1
|
Chen Y, Ou X, Li P, Zan F, Tan L, Qian Z. Identification of the critical residues of TMPRSS2 for entry and host range of human coronavirus HKU1. J Virol 2024; 98:e0158724. [PMID: 39526774 PMCID: PMC11650973 DOI: 10.1128/jvi.01587-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission.IMPORTANCEThe interactions of coronavirus (CoV) S proteins with their cognate receptors determine the host range and cross-species transmission potential. Recently, human transmembrane serine protease 2 (hTMPRSS2) was found to be the receptor for HKU1. Here, we show that the TMPRSS2 of hamster, but not rat, mouse, or bat, can serve as a functional entry receptor for HKU1. Moreover, swapping the residues at the positions of 417 and 469 of bTMPRSS2 with the corresponding residues of hTMPRSS2 confers it supporting entry of HKU1 S pseudovirions, indicating the critical role of these residues in HKU1 entry. Our study identified the critical residues in hTMPRSS2 responsible for receptor interaction and host range of HKU1.
Collapse
Affiliation(s)
- Yahan Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Xiuyuan Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Lin Tan
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MOE Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Akiba Y, Matsugo H, Kanda T, Sakai M, Makino A, Tomonaga K. A single amino acid substitution in the Borna disease virus glycoprotein enhances the infectivity titer of vesicular stomatitis virus pseudotyped virus by altering membrane fusion activity. Microbiol Immunol 2024; 68:381-392. [PMID: 39310974 DOI: 10.1111/1348-0421.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 11/07/2024]
Abstract
Borna disease virus 1 (BoDV-1) causes acute fatal encephalitis in mammals, including humans. Despite its importance, research on BoDV-1 cell entry has been hindered by low infectious viral particle production in cells and the lack of cytopathic effects, which are typically useful for screening. To address these issues, we developed a method to efficiently produce vesicular stomatitis virus (VSV) pseudotyped with glycoprotein (G) of members of the genus Orthobornavirus, including BoDV-1. We discovered that optimal G expression is required to obtain a high infectivity titer of the VSV pseudotyped virus. Remarkably, the infectivity of the VSV pseudotyped virus with G from the BoDV-1 strain huP2br was significantly higher than that of the VSV pseudotyped virus with G from the He/80 strain. Mutational analysis demonstrated that the methionine at BoDV-1-G residue 307 increases the infectivity titer of VSV pseudotyped with BoDV-1-G (VSV-BoDV-1-G). A cell‒cell fusion assay indicated that this residue plays a pivotal role in membrane fusion, thus suggesting that high membrane fusion activity and a broad pH range for membrane fusion are crucial for achieving a high infectivity titer of VSV-BoDV-1-G. This finding may be extended to increase the infectivity titer of VSV pseudotyped virus with other orthobornavirus G. Our study also contributes to identifying functional domains of BoDV-1-G and provides insight into G-mediated cell entry.
Collapse
Affiliation(s)
- Yusa Akiba
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiromichi Matsugo
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Modoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Zannella C, Chianese A, Monti A, Giugliano R, Morone MV, Secci F, Sanna G, Manzin A, De Filippis A, Doti N, Galdiero M. SARS-CoV-2 Fusion Peptide Conjugated to a Tetravalent Dendrimer Selectively Inhibits Viral Infection. Pharmaceutics 2023; 15:2791. [PMID: 38140131 PMCID: PMC10748278 DOI: 10.3390/pharmaceutics15122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs. Many efforts have been directed at finding antivirals capable of interfering with the fusion mechanism, mainly by designing peptides on the two heptad-repeat regions present in class I viral fusion proteins. Here, we aimed to evaluate the anti-SARS-CoV-2 activity of the FP sequence conjugated to a tetravalent dendrimer through a classical organic nucleophilic substitution reaction (SN2) using a synthetic bromoacetylated peptide mimicking the FP and a branched scaffold of poly-L-Lysine functionalized with cysteine residues. We found that the FP peptide conjugated to the dendrimer, unlike the monomeric FP sequence, has virucidal activity by impairing the attachment of SARS-CoV-2 to cells. Furthermore, we found that the peptide dendrimer does not have the same effects on other coronaviruses, demonstrating that it is selective against SARS-CoV-2.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
4
|
Bhattacharya M, Chatterjee S, Lee SS, Dhama K, Chakraborty C. Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resist Updat 2023; 71:101008. [PMID: 37757651 DOI: 10.1016/j.drup.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India.
| |
Collapse
|
5
|
Kim JW, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Lee JH, Shin HG, Yang HR, Choi HL, Shim HB, Lee S. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Front Immunol 2023; 14:1271508. [PMID: 37822941 PMCID: PMC10562541 DOI: 10.3389/fimmu.2023.1271508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Bo Shim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Stincarelli MA, Quagliata M, Di Santo A, Pacini L, Fernandez FR, Arvia R, Rinaldi S, Papini AM, Rovero P, Giannecchini S. SARS-CoV-2 inhibitory activity of a short peptide derived from internal fusion peptide of S2 subunit of spike glycoprotein. Virus Res 2023; 334:199170. [PMID: 37422270 PMCID: PMC10384657 DOI: 10.1016/j.virusres.2023.199170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Feliciana Real Fernandez
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Silvia Rinaldi
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy.
| |
Collapse
|
7
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Ma Y, Li P, Hu Y, Qiu T, Wang L, Lu H, Lv K, Xu M, Zhuang J, Liu X, He S, He B, Liu S, Liu L, Wang Y, Yue X, Zhai Y, Luo W, Mai H, Kuang Y, Chen S, Ye F, Zhou N, Zhao W, Chen J, Chen S, Xiong X, Shi M, Pan JA, Chen YQ. Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathog 2023; 19:e1011123. [PMID: 37196033 DOI: 10.1371/journal.ppat.1011123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to Serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.
Collapse
Affiliation(s)
- Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Zhuang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wanyu Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoting Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu Kuang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Chen
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Feng Ye
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Na Zhou
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Wenjing Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mang Shi
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guanzhou, China
| |
Collapse
|
9
|
Li SY, Shen YX, Xiang XL, Li YX, Li NL, Wang AD, Cui M, Han XF, Huang Y, Xia J. The conserved L1089 in the S2 subunit of avian infectious bronchitis virus determines viral kidney tropism by disrupting virus-cell fusion. Vet Microbiol 2023; 277:109619. [PMID: 36525909 DOI: 10.1016/j.vetmic.2022.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The virulence of avian gamma-coronavirus infectious bronchitis viruses (IBV) for the kidney has led to high mortality in dominant-genotype isolations, but the key sites of viral protein that determine kidney tropism are still not fully clear. In this study, the amino acid sequences of the S2 subunit of IBVs with opposing adaptivity to chicken embryonic kidney cells (CEKs) were aligned to identify putative sites associated with differences in viral adaptability. The S2 gene and the putative sites of the non-adapted CN strain were introduced into the CEKs-adapted SczyC30 strain to rescue seven mutants. Analysis of growth characteristics showed that the replacement of the entire S2 subunit and the L1089I substitution in the S2 subunit entirely abolished the proliferation of recombinant IBV in CEKs as well as in primary chicken oviduct epithelial cells. Pathogenicity assays also support the decisive role of this L1089 for viral nephrotropism, and this non-nephrotropic L1089I substitution significantly attenuates pathogenicity. Analysis of the putative cause of proliferation inhibition in CEKs suggests that the L1089I substitution affects neither virus attachment nor endocytosis, but instead fails to form double-membrane vesicles to initiate the viral replication and translation. Position 1089 of the IBV S2 subunit is conservative and predicted to lie in heptad repeat 2 domains. It is therefore reasonable to conclude that the L1089I substitution alters the nephrotropism of parent strain by affecting virus-cell fusion. These findings provide crucial insights into the adaptive mechanisms of IBV and have applications in the development of vaccines and drugs against IB.
Collapse
Affiliation(s)
- Shu-Yun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yu-Xi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Xue-Lian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yong-Xin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Nian-Ling Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - An-Dong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Xin-Feng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
10
|
Characterization of SARS-CoV-2 Glycoprotein Using a Quantitative Cell-Cell Fusion System. Methods Mol Biol 2022; 2610:179-186. [PMID: 36534291 DOI: 10.1007/978-1-0716-2895-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.
Collapse
|
11
|
A Lentiviral Pseudotype System to Characterize SARS-CoV-2 Glycoprotein. Methods Mol Biol 2022; 2610:187-199. [PMID: 36534292 DOI: 10.1007/978-1-0716-2895-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 causes worldwide COVID-19 pandemic and poses a great threat to global public health. Due to its high pathogenicity and infectivity, live SARS-CoV-2 is classified as a BSL-3 agent and has to be handled in BSL-3 condition. Nevertheless, entry of SARS-CoV-2 is mediated by viral spike (S) glycoprotein, and pseudovirus with SARS-CoV-2 S protein can mimic every entry step of SARS-CoV-2 virus and be studied in BSL-2 settings. In this chapter, we describe a detailed protocol of production of lentivirus-based SARS-CoV-2 S pseudovirus and its application in study of virus entry and determination of neutralizing antibody titer of human sera against SARS-CoV-2.
Collapse
|
12
|
Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, Wentworth DE, Wessner DR, Williams RK, Miura TA. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses 2022; 14:1573. [PMID: 35891553 PMCID: PMC9315735 DOI: 10.3390/v14071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two years, scientific research has moved at an unprecedented rate in response to the COVID-19 pandemic. The rapid development of effective vaccines and therapeutics would not have been possible without extensive background knowledge on coronaviruses developed over decades by researchers, including Kathryn (Kay) Holmes. Kay's research team discovered the first coronavirus receptors for mouse hepatitis virus and human coronavirus 229E and contributed a wealth of information on coronaviral spike glycoproteins and receptor interactions that are critical determinants of host and tissue specificity. She collaborated with several research laboratories to contribute knowledge in additional areas, including coronaviral pathogenesis, epidemiology, and evolution. Throughout her career, Kay was an extremely dedicated and thoughtful mentor to numerous graduate students and post-doctoral fellows. This article provides a review of her contributions to the coronavirus field and her exemplary mentoring.
Collapse
Affiliation(s)
- Aurelio Bonavia
- Vaccine Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA;
| | - Samuel R. Dominguez
- Department of Pediatrics-Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Sara Gagneten
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Megan Howard
- Battelle Memorial Institute, Columbus, OH 43201, USA;
| | | | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100050, China;
| | | | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dina B. Tresnan
- Safety Surveillance and Risk Management, Worldwide Safety, Pfizer, Groton, CT 06340, USA;
| | - David E. Wentworth
- COVID-19 Emergency Response, Virology Surveillance and Diagnosis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA;
| | - David R. Wessner
- Departments of Biology and Public Health, Davidson College, Davidson, NC 28035, USA;
| | | | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
13
|
Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-Moghadam H, Ahmad E, Nikzad H, Hosseini ES. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Front Mol Biosci 2022; 9:770775. [PMID: 35664675 PMCID: PMC9161360 DOI: 10.3389/fmolb.2022.770775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus-related severe acute respiratory syndrome (SARS-CoV) in 2002/2003, the Middle East respiratory syndrome (MERS-CoV) in 2012/2013, and especially the current 2019/2021 severe acute respiratory syndrome-2 (SARS-CoV-2) negatively affected the national health systems worldwide. Different SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and recently Omicron (B.1.1.529), have emerged resulting from the high rate of genetic recombination and S1-RBD/S2 mutation/deletion in the spike protein that has an impact on the virus activity. Furthermore, genetic variability in certain genes involved in the immune system might impact the level of SARS-CoV-2 recognition and immune response against the virus among different populations. Understanding the molecular mechanism and function of SARS-CoV-2 variants and their different epidemiological outcomes is a key step for effective COVID-19 treatment strategies, including antiviral drug development and vaccine designs, which can immunize people with genetic variabilities against various strains of SARS-CoV-2. In this review, we center our focus on the recent and up-to-date knowledge on SARS-CoV-2 (Alpha to Omicron) origin and evolution, structure, genetic diversity, route of transmission, pathogenesis, new diagnostic, and treatment strategies, as well as the psychological and economic impact of COVID-19 pandemic on individuals and their lives around the world.
Collapse
Affiliation(s)
- Narjes Riahi Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Rajabi-Moghadam
- Department of Cardiovascular Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Colunga Biancatelli RML, Solopov PA, Gregory B, Khodour Y, Catravas JD. HSP90 Inhibitors Modulate SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation and Barrier Dysfunction. Front Physiol 2022; 13:812199. [PMID: 35388292 PMCID: PMC8979060 DOI: 10.3389/fphys.2022.812199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP activated (phosphorylated) IKBα, STAT3, and AKT and reduced the expression of intercellular junctional proteins, occludin, and VE-cadherin. HSP90 inhibitors (AT13387 and AUY-922) prevented endothelial barrier dysfunction and hyperpermeability and reduced IKBα and AKT activation. These two inhibitors also blocked S1SP-mediated barrier dysfunction and loss of VE-cadherin. These data suggest that spike protein subunit 1 can elicit, by itself, direct injury to the endothelium and suggest a role of HSP90 inhibitors in preserving endothelial functionality.
Collapse
Affiliation(s)
| | - Pavel A. Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Yara Khodour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
15
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
16
|
Basso LGM, Zeraik AE, Felizatti AP, Costa-Filho AJ. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183697. [PMID: 34274319 PMCID: PMC8280623 DOI: 10.1016/j.bbamem.2021.183697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.
Collapse
Affiliation(s)
- Luis Guilherme Mansor Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Ana Paula Felizatti
- Laboratório de Produtos Naturais, Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, Monjolinho, 13565905, São Carlos, SP, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Antonio José Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Alzain AA, Elbadwi FA. Identification of novel TMPRSS2 inhibitors for COVID-19 using e-pharmacophore modelling, molecular docking, molecular dynamics and quantum mechanics studies. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100758. [PMID: 34667827 PMCID: PMC8516157 DOI: 10.1016/j.imu.2021.100758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) has spread rapidly around the world and continues to have a massive global health effect, contributing to an infectious respiratory illness called coronavirus infection-19 (COVID-19). TMPRSS2 is an emerging molecular target that plays a role in the early stages of SARS-CoV-2 infection; hence, inhibiting its activity might be a target for COVID-19. This study aims to use many computational approaches to provide compounds that could be optimized into clinical candidates. As there is no experimentally derived protein information, initially we develop the TMPRSS2 model. Then, we generate a pharmacophore model from TMPRSS2 active site consequently, and the developed models were employed for the screening of one million molecules from the Enamine database. The created model was then screened using e-pharmacophore-based screening, molecular docking, free energy estimation and molecular dynamic simulation. Also, ADMET prediction and density functional theory calculations were performed. Three potential molecules (Z126202570, Z46489368, and Z422255982) exhibited promising stable binding interactions with the target. In conclusion, these findings empower further in vitro and clinical assessment for these compounds as novel anti-COVID19 agents.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
18
|
Long Term Immune Response Produced by the SputnikV Vaccine. Int J Mol Sci 2021; 22:ijms222011211. [PMID: 34681885 PMCID: PMC8537212 DOI: 10.3390/ijms222011211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
SputnikV is a vaccine against SARS-CoV-2 developed by the Gamaleya National Research Centre for Epidemiology and Microbiology. The vaccine has been shown to induce both humoral and cellular immune responses, yet the mechanisms remain largely unknown. Forty SputnikV vaccinated individuals were included in this study which aimed to demonstrate the location of immunogenic domains of the SARS-CoV-2 S protein using an overlapping peptide library. Additionally, cytokines in the serum of vaccinated and convalescent COVID-19 patients were analyzed. We have found antibodies from both vaccinated and convalescent sera bind to immunogenic regions located in multiple domains of SARS-CoV-2 S protein, including Receptor Binding Domain (RBD), N-terminal Domain (NTD), Fusion Protein (FP) and Heptad Repeats (HRs). Interestingly, many peptides were recognized by immunized and convalescent serum antibodies and correspond to conserved regions in circulating variants of SARS-CoV-2. This breadth of reactivity was still evident 90 days after the first dose of the vaccine, showing that the vaccine has induced a prolonged response. As evidenced by the activation of T cells, cellular immunity strongly suggests the high potency of the SputnikV vaccine against SARS-CoV-2 infection.
Collapse
|
19
|
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol 2021; 188:740-750. [PMID: 34403674 PMCID: PMC8364403 DOI: 10.1016/j.ijbiomac.2021.08.076] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
The world has been suffering from COVID-19 disease for more than a year, and it still has a high mortality rate. In addition to the need to minimize transmission of the virus through non-pharmacological measures such as the use of masks and social distance, many efforts are being made to develop a variety of vaccines to prevent the disease worldwide. So far, several vaccines have reached the final stages of safety and efficacy in various phases of clinical trials, and some, such as Moderna/NIAID and BioNTech/Pfizer, have reported very high safety and protection. The important point is that comparing different vaccines is not easy because there is no set standard for measuring neutralization. In this study, we have reviewed the common platforms of COVID-19 vaccines and tried to present the latest reports on the effectiveness of these vaccines.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Saman Afshar
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mahmood Reza Masoudi
- Department of Internal Medicine, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Pourya Gholizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Iran
| | | | | | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
20
|
Lizbeth RSG, Jazmín GM, José CB, Marlet MA. Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine. J Biomol Struct Dyn 2021; 39:4878-4892. [PMID: 32583729 PMCID: PMC7332869 DOI: 10.1080/07391102.2020.1780944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/07/2020] [Indexed: 11/01/2022]
Abstract
The Coronavirus disease named COVID-19 is caused by the virus reported in 2019 first identified in China. The cases of this disease have increased and as of June 1st, 2020 there are more than 216 countries affected. Pharmacological treatments have been proposed based on the resemblance of the HIV virus. With regard to prevention there is no vaccine, thus, we proposed to explore the spike protein due to its presence on the viral surface, and it also contains the putative viral entry receptor as well as the fusion peptide (important in the genome release). In this work we have employed In Silico techniques such as immunoinformatics tools which permit the identification of potential immunogenic regions on the viral surface (spike glycoprotein). From these analyses, we identified four epitopes E332-370, E627-651, E440-464 and E694-715 that accomplish essential features such as promiscuity, conservation grade, exposure and universality, and they also form stable complexes with MHCII molecule. We suggest that these epitopes could generate a specific immune response, and thus, they could be used for future applications such as the design of new epitope vaccines against the SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramírez-Salinas Gema Lizbeth
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - García-Machorro Jazmín
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Correa-Basurto José
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Martínez-Archundia Marlet
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
21
|
Colunga Biancatelli RML, Solopov PA, Sharlow ER, Lazo JS, Marik PE, Catravas JD. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L477-L484. [PMID: 34156871 PMCID: PMC8384477 DOI: 10.1152/ajplung.00223.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.
Collapse
Affiliation(s)
| | - Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Elizabeth R Sharlow
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - John S Lazo
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Paul E Marik
- Division of Pulmonary Disease and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
- Division of Pulmonary Disease and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, Virginia
- School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
22
|
Norouzi M, Miar P, Norouzi S, Nikpour P. Nervous System Involvement in COVID-19: a Review of the Current Knowledge. Mol Neurobiol 2021; 58:3561-3574. [PMID: 33765290 DOI: 10.1007/s12035-021-02347-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/03/2021] [Indexed: 01/08/2023]
Abstract
The current pandemic of the new human coronavirus (CoV), i.e., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an urgent global condition. The disease, termed coronavirus disease 2019 (COVID-19), is primarily known as a respiratory tract infection. Although SARS-CoV-2 directly invades the lungs, COVID-19 is a complex multi-system disease with varying degrees of severity and affects several human systems including the cardiovascular, respiratory, gastrointestinal, neurological, hematopoietic, and immune systems. From the existing data, most COVID-19 cases develop a mild disease typically presented with fever and respiratory illness. However, in some patients, clinical evidence suggests that COVID-19 might progress to acute respiratory distress syndrome (ARDS), multi-organ dysfunction, and septic shock resulting in a critical condition. Likewise, specific organ dysfunction seems to be related to the disease complication, worsens the condition, and increases the lethality of COVID-19. The neurological manifestations in association with disease severity and mortality have been reported in COVID-19 patients. Despite the continuously increasing reports of the neurological symptoms of SARS-CoV-2, our knowledge about the possible routes of nervous system involvement associated with COVID-19 is limited. Herein, we will primarily describe the critical aspects and clinical features of SARS-CoV-2 related to nervous system impairment and then discuss possible routes of SARS-CoV-2 nervous system involvement based on the current evidence.
Collapse
Affiliation(s)
- Mahnaz Norouzi
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Paniz Miar
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Norouzi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3083, Australia
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Abstract
The high SARS-CoV-2 reproductive number driving the COVID-19 pandemic has been a mystery. Our recent in vitro, and in vivo coronaviral pathogenesis studies involving Mouse Hepatitis Virus (MHV-A59) suggest a crucial role for a small host membrane-virus contact initiator region of the Spike protein, called the fusion peptide that enhances the virus fusogenicity and infectivity. Here I study the Spike from five human β-coronaviruses (HCoV) including the SARS-CoV-2, and MHV-A59 for comparison. The structural and dynamics analyses of the Spike show that its fusion loop spatially organizes three fusion peptides contiguous to each other to synergistically trigger the virus-host membrane fusion process. I propose a Contact Initiation Model based on the architecture of the Spike quaternary structure that explains the obligatory participation of the fusion loop in the initiation of the host membrane contact for the virus fusion process. Among all the HCoV Spikes in this study, SARS-CoV-2 has the most hydrophobic surface and the extent of hydrophobicity correlates with the reproductive number and infectivity of the other HCoV. Comparison between results from standard and replica exchange molecular dynamics reveal the unique physicochemical properties of the SARS-CoV-2 fusion peptides, accrued in part from the presence of consecutive prolines that impart backbone rigidity which aids the virus fusogenicity. The priming of the Spike by its cleavage and subsequent fusogenic conformational transition steered by the fusion loop may be critical for the SARS-CoV-2 spread. The importance of the fusion loop makes it an apt target for anti-virals and vaccine candidates.
Collapse
Affiliation(s)
- Debnath Pal
- Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
24
|
Socher E, Conrad M, Heger L, Paulsen F, Sticht H, Zunke F, Arnold P. Mutations in the B.1.1.7 SARS-CoV-2 Spike Protein Reduce Receptor-Binding Affinity and Induce a Flexible Link to the Fusion Peptide. Biomedicines 2021; 9:525. [PMID: 34066729 PMCID: PMC8151884 DOI: 10.3390/biomedicines9050525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
The B.1.1.7 variant of the SARS-CoV-2 virus shows enhanced infectiousness over the wild type virus, leading to increasing patient numbers in affected areas. Amino acid exchanges within the SARS-CoV-2 spike protein variant of B.1.1.7 affect inter-monomeric contact sites within the trimer (A570D and D614G) as well as the ACE2-receptor interface region (N501Y), which comprises the receptor-binding domain (RBD) of the spike protein. However, the molecular consequences of mutations within B.1.1.7 on spike protein dynamics and stability or ACE2 binding are largely unknown. Here, molecular dynamics simulations comparing SARS-CoV-2 wild type with the B.1.1.7 variant revealed inter-trimeric contact rearrangements, altering the structural flexibility within the spike protein trimer. Furthermore, we found increased flexibility in direct spatial proximity of the fusion peptide due to salt bridge rearrangements induced by the D614G mutation in B.1.1.7. This study also implies a reduced binding affinity for B.1.1.7 with ACE2, as the N501Y mutation restructures the RBD-ACE2 interface, significantly decreasing the linear interaction energy between the RBD and ACE2. Our results demonstrate how mutations found within B.1.1.7 enlarge the flexibility around the fusion peptide and change the RBD-ACE2 interface. We anticipate our findings to be starting points for in depth biochemical and cell biological analyses of B.1.1.7.
Collapse
Affiliation(s)
- Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91052 Erlangen, Germany;
| | - Friedrich Paulsen
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 119992 Moscow, Russia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (H.S.)
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
25
|
Das JK, Roy S. A study on non-synonymous mutational patterns in structural proteins of SARS-CoV-2. Genome 2021; 64:665-678. [PMID: 33788636 DOI: 10.1139/gen-2020-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is mutating and creating divergent variants across the world. An in-depth investigation of the amino acid substitutions in the genomic signature of SARS-CoV-2 proteins is highly essential for understanding its host adaptation and infection biology. A total of 9587 SARS-CoV-2 structural protein sequences collected from 49 different countries are used to characterize protein-wise variants, substitution patterns (type and location), and major substitution changes. The majority of the substitutions are distinct, mostly in a particular location, and lead to a change in an amino acid's biochemical properties. In terms of mutational changes, envelope (E) and membrane (M) proteins are relatively more stable than nucleocapsid (N) and spike (S) proteins. Several co-occurrence substitutions are observed, particularly in S and N proteins. Substitution specific to active sub-domains reveals that heptapeptide repeat, fusion peptides, transmembrane in S protein, and N-terminal and C-terminal domains in the N protein are remarkably mutated. We also observe a few deleterious mutations in the above domains. The overall study on non-synonymous mutation in structural proteins of SARS-CoV-2 at the start of the pandemic indicates a diversity amongst virus sequences.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Department of Pediatrics, Johns Hopkins University School of Medicine, Maryland, USA
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok, India
| |
Collapse
|
26
|
Wang L, Zhao J, Nguyen LNT, Adkins JL, Schank M, Khanal S, Nguyen LN, Dang X, Cao D, Thakuri BKC, Lu Z, Zhang J, Zhang Y, Wu XY, El Gazzar M, Ning S, Moorman JP, Yao ZQ. Blockade of SARS-CoV-2 spike protein-mediated cell-cell fusion using COVID-19 convalescent plasma. Sci Rep 2021; 11:5558. [PMID: 33692386 PMCID: PMC7946952 DOI: 10.1038/s41598-021-84840-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 01/13/2023] Open
Abstract
The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell-cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell-cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - James L Adkins
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Hepatitis (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA.
| |
Collapse
|
27
|
Teodorescu M. An Overview of a Year with COVID-19: What We Know? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/9765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Pal D. Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity. J Struct Biol 2021; 213:107713. [PMID: 33662570 PMCID: PMC7919542 DOI: 10.1016/j.jsb.2021.107713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
The high SARS-CoV-2 reproductive number driving the COVID-19 pandemic has been a mystery. Our recent in vitro, and in vivo coronaviral pathogenesis studies involving Mouse Hepatitis Virus (MHV-A59) suggest a crucial role for a small host membrane-virus contact initiator region of the Spike protein, called the fusion peptide that enhances the virus fusogenicity and infectivity. Here I study the Spike from five human β-coronaviruses (HCoV) including the SARS-CoV-2, and MHV-A59 for comparison. The structural and dynamics analyses of the Spike show that its fusion loop spatially organizes three fusion peptides contiguous to each other to synergistically trigger the virus-host membrane fusion process. I propose a Contact Initiation Model based on the architecture of the Spike quaternary structure that explains the obligatory participation of the fusion loop in the initiation of the host membrane contact for the virus fusion process. Among all the HCoV Spikes in this study, SARS-CoV-2 has the most hydrophobic surface and the extent of hydrophobicity correlates with the reproductive number and infectivity of the other HCoV. Comparison between results from standard and replica exchange molecular dynamics reveal the unique physicochemical properties of the SARS-CoV-2 fusion peptides, accrued in part from the presence of consecutive prolines that impart backbone rigidity which aids the virus fusogenicity. The priming of the Spike by its cleavage and subsequent fusogenic conformational transition steered by the fusion loop may be critical for the SARS-CoV-2 spread. The importance of the fusion loop makes it an apt target for anti-virals and vaccine candidates.
Collapse
Affiliation(s)
- Debnath Pal
- Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
29
|
Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes JC, Sodroski J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol 2021; 95:JVI.02304-20. [PMID: 33310888 PMCID: PMC8092844 DOI: 10.1128/jvi.02304-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2, a betacoronavirus, is the cause of the COVID-19 pandemic. The SARS-CoV-2 spike (S) glycoprotein trimer mediates virus entry into host cells and cytopathic effects (syncytium formation). We studied the contribution of several S glycoprotein features to these functions, focusing on those that differ among related coronaviruses. Acquisition of the furin cleavage site by the SARS-CoV-2 S glycoprotein decreased virus stability and infectivity, but greatly enhanced syncytium-forming ability. Notably, the D614G change found in globally predominant SARS-CoV-2 strains increased infectivity, modestly enhanced responsiveness to the ACE2 receptor and susceptibility to neutralizing sera, and tightened association of the S1 subunit with the trimer. Apparently, these two features of the SARS-CoV-2 S glycoprotein, the furin cleavage site and D614G, have evolved to balance virus infectivity, stability, cytopathicity and antibody vulnerability. Although the endodomain (cytoplasmic tail) of the S2 subunit was not absolutely required for virus entry or syncytium formation, alteration of palmitoylated cysteine residues in the cytoplasmic tail decreased the efficiency of these processes. As proteolytic cleavage contributes to the activation of the SARS-CoV-2 S glycoprotein, we evaluated the ability of protease inhibitors to suppress S glycoprotein function. Matrix metalloprotease inhibitors suppressed S-mediated cell-cell fusion, but not virus entry. Synergy between inhibitors of matrix metalloproteases and TMPRSS2 suggests that both host proteases can activate the S glycoprotein during the process of syncytium formation. These results provide insights into SARS-CoV-2 S glycoprotein-host cell interactions that likely contribute to the transmission and pathogenicity of this pandemic agent.IMPORTANCE The development of an effective and durable SARS-CoV-2 vaccine is essential for combating the growing COVID-19 pandemic. The SARS-CoV-2 spike (S) glycoprotein is the main target of neutralizing antibodies elicited during virus infection or following vaccination. Knowledge of the spike glycoprotein evolution, function and interactions with host factors will help researchers to develop effective vaccine immunogens and treatments. Here we identify key features of the spike glycoprotein, including the furin cleavage site and the D614G natural mutation, that modulate viral cytopathic effects, infectivity and sensitivity to inhibition. We also identify two inhibitors of host metalloproteases that block S-mediated cell-cell fusion, a process that contributes to the destruction of the virus-infected cell.
Collapse
Affiliation(s)
- Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jia Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
30
|
Ching WY, Adhikari P, Jawad B, Podgornik R. Ultra-large-scale ab initio quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus. Comput Struct Biotechnol J 2021; 19:1288-1301. [PMID: 33623641 PMCID: PMC7893244 DOI: 10.1016/j.csbj.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic poses a severe threat to human health with an unprecedented social and economic disruption. Spike (S) glycoprotein of the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the first contact with the ACE2 receptor in the human cell. We report results of ab initio computation of the spike protein, the largest ab initio quantum chemical computation to date on any bio-molecular system, using a divide and conquer strategy by focusing on individual structural domains. In this approach we divided the S-protein into seven structural domains: N-terminal domain (NTD), receptor binding domain (RBD), subdomain 1 (SD1), subdomain 2 (SD2), fusion peptide (FP), heptad repeat 1 with central helix (HR1-CH) and connector domain (CD). The entire Chain A has 14,488 atoms including the hydrogen atoms but excluding the amino acids with missing coordinates based on the PDB data (ID: 6VSB). The results include structural refinement, ab initio calculation of intra-molecular bonding mechanism, 3- dimensional non-local inter-amino acid interaction with implications for the inter-domain interaction. Details of the electronic structure, interatomic bonding, partial charge distribution and the role played by hydrogen bond network are discussed. In the interaction among structural domains, we present new insights for crucial hinge-like movement and fusion process. Extension of such calculation to the interface between the S-protein binding domain and ACE2 receptor can provide a pathway for computational understanding of mutations and the design of therapeutic drugs to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
SARS-CoV-2 and other human coronaviruses: Mapping of protease recognition sites, antigenic variation of spike protein and their grouping through molecular phylogenetics. INFECTION GENETICS AND EVOLUTION 2021; 89:104729. [PMID: 33497837 PMCID: PMC7826164 DOI: 10.1016/j.meegid.2021.104729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.
Collapse
|
32
|
Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, Pahwa S, Jayaweera DT, Shehadeh LA. Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med 2021; 7:618651. [PMID: 33521067 PMCID: PMC7843445 DOI: 10.3389/fcvm.2020.618651] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus requires reliable assays for studying viral entry mechanisms which remains poorly understood. This knowledge is important for the development of therapeutic approaches to control SARS-CoV-2 infection by permitting the screening for neutralizing antibodies and other agents that can block infection. This is particularly important for patients who are at high risk for severe outcomes related to COVID-19. The production of pseudotyped viral particles may seem like a daunting task for a non-virology laboratory without experience in the two most commonly used pseudotyping systems, namely retro/lentiviruses and vesicular stomatitis virus (VSV) which lacks the VSV envelope glycoprotein (VSVΔG). By incorporating the most up-to-date knowledge, we have developed a detailed, easy-to-follow novel protocol for producing SARS-CoV-2 spike-bearing pseudovirus using the VSV-ΔG system. We describe the infection assay which uses GFP fluorescence as a measure of infection in a 24-well live imaging system. We present results of our optimization of the system to enhance viral infection levels through the over-expression of human ACE2 receptor and the overexpression of at least one of two proteases - TMPRSS2 or Furin, as well as, supplementation with Poloxamer 407 (P407) and Prostaglandin E2 (PGE2) as adjuvants. We show that the system works efficiently in three unrelated, clinically relevant cell lines: human 293T (renal epithelial) cells, human Calu-3 (lung epithelial) cells, and the non-human primate (African Green Monkey) cell line, Vero-E6 (renal epithelial) cells. In addition, we have used this system to show infection of human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). This system is efficient (virus generation, titration, and infection assays can be performed in 1 week), quantitative, inexpensive, and readily scalable for application in drug development and therapeutic screening approaches.
Collapse
Affiliation(s)
- Jose Manuel Condor Capcha
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Guerline Lambert
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Derek M Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Alessandro G Salerno
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Joshua M Hare
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Michael A Whitt
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Dushyantha T Jayaweera
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Infectious Disease, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A Shehadeh
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
33
|
Zhu H, Du W, Song M, Liu Q, Herrmann A, Huang Q. Spontaneous binding of potential COVID-19 drugs (Camostat and Nafamostat) to human serine protease TMPRSS2. Comput Struct Biotechnol J 2020; 19:467-476. [PMID: 33505639 PMCID: PMC7809394 DOI: 10.1016/j.csbj.2020.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Effective treatment or vaccine is not yet available for combating SARS coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic. Recent studies showed that two drugs, Camostat and Nafamostat, might be repurposed to treat COVID-19 by inhibiting human TMPRSS2 required for proteolytic activation of viral spike (S) glycoprotein. However, their molecular mechanisms of pharmacological action remain unclear. Here, we perform molecular dynamics simulations to investigate their native binding sites on TMPRSS2. We revealed that both drugs could spontaneously and stably bind to the TMPRSS2 catalytic center, and thereby inhibit its proteolytic processing of the S protein. Also, we found that Nafamostat is more specific than Camostat for binding to the catalytic center, consistent with reported observation that Nafamostat blocks the SARS-CoV-2 infection at a lower concentration. Thus, this study provides mechanistic insights into the Camostat and Nafamostat inhibition of the SARS-CoV-2 infection, and offers useful information for COVID-19 drug development.
Collapse
Affiliation(s)
- Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Andreas Herrmann
- Institute for Biology and IRI Lifesciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
34
|
Mazzini L, Martinuzzi D, Hyseni I, Benincasa L, Molesti E, Casa E, Lapini G, Piu P, Trombetta CM, Marchi S, Razzano I, Manenti A, Montomoli E. Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies from human serum samples. J Immunol Methods 2020; 489:112937. [PMID: 33253698 PMCID: PMC7695554 DOI: 10.1016/j.jim.2020.112937] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022]
Abstract
A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 49.7 million cases of disease and 1,2 million deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays detecting different classes of antibodies constitute an excellent surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population. In addition, it can contribute to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to identify the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict human population immunity, possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, a subtyping IgG ELISA has been performed. Our findings showed a notable statistical correlation between the neutralization titers and the IgG, IgM and IgA ELISA responses against the receptor-binding domain of the spike protein. Thus confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories that do not have biosecurity level-3 facilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy; VisMederi Research S.r.l., Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2020; 39:197-201. [PMID: 33279318 PMCID: PMC7685034 DOI: 10.1016/j.vaccine.2020.11.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines have been generated using existing technologies that have been applied for developing vaccines against other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appropriate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vaccines. Updated information about immunological features from individuals who have or have not been exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review highlights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine development and clinical trials.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
36
|
Chambers JP, Yu J, Valdes JJ, Arulanandam BP. SARS-CoV-2, Early Entry Events. J Pathog 2020; 2020:9238696. [PMID: 33299610 PMCID: PMC7707962 DOI: 10.1155/2020/9238696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Viruses are obligate intracellular parasites, and host cell entry is the first step in the viral life cycle. The SARS-CoV-2 (COVID-19) entry process into susceptible host tissue cells is complex requiring (1) attachment of the virus via the conserved spike (S) protein receptor-binding motif (RBM) to the host cell angiotensin-converting-enzyme 2 (ACE2) receptor, (2) S protein proteolytic processing, and (3) membrane fusion. Spike protein processing occurs at two cleavage sites, i.e., S1/S2 and S2'. Cleavage at the S1/S2 and S2' sites ultimately gives rise to generation of competent fusion elements important in the merging of the host cell and viral membranes. Following cleavage, shedding of the S1 crown results in significant conformational changes and fusion peptide repositioning for target membrane insertion and fusion. Identification of specific protease involvement has been difficult due to the many cell types used and studied. However, it appears that S protein proteolytic cleavage is dependent on (1) furin and (2) serine protease transmembrane protease serine 2 proteases acting in tandem. Although at present not clear, increased SARS-CoV-2 S receptor-binding motif binding affinity and replication efficiency may in part account for observed differences in infectivity. Cleavage of the ACE2 receptor appears to be yet another layer of complexity in addition to forfeiture and/or alteration of ACE2 function which plays an important role in cardiovascular and immune function.
Collapse
Affiliation(s)
- James P. Chambers
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jieh Yu
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - James J. Valdes
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- MSI STEM Research and Development Consortium, Washington, DC, USA
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
37
|
Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Biophys Chem 2020; 265:106438. [PMID: 32721790 PMCID: PMC7375304 DOI: 10.1016/j.bpc.2020.106438] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The emerging and re-emerging viral diseases are continuous threats to the wellbeing of human life. Previous outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS had evidenced potential threats of coronaviruses in human health. The recent pandemic due to SARS-CoV-2 is overwhelming and has been going beyond control. Vaccines and antiviral drugs are ungently required to mitigate the pandemic. Therefore, it is important to comprehend the mechanistic details of viral infection process. The fusion between host cell and virus being the first step of infection, understanding the fusion mechanism could provide crucial information to intervene the infection process. Interestingly, all enveloped viruses contain fusion protein on their envelope that acts as fusion machine. For coronaviruses, the spike or S glycoprotein mediates successful infection through receptor binding and cell fusion. The cell fusion process requires merging of virus and host cell membranes, and that is essentially performed by the S2 domain of the S glycoprotein. In this review, we have discussed cell fusion mechanism of SARS-CoV-1 from available atomic resolution structures and membrane binding of fusion peptides. We have further discussed about the cell fusion of SARS-CoV-2 in the context of present pandemic situation.
Collapse
|
38
|
Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH, Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh SH. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Rep 2020; 33:108254. [PMID: 33007239 PMCID: PMC7510585 DOI: 10.1016/j.celrep.2020.108254] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Development of specific antiviral agents is an urgent unmet need for SARS-coronavirus 2 (SARS-CoV-2) infection. This study focuses on host proteases that proteolytically activate the SARS-CoV-2 spike protein, critical for its fusion after binding to angiotensin-converting enzyme 2 (ACE2), as antiviral targets. We first validate cleavage at a putative furin substrate motif at SARS-CoV-2 spikes by expressing it in VeroE6 cells and find prominent syncytium formation. Cleavage and the syncytium are abolished by treatment with the furin inhibitors decanoyl-RVKR-chloromethylketone (CMK) and naphthofluorescein, but not by the transmembrane protease serine 2 (TMPRSS2) inhibitor camostat. CMK and naphthofluorescein show antiviral effects on SARS-CoV-2-infected cells by decreasing virus production and cytopathic effects. Further analysis reveals that, similar to camostat, CMK blocks virus entry, but it further suppresses cleavage of spikes and the syncytium. Naphthofluorescein acts primarily by suppressing viral RNA transcription. Therefore, furin inhibitors may be promising antiviral agents for prevention and treatment of SARS-CoV-2 infection. The furin cleavage site in the SARS-CoV-2 spike protein mediates syncytium formation The SARS-CoV-2 spike-mediated syncytium is suppressed by specific furin inhibitors Furin inhibitors block SARS-CoV-2 virus entry and virus replication Furin inhibitors are potential antiviral agents for SARS-CoV-2 infection and pathogenesis
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Mu-Fan Chiu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Sheng-Han Wang
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chih-Hui Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Wen-Hau Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tung-Ching Ho
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Li-Ting Jang
- Biomedical Resource Core at the First Core Labs, Branch Office of Research and Development, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
39
|
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics Issues on Human Positive ssRNA Virus Infection: An Update. Metabolites 2020; 10:E356. [PMID: 32878290 PMCID: PMC7569815 DOI: 10.3390/metabo10090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
The pathogenic mechanisms underlying the Biology and Biochemistry of viral infections are known to depend on the lipid metabolism of infected cells. From a lipidomics viewpoint, there are a variety of mechanisms involving virus infection that encompass virus entry, the disturbance of host cell lipid metabolism, and the role played by diverse lipids in regard to the infection effectiveness. All these aspects have currently been tackled separately as independent issues and focused on the function of proteins. Here, we review the role of cholesterol and other lipids in ssRNA+ infection.
Collapse
Affiliation(s)
- David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Husarg. 3, 75123 Uppsala, Sweden;
| | - Luis Gil-de-Gómez
- Center of Childhood Cancer Center, Children’s Hospital of Philadelphia, Colket Translational Research Center, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA;
| | - Olimpio Montero
- Spanish National Research Council (CSIC), Boecillo’s Technological Park Bureau, Av. Francisco Vallés 8, 47151 Boecillo, Spain
| |
Collapse
|
40
|
Maurya AK, Mishra N. In silico validation of coumarin derivatives as potential inhibitors against Main Protease, NSP10/NSP16-Methyltransferase, Phosphatase and Endoribonuclease of SARS CoV-2. J Biomol Struct Dyn 2020; 39:7306-7321. [PMID: 32835632 PMCID: PMC7484570 DOI: 10.1080/07391102.2020.1808075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), (Coronavirus Disease 2019). Currently, there is no specific drug for the therapy of COVID-19. So, there is a need to develop or find out the new drug from the existing to cure the COVID-19. Identification of a potent inhibitor of Methyltransferase, Endoribonuclease, Phosphatase and Main Protease enzymes of SARS CoV-2 by coumarin derivatives using insilico approach. The in silico studies were performed on maestro 12.0 software (Schrodinger LLC 2019, USA). Two thousand seven hundred fifty-five biologically active coumarin derivative was docked with above receptor proteins of SARS CoV-2. The molecular dynamic simulation of the top one ligand of respected proteins was performed. Top five ligands of each protein were taken for study. Coumarin derivatives actively interact with taken receptors and showed good docking results for Methyltransferase, Endoribonuclease, Phosphatase and Main Protease and top five compounds of each have docking score from –9.00 to –7.97, –8.42 to –6.80, –8.63 to –7.48 and –7.30 to –6.01 kcal/mol, respectively. The docked compounds were showed RMSD and binding stability of simulated ligands are show the potency of ligands against the SARS CoV-2. Our study provides information on drugs that may be a potent inhibitor of COVID-19 infection. Drug repurposing of the available drugs would be great help in the treatment of COVID-19 infection. The combination therapy of the finding may improve inhibitory activity. Communicated by Ramaswamy H. Sarma Highlights Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In silico virtual screening, docking, ADME, MM-GBSA and MD simulation analysis of coumarin derivatives against Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and Main Protease enzyme of SARS CoV-2. All the analysis was performed on Maestro 12.0 Schrodinger software against respective receptors. Top five compounds of coumarin derivatives s docked at the active site of Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and protease and top five compounds of each have docking score from –9.00 to –7.97, –8.42 to –6.80, –8.63 to –7.48 and –7.30 to –6.01 kcal/mol, respectively, of SARS CoV-2. These compounds were used to analysis of binding free energy by using the Prime MM-GBSA module. All the compounds showed drug-likeness properties. MD simulation of Proteins and ligands showed binding stability and good RMSD, radius of gyration of protein, coulomb-SR and LJ-SR energy.
Collapse
Affiliation(s)
- Akhilesh Kumar Maurya
- Chemistry Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj, UP, India
| | - Nidhi Mishra
- Chemistry Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj, UP, India
| |
Collapse
|
41
|
Tong PBV, Lin LY, Tran TH. Coronaviruses pandemics: Can neutralizing antibodies help? Life Sci 2020; 255:117836. [PMID: 32450171 PMCID: PMC7243778 DOI: 10.1016/j.lfs.2020.117836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
For the first time in Homo sapiens history, possibly, most of human activities is stopped by coronavirus disease 2019 (COVID-19). Nearly eight billion people of this world are facing a great challenge, maybe not "to be or not to be" yet, but unpredictable. What happens to other major pandemics in the past, and how human beings went through these hurdles? The human body is equipped with the immune system that can recognize, respond and fight against pathogens such as viruses. Following the innate response, immune system processes the adaptive response by which each pathogen is encoded and recorded in memory system. The humoral reaction containing cytokines and antibodies is expected to activate when the pathogens come back. Exploiting this nature of body protection, neutralizing antibodies have been investigated. Learning from past, in parallel to SARS-CoV-2, other coronaviruses SARS-CoV and MERS-CoV who caused previous pandemics, are recalled in this review. We here propose insights of origin and characteristics and perspective for the future of antibodies development.
Collapse
Affiliation(s)
- Phuoc-Bao-Viet Tong
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Li-Yun Lin
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
42
|
Zhao X, Tian JJ, Yu H, Bryksa BC, Dupuis JH, Ou X, Qian Z, Song C, Wang S, Yada RY. Insights into the mechanism of membrane fusion induced by the plant defense element, plant-specific insert. J Biol Chem 2020; 295:14548-14562. [PMID: 32651232 DOI: 10.1074/jbc.ra120.014311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 11/06/2022] Open
Abstract
In plants, many natural defense mechanisms include cellular membrane fusion as a way to resist infection by external pathogens. Several plant proteins mediate membrane fusion, but the detailed mechanism by which they promote fusion is less clear. Understanding this process could provide valuable insights into these proteins' physiological functions and guide bioengineering applications (i.e. the design of antimicrobial proteins). The plant-specific insert (PSI) from Solanum tuberosum can help reduce certain pathogen attack via membrane fusion. To gain new insights into the process of PSI-induced membrane fusion, a combined approach of NMR, FRET, and in silico studies was used. Our results indicate that (i) under acidic conditions, the PSI experiences a monomer-dimer equilibrium, and the dimeric PSI induces membrane fusion below a certain critical pH; (ii) after fusion, the PSI resides in a highly dehydrated environment with limited solvent accessibility, suggesting its capability in reducing repulsive dehydration forces between liposomes to facilitate fusion; and (iii) as shown by molecular dynamics simulations, the PSI dimer can bind stably to membrane surfaces and can bridge liposomes in close proximity, a critical step for the membrane fusion. In summary, this study provides new and unique insights into the mechanisms by which the PSI and similar proteins induce membrane fusion.
Collapse
Affiliation(s)
- Xiaoli Zhao
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China
| | - Jenny Jingxin Tian
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hua Yu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Brian C Bryksa
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiuyuan Ou
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Zhaohui Qian
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Beijing, China.
| | - Rickey Y Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
43
|
Sarkar L, Putchala RK, Safiriyu AA, Das Sarma J. Azadirachta indica A. Juss Ameliorates Mouse Hepatitis Virus-Induced Neuroinflammatory Demyelination by Modulating Cell-to-Cell Fusion in an Experimental Animal Model of Multiple Sclerosis. Front Cell Neurosci 2020; 14:116. [PMID: 32477069 PMCID: PMC7236902 DOI: 10.3389/fncel.2020.00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse hepatitis virus (MHV)-induced murine neuroinflammation serves as a model to study acute meningoencephalomyelitis, hepatitis, and chronic neuroinflammatory demyelination; which mimics certain pathologies of the human neurologic disease, multiple sclerosis (MS). MHV-induced acute neuroinflammation occurs due to direct glial cell dystrophy instigated by central nervous system (CNS)-resident microglia and astrocytes, in contrast to peripheral CD4+T cell-mediated myelin damage prevalent in the experimental autoimmune encephalomyelitis (EAE) model of MS. Viral envelope Spike glycoprotein-mediated cell-to-cell fusion is an essential mechanistic step for MHV-induced CNS pathogenicity. Although Azadirachta indica (Neem), a traditional phytomedicine, is known for its anti-inflammatory, anti-fungal, and spermicidal activities, not much is known about anti-neuroinflammatory properties of its bark (NBE) in MHV-induced acute neuroinflammation and chronic demyelination. Recombinant demyelinating MHV strain (RSA59) was preincubated with NBE to arrest the infection-initiation event, and its effect on viral replication, viral transcription, cytokine expression, and successive pathogenicity were investigated in vitro and in vivo. Virus-free Luciferase assay explained NBE's anti-virus-to-cell fusion activity in vitro. Intracranial inoculation of RSA59 preincubated with NBE into the mouse brain significantly reduces acute hepatitis, meningoencephalomyelitis, and chronic progressive demyelination. Additionally, NBE effectively restricts viral entry, dissemination in CNS, viral replication, viral transcription, and expression of the viral nucleocapsid and inflammatory cytokines. From mechanistic standpoints, RSA59 preincubated with NBE reduced viral entry, viral replication and cell-to-cell fusion, as a mode of viral dissemination. Moreover, intraperitoneal injection with NBE (25 mg/kg B.W.) into mice revealed a significant reduction in viral Nucleocapsid protein expression in vivo. Conclusively, A. indica bark extract may directly bind to the virus-host attachment Spike glycoprotein and suppresses MHV-induced neuroinflammation and neuropathogenesis by inhibiting cell-to-cell fusion and viral replication. Further studies will focus on combining bioanalytical assays to isolate potential NBE bioactive compound(s) that contribute towards the anti-viral activity of NBE.
Collapse
Affiliation(s)
- Lucky Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ravi Kiran Putchala
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Abass Alao Safiriyu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
44
|
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11:1620. [PMID: 32221306 PMCID: PMC7100515 DOI: 10.1038/s41467-020-15562-9] [Citation(s) in RCA: 2266] [Impact Index Per Article: 453.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Xiuyuan Ou
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Yan Liu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Xiaobo Lei
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Pei Li
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Dan Mi
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Lili Ren
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Li Guo
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Ruixuan Guo
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Ting Chen
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Jiaxin Hu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Zichun Xiang
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Zhixia Mu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Xing Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical Collage (PUMC), 151 Malianwa Road North, Haidian District, 100193, Beijing, China
| | | | - Keping Hu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical Collage (PUMC), 151 Malianwa Road North, Haidian District, 100193, Beijing, China
| | - Qi Jin
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| | - Jianwei Wang
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| | - Zhaohui Qian
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| |
Collapse
|
45
|
Broad Cross-Species Infection of Cultured Cells by Bat HKU2-Related Swine Acute Diarrhea Syndrome Coronavirus and Identification of Its Replication in Murine Dendritic Cells In Vivo Highlight Its Potential for Diverse Interspecies Transmission. J Virol 2019; 93:JVI.01448-19. [PMID: 31554686 PMCID: PMC6880172 DOI: 10.1128/jvi.01448-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Infections with bat-origin coronaviruses (CoVs) (severe acute respiratory syndrome CoV [SARS-CoV] and Middle East respiratory syndrome CoV [MERS-CoV]) have caused severe illness in humans after “host jump” events. Recently, a novel bat-HKU2-like CoV named swine acute diarrhea syndrome CoV (SADS-CoV) has emerged in southern China, causing lethal diarrhea in newborn piglets. It is important to assess the species barriers of SADS-CoV infection since the animal hosts (other than pigs and bats) and zoonotic potential are still unknown. An in vitro susceptibility study revealed a broad species tropism of SADS-CoV, including various rodent and human cell lines. We established a mouse model of SADS-CoV infection, identifying its active replication in splenic dendritic cells, which suggests that SADS-CoV has the potential to infect rodents. These findings highlight the potential cross-species transmissibility of SADS-CoV, although further surveillance in other animal populations is needed to fully understand the ecology of this bat-HKU2-origin CoV. Outbreaks of severe diarrhea in neonatal piglets in Guangdong, China, in 2017 resulted in the isolation and discovery of a novel swine enteric alphacoronavirus (SeACoV) derived from the species Rhinolophus bat coronavirus HKU2 (Y. Pan, X. Tian, P. Qin, B. Wang, et al., Vet Microbiol 211:15–21, 2017). SeACoV was later referred to as swine acute diarrhea syndrome CoV (SADS-CoV) by another group (P. Zhou, H. Fan, T. Lan, X.-L. Yang, et al., Nature 556:255–258, 2018). The present study was set up to investigate the potential species barriers of SADS-CoV in vitro and in vivo. We first demonstrated that SADS-CoV possesses a broad species tropism and is able to infect cell lines from diverse species, including bats, mice, rats, gerbils, hamsters, pigs, chickens, nonhuman primates, and humans. Trypsin contributes to but is not essential for SADS-CoV propagation in vitro. Furthermore, C57BL/6J mice were inoculated with the virus via oral or intraperitoneal routes. Although the mice exhibited only subclinical infection, they supported viral replication and prolonged infection in the spleen. SADS-CoV nonstructural proteins and double-stranded RNA were detected in splenocytes of the marginal zone on the edge of lymphatic follicles, indicating active replication of SADS-CoV in the mouse model. We identified that splenic dendritic cells (DCs) are the major targets of virus infection by immunofluorescence and flow cytometry approaches. Finally, we demonstrated that SADS-CoV does not utilize known CoV receptors for cellular entry. The ability of SADS-CoV to replicate in various cells lines from a broad range of species and the unexpected tropism for murine DCs provide important insights into the biology of this bat-origin CoV, highlighting its possible ability to cross interspecies barriers. IMPORTANCE Infections with bat-origin coronaviruses (CoVs) (severe acute respiratory syndrome CoV [SARS-CoV] and Middle East respiratory syndrome CoV [MERS-CoV]) have caused severe illness in humans after “host jump” events. Recently, a novel bat-HKU2-like CoV named swine acute diarrhea syndrome CoV (SADS-CoV) has emerged in southern China, causing lethal diarrhea in newborn piglets. It is important to assess the species barriers of SADS-CoV infection since the animal hosts (other than pigs and bats) and zoonotic potential are still unknown. An in vitro susceptibility study revealed a broad species tropism of SADS-CoV, including various rodent and human cell lines. We established a mouse model of SADS-CoV infection, identifying its active replication in splenic dendritic cells, which suggests that SADS-CoV has the potential to infect rodents. These findings highlight the potential cross-species transmissibility of SADS-CoV, although further surveillance in other animal populations is needed to fully understand the ecology of this bat-HKU2-origin CoV.
Collapse
|
46
|
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 2019; 93:JVI.01046-19. [PMID: 31375571 PMCID: PMC6798120 DOI: 10.1128/jvi.01046-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Mouse hepatitis virus (MHV) uses its N-terminal domain (NTD) of the viral spike (S) protein to bind the host receptor mouse carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) and mediate virus entry. Our previous crystal structure study of the MHV NTD/mCEACAM1a complex (G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, et al., Proc Natl Acad Sci U S A 108:10696-10701, 2011, https://doi.org/10.1073/pnas.1104306108) reveals that there are 14 residues in the NTD interacting with the receptor. However, their contribution to receptor binding and virus entry has not been fully investigated. Here we analyzed 13 out of 14 contact residues by mutagenesis and identified I22 as being essential for receptor binding and virus entry. Unexpectedly, we found that G29 was critical for the conformational changes of the S protein triggered by either receptor binding or high pH. Replacement of G29 with A, D, F, K, M, and T, to different extents, caused spontaneous dissociation of S1 from the S protein, resulting in an enhancement of high-pH-triggered receptor-independent syncytium (RIS) formation in HEK293T cells, compared to the wild type (WT). In contrast, replacement of G29 with P, a turn-prone residue with a strict conformation, hindered virus entry and conformational changes of the S protein triggered by either receptor binding or pH 8.0, suggesting that the structural turn around G29 and its flexibility are critical. Finally, stabilization of the NTD by G29P had almost no effect on pH-independent RIS induced by the Y320A mutation in the C-terminal domain (CTD) of the S1 subunit, indicating that there might be an absence of cross talk between the NTD and CTD during conformational changes of the S protein. Our study will aid in better understanding the mechanism of how conformational changes of the S protein are triggered.IMPORTANCE Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Collapse
|
47
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Malihe Masomian
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
48
|
Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion. J Virol 2019; 93:JVI.00785-19. [PMID: 31315988 PMCID: PMC6744234 DOI: 10.1128/jvi.00785-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral and cellular membranes to facilitate virus infection. Pre- and postfusion structures of viral fusion proteins have been characterized, but conformational changes between them remain poorly understood. Here, we examined the intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding. Western blot analysis of protease digestion products revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180 kDa). These two subunits were considered to be by-products derived from conformational changes and were useful for probing the intermediate conformation of the spike protein. Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and unpacked conformations, respectively, and two-dimensional electrophoresis revealed a trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer model for the intermediate structure of the spike protein. Receptor binding induces the membrane-binding potential of the trimer, in which at least one HR motif forms a packed-hairpin structure, while membrane fusion subunits are covered by the receptor-binding subunit, thereby preventing the spike protein from forming the typical homotrimeric prehairpin structure predicted by the current model of class I viral fusion protein. Subsequent proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of three HRs at the central axis to generate a six-helix bundle. Our model proposes a key mechanism for membrane fusion of enveloped viruses.IMPORTANCE Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits.
Collapse
|
49
|
Singh M, Kishore A, Maity D, Sunanda P, Krishnarjuna B, Vappala S, Raghothama S, Kenyon LC, Pal D, Das Sarma J. A proline insertion-deletion in the spike glycoprotein fusion peptide of mouse hepatitis virus strongly alters neuropathology. J Biol Chem 2019; 294:8064-8087. [PMID: 30824541 DOI: 10.1074/jbc.ra118.004418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/24/2019] [Indexed: 11/06/2022] Open
Abstract
Fusion peptides (FPs) in spike proteins are key players mediating early events in cell-to-cell fusion, vital for intercellular viral spread. A proline residue located at the central FP region has often been suggested to have a distinctive role in this fusion event. The spike glycoprotein from strain RSA59 (PP) of mouse hepatitis virus (MHV) contains two central, consecutive prolines in the FP. Here, we report that deletion of one of these proline residues, resulting in RSA59 (P), significantly affected neural cell syncytia formation and viral titers postinfection in vitro Transcranial inoculation of C57Bl/6 mice with RSA59 (PP) or RSA59 (P) yielded similar degrees of necrotizing hepatitis and meningitis, but only RSA59 (PP) produced widespread encephalitis that extended deeply into the brain parenchyma. By day 6 postinfection, both virus variants were mostly cleared from the brain. Interestingly, inoculation with the RSA59 (P)-carrying MHV significantly reduced demyelination at the chronic stage. We also found that the presence of two consecutive prolines in FP promotes a more ordered, compact, and rigid structure in the spike protein. These effects on FP structure were due to proline's unique stereochemical properties intrinsic to its secondary amino acid structure, revealed by molecular dynamics and NMR experiments. We therefore propose that the differences in the severity of encephalitis and demyelination between RSA59 (PP) and RSA59 (P) arise from the presence or absence, respectively, of the two consecutive prolines in FP. Our studies define a structural determinant of MHV entry in the brain parenchyma important for altered neuropathogenesis.
Collapse
Affiliation(s)
- Manmeet Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Abhinoy Kishore
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | | | | | | | - Sreeparna Vappala
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | | | - Lawrence C Kenyon
- Department of Anatomy, Pathology, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560012, India.
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
50
|
Lysosomal Proteases Are a Determinant of Coronavirus Tropism. J Virol 2018; 92:JVI.01504-18. [PMID: 30258004 DOI: 10.1128/jvi.01504-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.
Collapse
|