemical communication, such as mosquito attraction. We know that host skin microbes play a major role in odor production and thus can affect the behavior of mosquitoes leading to differences in attraction to their hosts. Ultimately, the vector feeding preference of mosquitoes conditions the risk of vertebrates of coming into contact with a vector-borne pathogen, affecting its transmission, and thus epidemiology of vector-borne diseases. In this mini review, I provide an overview of the current status of research on the interaction between mosquito behavior and host skin microbiota, both in humans and other vertebrates. I consider as well the factors that influence vertebrate skin microbiota composition, such as sex, genetic makeup, and infection status, and discuss the implications for pathogen transmission.
Collapse
Affiliation(s)
- María José Ruiz-López
- Departamento de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
49
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
50
|
Paschall AV, Middleton DR, Wantuch PL, Avci FY. Therapeutic Activity of Type 3 Streptococcus pneumoniae Capsule Degrading Enzyme Pn3Pase. Pharm Res 2020; 37:236. [PMID: 33140159 PMCID: PMC7605875 DOI: 10.1007/s11095-020-02960-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Streptococcus pneumoniae (Spn) serotype 3 (Spn3) is considered one of the most virulent serotypes with resistance to conventional vaccine and treatment regimens. Pn3Pase is a glycoside hydrolase that we have previously shown to be highly effective in degrading the capsular polysaccharide of type 3 Spn, sensitizing it to host immune clearance. To begin assessing the value and safety of this enzyme for future clinical studies, we investigated the effects of high doses of Pn3Pase on host cells and immune system. METHODS We assessed the enzyme's catalytic activity following administration in mice, and performed septic infection models to determine if prior administration of the enzyme inhibited repeat treatments of Spn3-challenged mice. We assessed immune populations in mouse tissues following administration of the enzyme, and tested Pn3Pase toxicity on other mammalian cell types in vitro. RESULTS Repeated administration of the enzyme in vivo does not prevent efficacy of the enzyme in promoting bacterial clearance following bacterial challenge, with insignificant antibody response generated against the enzyme. Immune homeostasis is maintained following high-dose treatment with Pn3Pase, and no cytotoxic effects were observed against mammalian cells. CONCLUSIONS These data indicate that Pn3Pase has potential as a therapy against Spn3. Further development as a drug product could overcome a great hurdle of pneumococcal infections.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|