1
|
Islam F, Das S, Ashaduzzaman M, Sillman B, Yeapuri P, Nayan MU, Oupický D, Gendelman HE, Kevadiya BD. Development of an extended action fostemsavir lipid nanoparticle. Commun Biol 2024; 7:917. [PMID: 39080401 PMCID: PMC11289258 DOI: 10.1038/s42003-024-06589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
An extended action fostemsavir (FTR) lipid nanoparticle (LNP) formulation prevents human immunodeficiency virus type one (HIV-1) infection. This FTR formulation establishes a drug depot in monocyte-derived macrophages that extend the drug's plasma residence time. The LNP's physicochemical properties improve FTR's antiretroviral activities, which are linked to the drug's ability to withstand fluid flow forces and levels of drug cellular internalization. Each is, in measure, dependent on PEGylated lipid composition and flow rate ratios affecting the size, polydispersity, shape, zeta potential, stability, biodistribution, and antiretroviral efficacy. The FTR LNP physicochemical properties enable the drug-particle's extended actions.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Kloska SM, Pałczyński K, Marciniak T, Talaśka T, Miller M, Wysocki BJ, Davis P, Wysocki TA. Conversion of fat to cellular fuel-Fatty acids β-oxidation model. Comput Biol Chem 2023; 104:107860. [PMID: 37028176 DOI: 10.1016/j.compbiolchem.2023.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
β-oxidation of fatty acids plays a significant role in the energy metabolism of the cell. This paper presents a β-oxidation model of fatty acids based on queueing theory. It uses Michaelis-Menten enzyme kinetics, and literature data on metabolites' concentration and enzymatic constants. A genetic algorithm was used to optimize the parameters for the pathway reactions. The model enables real-time tracking of changes in the concentrations of metabolites with different carbon chain lengths. Another application of the presented model is to predict the changes caused by system disturbance, such as altered enzyme activity or abnormal fatty acid concentration. The model has been validated against experimental data. There are diseases that change the metabolism of fatty acids and the presented model can be used to understand the cause of these changes, analyze metabolites abnormalities, and determine the initial target of treatment.
Collapse
Affiliation(s)
- Sylwester M Kloska
- Department of Forensic Medicine, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland.
| | - Krzysztof Pałczyński
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Tomasz Talaśka
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Marissa Miller
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, USA
| | - Beata J Wysocki
- Department of Biology, University of Nebraska at Omaha, Omaha, USA
| | - Paul Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, USA
| | - Tadeusz A Wysocki
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland; Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, USA
| |
Collapse
|
3
|
Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon 2023; 9:e16027. [PMID: 37215829 PMCID: PMC10195898 DOI: 10.1016/j.heliyon.2023.e16027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
The advent of Highly Active Antiretroviral Therapy has majorly contributed towards reducing the morbidity and mortality associated with HIV infected people, thus improving the quality of their life. Still, the eradication of HIV infection has not been achieved due to some important limitations such as non-adherence to therapy, cellular toxicity, restricted bioavailability of antiretroviral drugs and emergence of drug resistant viruses. Moreover, persistence of latent HIV-reservoirs even under antiviral-drug pressure is the major obstacle in HIV cure. Currently used antiretrovirals can suppress the viral replication in activated CD4+ cells, however, it has been observed that the available antiretroviral therapy appears inadequate to reduce latent reservoirs established in resting memory CD4+ T cells. Therefore, for eradication or reduction of latent reservoirs many immunotherapeutic and pharmacologic approaches including latency reversing agents are being studied constantly. Additionally, promising therapeutic strategies including discovery of novel drugs and drug targets are continuously being explored. Therefore, preclinical testing has become an important step of drug development process, continuously demanding innovative, but less time consuming evaluation strategies. Present review attempts to gather and line-up the information on existing cell-based methodologies applied for assessing drug candidates for their antiretroviral potential. Further, we intend to outline the advanced and reliable cell based methodologies that would expedite the process of discovery and development of antiretrovirals.
Collapse
Affiliation(s)
| | | | - Anupam Mukherjee
- Corresponding author. Division of Virology, ICMR-National AIDS Research Institute, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
4
|
Kloska SM, Pałczyński K, Marciniak T, Talaśka T, Miller M, Wysocki BJ, Davis P, Wysocki TA. Queueing theory model of pentose phosphate pathway. Sci Rep 2022; 12:4601. [PMID: 35301361 PMCID: PMC8930976 DOI: 10.1038/s41598-022-08463-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Due to its role in maintaining the proper functioning of the cell, the pentose phosphate pathway (PPP) is one of the most important metabolic pathways. It is responsible for regulating the concentration of simple sugars and provides precursors for the synthesis of amino acids and nucleotides. In addition, it plays a critical role in maintaining an adequate level of NADPH, which is necessary for the cell to fight oxidative stress. These reasons prompted the authors to develop a computational model, based on queueing theory, capable of simulating changes in PPP metabolites’ concentrations. The model has been validated with empirical data from tumor cells. The obtained results prove the stability and accuracy of the model. By applying queueing theory, this model can be further expanded to include successive metabolic pathways. The use of the model may accelerate research on new drugs, reduce drug costs, and reduce the reliance on laboratory animals necessary for this type of research on which new methods are tested.
Collapse
Affiliation(s)
- Sylwester M Kloska
- Faculty of Medicine, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum, 85-094, Bydgoszcz, Poland.
| | - Krzysztof Pałczyński
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland
| | - Tomasz Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland
| | - Tomasz Talaśka
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland
| | - Marissa Miller
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Beata J Wysocki
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Paul Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Tadeusz A Wysocki
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland. .,Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA.
| |
Collapse
|
5
|
Cobb DA, Smith N, Deodhar S, Bade AN, Gautam N, Shetty BLD, McMillan J, Alnouti Y, Cohen SM, Gendelman HE, Edagwa B. Transformation of tenofovir into stable ProTide nanocrystals with long-acting pharmacokinetic profiles. Nat Commun 2021; 12:5458. [PMID: 34531390 PMCID: PMC8445934 DOI: 10.1038/s41467-021-25690-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment and prevention of human immunodeficiency virus type one (HIV-1) infection was transformed through widespread use of antiretroviral therapy (ART). However, ART has limitations in requiring life-long daily adherence. Such limitations have led to the creation of long-acting (LA) ART. While nucleoside reverse transcriptase inhibitors (NRTI) remain the ART backbone, to the best of our knowledge, none have been converted into LA agents. To these ends, we transformed tenofovir (TFV) into LA surfactant stabilized aqueous prodrug nanocrystals (referred to as NM1TFV and NM2TFV), enhancing intracellular drug uptake and retention. A single intramuscular injection of NM1TFV, NM2TFV, or a nanoformulated tenofovir alafenamide (NTAF) at 75 mg/kg TFV equivalents to Sprague Dawley rats sustains active TFV-diphosphate (TFV-DP) levels ≥ four times the 90% effective dose for two months. NM1TFV, NM2TFV and NTAF elicit TFV-DP levels of 11,276, 1,651, and 397 fmol/g in rectal tissue, respectively. These results are a significant step towards a LA TFV ProTide.
Collapse
Affiliation(s)
- Denise A Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Macur K, Zieschang S, Lei S, Morsey B, Jaquet S, Belshan M, Fox HS, Ciborowski P. SWATH-MS and MRM: Quantification of Ras-related proteins in HIV-1 infected and methamphetamine-exposed human monocyte-derived macrophages (hMDM). Proteomics 2021; 21:e2100005. [PMID: 34051048 PMCID: PMC9977323 DOI: 10.1002/pmic.202100005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
HIV-1 infection of macrophages is a multistep and multifactorial process that has been shown to be enhanced by exposure to methamphetamine (Meth). In this study, we sought to identify the underlying mechanisms of this effect by quantifying the effect of Meth on the proteome of HIV-1-infected macrophages using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) approach. The analyses identified several members of the Rab family of proteins as being dysregulated by Meth treatment, which was confirmed by bioinformatic analyses that indicated substantial alteration of vesicular transport pathways. Validation of the SWATH-MS was performed using an MRM based approach, which confirmed that Meth exposure affects expression of the Rab proteins. However, the pattern of expression changes were highly dynamic, and displayed high donor-to-donor variability. Surprisingly a similar phenomenon was observed for Actin. Our results demonstrate that Meth affects vesicular transport pathways, suggesting a possible molecular mechanism underlying its effect on HIV infection hMDM and a potential broader effect of Meth on cellular homeostasis.
Collapse
Affiliation(s)
- Katarzyna Macur
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE,Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Shulei Lei
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE,Corresponding author: Dr. Pawel Ciborowski, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 University of Nebraska Medical Center, Omaha, NE 68198-5800, phone +1 (402) 559-3733, fax +1 (402) 559-7495
| |
Collapse
|
7
|
Herskovitz J, Hasan M, Machhi J, Mukadam I, Ottemann BM, Hilaire JR, Woldstad C, McMillan J, Liu Y, Seravalli J, Sarella A, Gendelman HE, Kevadiya BD. Europium sulfide nanoprobes predict antiretroviral drug delivery into HIV-1 cell and tissue reservoirs. Nanotheranostics 2021; 5:417-430. [PMID: 33972918 PMCID: PMC8100756 DOI: 10.7150/ntno.59568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Delivery of long-acting nanoformulated antiretroviral drugs (ARVs) to human immunodeficiency virus type one cell and tissue reservoirs underlies next generation antiretroviral therapeutics. Nanotheranostics, comprised of trackable nanoparticle adjuncts, can facilitate ARV delivery through real-time drug tracking made possible through bioimaging platforms. Methods: To model HIV-1 therapeutic delivery, europium sulfide (EuS) nanoprobes were developed, characterized and then deployed to cells, tissues, and rodents. Tests were performed with nanoformulated rilpivirine (NRPV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) used clinically to suppress or prevent HIV-1 infection. First, CD4+ T cells and monocyte-derived macrophages were EuS-treated with and without endocytic blockers to identify nanoprobe uptake into cells. Second, Balb/c mice were co-dosed with NRPV and EuS or lutetium177-doped EuS (177LuEuS) theranostic nanoparticles to assess NRPV biodistribution via mass spectrometry. Third, single photon emission computed tomography (SPECT-CT) and magnetic resonance imaging (MRI) bioimaging were used to determine nanotheranostic and NRPV anatomic redistribution over time. Results: EuS nanoprobes and NRPV entered cells through dynamin-dependent pathways. SPECT-CT and MRI identified biodistribution patterns within the reticuloendothelial system for EuS that was coordinate with NRPV trafficking. Conclusions: EuS nanoprobes parallel the uptake and biodistribution of NRPV. These data support their use in modeling NRPV delivery to improve treatment strategies.
Collapse
Affiliation(s)
- Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Brendan M. Ottemann
- Department of Otorhinolaryngology, University of Kansas Medical Center, Kansas City, KS 66213 USA
| | - James R. Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | | | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Javier Seravalli
- Department of Biochemistry, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
8
|
Clement EJ, Schulze TT, Soliman GA, Wysocki BJ, Davis PH, Wysocki TA. Stochastic Simulation of Cellular Metabolism. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:79734-79744. [PMID: 33747671 PMCID: PMC7971159 DOI: 10.1109/access.2020.2986833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Increased technological methods have enabled the investigation of biology at nanoscale levels. Such systems require the use of computational methods to comprehend the complex interactions that occur. The dynamics of metabolic systems have been traditionally described utilizing differential equations without fully capturing the heterogeneity of biological systems. Stochastic modeling approaches have recently emerged with the capacity to incorporate the statistical properties of such systems. However, the processing of stochastic algorithms is a computationally intensive task with intrinsic limitations. Alternatively, the queueing theory approach, historically used in the evaluation of telecommunication networks, can significantly reduce the computational power required to generate simulated results while simultaneously reducing the expansion of errors. We present here the application of queueing theory to simulate stochastic metabolic networks with high efficiency. With the use of glycolysis as a well understood biological model, we demonstrate the power of the proposed modeling methods discussed herein. Furthermore, we describe the simulation and pharmacological inhibition of glycolysis to provide an example of modeling capabilities.
Collapse
Affiliation(s)
- Emalie J. Clement
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Thomas T. Schulze
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ghada A. Soliman
- Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| | - Beata J. Wysocki
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Tadeusz A. Wysocki
- Department of Electrical and Computer Engineering, University of Nebraska – Lincoln, Omaha, Nebraska, USA
- UTP University, Bydgoszcz, Poland
| |
Collapse
|
9
|
Halling Folkmar Andersen A, Tolstrup M. The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses 2020; 12:E412. [PMID: 32272815 PMCID: PMC7232358 DOI: 10.3390/v12040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oral administration of a combination of two or three antiretroviral drugs (cART) has transformed HIV from a life-threatening disease to a manageable infection. However, as the discontinuation of therapy leads to virus rebound in plasma within weeks, it is evident that, despite daily pill intake, the treatment is unable to clear the infection from the body. Furthermore, as cART drugs exhibit a much lower concentration in key HIV residual tissues, such as the brain and lymph nodes, there is a rationale for the development of drugs with enhanced tissue penetration. In addition, the treatment, with combinations of multiple different antiviral drugs that display different pharmacokinetic profiles, requires a strict dosing regimen to avoid the emergence of drug-resistant viral strains. An intriguing opportunity lies within the development of long-acting, synthetic scaffolds for delivering cART. These scaffolds can be designed with the goal to reduce the frequency of dosing and furthermore, hold the possibility of potential targeting to key HIV residual sites. Moreover, the synthesis of combinations of therapy as one molecule could unify the pharmacokinetic profiles of different antiviral drugs, thereby eliminating the consequences of sub-therapeutic concentrations. This review discusses the recent progress in the development of long-acting and tissue-targeted therapies against HIV for the delivery of direct antivirals, and examines how such developments fit in the context of exploring HIV cure strategies.
Collapse
Affiliation(s)
- Anna Halling Folkmar Andersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Haghighi AH, Khorasani MT, Faghih Z, Farjadian F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 2020; 6:e03677. [PMID: 32280795 PMCID: PMC7136644 DOI: 10.1016/j.heliyon.2020.e03677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 11/30/2022] Open
Abstract
Antibody-conjugated magnetic nanoparticles (Ab-MNPs) have received considerable attention in bioseparation and clinical diagnostics assays due to their unique ability to detect and isolate a variety of biomolecules and cells. Because antibodies can be expensive, a key challenge for bioconjugation is to determine the optimal amount of antibodies with reasonable antigen-capturing activity. We designed an approach to determine the minimum amounts of antibodies for efficient coating. Different quantities of Herceptin (anti-human epidermal growth factor receptor 2: HER2) antibody were applied and immobilized on the surface of MNPs. Antibody binding was then checked by using an anti-human antibody conjugated with fluorochrome and flow cytometry. When the ratio of MNPs to antibodies increased from 0.79 to 795.45, mean fluorescence intensity (MFI) of conjugated MNPs decreased markedly from 185.56 to 20.07, indicating lower surface antibody coverage. We then investigated the relation between antibody content and isolation efficiency. Three Ab-MNP samples with different MFI were used to isolate SK-BR-3, a HER2-positive breast cancer cell line, from mixtures of whole blood or mononuclear cells. After isolation in a magnetic field, separation efficiency was evaluated by fluorescence microscopy and flow cytometry-based techniques. Our results collectively showed that the amount of anti-HER2 antibodies for conjugation with MNPs could be decreased by as much as one-fifteenth without compromising isolation efficiency, which in turn can reduce the cost of immunoassay biosensors.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Rajpoot K. Nanotechnology-based Targeting of Neurodegenerative Disorders: A Promising Tool for Efficient Delivery of Neuromedicines. Curr Drug Targets 2020; 21:819-836. [PMID: 31906836 DOI: 10.2174/1389450121666200106105633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Traditional drug delivery approaches remained ineffective in offering better treatment to various neurodegenerative disorders (NDs). In this context, diverse types of nanocarriers have shown their great potential to cross the blood-brain barrier (BBB) and have emerged as a prominent carrier system in drug delivery. Moreover, nanotechnology-based methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs especially in diagnosis and drug delivery with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. Eventually, this review provides deep insights to explore recent applications of some innovative nanocarriers enclosing active molecules for the efficient treatment of NDs.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
12
|
Rilpivirine-associated aggregation-induced emission enables cell-based nanoparticle tracking. Biomaterials 2019; 231:119669. [PMID: 31865227 DOI: 10.1016/j.biomaterials.2019.119669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Antiretroviral therapy (ART) has improved the quality and duration of life for people living with human immunodeficiency virus (HIV) infection. However, limitations in drug efficacy, emergence of viral mutations and the paucity of cell-tissue targeting remain. We posit that to maximize ART potency and therapeutic outcomes newer drug formulations that reach HIV cellular reservoirs need be created. In a step towards achieving this goal we harnessed the aggregation-induced emission (AIE) property of the non-nucleoside reverse transcriptase inhibitor rilpivirine (RPV) and used it as a platform for drug cell and subcellular tracking. RPV nanocrystals were created with endogenous AIE properties enabling the visualization of intracellular particles in cell and tissue-based assays. The intact drug crystals were easily detected in CD4+ T cells and macrophages, the natural viral target cells, by flow cytometry and ultraperformance liquid chromatography tandem mass spectrometry. We conclude that AIE can be harnessed to monitor cell biodistribution of selective antiretroviral drug nanocrystals.
Collapse
|
13
|
Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, Donadoni M, Robinson JA, Sillman B, Lin Z, Hilaire JR, Banoub M, Elango M, Gautam N, Mosley RL, Poluektova LY, McMillan J, Bade AN, Gorantla S, Sariyer IK, Burdo TH, Young WB, Amini S, Gordon J, Jacobson JM, Edagwa B, Khalili K, Gendelman HE. Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat Commun 2019; 10:2753. [PMID: 31266936 PMCID: PMC6606613 DOI: 10.1038/s41467-019-10366-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Rafal Kaminski
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Ramona Bella
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Taha M Ahooyi
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Chen Chen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Pietro Mancuso
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Rahsan Sariyer
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Pasquale Ferrante
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Martina Donadoni
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Zhiyi Lin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mary Banoub
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Monalisha Elango
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ilker K Sariyer
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Won-Bin Young
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Shohreh Amini
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Jeffrey M Jacobson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19115, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
14
|
Zhang G, Luk BT, Wei X, Campbell GR, Fang RH, Zhang L, Spector SA. Selective cell death of latently HIV-infected CD4 + T cells mediated by autosis inducing nanopeptides. Cell Death Dis 2019; 10:419. [PMID: 31142734 PMCID: PMC6541658 DOI: 10.1038/s41419-019-1661-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus type-1 (HIV) infection, antiretroviral therapy only suppresses viral replication but is unable to eliminate infection. Thus, discontinuation of antiretrovirals results in viral reactivation and disease progression. A major reservoir of HIV latent infection resides in resting central memory CD4+ T cells (TCM) that escape clearance by current therapeutic regimens and will require novel strategies for elimination. Here, we evaluated the therapeutic potential of autophagy-inducing peptides, Tat-Beclin 1 and Tat-vFLIP-α2, which can induce a novel Na+/K+-ATPase dependent form of cell death (autosis), to kill latently HIV-infected TCM while preventing virologic rebound. In this study, we encapsulated autophagy inducing peptides into biodegradable lipid-coated hybrid PLGA (poly lactic-co-glycolic acid) nanoparticles for controlled intracellular delivery. A single dose of nanopeptides was found to eliminate latent HIV infection in an in vitro primary model of HIV latency and ex vivo using resting CD4+ T cells obtained from peripheral blood mononuclear cells of HIV-infected patients on antiretroviral with fully suppressed virus for greater than 12 months. Notably, increased LC3B lipidation, SQSTM1/p62 degradation and Na+/K+-ATPase activity characteristic of autosis, were detected in nanopeptide treated latently HIV-infected cells compared to untreated uninfected or infected cells. Nanopeptide-induced cell death could be reversed by knockdown of autophagy proteins, ATG5 and ATG7, and inhibition or knockdown of Na+/K+-ATPase. Importantly, viral rebound was not detected following the induction of the Na+/K+-ATPase dependent form of cell death induced by the Tat-Beclin 1 and Tat-vFLIP-α2 nanopeptides. These findings provide a novel strategy to eradicate HIV latently infected resting memory CD4+ T cells, the major reservoir of HIV latency, through the induction of Na+/K+-ATPase dependent autophagy, while preventing reactivation of virus and new infection of uninfected bystander cells.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Brian T Luk
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaoli Wei
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Grant R Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
15
|
Gendelman HE, McMillan J, Bade AN, Edagwa B, Kevadiya BD. The Promise of Long-Acting Antiretroviral Therapies: From Need to Manufacture. Trends Microbiol 2019; 27:593-606. [PMID: 30981593 DOI: 10.1016/j.tim.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Antiretroviral therapy has transformed human immunodeficiency virus infections from certain death to a manageable chronic disease. Achieving strict adherence to drug regimens that limit toxicities and viral resistance is an achievable goal. Success is defined by halting viral transmission and by continuous viral restriction. A step towards improving treatment outcomes is in long-acting antiretrovirals. While early results remain encouraging there remain opportunities for improvement. These rest, in part, on the required large drug dosing volumes, local injection-site reactions, and frequency of injections. Thus, implantable devices and long-acting parenteral prodrugs have emerged which may provide more effective clinical outcomes. The recent successes in transforming native antiretrovirals into lipophilic and hydrophobic prodrugs stabilized into biocompatible surfactants can positively affect both. Formulating antiretroviral prodrugs demonstrates improvements in cell and tissue targeting, in drug-dosing intervals, and in the administered volumes of nanosuspensions. As such, the newer formulations also hold the potential to suppress viral loads beyond more conventional therapies with the ultimate goal of HIV-1 elimination when combined with other modalities.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
16
|
Ottemann BM, Helmink AJ, Zhang W, Mukadam I, Woldstad C, Hilaire JR, Liu Y, McMillan JM, Edagwa BJ, Mosley RL, Garrison JC, Kevadiya BD, Gendelman HE. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials 2018; 185:174-193. [PMID: 30245386 PMCID: PMC6556898 DOI: 10.1016/j.biomaterials.2018.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir. In order to improve upon current treatment regimens, our laboratory created long acting slow effective release (LASER) ART nanoformulated prodrugs from native medicines. LASER ART enables antiretroviral drugs (ARVs) to better reach target sites of HIV-1 infection while, at the same time, improve ART's half-life and potency. However, novel ARV design has been slowed by prolonged pharmacokinetic testing requirements. To such ends, tri-modal theranostic nanoparticles were created with single-photon emission computed tomography (SPECT/CT), magnetic resonance imaging (MRI) and fluorescence capabilities to predict LASER ART biodistribution. The created theranostic ARV probes were then employed to monitor drug tissue distribution and potency. Intrinsically 111Indium (111In) radiolabeled, europium doped cobalt-ferrite particles and rilpivirine were encased in a polycaprolactone core surrounded by a lipid shell (111InEuCF-RPV). Particle cell and tissue distribution, and antiretroviral activities were sustained in macrophage tissue depots. 111InEuCF-PCL/RPV particles injected into mice demonstrated co-registration of MRI and SPECT/CT tissue signals with RPV and cobalt. Cell and animal particle biodistribution paralleled ARV activities. We posit that particle selection can predict RPV distribution and potency facilitated by multifunctional theranostic nanoparticles.
Collapse
Affiliation(s)
- Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Austin J Helmink
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Thomas MB, Gnanadhas DP, Dash PK, Machhi J, Lin Z, McMillan J, Edagwa B, Gelbard H, Gendelman HE, Gorantla S. Modulating cellular autophagy for controlled antiretroviral drug release. Nanomedicine (Lond) 2018; 13:2139-2154. [PMID: 30129397 DOI: 10.2217/nnm-2018-0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Pharmacologic agents that affect autophagy were tested for their abilities to enhance macrophage nanoformulated antiretroviral drug (ARV) depots and its slow release. METHODS These agents included URMC-099, rapamycin, metformin, desmethylclomipramine, 2-hydroxy-β-cyclodextrin (HBC) and clonidine. Each was administered with nanoformulated atazanavir (ATV) nanoparticles to human monocyte-derived macrophages. ARV retention, antiretroviral activity and nanocrystal autophagosomal formation were evaluated. RESULTS URMC-099, HBC and clonidine retained ATV. HBC, URMC-099 and rapamycin improved intracellular ATV retention. URMC-099 proved superior among the group in affecting antiretroviral activities. CONCLUSION Autophagy inducing agents, notably URMC-099, facilitate nanoformulated ARV depots and lead to sustained release and improved antiretroviral responses. As such, they may be considered for development as part of long acting antiretroviral treatment regimens.
Collapse
Affiliation(s)
- Midhun B Thomas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Divya Prakash Gnanadhas
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Prasanta K Dash
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Harris Gelbard
- Department of Neurology, University of Rochester Medical Centre, Rochester, NY 14618, USA
| | - Howard E Gendelman
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Zhang G, Luk BT, Hamidy M, Zhang L, Spector SA. Induction of a Na +/K +-ATPase-dependent form of autophagy triggers preferential cell death of human immunodeficiency virus type-1-infected macrophages. Autophagy 2018; 14:1359-1375. [PMID: 29962265 DOI: 10.1080/15548627.2018.1476014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy is highly effective in suppressing human immunodeficiency virus type-1 (HIV) replication, treatment has failed to eliminate viral reservoirs and discontinuation of treatment results in viral reactivation. Here, we demonstrate that peptides Tat-vFLIP-α2 and Tat-Beclin 1/BECN1 which have been shown to induce a Na+/K+-ATPase- and a macroautophagy/autophagy-dependent form of cell death, autosis, can preferentially kill HIV-infected macrophages while preventing virological rebound. To improve bioavailability and drug delivery, Tat-vFLIP-α2 was encapsulated into biodegradable PLGA (poly lactic-co-glycolic acid)-lipid-PEG (polyethylene glycol) nanoparticles for long-lasting intracellular delivery. After a single dose of NP-vFLIP-α2, HIV-infected macrophages were preferentially killed in a dose-dependent manner compared to uninfected or untreated HIV-infected cells with complete inhibition of HIV infection at 10 μM of peptide. HIV-infected macrophages treated with NP-vFLIP-α2 exhibited increased markers of autophagy including LC3B lipidation, SQSTM1/p62 degradation and Na+/K+-ATPase expression compared to untreated uninfected or infected cells. Moreover, the increased cell death observed in HIV-infected cells was not altered by treatment with bafilomycin A1 (BAF) or the caspase inhibitor Z-VAD-FMK, but could be reversed following treatment with the Na+/K+-ATPase inhibitor, digoxin, or knockdown of ATG5 or ATG7. NP-vFLIP-α2 induced preferential killing was also detected in HIV-infected macrophages under antiretroviral suppression without inducing viral reactivation. Additionally, we found that Na+/K+-ATPase was upregulated in HIV-infected cells, which enhanced NP-vFLIP-α2 induced cell death. These findings provide a novel strategy to eradicate HIV-infected macrophages by selectively killing infected cells through the induction of Na+/K+-ATPase dependent autophagy, while preventing reactivation of virus and new infection of uninfected bystander cells.
Collapse
Affiliation(s)
- Gang Zhang
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Brian T Luk
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Morcel Hamidy
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Stephen A Spector
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA.,c Division of Infectious Diseases , Rady Children's Hospital , San Diego , CA , USA
| |
Collapse
|
19
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
20
|
HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J Neuroimmune Pharmacol 2018; 14:52-67. [PMID: 29572681 DOI: 10.1007/s11481-018-9785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.
Collapse
|
21
|
Zhang X. Anti-retroviral drugs: current state and development in the next decade. Acta Pharm Sin B 2018; 8:131-136. [PMID: 29719774 PMCID: PMC5925449 DOI: 10.1016/j.apsb.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 01/05/2023] Open
Abstract
The pace of discovery of new antiretroviral (ARV) drugs has slowed, although the efficacy and safety of once-daily fixed dose combinations have been extensively investigated. Several traditional ARV drugs remain in phase III clinical trials. This review summarizes current information on ARV drugs in phase III clinical trials and focuses on the development of ARV drugs in the next decade.
Collapse
|
22
|
Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE. Creation of a long-acting nanoformulated dolutegravir. Nat Commun 2018; 9:443. [PMID: 29402886 PMCID: PMC5799307 DOI: 10.1038/s41467-018-02885-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Potent antiretroviral activities and a barrier to viral resistance characterize the human immunodeficiency virus type one (HIV-1) integrase strand transfer inhibitor dolutegravir (DTG). Herein, a long-acting parenteral DTG was created through chemical modification to improve treatment outcomes. A hydrophobic and lipophilic modified DTG prodrug is encapsulated into poloxamer nanoformulations (NMDTG) and characterized by size, shape, polydispersity, and stability. Retained intracytoplasmic NMDTG particles release drug from macrophages and attenuate viral replication and spread of virus to CD4+ T cells. Pharmacokinetic tests in Balb/cJ mice show blood DTG levels at, or above, its inhibitory concentration90 of 64 ng/mL for 56 days, and tissue DTG levels for 28 days. NMDTG protects humanized mice from parenteral challenge of the HIV-1ADA strain for two weeks. These results are a first step towards producing a long-acting DTG for human use by affecting drug apparent half-life, cell and tissue drug penetration, and antiretroviral potency.
Collapse
Affiliation(s)
- Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Rose R, Nolan DJ, Maidji E, Stoddart CA, Singer EJ, Lamers SL, McGrath MS. Eradication of HIV from Tissue Reservoirs: Challenges for the Cure. AIDS Res Hum Retroviruses 2018; 34:3-8. [PMID: 28691499 DOI: 10.1089/aid.2017.0072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The persistence of HIV infection, even after lengthy and successful combined antiretroviral therapy (cART), has precluded an effective cure. The anatomical locations and biological mechanisms through which the viral population is maintained remain unknown. Much research has focused nearly exclusively on circulating resting T cells as the predominant source of persistent HIV, a strategy with limited success in developing an effective cure strategy. In this study, we review research supporting the importance of anatomical tissues and other immune cells for HIV maintenance and expansion, including the central nervous system, lymph nodes, and macrophages. We present accumulated research that clearly demonstrates the limitations of using blood-derived cells as a proxy for tissue reservoirs and sanctuaries throughout the body. We cite recent studies that have successfully used deep-sequencing strategies to uncover the complexity of HIV infection and the ability of the virus to evolve despite undetectable plasma viral loads. Finally, we suggest new strategies and highlight the importance of tissue banks for future research.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Cheryl A. Stoddart
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Elyse J. Singer
- The National Neurological AIDS Bank at David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Olive View-UCLA Medical Center, Los Angeles, California
| | | | - Michael S. McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
24
|
Kevadiya BD, Woldstad C, Ottemann BM, Dash P, Sajja BR, Lamberty B, Morsey B, Kocher T, Dutta R, Bade AN, Liu Y, Callen SE, Fox HS, Byrareddy SN, McMillan JM, Bronich TK, Edagwa BJ, Boska MD, Gendelman HE. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 2018; 8:256-276. [PMID: 29290806 PMCID: PMC5743473 DOI: 10.7150/thno.22764] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.
Collapse
Affiliation(s)
- Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Brendan M. Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rinku Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon E. Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
25
|
Berger E, Breznan D, Stals S, Jasinghe VJ, Gonçalves D, Girard D, Faucher S, Vincent R, Thierry AR, Lavigne C. Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages. Nanobiomedicine (Rij) 2017; 4:1849543517746259. [PMID: 29942393 PMCID: PMC6009795 DOI: 10.1177/1849543517746259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Current antiretroviral drugs used to prevent or treat human immunodeficiency virus type 1 (HIV-1) infection are not able to eliminate the virus within tissues or cells where HIV establishes reservoirs. Hence, there is an urgent need to develop targeted delivery systems to enhance drug concentrations in these viral sanctuary sites. Macrophages are key players in HIV infection and contribute significantly to the cellular reservoirs of HIV because the virus can survive for prolonged periods in these cells. In the present work, we investigated the potential of the lipid-based Neutraplex nanosystem to deliver anti-HIV therapeutics in human macrophages using the human monocyte/macrophage cell line THP-1. Neutraplex nanoparticles as well as cationic and anionic Neutraplex nanolipoplexes (Neutraplex/small interfering RNA) were prepared and characterized by dynamic light scattering. Neutraplex nanoparticles showed low cytotoxicity in CellTiter-Blue reduction and lactate dehydrogenase release assays and were not found to have pro-inflammatory effects. In addition, confocal studies showed that the Neutraplex nanoparticles and nanolipoplexes are rapidly internalized into THP-1 macrophages and that they can escape the late endosome/lysosome compartment allowing the delivery of small interfering RNAs in the cytoplasm. Furthermore, HIV replication was inhibited in the in vitro TZM-bl infectivity assay when small interfering RNAs targeting CXCR4 co-receptor was delivered by Neutraplex nanoparticles compared to a random small interfering RNA sequence. This study demonstrates that the Neutraplex nanosystem has potential for further development as a delivery strategy to efficiently and safely enhance the transport of therapeutic molecules into human monocyte-derived macrophages in the aim of targeting HIV-1 in this cellular reservoir.
Collapse
Affiliation(s)
- Eric Berger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Dalibor Breznan
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sandra Stals
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Viraj J Jasinghe
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - David Gonçalves
- INRS-Institut Armand Frappier Centre, University of Quebec, Laval, Quebec, Canada
| | - Denis Girard
- INRS-Institut Armand Frappier Centre, University of Quebec, Laval, Quebec, Canada
| | - Sylvie Faucher
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Renaud Vincent
- Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alain R Thierry
- Institute of Cancer Research of Montpellier, French National Institute of Health and Medical Research U986, Montpellier, France
| | - Carole Lavigne
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,INRS-Institut Armand Frappier Centre, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
26
|
Bednasz CJ, Ma Q, Morse GD. Translational pharmacology and HIV reservoir eradication strategies. Future Virol 2017. [DOI: 10.2217/fvl-2017-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Cindy J Bednasz
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences & School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Qing Ma
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences & School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Gene D Morse
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, Translational Pharmacology Research Core, Center for Integrated Global Biomedical Sciences & School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
27
|
Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2017; 151:53-65. [PMID: 29059541 PMCID: PMC5926202 DOI: 10.1016/j.biomaterials.2017.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023]
Abstract
Long-acting parenteral (LAP) antiretroviral drugs have generated considerable interest for treatment and prevention of HIV-1 infection. One new LAP is cabotegravir (CAB), a highly potent integrase inhibitor, with a half-life of up to 54 days, allowing for every other month parenteral administrations. Despite this excellent profile, high volume dosing, injection site reactions and low body fluid drug concentrations affect broad use for virus infected and susceptible people. To improve the drug delivery profile, we created a myristoylated CAB prodrug (MCAB). MCAB formed crystals that were formulated into nanoparticles (NMCAB) of stable size and shape facilitating avid monocyte-macrophage entry, retention and reticuloendothelial system depot formulation. Drug release kinetics paralleled sustained protection against HIV-1 challenge. After a single 45 mg/kg intramuscular injection to BALB/cJ mice, the NMCAB pharmacokinetic profiles was 4-times greater than that recorded for CAB LAP. These observations paralleled replicate measurements in rhesus macaques. The results coupled with improved viral restriction in human adult lymphocyte reconstituted NOD/SCID/IL2Rγc-/- mice led us to conclude that NMCAB can improve biodistribution and viral clearance profiles upon current CAB LAP formulations.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam Szlachetka
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Nebraska Nanomedicine Production Plant, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.
Collapse
|
29
|
Gnanadhas DP, Dash PK, Sillman B, Bade AN, Lin Z, Palandri DL, Gautam N, Alnouti Y, Gelbard HA, McMillan J, Mosley RL, Edagwa B, Gendelman HE, Gorantla S. Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest 2017; 127:857-873. [PMID: 28134625 PMCID: PMC5330738 DOI: 10.1172/jci90025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022] Open
Abstract
Long-acting anti-HIV products can substantively change the standard of care for patients with HIV/AIDS. To this end, hydrophobic antiretroviral drugs (ARVs) were recently developed for parenteral administration at monthly or longer intervals. While shorter-acting hydrophilic drugs can be made into nanocarrier-encased prodrugs, the nanocarrier encasement must be boosted to establish long-acting ARV depots. The mixed-lineage kinase 3 (MLK-3) inhibitor URMC-099 provides this function by affecting autophagy. Here, we have shown that URMC-099 facilitates ARV sequestration and its antiretroviral responses by promoting the nuclear translocation of the transcription factor EB (TFEB). In monocyte-derived macrophages, URMC-099 induction of autophagy led to retention of nanoparticles containing the antiretroviral protease inhibitor atazanavir. These nanoparticles were localized within macrophage autophagosomes, leading to a 4-fold enhancement of mitochondrial and cell vitality. In rodents, URMC-099 activation of autophagy led to 50-fold increases in the plasma drug concentration of the viral integrase inhibitor dolutegravir. These data paralleled URMC-099-mediated induction of autophagy and the previously reported antiretroviral responses in HIV-1-infected humanized mice. We conclude that pharmacologic induction of autophagy provides a means to extend the action of a long-acting, slow, effective release of antiretroviral therapy.
Collapse
Affiliation(s)
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Zhiyi Lin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Diana L. Palandri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Harris A. Gelbard
- Center for Neural Development and Disease, University of Rochester Medical Center (URMC), Rochester, New York, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine
| |
Collapse
|
30
|
Kevadiya BD, Bade AN, Woldstad C, Edagwa BJ, McMillan JM, Sajja BR, Boska MD, Gendelman HE. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater 2017; 49:507-520. [PMID: 27916740 PMCID: PMC5501313 DOI: 10.1016/j.actbio.2016.11.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
Abstract
The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM-1s-1 and r2=419.52mM-1s-1 (in saline) and r2=736.57mM-1s-1 and r2=814.41mM-1s-1 (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM-1s-1 in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. STATEMENT OF SIGNIFICANCE A novel europium (Eu3+) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve as a platform for designing improved drug delivery strategies to combat inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Christopher Woldstad
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| |
Collapse
|
31
|
Prathipati PK, Mandal S, Destache CJ. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC-MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 129:473-481. [PMID: 27497648 PMCID: PMC5003708 DOI: 10.1016/j.jpba.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022]
Abstract
Combination antiretroviral (cARV) treatment is more common in human immunodeficiency virus (HIV) infection. In many instances, treatment regimen includes two or more combination of drugs from six different classes. Some of the antiretroviral combination medications are under study at preclinical and clinical stages. A precise method is required to quantify the drug concentration in biological matrices to study pharmacokinetic behavior and tissue distribution profile in animals and/or humans. We have developed and validated a sensitive and precise liquid chromatography-tandem mass spectrometry method for simultaneous quantification of selected antiretroviral drugs, tenofovir (TNF), emtricitabine (FTC), rilpivirine (RPV), dolutegravir (DTG) and elvitegravir (EVG) in mouse biological matrices. This method involves a solid phase extraction, simple isocratic chromatographic separation using Restek Pinnacle DB BiPh column (50mm×2.1mm, 5μm) and mass spectrometric detection by an API 3200 Q Trap instrument. The total run time for each sample was 6min. The method was validated in the concentration range of 5-2000ng/mL for FTC, RPV, DTG, EVG and 10-4000ng/mL for TNF respectively with correlation coefficients (r(2)) higher than 0.9976. The results of intra and inter-run assay precision and accuracy were within acceptance limits for all the five analytes. This method was used to support the study of pharmacokinetics and tissue distribution profile of nanoformulated antiretroviral drugs in mice.
Collapse
Affiliation(s)
- Pavan Kumar Prathipati
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States.
| | - Subhra Mandal
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States
| | - Christopher J Destache
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States
| |
Collapse
|
32
|
Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv Drug Deliv Rev 2016; 103:144-156. [PMID: 26916628 PMCID: PMC4935562 DOI: 10.1016/j.addr.2016.02.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Advances in solid drug nanoparticle technologies have resulted in a number of long-acting (LA) formulations with the potential for once monthly or longer administration. Such formulations offer great utility for chronic diseases, particularly when a lack of medication compliance may be detrimental to treatment response. Two such formulations are in clinical development for HIV but the concept of LA delivery has its origins in indications such as schizophrenia and contraception. Many terms have been utilised to describe the LA approach and standardisation would be beneficial. Ultimately, definitions will depend upon specific indications and routes of delivery, but for HIV we propose benchmarks that reflect perceived clinical benefits and available data on patient attitudes. Specifically, we propose dosing intervals of ≥1week, ≥1month or ≥6months, for oral, injectable or implantable strategies, respectively. This review focuses upon the critical importance of potency in achieving the LA outcome for injectable formulations and explores established and emerging technologies that have been employed across indications. Key technological challenges such as the need for consistency and ease of administration for drug combinations, are also discussed. Finally, the review explores the gaps in knowledge regarding the pharmacology of drug release from particulate-based LA injectable suspensions. A number of hypotheses are discussed based upon available data relating to local drug metabolism, active transport systems, the lymphatics, macrophages and patient-specific factors. Greater knowledge of the mechanisms that underpin drug release and protracted exposure will help facilitate further development of this strategy to achieve the promising clinical benefits.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 70 Pembroke Place, University of Liverpool, Liverpool L693GF, UK
| | - Steve Rannard
- Department of Chemistry, Crown Street, University of Liverpool, L69 3BX, UK
| |
Collapse
|
33
|
Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 2016; 11:1913-27. [PMID: 27456759 DOI: 10.2217/nnm-2016-0164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. METHODS Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. RESULTS MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. CONCLUSION MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Zhang G, Guo D, Dash PK, Araínga M, Wiederin JL, Haverland NA, Knibbe-Hollinger J, Martinez-Skinner A, Ciborowski P, Goodfellow VS, Wysocki TA, Wysocki BJ, Poluektova LY, Liu XM, McMillan JM, Gorantla S, Gelbard HA, Gendelman HE. The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:109-22. [PMID: 26472049 PMCID: PMC4728028 DOI: 10.1016/j.nano.2015.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
Abstract
During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Dongwei Guo
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariluz Araínga
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Jayme L Wiederin
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA; Office of the Vice Chancellor for Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Jaclyn Knibbe-Hollinger
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrea Martinez-Skinner
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tadeusz A Wysocki
- Department of Computer and Electronics Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Beata J Wysocki
- Department of Computer and Electronics Engineering, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Xin-Ming Liu
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA
| | - Harris A Gelbard
- Department of Neurology, Center for Neural Development & Disease, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Sajja BR, Bade AN, Zhou B, Uberti MG, Gorantla S, Gendelman HE, Boska MD, Liu Y. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas. J Neuroimmune Pharmacol 2015; 11:133-41. [PMID: 26556033 DOI: 10.1007/s11481-015-9635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.
Collapse
Affiliation(s)
- Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Biyun Zhou
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan, China
| | - Mariano G Uberti
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
36
|
Cory TJ, Midde NM, Rao P, Kumar S. Investigational reverse transcriptase inhibitors for the treatment of HIV. Expert Opin Investig Drugs 2015; 24:1219-28. [PMID: 26088266 DOI: 10.1517/13543784.2015.1058357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION While considerable advances have been made in the development of antiretroviral agents, there is still work to be done. Reverse transcriptase inhibitors are important drugs for the treatment of HIV, and considerable research is currently ongoing to develop new agents and to modify currently existing agents. AREAS COVERED Herein, the authors discuss both investigational nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), including agents that are in various stages of development. They also discuss novel formulations that are being investigated for currently available drugs, and discuss the advantages that these new formulations may provide. EXPERT OPINION New formulations and co-formulations of currently existing antiretrovirals will represent an important area of development, as a means to improve adherence for HIV-positive individuals. New formulations will continue to be developed, with a focus on allowing for less-frequent administration, as well increasing drug concentrations at local sites such as vaginal tissue, rectal tissue and sites in the immune system.
Collapse
Affiliation(s)
- Theodore J Cory
- University of Tennessee Health Science Center College of Pharmacy, Department of Clinical Pharmacy , 881 Madison Avenue, Memphis, TN 38163 , USA +1 901 448 7216 ; +1 901 448 1741 ;
| | | | | | | |
Collapse
|
37
|
Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:751-67. [PMID: 25645958 DOI: 10.1016/j.nano.2014.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/01/2022]
Abstract
Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. From the clinical editor: Many nervous system disorders remain unresolved clinical problems. In many cases, drug agents simply cannot cross the blood-brain barrier (BBB) into the nervous system. The advent of nanomedicines can enhance the delivery of biologically active molecules for targeted therapy and imaging. This review focused on the use of nanotechnology for degenerative, inflammatory, and infectious diseases in the nervous system.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | | | - Xinming Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA.
| |
Collapse
|
38
|
Araínga M, Guo D, Wiederin J, Ciborowski P, McMillan J, Gendelman HE. Opposing regulation of endolysosomal pathways by long-acting nanoformulated antiretroviral therapy and HIV-1 in human macrophages. Retrovirology 2015; 12:5. [PMID: 25608975 PMCID: PMC4307176 DOI: 10.1186/s12977-014-0133-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve patient regimen adherence, reduce systemic drug toxicities, and facilitate clearance of human immunodeficiency virus type one (HIV-1) infection. While nanoART establishes drug depots within recycling and late monocyte-macrophage endosomes, whether or not this provides a strategic advantage towards viral elimination has not been elucidated. RESULTS We applied quantitative SWATH-MS proteomics and cell profiling to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-derived macrophages (MDM). Native ATV and uninfected cells served as controls. Both HIV-1 and nanoATV engaged endolysosomal trafficking for assembly and depot formation, respectively. Notably, the pathways were deregulated in opposing manners by the virus and the nanoATV, likely by viral clearance. Paired-sample z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked endolysosomal proteins. NanoART and native ATV treated uninfected cells showed limited effects. The data was confirmed by Western blot. DAVID and KEGG bioinformatics analyses of proteomic data showed relationships between secretory, mobility and phagocytic cell functions and virus and particle trafficking. CONCLUSIONS We posit that modulation of endolysosomal pathways by antiretroviral nanoparticles provides a strategic path to combat HIV infection.
Collapse
Affiliation(s)
- Mariluz Araínga
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Dongwei Guo
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
- />Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Jayme Wiederin
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Pawel Ciborowski
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - JoEllyn McMillan
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E Gendelman
- />Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880 USA
- />Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
39
|
Puligujja P, Balkundi SS, Kendrick LM, Baldridge HM, Hilaire JR, Bade AN, Dash PK, Zhang G, Poluektova LY, Gorantla S, Liu XM, Ying T, Feng Y, Wang Y, Dimitrov DS, McMillan JM, Gendelman HE. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials 2014; 41:141-50. [PMID: 25522973 DOI: 10.1016/j.biomaterials.2014.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/02/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
Abstract
Long-acting nanoformulated antiretroviral therapy (nanoART) that targets monocyte-macrophages could improve the drug's half-life and protein-binding capacities while facilitating cell and tissue depots. To this end, ART nanoparticles that target the folic acid (FA) receptor and permit cell-based drug depots were examined using pharmacokinetic and pharmacodynamic (PD) tests. FA receptor-targeted poloxamer 407 nanocrystals, containing ritonavir-boosted atazanavir (ATV/r), significantly increased drug bioavailability and PD by five and 100 times, respectively. Drug particles administered to human peripheral blood lymphocyte reconstituted NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice and infected with HIV-1ADA led to ATV/r drug concentrations that paralleled FA receptor beta staining in both the macrophage-rich parafollicular areas of spleen and lymph nodes. Drug levels were higher in these tissues than what could be achieved by either native drug or untargeted nanoART particles. The data also mirrored potent reductions in viral loads, tissue viral RNA and numbers of HIV-1p24+ cells in infected and treated animals. We conclude that FA-P407 coating of ART nanoparticles readily facilitates drug carriage and antiretroviral responses.
Collapse
Affiliation(s)
- Pavan Puligujja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shantanu S Balkundi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Kansas University Innovation and Collaboration, Lawrence, KS 66045, USA
| | - Lindsey M Kendrick
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Hannah M Baldridge
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Gang Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Xin-Ming Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Tianlei Ying
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Yang Feng
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yanping Wang
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|