1
|
Warang P, Singh G, Moshir M, Binazon O, Laghlali G, Chang LA, Wouters H, Vanhoenacker P, Notebaert M, Elhemdaoui N, Augustynková K, Steeland S, Ulrichts P, Baumeister J, Schotsaert M. Impact of FcRn antagonism on vaccine-induced protective immune responses against viral challenge in COVID-19 and influenza mouse vaccination models. Hum Vaccin Immunother 2025; 21:2470542. [PMID: 40028815 PMCID: PMC11881870 DOI: 10.1080/21645515.2025.2470542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Antagonism of the neonatal Fc receptor through an engineered antibody Fc fragment, such as efgartigimod, results in a decrease in immunoglobulin G levels. This approach is being evaluated as a therapeutic strategy for the treatment of IgG-mediated autoimmune diseases. Our goal was to evaluate the impact of mFc-ABDEG, a mouse-adapted antibody Fc fragment with a mode of action highly similar to efgartigimod, on vaccine-induced protective immune responses against viral infections. Therefore, mouse vaccination models for COVID-19 and influenza were employed, utilizing an mRNA COVID-19 vaccine (COMIRNATY) and an adjuvanted, inactivated quadrivalent influenza vaccine (Seqirus+AddaVax), respectively. In both models, vaccination induced robust humoral responses. As expected, animals treated with mFc-ABDEG had lower levels of virus-specific IgG, while virus-specific IgM responses remained unaffected. The COVID-19 vaccine induced a strong Th1-type T cell response irrespective of mFc-ABDEG treatment. Influenza vaccination resulted in a poor T cell induction, regardless of mFc-ABDEG treatment, due to the Th2-biased response that inactivated influenza vaccines typically induce. Importantly, mFc-ABDEG treatment had no effect on protective immunity against live viral challenges in both models. Vaccinated animals treated with mFc-ABDEG were equally protected as the non-treated vaccinated controls. These non-clinical data demonstrate that FcRn antagonism with mFc-ABDEG did not affect the generation of vaccine-induced protective humoral and cellular responses, or protection against viral challenges. These data substantiate the clinical observations that, although IgG titers were reduced, FcRn antagonism with efgartigimod did not impair the ability to generate new specific IgG responses, regardless of the timing of vaccination.
Collapse
Affiliation(s)
- Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahan Moshir
- Department of Translational & Clinical Sciences, Argenx, Ghent, Belgium
| | - Ornella Binazon
- Department of Non-Clinical Pharmacology & Toxicology, Argenx, Ghent, Belgium
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | - Sophie Steeland
- Department of Translational & Clinical Sciences, Argenx, Ghent, Belgium
| | - Peter Ulrichts
- Department of Translational & Clinical Sciences, Argenx, Ghent, Belgium
| | - Judith Baumeister
- Department of Non-Clinical Pharmacology & Toxicology, Argenx, Ghent, Belgium
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Ma L, Lin X, Xu M, Ke X, Liu D, Chen Q. Exploring the biological mechanisms of severe COVID-19 in the elderly: Insights from an aged mouse model. Virulence 2025; 16:2487671. [PMID: 40228062 PMCID: PMC12005417 DOI: 10.1080/21505594.2025.2487671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
The elderly population, who have increased susceptibility to severe outcomes, have been particularly impacted by the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to a global health crisis. However, definitive parameters or mechanisms underlying the severity of COVID-19 in elderly people remain unclear. Thus, this study seeks to elucidate the mechanism behind the increased vulnerability of elderly individuals to severe COVID-19. We employed an aged mouse model with a mouse-adapted SARS-CoV-2 strain to mimic the severe symptoms observed in elderly patients with COVID-19. Comprehensive analyses of the whole lung were performed using transcriptome and proteome sequencing, comparing data from aged and young mice. For transcriptome analysis, bulk RNA sequencing was conducted using an Illumina sequencing platform. Proteomic analysis was performed using mass spectrometry following protein extraction, digestion, and peptide labelling. We analysed the transcriptome and proteome profiles of young and aged mice and discovered that aged mice exhibited elevated baseline levels of inflammation and tissue damage repair. After SARS-CoV-2 infection, aged mice showed increased antiviral and inflammatory responses; however, these responses were weaker than those in young mice, with significant complement and coagulation cascade responses. In summary, our study demonstrates that the increased vulnerability of the elderly to severe COVID-19 may be attributed to an attenuated antiviral response and the overactivation of complement and coagulation cascades. Future research on antiviral and inflammatory responses is likely to yield treatments that reduce the severity of viral respiratory diseases in the elderly.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xian Lin
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Meng Xu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianliang Ke
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Quanjiao Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Pons-Grífols A, Tarrés-Freixas F, Pérez M, Riveira-Muñoz E, Raïch-Regué D, Perez-Zsolt D, Muñoz-Basagoiti J, Tondelli B, Pradenas E, Izquierdo-Useros N, Capdevila S, Vergara-Alert J, Urrea V, Carrillo J, Ballana E, Forrow S, Clotet B, Segalés J, Trinité B, Blanco J. A human-ACE2 knock-in mouse model for SARS-CoV-2 infection recapitulates respiratory disorders but avoids neurological disease associated with the transgenic K18-hACE2 model. mBio 2025:e0072025. [PMID: 40272151 DOI: 10.1128/mbio.00720-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Animal models have been instrumental in elucidating the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and in testing coronavirus disease 2019 (COVID-19) vaccines and therapeutics. Wild-type (WT) mice are not susceptible to many SARS-CoV-2 variants, and therefore, transgenic K18-hACE2 mice have emerged as a standard model system. However, this model is characterized by a severe disease, particularly associated with neuroinfection, which leads to early humane endpoint euthanasia. Here, we established a novel knock-in (KI) mouse model by inserting the original K18-hACE2 transgene into the collagen type I alpha chain (COL1A1) locus using a recombinase-mediated cassette exchange (RMCE) system. Once the Col1a1-K18-hACE2 mouse colony was established, animals were challenged with a B.1 SARS-CoV-2 (D614G) isolate and were monitored for up to 14 days. Col1a1-K18-hACE2 mice exhibited an initial weight loss similar to the K18-hACE2 transgenic model but did not develop evident neurologic clinical signs. The majority of Col1a1-K18-hACE2 mice did not reach the pre-established humane endpoint, showing a progressive weight gain 9 days postinfection (dpi). Importantly, despite this apparent milder pathogenicity of the virus in this mouse model compared to the K18-hACE2 transgenic model, high levels of viral RNA were detected in the lungs, oropharyngeal swab, and nasal turbinates. Moreover, the remaining lesions and inflammation in the lungs were still observed 14 dpi. In contrast, although low-level viral RNA could be detected in a minority of Col1a1-K18-hACE2 animals, no brain lesions were observed at any timepoint. Overall, Col1a1-K18-hACE2 mice constitute a new model for investigating SARS-CoV-2 pathogenesis and treatments, with potential implications for studying long-term COVID-19 sequelae.IMPORTANCEK18-hACE2 mice express high levels of the human protein angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and are therefore susceptible to infection by this virus. These animals have been crucial to understanding viral pathogenesis and to testing coronavirus disease 2019 (COVID-19) vaccines and antiviral drugs. However, K18-hACE2 often dies after infection with initial SARS-CoV-2 variants, likely due to a massive brain infection that does not occur in humans. Here, we used a technology known as knock-in (KI) that allows for the targeted insertion of a gene into a mouse, and we have generated a new human ACE2 (hACE2) mouse. We have characterized this new animal model demonstrating that, upon challenge with SARS-CoV-2, the virus replicates in the respiratory tract, damaging lung tissue and causing inflammation. In contrast to K18-hACE2 mice, only limited or no brain infection could be detected in this new model. After 14 days, most animals recovered from the infection, although lung tissue lesions were still observed. This new model could be instrumental for the study of specific disease aspects such as post-COVID-19 condition, sequelae, and susceptibility to reinfection.
Collapse
Affiliation(s)
| | - Ferran Tarrés-Freixas
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mònica Pérez
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | - Barbara Tondelli
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Nuria Izquierdo-Useros
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Sara Capdevila
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Jorge Carrillo
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Ester Ballana
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Stephen Forrow
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, Spain
| | | | - Julià Blanco
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
4
|
Collins CP, Herzog C, Vick LV, Nielsen R, Harville YI, Longo DL, Arthur JM, Murphy WJ. Sequential SARS-CoV-2 mRNA Vaccination Induces Anti-Idiotype (Anti-ACE2) Antibodies in K18 Human ACE2 Transgenic Mice. Vaccines (Basel) 2025; 13:224. [PMID: 40266063 PMCID: PMC11946769 DOI: 10.3390/vaccines13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing vaccine formulations. The immunoregulatory aspects involved in such vaccine approaches remain unclear. Antibodies, due to inherent immunogenicity by VDJ gene rearrangement, have the potential to induce antibodies directed towards them called anti-idiotype antibodies, which can play a downregulatory role in responses. The paratope of some of these anti-idiotype antibodies can also act as a mirror to the original antigen, which, in the case of SARS-CoV-2 vaccines, would be to the spike protein and, therefore, also be capable of binding its target, ACE2, potentially causing adverse effects. METHODS To investigate if sequential SARS-CoV-2 mRNA vaccination can induce anti-idiotype antibody responses, K18 hACE2 transgenic mice were serially vaccinated with a SARS-CoV-2 mRNA construct to determine the kinetics of anti-spike and anti-ACE2 responses via custom-made ELISAs. RESULTS While sequential vaccination produced robust anti-spike responses, anti-ACE2 levels were also detected and gradually amplified with each boost. These anti-ACE2 antibodies persisted for 3 months after the final vaccination and showed evidence of hACE2 binding, as levels were lower in K18 mice in comparison to the wild type. CONCLUSIONS These data would suggest that sequential SARS-CoV-2 mRNA vaccination has the potential to induce anti-ACE2 antibodies in mice, with each boost amplifying the amount of antibody.
Collapse
Affiliation(s)
- Craig P. Collins
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Christian Herzog
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - Logan V. Vick
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Ryan Nielsen
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Yanping Izak Harville
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - Dan L. Longo
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - John M. Arthur
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - William J. Murphy
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
- Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Case JB, Sanapala S, Dillen C, Rhodes V, Zmasek C, Chicz TM, Switzer CE, Scheaffer SM, Georgiev G, Jacob-Dolan C, Hauser BM, Dos Anjos DCC, Adams LJ, Soudani N, Liang CY, Ying B, McNamara RP, Scheuermann RH, Boon ACM, Fremont DH, Whelan SPJ, Schmidt AG, Sette A, Grifoni A, Frieman MB, Diamond MS. A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice. Cell Host Microbe 2024; 32:2131-2147.e8. [PMID: 39561781 PMCID: PMC11637904 DOI: 10.1016/j.chom.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains. Using genetic and immunological approaches, we demonstrate that vaccine-induced protection unexpectedly is conferred principally by CD4+ and CD8+ T cell-mediated anamnestic responses. Importantly, prior mRNA vaccination or SARS-CoV-2 respiratory infection does not alter the efficacy of the mucosally delivered pan-Sarbecovirus vaccine. These data highlight the promise of a phylogenetic approach for antigen and vaccine design against existing and pre-emergent Sarbecoviruses with pandemic potential.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christian Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Charlotte E Switzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston 02115, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Georgiev
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe 2024; 32:2112-2130.e10. [PMID: 39615487 DOI: 10.1016/j.chom.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes. Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.
Collapse
Affiliation(s)
- Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Munich Medical Research School (MMRS), Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Danilo Prtvar
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hannah Frenzel
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Katja Schmidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gina Bruch
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | | | - Mojtaba Nemati
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | | | | | - Fatma Cherif
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | - Müge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Center of Doctoral Studies in Informatics and its Applications (CEDOSIA), Technical University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Ondruschka
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Koç University, School of Medicine, İstanbul, Turkey.
| |
Collapse
|
7
|
Abt ER, Lam AK, Noguchi M, Rashid K, McLaughlin J, Teng PL, Tran W, Cheng D, Nesterenko PA, Mao Z, Creech AL, Burton Sojo G, Jeyachandran AV, Tam YK, Henley JE, Comai L, Pardi N, Arumugaswami V, Witte ON, Radu CG, Wu TT. Staggered immunization with mRNA vaccines encoding SARS-CoV-2 polymerase or spike antigens broadens the T cell epitope repertoire. Proc Natl Acad Sci U S A 2024; 121:e2406332121. [PMID: 39589869 PMCID: PMC11626164 DOI: 10.1073/pnas.2406332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Combining a T cell-targeting mRNA vaccine encoding the conserved SARS-CoV-2 RNA-dependent RNA polymerase, RdRp, with a Spike-encoding mRNA vaccine may offer an additional pathway toward COVID-19 protection. Here, we show that a nucleoside-modified RdRp mRNA vaccine raises robust and durable CD8+ T cell responses in mice. Immunization drives a CD8+ T cell response enriched toward a specific RdRp epitope. Unexpectedly, coadministration of mRNA vaccines encoding RdRp or the Spike Receptor Binding Domain (RBD) dampens RBD-specific immune responses. Contralateral administration reduces the suppression of RBD-specific T cell responses while type I interferon signaling blockade restores RBD-specific antibodies. A staggered immunization strategy maintains both RBD vaccine-mediated antibody and T cell responses as well as protection against lethal SARS-CoV-2 challenge in human ACE2 transgenic mice. In HLA-A2.1 transgenic mice, the RdRp vaccine elicits CD8+ T cell responses against HLA-A*02:01-restricted epitopes recognized by human donor T cells. These results highlight RdRp as a candidate antigen for COVID-19 vaccines. The findings also offer insights into crafting effective multivalent mRNA vaccines to broaden CD8+ T cell responses against SARS-CoV-2 and potentially other viruses with pandemic potential.
Collapse
Affiliation(s)
- Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Alex K. Lam
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pu-Lin Teng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pavlo A. Nesterenko
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Amanda L. Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Jill E. Henley
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA90095
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
8
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Dmytrenko O, Das S, Kovacs A, Cicka M, Liu M, Scheaffer SM, Bredemeyer A, Mack M, Diamond MS, Lavine KJ. Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection. J Virol 2024; 98:e0117924. [PMID: 39207134 PMCID: PMC11406924 DOI: 10.1128/jvi.01179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Collapse
Affiliation(s)
- Oleksandr Dmytrenko
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Attila Kovacs
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Cicka
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meizi Liu
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthias Mack
- Department of Internal Medicine II, Division of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Thiede JM, Dick JK, Jarjour NN, Krishna VD, Qian L, Sangala J, Benzow K, Karanjeet K, Chin S, Rainwater O, Cheeran MCJ, Hogquist KA, Jameson SC, Hart GT, Bold TD, Koob MD. Human ACE2 Gene Replacement Mice Support SARS-CoV-2 Viral Replication and Nonlethal Disease Progression. Immunohorizons 2024; 8:712-720. [PMID: 39287601 PMCID: PMC11447706 DOI: 10.4049/immunohorizons.2400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Many mouse models of SARS-CoV-2 infection involve expression of the human ACE2 protein, the entry receptor for SARS-CoV-2 Spike protein, in mouse tissues. However, most of these models suffer from nonphysiological regulation of ACE2 expression, which can lead to atypically severe infections and aberrant sites of viral replication. In this report, we developed and characterized an ACE2 gene replacement (ACE2-GR) mouse strain in which the mouse Ace2 genomic locus was replaced by the entire human ACE2 gene locus, and we investigated the ability of these animals to respond to SARS-CoV-2 infection. We show that ACE2-GR mice support SARS-CoV-2 viral replication, but, in stark contrast to the widely used K18-hACE2 transgenic model, this infection leads to a mild disease with no detectable involvement of the CNS. Thus, ACE2-GR mice provide a novel, to our knowledge, model to explore immune responses and long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joshua M. Thiede
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jenna K. Dick
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas N. Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Lily Qian
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Jules Sangala
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Kellie Benzow
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Kul Karanjeet
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Shine Chin
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Orion Rainwater
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Kristin A. Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Tyler D. Bold
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Michael D. Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
11
|
Liu H, Brostoff T, Ramirez A, Wong T, Rowland DJ, Heffner M, Flores A, Willis B, Evans JJ, Lanoue L, Lloyd KCK, Coffey LL. Establishment and characterization of an h ACE2/hTMPRSS2 knock-in mouse model to study SARS-CoV-2. Front Immunol 2024; 15:1428711. [PMID: 39050847 PMCID: PMC11266032 DOI: 10.3389/fimmu.2024.1428711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Despite a substantial body of research, we lack fundamental understanding of the pathophysiology of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including pulmonary and cardiovascular outcomes, in part due to limitations of murine models. Most models use transgenic mice (K18) that express the human (h) angiotensin converting enzyme 2 (ACE2), ACE2 knock-in (KI) mice, or mouse-adapted strains of SARS-CoV-2. Further, many SARS-CoV-2 variants produce fatal neurologic disease in K18 mice and most murine studies focus only on acute disease in the first 14 days post inoculation (dpi). To better enable understanding of both acute (<14 dpi) and post-acute (>14 dpi) infection phases, we describe the development and characterization of a novel non-lethal KI mouse that expresses both the ACE2 and transmembrane serine protease 2 (TMPRSS2) genes (hACE2/hTMPRSS2). The human genes were engineered to replace the orthologous mouse gene loci but remain under control of their respective murine promoters, resulting in expression of ACE2 and TMPRSS2 instead of their murine counterparts. After intranasal inoculation with an omicron strain of SARS-CoV-2, hACE2/hTMPRSS2 KI mice transiently lost weight but recovered by 7 dpi. Infectious SARS-CoV-2 was detected in nasopharyngeal swabs 1-2 dpi and in lung tissues 2-6 dpi, peaking 4 dpi. These outcomes were similar to those in K18 mice that were inoculated in parallel. To determine the extent to which hACE2/hTMPRSS2 KI mice are suitable to model pulmonary and cardiovascular outcomes, physiological assessments measuring locomotion, behavior and reflexes, biomonitoring to measure cardiac activity and respiration, and micro computed tomography to assess lung function were conducted frequently to 6 months post inoculation. Male but not female SARS-CoV-2 inoculated hACE2/hTMPRSS2 KI mice showed a transient reduction in locomotion compared to control saline treated mice. No significant changes in respiration, oxygen saturation, heart rate variability, or conductivity were detected in SARS-CoV-2 inoculated mice of either sex. When re-inoculated 6 months after the first inoculation, hACE2/hTMPRSS2 KI became re-infected with disease signs similar to after the first inoculation. Together these data show that a newly generated hACE2/hTMPRSS2 KI mouse can be used to study mild COVID-19.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Ana Ramirez
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Talia Wong
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Douglas J. Rowland
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, Davis, Davis, CA, United States
| | - Mollie Heffner
- Mouse Biology Program, University of California, Davis, Davis, CA, United States
| | - Arturo Flores
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, Davis, CA, United States
| | - Jeffrey J. Evans
- Mouse Biology Program, University of California, Davis, Davis, CA, United States
| | - Louise Lanoue
- Mouse Biology Program, University of California, Davis, Davis, CA, United States
| | - K. C. Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, CA, United States
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
12
|
Ma MT, Jiang Q, Chen CH, Badeti S, Wang X, Zeng C, Evans D, Bodnar B, Marras SAE, Tyagi S, Bharaj P, Yehia G, Romanienko P, Hu W, Liu SL, Shi L, Liu D. S309-CAR-NK cells bind the Omicron variants in vitro and reduce SARS-CoV-2 viral loads in humanized ACE2-NSG mice. J Virol 2024; 98:e0003824. [PMID: 38767356 PMCID: PMC11237809 DOI: 10.1128/jvi.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Minh Tuyet Ma
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Xuening Wang
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Cong Zeng
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Evans
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Preeti Bharaj
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ghassan Yehia
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Dongfang Liu
- Department of Pathology, Immunology, and Laboratory Medicine, South Orange Avenue, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
13
|
Cho BH, Kim J, Jang YS. The Papain-like Protease Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Conjugated with Human Beta-Defensin 2 and Co1 Induces Mucosal and Systemic Immune Responses against the Virus. Vaccines (Basel) 2024; 12:441. [PMID: 38675823 PMCID: PMC11053661 DOI: 10.3390/vaccines12040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Most of the licensed vaccines against SARS-CoV-2 target spike proteins to induce viral neutralizing antibodies. However, currently prevalent SARS-CoV-2 variants contain many mutations, especially in their spike proteins. The development of vaccine antigens with conserved sequences that cross-react with variants of SARS-CoV-2 is needed to effectively defend against SARS-CoV-2 infection. Given that viral infection is initiated in the respiratory mucosa, strengthening the mucosal immune response would provide effective protection. We constructed a mucosal vaccine antigen using the papain-like protease (PLpro) domain of non-structural protein 3 of SARS-CoV-2. To potentiate the mucosal immune response, PLpro was combined with human beta-defensin 2, an antimicrobial peptide with mucosal immune adjuvant activity, and Co1, an M-cell-targeting ligand. Intranasal administration of the recombinant PLpro antigen conjugate into C57BL/6 and hACE2 knock-in (KI) mice induced antigen-specific T-cell and antibody responses with complement-dependent cytotoxic activity. Viral challenge experiments using the Wuhan and Delta strains of SARS-CoV-2 provided further evidence that immunized hACE2 KI mice were protected against viral challenge infections. Our study shows that PLpro is a useful candidate vaccine antigen against SARS-CoV-2 infection and that the inclusion of human beta-defensin 2 and Co1 in the recombinant construct may enhance the efficacy of the vaccine.
Collapse
Affiliation(s)
- Byeol-Hee Cho
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
14
|
Valleriani F, Di Pancrazio C, Spedicato M, Di Teodoro G, Malatesta D, Petrova T, Profeta F, Colaianni ML, Berjaoui S, Puglia I, Caporale M, Rossi E, Marcacci M, Luciani M, Sacchini F, Portanti O, Bencivenga F, Decaro N, Bonfante F, Lorusso A. A cell-adapted SARS-CoV-2 mutant, showing a deletion in the spike protein spanning the furin cleavage site, has reduced virulence at the lung level in K18-hACE2 mice. Virology 2024; 592:109997. [PMID: 38324940 DOI: 10.1016/j.virol.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Here we investigated the virulence properties of a unique cell-adapted SARS-CoV-2 mutant showing a ten-amino acid deletion encompassing the furin cleavage site of the spike protein (Δ680SPRAARSVAS689; Δ680-689-B.1) in comparison to its parental strain (wt-B.1) and two Delta variants (AY.122 and AY.21) of concern. After intranasal inoculation, transgenic K18-hACE2 mice were monitored for 14 days for weight change, lethality, and clinical score; oral swabs were daily collected and tested for the presence of N protein subgenomic RNA. At 3 and 7 dpi mice were also sacrificed and organs collected for molecular, histopathological, and immune response profile investigations. The Δ680-689-B.1-infected mice exhibited reduced shedding, lower virulence at the lung level, and milder pulmonary lesions. In the lung, infection with Δ680-689-B.1 was associated with a significant lower expression of some cytokines at 3 dpi (IL-4, IL-27, and IL-28) and 7 dpi (IL-4, IL-27, IL-28, IFN-γ and IL-1α).
Collapse
Affiliation(s)
- Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Tetyana Petrova
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Marialuigia Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano-Italy
| | - Francesco Bonfante
- IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy; Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro-Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy.
| |
Collapse
|
15
|
Martins M, Nooruzzaman M, Cunningham JL, Ye C, Caserta LC, Jackson N, Martinez-Sobrido L, Fang Y, Diel DG. The SARS-CoV-2 Spike is a virulence determinant and plays a major role on the attenuated phenotype of Omicron virus in a feline model of infection. J Virol 2024; 98:e0190223. [PMID: 38421180 PMCID: PMC10949471 DOI: 10.1128/jvi.01902-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jessie Lee Cunningham
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Collins CP, Longo DL, Murphy WJ. The immunobiology of SARS-CoV-2 infection and vaccine responses: potential influences of cross-reactive memory responses and aging on efficacy and off-target effects. Front Immunol 2024; 15:1345499. [PMID: 38469293 PMCID: PMC10925677 DOI: 10.3389/fimmu.2024.1345499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.
Collapse
Affiliation(s)
- Craig P. Collins
- Graduate Program in Immunology, University of California (UC) Davis, Davis, CA, United States
| | - Dan L. Longo
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine (Hematology/Oncology), University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
18
|
Liu G, Zhang M, Wu B, Zhang C, Wang Y, Han X, Wang R, Li L, Wei Y, Sun Y, Cao X, Wang Y, Li Y, Li M, Zhao G, Ke Y, Guo Z, Yin Q, Sun Y. A highly susceptible hACE2-transgenic mouse model for SARS-CoV-2 research. Front Microbiol 2024; 15:1348405. [PMID: 38389533 PMCID: PMC10883650 DOI: 10.3389/fmicb.2024.1348405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Several animal models have been used to assist the development of vaccines and therapeutics since the COVID-19 outbreak. Due to the lack of binding affinity of mouse angiotensin-converting enzyme II (ACE2) to the S protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), increasing the susceptibility of mice to SARS-CoV-2 infection was considered in several ways. Here, we generated a COVID-19 mouse model expressing human ACE2 (hACE2) under the control of the CAG promoter. Overexpression of hACE2 did not pose a significant effect on weight growth. After SARS-CoV-2 inoculation, mice showed obvious viral replication and production of inflammation within 7 days, with a gradual decrease in body weight until death. Virological testing found that the virus can replicate in the respiratory system, small intestine, and brain. Additionally, this mouse model was applied to compare two antibody drug candidates, the anti-RBD antibody (MW06) and the mouse CD24-conjugated anti-RBD antibody (mCD24-MW06). Differences in antiviral effects between these two antibodies can be demonstrated in this mouse model when a challenge dose that invalidates the anti-RBD antibody treatment was used. This study provided a new mouse model for studying SARS-CoV-2 pathogenesis and evaluating potential interventions.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Baolei Wu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Wang
- SPF (Beijing) Biotechnology Co., Ltd., Baoding, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Rongjuan Wang
- Beijing Kohnoor Science & Technology Co. Ltd., Beijing, China
| | - Li Li
- SPF (Beijing) Biotechnology Co., Ltd., Baoding, China
| | - Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiangwen Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yalan Li
- Beijing Kohnoor Science & Technology Co. Ltd., Beijing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Li K, Verma A, Li P, Ortiz ME, Hawkins GM, Schnicker NJ, Szachowicz PJ, Pezzulo AA, Wohlford-Lenane CL, Kicmal T, Meyerholz DK, Gallagher T, Perlman S, McCray PB. Adaptation of SARS-CoV-2 to ACE2 H353K mice reveals new spike residues that drive mouse infection. J Virol 2024; 98:e0151023. [PMID: 38168680 PMCID: PMC10804960 DOI: 10.1128/jvi.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2H353K) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Pengfei Li
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Miguel E. Ortiz
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Grant M. Hawkins
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | - Tom Kicmal
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Ma Z, Li J, Fu L, Fu R, Tang N, Quan Y, Xin Z, Ding Z, Liu Y. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction. BMC Med 2023; 21:453. [PMID: 37993934 PMCID: PMC10664275 DOI: 10.1186/s12916-023-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The epididymis is crucial for post-testicular sperm development which is termed sperm maturation. During this process, fertilizing ability is acquired through the epididymis-sperm communication via exchange of protein and small non-coding RNAs (sncRNAs). More importantly, epididymal-derived exosomes secreted by the epididymal epithelial cells transfer sncRNAs into maturing sperm. These sncRNAs could mediate intergenerational inheritance which further influences the health of their offspring. Recently, the linkage and mechanism involved in regulating sperm function and sncRNAs during epididymal sperm maturation are increasingly gaining more and more attention. METHODS An epididymal-specific ribonuclease T2 (RNase T2) knock-in (KI) mouse model was constructed to investigate its role in developing sperm fertilizing capability. The sperm parameters of RNase T2 KI males were evaluated and the metabolic phenotypes of their offspring were characterized. Pandora sequencing technology profiled and sequenced the sperm sncRNA expression pattern to determine the effect of epididymal RNase T2 on the expression levels of sperm sncRNAs. Furthermore, the expression levels of RNase T2 in the epididymal epithelial cells in response to environmental stress were confirmed both in vitro and in vivo. RESULTS Overexpression of RNase T2 caused severe subfertility associated with astheno-teratozoospermia in mice caput epididymis, and furthermore contributed to the acquired metabolic disorders in the offspring, including hyperglycemia, hyperlipidemia, and hyperinsulinemia. Pandora sequencing showed altered profiles of sncRNAs especially rRNA-derived small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs) in RNase T2 KI sperm compared to control sperm. Moreover, environmental stress upregulated RNase T2 in the caput epididymis. CONCLUSIONS The importance was demonstrated of epididymal RNase T2 in inducing sperm maturation and intergenerational inheritance. Overexpressed RNase T2 in the caput epididymis leads to astheno-teratozoospermia and metabolic disorder in the offspring.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Jinyu Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Li Fu
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Zhixiang Xin
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| |
Collapse
|
21
|
Adam A, Kalveram B, Chen JYC, Yeung J, Rodriguez L, Singh A, Shi PY, Xie X, Wang T. A single-dose of intranasal vaccination with a live-attenuated SARS-CoV-2 vaccine candidate promotes protective mucosal and systemic immunity. NPJ Vaccines 2023; 8:160. [PMID: 37863935 PMCID: PMC10589337 DOI: 10.1038/s41541-023-00753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
An attenuated SARS-CoV-2 virus with modified viral transcriptional regulatory sequences and deletion of open-reading frames 3, 6, 7 and 8 (∆3678) was previously reported to protect hamsters from SARS-CoV-2 infection and transmission. Here we report that a single-dose intranasal vaccination of ∆3678 protects K18-hACE2 mice from wild-type or variant SARS-CoV-2 challenge. Compared with wild-type virus infection, the ∆3678 vaccination induces equivalent or higher levels of lung and systemic T cell, B cell, IgA, and IgG responses. The results suggest ∆3678 as an attractive mucosal vaccine candidate to boost pulmonary immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - John Yun-Chung Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leslie Rodriguez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
22
|
Lin HF, Liu MQ, Jiang RD, Gong QC, Su J, Guo ZS, Chen Y, Jia JK, Dong TY, Zhu Y, Li A, Shen XR, Wang Y, Li B, Xie TT, Yang XL, Hu B, Shi ZL. Characterization of a mouse-adapted strain of bat severe acute respiratory syndrome-related coronavirus. J Virol 2023; 97:e0079023. [PMID: 37607058 PMCID: PMC10537601 DOI: 10.1128/jvi.00790-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/18/2023] [Indexed: 08/24/2023] Open
Abstract
Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.
Collapse
Affiliation(s)
- Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Su
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Shuo Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Yi Dong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ting-Ting Xie
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Case JB, Scheaffer SM, Darling TL, Bricker TL, Adams LJ, Harastani HH, Trende R, Sanapala S, Fremont DH, Boon ACM, Diamond MS. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. J Virol 2023; 97:e0062823. [PMID: 37676002 PMCID: PMC10537574 DOI: 10.1128/jvi.00628-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The continued evolution and emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a recently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-human ACE2 (hACE2) transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, in C57BL/6J mice, 129S2 mice, and Syrian hamsters, BQ.1.1 did not cause increased respiratory tract infection or disease compared to animals administered BA.5.5. Moreover, the rates of direct contact or airborne transmission in hamsters were not significantly different after BQ.1.1 and BA.5.5 infections. Taken together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in rodent species that express hACE2, possibly due to the acquisition of unique spike mutations relative to earlier Omicron variants. IMPORTANCE As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be re-evaluated. Here, we determined the pathogenicity of the BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2 (hACE2), two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 and BA.5.5 infection resulted in similar levels of viral burden and clinical disease in hamsters and the conventional strains of laboratory mice tested, increases in lung infection were detected in hACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Taken together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Reed Trende
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Do MH, Li H, Cho SY, Oh S, Jeong JH, Song MS, Jeong JM. Animal efficacy study of a plant extract complex (BEN815) as a potential treatment for COVID-19. PLoS One 2023; 18:e0291537. [PMID: 37708114 PMCID: PMC10501575 DOI: 10.1371/journal.pone.0291537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.
Collapse
Affiliation(s)
- Moon Ho Do
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hua Li
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Su Yeon Cho
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Subin Oh
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jong-Moon Jeong
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
- Department of Bioscience, The University of Suwon, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
25
|
Usai C, Mateu L, Brander C, Vergara-Alert J, Segalés J. Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Anim (NY) 2023; 52:202-210. [PMID: 37620562 PMCID: PMC10462483 DOI: 10.1038/s41684-023-01231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
More than 40% of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have experienced persistent or relapsing multi-systemic symptoms months after the onset of coronavirus disease 2019 (COVID-19). This post-COVID-19 condition (PCC) has debilitating effects on the daily life of patients and encompasses a broad spectrum of neurological and neuropsychiatric symptoms including olfactory and gustative impairment, difficulty with concentration and short-term memory, sleep disorders and depression. Animal models have been instrumental to understand acute COVID-19 and validate prophylactic and therapeutic interventions. Similarly, studies post-viral clearance in hamsters, mice and nonhuman primates inoculated with SARS-CoV-2 have been useful to unveil some of the aspects of PCC. Transcriptomic alterations in the central nervous system, persistent activation of immune cells and impaired hippocampal neurogenesis seem to have a critical role in the neurological manifestations observed in animal models infected with SARS-CoV-2. Interestingly, the proinflammatory transcriptomic profile observed in the central nervous system of SARS-CoV-2-inoculated mice partially overlaps with the pathological changes that affect microglia in humans during Alzheimer's disease and aging, suggesting shared mechanisms between these conditions. None of the currently available animal models fully replicates PCC in humans; therefore, multiple models, together with the fine-tuning of experimental conditions, will probably be needed to understand the mechanisms of PCC neurological symptoms. Moreover, given that the intrinsic characteristics of the new variants of concern and the immunological status of individuals might influence PCC manifestations, more studies are needed to explore the role of these factors and their combinations in PCC, adding further complexity to the design of experimental models.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Lourdes Mateu
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|
26
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
28
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
29
|
Payen SH, Gorzalski A, Siao DD, Pandori M, Verma SC, Rossetto CC. Analysis of SARS-CoV-2 variants from patient specimens in Nevada from October 2020 to August 2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105434. [PMID: 37059256 PMCID: PMC10098042 DOI: 10.1016/j.meegid.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
In early 2020, the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human population quickly developed into a global pandemic. SARS-CoV-2 is the etiological agent of coronavirus disease 2019 (COVID-19) which has a broad range of respiratory illnesses. As the virus circulates, it acquires nucleotide changes. These mutations are potentially due to the inherent differences in the selection pressures within the human population compared to the original zoonotic reservoir of SARS-CoV-2 and formerly naïve humans. The acquired mutations will most likely be neutral, but some may have implications for viral transmission, disease severity, and resistance to therapies or vaccines. This is a follow-up study from our early report (Hartley et al. J Genet Genomics. 01202021;48(1):40-51) which detected a rare variant (nsp12, RdRp P323F) circulating within Nevada in mid 2020 at high frequency. The primary goals of the current study were to determine the phylogenetic relationship of the SARS-CoV-2 genomes within Nevada and to determine if there are any unusual variants within Nevada compared to the current database of SARS-CoV-2 sequences. Whole genome sequencing and analysis of SARS-CoV-2 from 425 positively identified nasopharyngeal/nasal swab specimens were performed from October 2020 to August 2021 to determine any variants that could result in potential escape from current therapeutics. Our analysis focused on nucleotide mutations that generated amino acid variations in the viral Spike (S) protein, Receptor binding domain (RBD), and the RNA-dependent RNA-polymerase (RdRp) complex. The data indicate that SARS-CoV-2 sequences from Nevada did not contain any unusual variants that had not been previously reported. Additionally, we did not detect the previously identified the RdRp P323F variant in any of the samples. This suggests that the rare variant we detected before was only able to circulate because of the stay-at-home orders and semi-isolation experience during the early months of the pandemic. IMPORTANCE: SARS-COV-2 continues to circulate in the human population. In this study, SARS-CoV-2 positive nasopharyngeal/nasal swab samples were used for whole genome sequencing to determine the phylogenetic relationship of SARS-CoV-2 sequences within Nevada from October 2020 to August 2021. The resulting data is being added to a continually growing database of SARS-CoV-2 sequences that will be important for understanding the transmission and evolution of the virus as it spreads around the globe.
Collapse
Affiliation(s)
- Shannon Harger Payen
- Department of Microbiology & Immunology, University of Nevada, Reno, 1664 North Virginia St. MS 320 Reno, NV 89557, USA; School of Medicine, University of Nevada, Reno, 1664 North Virginia St., Reno, NV 89557, USA
| | - Andrew Gorzalski
- Nevada State Public Health Laboratory, 1664 North Virginia St., Reno, NV 89557, USA
| | - Danielle Denise Siao
- Nevada State Public Health Laboratory, 1664 North Virginia St., Reno, NV 89557, USA
| | - Mark Pandori
- School of Medicine, University of Nevada, Reno, 1664 North Virginia St., Reno, NV 89557, USA; Nevada State Public Health Laboratory, 1664 North Virginia St., Reno, NV 89557, USA
| | - Subhash C Verma
- Department of Microbiology & Immunology, University of Nevada, Reno, 1664 North Virginia St. MS 320 Reno, NV 89557, USA; School of Medicine, University of Nevada, Reno, 1664 North Virginia St., Reno, NV 89557, USA
| | - Cyprian C Rossetto
- Department of Microbiology & Immunology, University of Nevada, Reno, 1664 North Virginia St. MS 320 Reno, NV 89557, USA; School of Medicine, University of Nevada, Reno, 1664 North Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
30
|
Jessop F, Schwarz B, Bohrnsen E, Miltko M, Shaia C, Bosio CM. Targeting 2-Oxoglutarate-Dependent Dioxygenases Promotes Metabolic Reprogramming That Protects against Lethal SARS-CoV-2 Infection in the K18-hACE2 Transgenic Mouse Model. Immunohorizons 2023; 7:528-542. [PMID: 37417946 PMCID: PMC10587500 DOI: 10.4049/immunohorizons.2300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Dysregulation of host metabolism is a feature of lethal SARS-CoV-2 infection. Perturbations in α-ketoglutarate levels can elicit metabolic reprogramming through 2-oxoglutarate-dependent dioxygenases (2-ODDGs), leading to stabilization of the transcription factor HIF-1α. HIF1-α activation has been reported to promote antiviral mechanisms against SARS-CoV-2 through direct regulation of ACE2 expression (a receptor required for viral entry). However, given the numerous pathways HIF-1α serves to regulate it is possible that there are other undefined metabolic mechanisms contributing to the pathogenesis of SARS-CoV-2 independent of ACE2 downregulation. In this study, we used in vitro and in vivo models in which HIF-1α modulation of ACE2 expression was negated, allowing for isolated characterization of the host metabolic response within SARS-CoV-2 disease pathogenesis. We demonstrated that SARS-CoV-2 infection limited stabilization of HIF-1α and associated mitochondrial metabolic reprogramming by maintaining activity of the 2-ODDG prolyl hydroxylases. Inhibition of 2-ODDGs with dimethyloxalylglycine promoted HIF-1α stabilization following SARS-CoV-2 infection, and significantly increased survival among SARS-CoV-2-infected mice compared with vehicle controls. However, unlike previous reports, the mechanism by which activation of HIF-1α responses contributed to survival was not through impairment of viral replication. Rather, dimethyloxalylglycine treatment facilitated direct effects on host metabolism including increased glycolysis and resolution of dysregulated pools of metabolites, which correlated with reduced morbidity. Taken together, these data identify (to our knowledge) a novel function of α-ketoglutarate-sensing platforms, including those responsible for HIF-1α stabilization, in the resolution of SARS-CoV-2 infection and support targeting these metabolic nodes as a viable therapeutic strategy to limit disease severity during infection.
Collapse
Affiliation(s)
- Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Molly Miltko
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| |
Collapse
|
31
|
Zhou X, Sun W, Zhang Y, Gu H, Wang R, Xie P, Zhu Y, Qiu M, Ding X, Wang H, Gao Y, Li J. A novel hACE2 knock-in mouse model recapitulates pulmonary and intestinal SARS-CoV-2 infection. Front Microbiol 2023; 14:1175188. [PMID: 37350787 PMCID: PMC10283006 DOI: 10.3389/fmicb.2023.1175188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is responsible for the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the host, and the gastrointestinal tract is a potential infection site as this receptor is expressed on it. Multiple studies have indicated that an increasing number of COVID-19 patients presented with gastrointestinal symptoms that are highly associated with disease severity. Moreover, emerging evidence has demonstrated that alterations in the gut immune microenvironment induced by intestinal SARS-CoV-2 infection can regulate respiratory symptoms. Therefore, targeting the intestines may be a candidate therapeutic strategy in patients with COVID-19; however, no mouse model can serve as an appropriate infection model for the development of fatal pneumonia while mimicking intestinal infection. In this study, a novel human ACE2 knock-in (KI) mouse model (or hACE2-KI) was systemically compared with the popular K18-hACE2 mice; it showed differences in the distribution of lung and intestinal infections and pathophysiological characteristics. These newly generated hACE2-KI mice were susceptible to intranasal infection with SARS-CoV-2, and not only developed mild to severe lung injury, but also acquired intestinal infection. Consequently, this model can be a useful tool for studying intestinal SARS-CoV-2 infection and developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Rodriguez-Rodriguez BA, Ciabattoni GO, Duerr R, Valero-Jimenez AM, Yeung ST, Crosse KM, Schinlever AR, Bernard-Raichon L, Rodriguez Galvan J, McGrath ME, Vashee S, Xue Y, Loomis CA, Khanna KM, Cadwell K, Desvignes L, Frieman MB, Ortigoza MB, Dittmann M. A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. Nat Commun 2023; 14:3026. [PMID: 37230979 PMCID: PMC10211296 DOI: 10.1038/s41467-023-38783-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.
Collapse
Affiliation(s)
| | - Grace O Ciabattoni
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vaccine Center, NYU Grossmann of Medicine, New York, NY, 10016, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Keaton M Crosse
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Austin R Schinlever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Joaquin Rodriguez Galvan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sanjay Vashee
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Yong Xue
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Cynthia A Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ludovic Desvignes
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- High Containment Laboratories - Office of Science and Research, NYU Langone Health, New York, NY, 10016, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mila B Ortigoza
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
33
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
34
|
Mackin SR, Desai P, Whitener BM, Karl CE, Liu M, Baric RS, Edwards DK, Chicz TM, McNamara RP, Alter G, Diamond MS. Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat Microbiol 2023; 8:569-580. [PMID: 37012355 PMCID: PMC10797606 DOI: 10.1038/s41564-023-01359-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023]
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Collapse
Affiliation(s)
- Samantha R Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney E Karl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Taras M Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Galit Alter
- Moderna, Inc., Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Gareau MG, Barrett KE. Role of the microbiota-gut-brain axis in postacute COVID syndrome. Am J Physiol Gastrointest Liver Physiol 2023; 324:G322-G328. [PMID: 36880667 PMCID: PMC10042594 DOI: 10.1152/ajpgi.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The COVID-19 pandemic has resulted in the infection of hundreds of millions of individuals over the past 3 years, coupled with millions of deaths. Along with these more acute impacts of infection, a large subset of patients has developed symptoms that collectively comprise "postacute sequelae of COVID-19" (PASC, also known as long COVID), which can persist for months and maybe even years. In this review, we outline the current knowledge on the role of impaired microbiota-gut-brain (MGB) axis signaling in the development of PASC and the potential mechanisms involved, which may lead to a better understanding of disease progression and treatment options in the future.
Collapse
Affiliation(s)
- Mélanie G Gareau
- School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Kim E Barrett
- School of Medicine, University of California, Davis, Sacramento, California, United States
| |
Collapse
|
36
|
Gan PXL, Liao W, Linke KM, Mei D, Wu XD, Wong WSF. Targeting the renin angiotensin system for respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:111-144. [PMID: 37524485 DOI: 10.1016/bs.apha.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore
| | - Kira M Linke
- Department of Pharmacology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - D Mei
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - X D Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore; Drug Discovery and Optimization Platform, National University Health System, Singapore, Singapore.
| |
Collapse
|
37
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
38
|
Csöbönyeiová M, Klein M, Kuniaková M, Varga I, Danišovič Ľ. Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. Int J Mol Sci 2023; 24:3459. [PMID: 36834870 PMCID: PMC9961667 DOI: 10.3390/ijms24043459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus's high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model to investigate all pathological processes underlining its activity and, more importantly, search for optimal drug therapy with minimal toxicity risk. The gold standard in disease modeling involves animal and monolayer culture models; however, these models do not fully reflect the response to human tissues affected by the virus. However, more physiological 3D in vitro culture models, such as spheroids and organoids derived from induced pluripotent stem cells (iPSCs), could serve as promising alternatives. Different iPSC-derived organoids, such as lung, cardiac, brain, intestinal, kidney, liver, nasal, retinal, skin, and pancreatic organoids, have already shown immense potential in COVID-19 modeling. In the present comprehensive review article, we summarize the current knowledge on COVID-19 modeling and drug screening using selected iPSC-derived 3D culture models, including lung, brain, intestinal, cardiac, blood vessels, liver, kidney, and inner ear organoids. Undoubtedly, according to reviewed studies, organoids are the state-of-the-art approach to COVID-19 modeling.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Marcela Kuniaková
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
39
|
Snouwaert JN, Jania LA, Nguyen T, Martinez DR, Schäfer A, Catanzaro NJ, Gully KL, Baric RS, Heise M, Ferris MT, Anderson E, Pressey K, Dillard JA, Taft-Benz S, Baxter VK, Ting JPY, Koller BH. Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathog 2023; 19:e1011168. [PMID: 36812267 PMCID: PMC9987828 DOI: 10.1371/journal.ppat.1011168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/06/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.
Collapse
Affiliation(s)
- John N. Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Trang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David R. Martinez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kendra L. Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Anderson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katia Pressey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jacob A. Dillard
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
40
|
Upregulation of Robo4 expression by SMAD signaling suppresses vascular permeability and mortality in endotoxemia and COVID-19 models. Proc Natl Acad Sci U S A 2023; 120:e2213317120. [PMID: 36634143 PMCID: PMC9934020 DOI: 10.1073/pnas.2213317120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is an urgent need to develop novel drugs to reduce the mortality from severe infectious diseases with the emergence of new pathogens, including Coronavirus disease 2019 (COVID-19). Although current drugs effectively suppress the proliferation of pathogens, immune cell activation, and inflammatory cytokine functions, they cannot completely reduce mortality from severe infections and sepsis. In this study, we focused on the endothelial cell-specific protein, Roundabout 4 (Robo4), which suppresses vascular permeability by stabilizing endothelial cells, and investigated whether enhanced Robo4 expression could be a novel therapeutic strategy against severe infectious diseases. Endothelial-specific overexpression of Robo4 suppresses vascular permeability and reduces mortality in lipopolysaccharide (LPS)-treated mice. Screening of small molecules that regulate Robo4 expression and subsequent analysis revealed that two competitive small mothers against decapentaplegic (SMAD) signaling pathways, activin receptor-like kinase 5 (ALK5)-SMAD2/3 and ALK1-SMAD1/5, positively and negatively regulate Robo4 expression, respectively. An ALK1 inhibitor was found to increase Robo4 expression in mouse lungs, suppress vascular permeability, prevent extravasation of melanoma cells, and decrease mortality in LPS-treated mice. The inhibitor suppressed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced endothelial barrier disruption and decreased mortality in mice infected with SARS-CoV-2. These results indicate that enhancing Robo4 expression is an efficient strategy to suppress vascular permeability and mortality in severe infectious diseases, including COVID-19, and that small molecules that upregulate Robo4 can be potential therapeutic agents against these diseases.
Collapse
|
41
|
Phenothiazines inhibit SARS-CoV-2 cell entry via a blockade of spike protein binding to neuropilin-1. Antiviral Res 2023; 209:105481. [PMID: 36481388 PMCID: PMC9721373 DOI: 10.1016/j.antiviral.2022.105481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.
Collapse
|
42
|
A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery. Vaccines (Basel) 2022; 11:vaccines11010047. [PMID: 36679892 PMCID: PMC9860616 DOI: 10.3390/vaccines11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
We present a comprehensive analysis of SARS-CoV-2 infection and recovery using wild type C57BL/6 mice and a mouse-adapted virus, and we demonstrate that this is an ideal model of infection and recovery that phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.
Collapse
|
43
|
Beer J, Crotta S, Breithaupt A, Ohnemus A, Becker J, Sachs B, Kern L, Llorian M, Ebert N, Labroussaa F, Nhu Thao TT, Trueeb BS, Jores J, Thiel V, Beer M, Fuchs J, Kochs G, Wack A, Schwemmle M, Schnepf D. Impaired immune response drives age-dependent severity of COVID-19. J Exp Med 2022; 219:e20220621. [PMID: 36129445 PMCID: PMC9499827 DOI: 10.1084/jem.20220621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Severity of COVID-19 shows an extraordinary correlation with increasing age. We generated a mouse model for severe COVID-19 and show that the age-dependent disease severity is caused by the disruption of a timely and well-coordinated innate and adaptive immune response due to impaired interferon (IFN) immunity. Aggravated disease in aged mice was characterized by a diminished IFN-γ response and excessive virus replication. Accordingly, adult IFN-γ receptor-deficient mice phenocopied the age-related disease severity, and supplementation of IFN-γ reversed the increased disease susceptibility of aged mice. Further, we show that therapeutic treatment with IFN-λ in adults and a combinatorial treatment with IFN-γ and IFN-λ in aged Ifnar1-/- mice was highly efficient in protecting against severe disease. Our findings provide an explanation for the age-dependent disease severity and clarify the nonredundant antiviral functions of type I, II, and III IFNs during SARS-CoV-2 infection in an age-dependent manner. Our data suggest that highly vulnerable individuals could benefit from immunotherapy combining IFN-γ and IFN-λ.
Collapse
Affiliation(s)
- Julius Beer
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Jan Becker
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Benedikt Sachs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Nadine Ebert
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Bettina Salome Trueeb
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Mackin SR, Desai P, Whitener BM, Karl CE, Liu M, Baric RS, Edwards DK, Chicz TM, McNamara RP, Alter G, Diamond MS. Fcγ receptor-dependent antibody effector functions are required for vaccine protection against infection by antigenic variants of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.27.518117. [PMID: 36482975 PMCID: PMC9727771 DOI: 10.1101/2022.11.27.518117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emerging SARS-CoV-2 variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Although vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical COVID-19 outcome, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and Fc-gamma receptor (FcγR) KO mice, we determined the requirement for Fc effector functions to protect against SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the preclinical mRNA-1273 vaccine, protection against Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Collapse
Affiliation(s)
- Samantha R. Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bradley M. Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Courtney E. Karl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | | | | | | | - Galit Alter
- Moderna, Inc., Cambridge MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
45
|
Davis M, Voss K, Turnbull JB, Gustin AT, Knoll M, Muruato A, Hsiang TY, Dinnon KH, Leist SR, Nickel K, Baric RS, Ladiges W, Akilesh S, Smith KD, Gale M. A C57BL/6 Mouse model of SARS-CoV-2 infection recapitulates age- and sex-based differences in human COVID-19 disease and recovery. RESEARCH SQUARE 2022:rs.3.rs-2194450. [PMID: 36415465 PMCID: PMC9681052 DOI: 10.21203/rs.3.rs-2194450/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a comprehensive analysis of SARS-CoV-2 infection and recovery in wild type C57BL/6 mice, demonstrating that this is an ideal model of infection and recovery that accurately phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice accurately phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge.
Collapse
|
46
|
Nakandakari-Higa S, Parsa R, Reis BS, de Carvalho RVH, Mesin L, Hoffmann HH, Bortolatto J, Muramatsu H, Lin PJC, Bilate AM, Rice CM, Pardi N, Mucida D, Victora GD, Canesso MCC. A minimally-edited mouse model for infection with multiple SARS-CoV-2 strains. Front Immunol 2022; 13:1007080. [PMID: 36451809 PMCID: PMC9703079 DOI: 10.3389/fimmu.2022.1007080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2024] Open
Abstract
Efficient mouse models to study SARS-CoV-2 infection are critical for the development and assessment of vaccines and therapeutic approaches to mitigate the current pandemic and prevent reemergence of COVID-19. While the first generation of mouse models allowed SARS-CoV-2 infection and pathogenesis, they relied on ectopic expression and non-physiological levels of human angiotensin-converting enzyme 2 (hACE2). Here we generated a mouse model carrying the minimal set of modifications necessary for productive infection with multiple strains of SARS-CoV-2. Substitution of only three amino acids in the otherwise native mouse Ace2 locus (Ace2 TripleMutant or Ace2™), was sufficient to render mice susceptible to both SARS-CoV-2 strains USA-WA1/2020 and B.1.1.529 (Omicron). Infected Ace2™ mice exhibited weight loss and lung damage and inflammation, similar to COVID-19 patients. Previous exposure to USA-WA1/2020 or mRNA vaccination generated memory B cells that participated in plasmablast responses during breakthrough B.1.1.529 infection. Thus, the Ace2™ mouse replicates human disease after SARS-CoV-2 infection and provides a tool to study immune responses to sequential infections in mice.
Collapse
Affiliation(s)
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | | | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Angelina M. Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Maria Cecilia C. Canesso
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
47
|
Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun 2022; 13:5926. [PMID: 36319618 PMCID: PMC9626559 DOI: 10.1038/s41467-022-33395-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mericien Venzon
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Chenzhen Zhang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexis P Sullivan
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Grant A Hussey
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Juan Gago
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Evan Wilder
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorna E Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Dan R Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA.
| | - Jonas Schluter
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Bishop CR, Dumenil T, Rawle DJ, Le TT, Yan K, Tang B, Hartel G, Suhrbier A. Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathog 2022; 18:e1010867. [PMID: 36155667 PMCID: PMC9536645 DOI: 10.1371/journal.ppat.1010867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
How well mouse models recapitulate the transcriptional profiles seen in humans remains debatable, with both conservation and diversity identified in various settings. Herein we use RNA-Seq data and bioinformatics approaches to analyze the transcriptional responses in SARS-CoV-2 infected lungs, comparing 4 human studies with the widely used K18-hACE2 mouse model, a model where hACE2 is expressed from the mouse ACE2 promoter, and a model that uses a mouse adapted virus and wild-type mice. Overlap of single copy orthologue differentially expressed genes (scoDEGs) between human and mouse studies was generally poor (≈15-35%). Rather than being associated with batch, sample treatment, viral load, lung damage or mouse model, the poor overlaps were primarily due to scoDEG expression differences between species. Importantly, analyses of immune signatures and inflammatory pathways illustrated highly significant concordances between species. As immunity and immunopathology are the focus of most studies, these mouse models can thus be viewed as representative and relevant models of COVID-19.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thuy T. Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Narasimhan H, Wu Y, Goplen NP, Sun J. Immune determinants of chronic sequelae after respiratory viral infection. Sci Immunol 2022; 7:eabm7996. [DOI: 10.1126/sciimmunol.abm7996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as “long COVID-19,” are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.
Collapse
Affiliation(s)
- Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nick P. Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, MN 55905, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Siragusa L, Menna G, Buratta F, Baroni M, Desantis J, Cruciani G, Goracci L. CROMATIC: Cross-Relationship Map of Cavi ties from Coronaviruses. J Chem Inf Model 2022; 62:2901-2908. [PMID: 35695374 PMCID: PMC9211041 DOI: 10.1021/acs.jcim.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19 disease, has rapidly imposed an urgent need to identify effective drug candidates. In this context, the high resolution and non-redundant beta-Coronavirus protein cavities database is pivotal to help virtual screening protocols. Furthermore, the cross-relationship among cavities can lead to highlighting multitarget therapy chances. Here, we first collect all protein cavities on SARS-CoV-2, SARS-CoV, and MERS-CoV X-ray structures, and then, we compute a similarity map by using molecular interaction fields (MIFs). All the results come together in CROMATIC (CROss-relationship MAp of CaviTIes from Coronaviruses). CROMATIC encloses both a comprehensive and a non-redundant version of the cavities collection and a similarity map revealing, on the one hand, cavities that are conserved among the three Coronaviruses and, on the other hand, unexpected similarities among cavities that can represent a key starting point for multitarget therapy strategies. Similarity analysis was also performed for the available structures of SARS-CoV-2 spike variants, linking sequence mutations to three-dimensional interaction alterations. The CROMATIC repository is freely available to the scientific community at https://github.com/moldiscovery/sars-cromatic.
Collapse
Affiliation(s)
- Lydia Siragusa
- Molecular
Horizon srl, Bettona 06084, Italy
- Molecular
Discovery, Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Gabriele Menna
- Molecular
Discovery, Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Fabrizio Buratta
- Molecular
Discovery, Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular
Discovery, Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Jenny Desantis
- Laboratory
for Chemometrics and Molecular Modeling, Department of Chemistry,
Biology, and Biotechnology, University of
Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| | - Gabriele Cruciani
- Laboratory
for Chemometrics and Molecular Modeling, Department of Chemistry,
Biology, and Biotechnology, University of
Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| | - Laura Goracci
- Laboratory
for Chemometrics and Molecular Modeling, Department of Chemistry,
Biology, and Biotechnology, University of
Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| |
Collapse
|