1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Jamieson PJ, Shen X, Abu-Shmais AA, Wasdin PT, Janowska K, Edwards RJ, Scapellato G, Richardson SI, Manamela NP, Liu S, Barr M, Gillespie RA, Mimms J, Suryadevara N, Sornberger TA, Zost S, Parks R, Flaherty S, Janke AK, Howard BN, Suresh YP, Ruprecht RM, Crowe JE, Carnahan RH, Bailey JR, Masaru K, Haynes BF, Moore PL, Acharya P, Montefiori DC, Kalams SA, Lu S, Georgiev IS. Glycan-reactive antibodies isolated from human HIV-1 vaccine trial participants show broad pathogen cross-reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633475. [PMID: 39896680 PMCID: PMC11785028 DOI: 10.1101/2025.01.17.633475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
HIV-1 continues to pose a significant global health challenge, requiring ongoing research into effective prevention and treatment strategies. Understanding the B cell repertoire that can be engaged upon vaccination in humans is crucial for the development of future preventive vaccines. In this study, PBMCs from HIV-negative participants in the multivalent HVTN124 human HIV-1 vaccine clinical trial were interrogated for HIV-reactive B cells using LIBRA-seq, a high-throughput B cell mapping technology. We report the discovery of glycan-reactive antibodies capable of neutralizing diverse heterologous HIV-1 virus strains. Further, isolated antibodies showed broad cross-reactivity against antigens from a variety of other pathogens, while remaining mostly negative on autoreactivity assays. The emerging class of glycan-reactive virus-neutralizing antibodies with exceptional breadth of pathogen cross-reactivity may present an effective target for vaccination at the population level.
Collapse
Affiliation(s)
- Parker J Jamieson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garrett Scapellato
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Mimms
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ty A Sornberger
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shelby Flaherty
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexis K Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bethany N Howard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kanekiyo Masaru
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Priyamvada Acharya
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Spyros A Kalams
- Infectious Diseases Unit, Department of Internal Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
3
|
Kundu J, Le HT, Logan M, Hockman D, Landi A, Crawford K, Wininger M, Johnson J, Kundu JK, Tiffney EA, Urbanowicz RA, Ball JK, Bailey JR, Bukh J, Law M, Foung S, Tyrrell DL, Houghton M, Law JL. Recombinant H77C gpE1/gpE2 heterodimer elicits superior HCV cross-neutralisation than H77C gpE2 alone. J Hepatol 2024; 81:941-948. [PMID: 38986744 PMCID: PMC11830426 DOI: 10.1016/j.jhep.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS An optimal HCV vaccine requires the induction of antibodies that neutralise the infectivity of many heterogenous viral isolates. In this study, we have focused on determining the optimal recombinant envelope glycoprotein component to elicit cross-neutralising antibodies against global HCV genotypes. We compared the immunoreactivity and antigenicity of the HCV genotype 1a strain H77C-derived envelope glycoprotein heterodimer gpE1/gpE2 with that of recombinant gpE2 alone. METHODS Characterisation of the envelope glycoproteins was accomplished by determining their ability to bind to a panel of broadly cross-neutralising monoclonal antibodies. Immunogenicity was determined by testing the ability of vaccine antisera to neutralise the infectivity in vitro of a panel of pseudotyped HCV particles in which gpE1/gpE2 derived from representative isolates of the major global HCV genotypes were displayed. RESULTS gpE1/gpE2 binds to more diverse broadly cross-neutralising antibodies than gpE2 alone and elicits a broader profile of cross-neutralising antibodies in animals, especially against more heterologous, non-1a genotypes. While not all heterologous HCV strains can be potently inhibited in vitro by gpE1/gpE2 antisera derived from a single HCV strain, the breadth of heterologous cross-neutralisation is shown to be substantial. CONCLUSIONS Our work supports the inclusion of gpE1/gpE2 in an HCV vaccine in order to maximise the cross-neutralisation of heterogenous HCV isolates. Our data also offers future directions in formulating a cocktail of gpE1/gpE2 antigens from a small selection of HCV genotypes to further enhance cross-neutralisation of global HCV strains and hopefully advance the development of a globally effective HCV vaccine. IMPACT AND IMPLICATIONS An HCV vaccine is urgently required to prevent the high global incidence of HCV infection and disease. Since HCV is a highly heterogeneous virus, it is desirable for a vaccine to elicit antibodies that neutralise the infectivity of most global strains. To this end, we have compared the immunoreactivity and antigenicity of recombinant H77C E1E2 heterodimer with that of H77C E2 alone and show that the former exhibits more cross-neutralising epitopes and demonstrates a broader cross-neutralisation profile in vitro. In addition, our data suggests a way to further broaden cross-neutralisation using a combination of E1E2 antigens derived from a few different HCV clades. Our work is relevant for the development of an effective global HCV vaccine.
Collapse
Affiliation(s)
- Juthika Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Hoa T Le
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Logan
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Abdolamir Landi
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Crawford
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Wininger
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle Johnson
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Joydeb K Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - E Alana Tiffney
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard A Urbanowicz
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom; Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Justin R Bailey
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven Foung
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - John Lokman Law
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Janus BM, Wang R, Cleveland TE, Metcalf MC, Lemmer AC, van Dyk N, Jeong S, Astavans A, Class K, Fuerst TR, Ofek G. Macaque antibodies targeting Marburg virus glycoprotein induced by multivalent immunization. J Virol 2024; 98:e0015524. [PMID: 38832790 PMCID: PMC11329191 DOI: 10.1128/jvi.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.
Collapse
Affiliation(s)
- Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Matthew C Metcalf
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Aaron C Lemmer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Nydia van Dyk
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Sarah Jeong
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Anagh Astavans
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kenneth Class
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Thomas R Fuerst
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
5
|
Eisa M, Gomez-Escobar E, Bédard N, Abdeltawab NF, Flores N, Mazouz S, Fieffé-Bédard A, Sakayan P, Gridley J, Abdel-Hakeem MS, Bruneau J, Grakoui A, Shoukry NH. Coordinated expansion of memory T follicular helper and B cells mediates spontaneous clearance of HCV reinfection. Front Immunol 2024; 15:1403769. [PMID: 38947319 PMCID: PMC11211980 DOI: 10.3389/fimmu.2024.1403769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Alizée Fieffé-Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Patrick Sakayan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - John Gridley
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine familiale et département d’urgence, Université de Montréal, Montréal, QC, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Chumbe A, Grobben M, Capella-Pujol J, Koekkoek SM, Zon I, Slamanig S, Merat SJ, Beaumont T, Sliepen K, Schinkel J, van Gils MJ. A panel of hepatitis C virus glycoproteins for the characterization of antibody responses using antibodies with diverse recognition and neutralization patterns. Virus Res 2024; 341:199308. [PMID: 38171391 PMCID: PMC10821612 DOI: 10.1016/j.virusres.2024.199308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.
Collapse
Affiliation(s)
- Ana Chumbe
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sylvie M Koekkoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ian Zon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stefan Slamanig
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | - Tim Beaumont
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; AIMM Therapeutics, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Janke Schinkel
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Frumento N, Sinnis-Bourozikas A, Paul HT, Stavrakis G, Zahid MN, Wang S, Ray SC, Flyak AI, Shaw GM, Cox AL, Bailey JR. Neutralizing antibodies evolve to exploit vulnerable sites in the HCV envelope glycoprotein E2 and mediate spontaneous clearance of infection. Immunity 2024; 57:40-51.e5. [PMID: 38171362 PMCID: PMC10874496 DOI: 10.1016/j.immuni.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ariadne Sinnis-Bourozikas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry T Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Stavrakis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad N Zahid
- University of Bahrain, Department of Biology, College of Science, Sakhir Campus, Sakhir, Bahrain
| | - Shuyi Wang
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - George M Shaw
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Zhang H, Bull RA, Quadeer AA, McKay MR. HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies. Virus Evol 2023; 9:vead068. [PMID: 38107333 PMCID: PMC10722114 DOI: 10.1093/ve/vead068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Rowena A Bull
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, Sydney, NSW 2052, Australia
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Cantoni D, Wilkie C, Bentley EM, Mayora-Neto M, Wright E, Scott S, Ray S, Castillo-Olivares J, Heeney JL, Mattiuzzo G, Temperton NJ. Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature. Front Immunol 2023; 14:1184362. [PMID: 37790941 PMCID: PMC10544934 DOI: 10.3389/fimmu.2023.1184362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.
Collapse
Affiliation(s)
- Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Emma M. Bentley
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| |
Collapse
|
10
|
Liang TJ, Law JLM, Pietschmann T, Ray SC, Bukh J, Bull R, Chung RT, Tyrrell DL, Houghton M, Rice CM. Challenge Inoculum for Hepatitis C Virus Controlled Human Infection Model. Clin Infect Dis 2023; 77:S257-S261. [PMID: 37579208 PMCID: PMC10681659 DOI: 10.1093/cid/ciad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 08/16/2023] Open
Abstract
For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.
Collapse
Affiliation(s)
- T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John L M Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital; Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rowena Bull
- Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- School of Biomedical Sciences and The Kirby Institute, Medicine and Health, University of New South Wales, Sydney, Australia
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
11
|
Mosa A, Campo D, Khudyakov Y, AbouHaidar M, Gehring A, Zahoor A, Ball J, Urbanowicz R, Feld J. Polyvalent immunization elicits a synergistic broadly neutralizing immune response to hypervariable region 1 variants of hepatitis C virus. Proc Natl Acad Sci U S A 2023; 120:e2220294120. [PMID: 37276424 PMCID: PMC10268328 DOI: 10.1073/pnas.2220294120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/29/2023] [Indexed: 06/07/2023] Open
Abstract
A hepatitis C virus (HCV) vaccine is urgently needed. Vaccine development has been hindered by HCV's genetic diversity, particularly within the immunodominant hypervariable region 1 (HVR1). Here, we developed a strategy to elicit broadly neutralizing antibodies to HVR1, which had previously been considered infeasible. We first applied a unique information theory-based measure of genetic distance to evaluate phenotypic relatedness between HVR1 variants. These distances were used to model the structure of HVR1's sequence space, which was found to have five major clusters. Variants from each cluster were used to immunize mice individually, and as a pentavalent mixture. Sera obtained following immunization neutralized every variant in a diverse HCVpp panel (n = 10), including those resistant to monovalent immunization, and at higher mean titers (1/ID50 = 435) than a glycoprotein E2 (1/ID50 = 205) vaccine. This synergistic immune response offers a unique approach to overcoming antigenic variability and may be applicable to other highly mutable viruses.
Collapse
Affiliation(s)
- Alexander I. Mosa
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, M5G 2C4ON, Canada
| | - David S. Campo
- Molecular Epidemiology and Bioinformatics, Centers for Disease Control and Prevention, Atlanta30333, Georgia
| | - Yury Khudyakov
- Molecular Epidemiology and Bioinformatics, Centers for Disease Control and Prevention, Atlanta30333, Georgia
| | - Mounir G. AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5ON, Canada
| | - Adam J. Gehring
- Department of Immunology, University of Toronto, Toronto, M5S 1A8ON, Canada
| | - Atif Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, M5G 2C4ON, Canada
| | - Jonathan K. Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, NottinghamNG8 1BB, United Kingdom
| | - Richard A. Urbanowicz
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolCH64 7TE, United Kingdom
| | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, M5G 2C4ON, Canada
| |
Collapse
|
12
|
Pilewski KA, Wall S, Richardson SI, Manamela NP, Clark K, Hermanus T, Binshtein E, Venkat R, Sautto GA, Kramer KJ, Shiakolas AR, Setliff I, Salas J, Mapengo RE, Suryadevara N, Brannon JR, Beebout CJ, Parks R, Raju N, Frumento N, Walker LM, Fechter EF, Qin JS, Murji AA, Janowska K, Thakur B, Lindenberger J, May AJ, Huang X, Sammour S, Acharya P, Carnahan RH, Ross TM, Haynes BF, Hadjifrangiskou M, Crowe JE, Bailey JR, Kalams S, Morris L, Georgiev IS. Functional HIV-1/HCV cross-reactive antibodies isolated from a chronically co-infected donor. Cell Rep 2023; 42:112044. [PMID: 36708513 PMCID: PMC10372200 DOI: 10.1016/j.celrep.2023.112044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.
Collapse
Affiliation(s)
- Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Kaitlyn Clark
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rutendo E Mapengo
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naveen Suryadevara
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren M Walker
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Juliana S Qin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amyn A Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Bhishem Thakur
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Aaron J May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Spyros Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Chumbe A, Urbanowicz RA, Sliepen K, Koekkoek SM, Molenkamp R, Tarr AW, Ball JK, Schinkel J, van Gils MJ. Optimization of the pseudoparticle system for standardized assessments of neutralizing antibodies against hepatitis C virus. J Gen Virol 2022; 103. [PMID: 36399377 DOI: 10.1099/jgv.0.001801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A better understanding of the antibody response during natural infection and the effect on disease progression and reinfection is necessary for the development of a protective hepatitis C virus (HCV) vaccine. The HCV pseudoparticle (HCVpp) system enables the study of viral entry and inhibition by antibody neutralization. A robust and comparable neutralization assay is crucial for the development and evaluation of experimental vaccines.With the aim of optimizing the HCVpp-murine leukaemia virus (MLV) system, we tested the neutralization of HCVpp-harbouring E1E2 from 21 HCV isolates representing 6 different genotypes by several monoclonal antibodies (mAbs). HCVpps are generated by expressing functional envelope glycoproteins (E1E2) onto pseudoparticles derived from env-deleted MLV. Adjustments of E1E2, gag-pol and luciferase plasmid ratios resulted in increased yields for most HCVpps and recovery of one non-infectious HCVpp. We simplified and improved the protocol to achieve higher signal/noise ratios and minimized the amount of HCVpps and mAbs needed for the detection of neutralization. Using our optimized protocol, we demonstrated comparable results to previously reported data with both diluted and freeze-thawed HCVpps.In conclusion, we successfully established a simplified and reproducible HCVpp neutralization protocol for studying a wide range of HCV variants. This simplified protocol provides highly consistent results and could be easily adopted by others to evaluate precious biological material. This will contribute to a better understanding of the antibody response during natural infection and help evaluate experimental HCV vaccines.
Collapse
Affiliation(s)
- Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sylvie M Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
14
|
Bozhanova NG, Flyak AI, Brown BP, Ruiz SE, Salas J, Rho S, Bombardi RG, Myers L, Soto C, Bailey JR, Crowe JE, Bjorkman PJ, Meiler J. Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nat Commun 2022; 13:3178. [PMID: 35676279 PMCID: PMC9177688 DOI: 10.1038/s41467-022-30865-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Despite recent success in hepatitis C virus (HCV) treatment using antivirals, an HCV vaccine is still needed to prevent reinfections in treated patients, to avert the emergence of drug-resistant strains, and to provide protection for people with no access to the antiviral therapeutics. The early production of broadly neutralizing antibodies (bNAbs) associates with HCV clearance. Several potent bNAbs bind a conserved HCV glycoprotein E2 epitope using an unusual heavy chain complementarity determining region 3 (HCDR3) containing an intra-loop disulfide bond. Isolation of additional structurally-homologous bNAbs would facilitate the recognition of key determinants of such bNAbs and guide rational vaccine design. Here we report the identification of new antibodies containing an HCDR3 disulfide bond motif using computational screening with the Rosetta software. Using the newly-discovered and already-known members of this antibody family, we review the required HCDR3 amino acid composition and propose determinants for the bent versus straight HCDR3 loop conformation observed in these antibodies.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Benjamin P Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stormy E Ruiz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC, 04103, Germany.
| |
Collapse
|
15
|
Salas JH, Urbanowicz RA, Guest JD, Frumento N, Figueroa A, Clark KE, Keck Z, Cowton VM, Cole SJ, Patel AH, Fuerst TR, Drummer HE, Major M, Tarr AW, Ball JK, Law M, Pierce BG, Foung SKH, Bailey JR. An Antigenically Diverse, Representative Panel of Envelope Glycoproteins for Hepatitis C Virus Vaccine Development. Gastroenterology 2022; 162:562-574. [PMID: 34655573 PMCID: PMC8792218 DOI: 10.1053/j.gastro.2021.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.
Collapse
Affiliation(s)
- Jordan H Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kaitlyn E Clark
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhenyong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Vanessa M Cowton
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sarah J Cole
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Arvind H Patel
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Zhang H, Quadeer AA, McKay MR. Evolutionary modeling reveals enhanced mutational flexibility of HCV subtype 1b compared with 1a. iScience 2022; 25:103569. [PMID: 34988406 PMCID: PMC8704487 DOI: 10.1016/j.isci.2021.103569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of liver-associated disease and liver cancer. Of the major HCV subtypes, patients infected with subtype 1b have been associated with having a higher risk of developing chronic infection and hepatocellular carcinoma. However, underlying reasons for this increased disease severity remain unknown. Here, we provide an evolutionary rationale, based on a comparative study of fitness landscape and in-host evolutionary models of the E2 glycoprotein of HCV subtypes 1a and 1b. Our analysis demonstrates that a higher chronicity rate of 1b may be attributed to lower fitness constraints, enabling 1b viruses to more easily escape antibody responses. More generally, our results suggest that differences in evolutionary constraints between HCV subtypes may be an important factor in mediating distinct disease outcomes. Our analysis also identifies antibodies that appear escape-resistant against both subtypes 1a and 1b, providing directions for designing HCV vaccines having cross-subtype protection.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Bankwitz D, Bahai A, Labuhn M, Doepke M, Ginkel C, Khera T, Todt D, Ströh LJ, Dold L, Klein F, Klawonn F, Krey T, Behrendt P, Cornberg M, McHardy AC, Pietschmann T. Hepatitis C reference viruses highlight potent antibody responses and diverse viral functional interactions with neutralising antibodies. Gut 2021; 70:1734-1745. [PMID: 33323394 PMCID: PMC8355883 DOI: 10.1136/gutjnl-2020-321190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Neutralising antibodies are key effectors of infection-induced and vaccine-induced immunity. Quantification of antibodies' breadth and potency is critical for understanding the mechanisms of protection and for prioritisation of vaccines. Here, we used a unique collection of human specimens and HCV strains to develop HCV reference viruses for quantification of neutralising antibodies, and to investigate viral functional diversity. DESIGN We profiled neutralisation potency of polyclonal immunoglobulins from 104 patients infected with HCV genotype (GT) 1-6 across 13 HCV strains representing five viral GTs. Using metric multidimensional scaling, we plotted HCV neutralisation onto neutralisation maps. We employed K-means clustering to guide virus clustering and selecting representative strains. RESULTS Viruses differed greatly in neutralisation sensitivity, with J6 (GT2a) being most resistant and SA13 (GT5a) being most sensitive. They mapped to six distinct neutralisation clusters, in part composed of viruses from different GTs. There was no correlation between viral neutralisation and genetic distance, indicating functional neutralisation clustering differs from sequence-based clustering. Calibrating reference viruses representing these clusters against purified antibodies from 496 patients infected by GT1 to GT6 viruses readily identified individuals with extraordinary potent and broadly neutralising antibodies. It revealed comparable antibody cross-neutralisation and diversity between specimens from diverse viral GTs, confirming well-balanced reporting of HCV cross-neutralisation across highly diverse human samples. CONCLUSION Representative isolates from six neutralisation clusters broadly reconstruct the functional HCV neutralisation space. They enable high resolution profiling of HCV neutralisation and they may reflect viral functional and antigenic properties important to consider in HCV vaccine design.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Akash Bahai
- Computational Biology for Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maurice Labuhn
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Mandy Doepke
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Corinne Ginkel
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Tanvi Khera
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular and Medical Virology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Leona Dold
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Koln, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital Cologne, Koln, Germany
- Partner site Cologne-Bonn, German Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbuttel, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Patrick Behrendt
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
- Partner site Hannover-Braunschweig, German Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Partner site Hannover-Braunschweig, German Centre for Infection Research, Braunschweig, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Alice C McHardy
- Computational Biology for Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Partner site Hannover-Braunschweig, German Centre for Infection Research, Braunschweig, Germany
| | - Thomas Pietschmann
- Experimental Virology, TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
- Partner site Hannover-Braunschweig, German Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
18
|
Kalemera MD, Capella-Pujol J, Chumbe A, Underwood A, Bull RA, Schinkel J, Sliepen K, Grove J. Optimized cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. J Gen Virol 2021; 102. [PMID: 33147126 PMCID: PMC8116788 DOI: 10.1099/jgv.0.001512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Collapse
Affiliation(s)
- Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| |
Collapse
|
19
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
20
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
21
|
Shaw J, Gosain R, Kalita MM, Foster TL, Kankanala J, Mahato DR, Abas S, King BJ, Scott C, Brown E, Bentham MJ, Wetherill L, Bloy A, Samson A, Harris M, Mankouri J, Rowlands DJ, Macdonald A, Tarr AW, Fischer WB, Foster R, Griffin S. Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. eLife 2020; 9:e52555. [PMID: 33169665 PMCID: PMC7714397 DOI: 10.7554/elife.52555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.
Collapse
Affiliation(s)
- Joseph Shaw
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Rajendra Gosain
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Monoj Mon Kalita
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Toshana L Foster
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jayakanth Kankanala
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - D Ram Mahato
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Sonia Abas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | - Claire Scott
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Emma Brown
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Matthew J Bentham
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Laura Wetherill
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Abigail Bloy
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
| | - Mark Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jamel Mankouri
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | | | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Stephen Griffin
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| |
Collapse
|
22
|
Pierce BG, Keck ZY, Wang R, Lau P, Garagusi K, Elkholy K, Toth EA, Urbanowicz RA, Guest JD, Agnihotri P, Kerzic MC, Marin A, Andrianov AK, Ball JK, Mariuzza RA, Fuerst TR, Foung SKH. Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. J Virol 2020; 94:e00704-20. [PMID: 32878891 PMCID: PMC7592221 DOI: 10.1128/jvi.00704-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.
Collapse
Affiliation(s)
- Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ruixue Wang
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle Garagusi
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Khadija Elkholy
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Eric A Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Richard A Urbanowicz
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Pragati Agnihotri
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Melissa C Kerzic
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Alexander Marin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Alexander K Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Thomas R Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Mosa AI, Urbanowicz RA, AbouHaidar MG, Tavis JE, Ball JK, Feld JJ. A bivalent HCV peptide vaccine elicits pan-genotypic neutralizing antibodies in mice. Vaccine 2020; 38:6864-6867. [PMID: 32900542 DOI: 10.1016/j.vaccine.2020.08.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
Vaccine development for antigenically variable pathogens has faltered because extreme genetic diversity precludes induction of broadly neutralizing antibodies (nAB) with classical vaccines. Here, using the most variable epitope of any known human pathogen (HVR1 of HCV), we describe a novel approach capable of eliciting broadly neutralizing antibodies targeting highly variable epitopes. Our proof-of-concept vaccine elicited pan-genotypic nAB against HCV variants differing from the immunogen sequences by more than 70% at the amino acid level. These findings suggest broadly nAB to highly variable pathogens can be elicited by vaccines designed to target physicochemically conserved residues within hypervariable epitopes.
Collapse
Affiliation(s)
- Alexander I Mosa
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | | | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, United States
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, Sandra Rotman Centre for Global Health, University of Toronto, Canada
| |
Collapse
|
24
|
Mosa AI, AbouHaidar MG, Urbanowicz RA, Tavis JE, Ball JK, Feld JJ. Role of HVR1 sequence similarity in the cross-genotypic neutralization of HCV. Virol J 2020; 17:140. [PMID: 32948191 PMCID: PMC7499410 DOI: 10.1186/s12985-020-01408-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Despite available treatments, a prophylactic HCV vaccine is needed to achieve elimination targets. HCV vaccine development has faltered largely because the extreme diversity of the virus limits the protective breadth of vaccine elicited antibodies. It is believed that the principle neutralizing epitope in natural infection, HVR1, which is the most variable epitope in HCV, mediates humoral immune escape. So far, efforts to circumvent HVR1 interference in the induction and function of conserved targeting Ab have failed. Efforts to understand factors contributing to cross-neutralization of HVR1 variants have also been limited. Here, following mouse immunizations with two patient-derived HVR1 peptides, we observe cross-genotype neutralization of variants differing at 15/21 positions. Surprisingly, sequence similarity was not associated with cross-neutralization. It appeared neutralization sensitivity was an intrinsic feature of each variant, rather than emergent from the immunogen specific Ab response. These findings provide novel insight into HVR1-mediated immune evasion, with important implications for HCV vaccine design.
Collapse
Affiliation(s)
- Alexander I Mosa
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, USA
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, Sandra Rotman Centre for Global Health, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Ströh LJ, Krey T. HCV Glycoprotein Structure and Implications for B-Cell Vaccine Development. Int J Mol Sci 2020; 21:ijms21186781. [PMID: 32947858 PMCID: PMC7555785 DOI: 10.3390/ijms21186781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the approval of highly efficient direct-acting antivirals in the last decade Hepatitis C virus (HCV) remains a global health burden and the development of a vaccine would constitute an important step towards the control of HCV. The high genetic variability of the viral glycoproteins E1 and E2, which carry the main neutralizing determinants, together with their intrinsic structural flexibility, the high level of glycosylation that shields conserved neutralization epitopes and immune evasion using decoy epitopes renders the design of an efficient vaccine challenging. Recent structural and functional analyses have highlighted the role of the CD81 receptor binding site on E2, which overlaps with those neutralization epitopes within E2 that have been structurally characterized to date. This CD81 binding site consists of three distinct segments including “epitope I”, “epitope II” and the “CD81 binding loop”. In this review we summarize the structural features of the HCV glycoproteins that have been derived from X-ray structures of neutralizing and non-neutralizing antibody fragments complexed with either recombinant E2 or epitope-derived linear peptides. We focus on the current understanding how neutralizing antibodies interact with their cognate antigen, the structural features of the respective neutralization epitopes targeted by nAbs and discuss the implications for informed vaccine design.
Collapse
Affiliation(s)
- Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)451–3101-3101
| |
Collapse
|
26
|
Beaumont E, Joël Clément B, Guérin V, Chopin L, Roch E, Gomez-Escobar E, Roingeard P. Mixing particles from various HCV genotypes increases the HBV-HCV vaccine ability to elicit broadly cross-neutralizing antibodies. Liver Int 2020; 40:1865-1871. [PMID: 32458507 DOI: 10.1111/liv.14541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
The development of a safe, effective and affordable prophylactic vaccine against hepatitis C virus (HCV) remains a medical priority. Hepatitis B-C subviral envelope particles, which could be produced by industrial procedures adapted from those established for the hepatitis B virus vaccine, appear promising for use for this purpose. The prototype HBV-HCV bivalent vaccine-bearing genotype 1a HCV envelopes can induce neutralizing antibodies against this genotype, but is less effective against other genotypes. We show here, in a small animal model, that the use of a set of vaccine particles harbouring envelopes from different HCV genotypes in various association strategies can induce broad neutralizing protection or an optimized protection against a particular genotype prevalent in a given region, such as genotype 4 in Egypt. This vaccine could help to control the hepatitis C epidemic worldwide.
Collapse
Affiliation(s)
- Elodie Beaumont
- INSERM U1259, Université de Tours and CHRU de Tours, Tours, France
| | | | - Vanessa Guérin
- INSERM U1259, Université de Tours and CHRU de Tours, Tours, France
| | - Lucie Chopin
- INSERM U1259, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Roch
- INSERM U1259, Université de Tours and CHRU de Tours, Tours, France
| | | | | |
Collapse
|
27
|
Chen F, Nagy K, Chavez D, Willis S, McBride R, Giang E, Honda A, Bukh J, Ordoukhanian P, Zhu J, Frey S, Lanford R, Law M. Antibody Responses to Immunization With HCV Envelope Glycoproteins as a Baseline for B-Cell-Based Vaccine Development. Gastroenterology 2020; 158:1058-1071.e6. [PMID: 31809725 PMCID: PMC7371413 DOI: 10.1053/j.gastro.2019.11.282] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shelby Willis
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Ryan McBride
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Phillip Ordoukhanian
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sharon Frey
- Saint Louis University Center for Vaccine Development, St. Louis, Missouri, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
28
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
29
|
Dawood RM, Moustafa RI, Abdelhafez TH, El-Shenawy R, El-Abd Y, Bader El Din NG, Dubuisson J, El Awady MK. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect Dis 2019; 19:932. [PMID: 31690267 PMCID: PMC6833294 DOI: 10.1186/s12879-019-4571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although DAAs hold promise to significantly reduce rates of chronic HCV infections, its eradication still requires development of an effective vaccine. Prolonged T cell responses and cross neutralizing antibodies are ideal for vaccination against the infection. We aimed to design and synthesize a 6 multi epitope peptide vaccine candidate and provide evidence for production of extended cellular and neutralizing Abs in mice. METHODS Six peptides derived from conserved epitopes in E1, E2 (n = 2),NS4B, NS5A and NS5B were designed, synthesized in a multiple antigenic peptide (MAP) form and administered w/o adjuvant to BALB/c mice as HCVp6-MAP at doses ranging from 800 ng to 16 μg. Humoral responses to structural epitopes were assayed by ELISA at different times after injection. ELISpot assay was used to evaluate IFN ɣ producing CD4+/ CD8+ T- lymphocytes at extended durations i.e. > 20 weeks. Viral neutralization by mice sera was tested for genotypes 2a (JFH1) and a chimeric 2a/4a virus (ED43/JFH1) in HCVcc culture. RESULTS HCVp6-MAP confers potent viral neutralization and specific cellular responses at > 1600 ng/ animal for at least 20 weeks. CONCLUSION We report on a promising anti HCV vaccine for future studies on permissive hosts and in clinical trials.
Collapse
Affiliation(s)
- Reham M Dawood
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt.
| | - Rehab I Moustafa
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Tawfeek H Abdelhafez
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Yasmine El-Abd
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Noha G Bader El Din
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Mostafa K El Awady
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
30
|
Wrensch F, Ligat G, Heydmann L, Schuster C, Zeisel MB, Pessaux P, Habersetzer F, King BJ, Tarr AW, Ball JK, Winkler M, Pöhlmann S, Keck ZY, Foung SK, Baumert TF. Interferon-Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology 2019; 70:1506-1520. [PMID: 31062385 PMCID: PMC6819197 DOI: 10.1002/hep.30699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.
Collapse
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), 69373 Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Barnabas J. King
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany,Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| | - Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K.H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
31
|
A Recombinant Hepatitis C Virus Genotype 1a E1/E2 Envelope Glycoprotein Vaccine Elicits Antibodies That Differentially Neutralize Closely Related 2a Strains through Interactions of the N-Terminal Hypervariable Region 1 of E2 with Scavenger Receptor B1. J Virol 2019; 93:JVI.00810-19. [PMID: 31462563 PMCID: PMC6819942 DOI: 10.1128/jvi.00810-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine. The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes. A global vaccine must be effective against all HCV genotypes. Our previous data showed that the 1a E1/E2 glycoprotein vaccine component elicits broad cross-neutralizing antibodies in humans and animals. However, some variation is seen in the effectiveness of these antibodies to neutralize different HCV genotypes and isolates. Of interest was the differences in neutralizing activity against two closely related isolates of HCV genotype 2a, the J6 and JFH-1 strains. Using site-directed mutagenesis to generate chimeric viruses between the J6 and JFH-1 strains, we found that variant amino acids within the core E2 glycoprotein domain of these two HCV genotype 2a viruses do not influence isolate-specific neutralization. Further analysis revealed that the N-terminal hypervariable region 1 (HVR1) of the E2 protein determines the sensitivity of isolate-specific neutralization, and the HVR1 of the resistant J6 strain binds scavenger receptor class-B type-1 (SR-B1), while the sensitive JFH-1 strain does not. Our data provide new information on mechanisms of isolate-specific neutralization to facilitate the optimization of a much-needed HCV vaccine. IMPORTANCE A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine.
Collapse
|
32
|
Soares HR, Ferreira-Fernandes M, Almeida AI, Marchel M, Alves PM, Coroadinha AS. Enhancing Hepatitis C virus pseudoparticles infectivity through p7NS2 cellular expression. J Virol Methods 2019; 274:113714. [PMID: 31412271 DOI: 10.1016/j.jviromet.2019.113714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
Hepatitis C pseudoparticles (HCVpp) are used to evaluate HCV cell entry while screening for neutralizing antibodies induced upon vaccination or while screening for new antiviral drugs. In this work we explore the stable production of HCVpp aiming to reduce the variability associated with transient productions. The performance of stably produced HCVpp was assessed by evaluating the influence of Human Serum and the impact of CD81 cellular expression on the infectivity of HCVpp. After evaluating the performance of stably produced HCVpp we studied the effect of co-expressing p7NS2 openreading frame (ORF) on HCVpp infectivity. Our data clearly shows an enhanced infectivity of HCVppp7NS2. Even though the exact mechanism was not completely elucidated, the enhanced infectivity of HCVppp7NS2 is neither a result of an increase production of virus particles nor a result from increased envelope density. The inhibitory effect of p7 inhibitory molecules such as rimantadine suggests a direct contribution of p7 ion channel for the enhanced infectivity of HCVppp7NS2 which is coherent with a pH-dependent cell entry mechanism. In conclusion, we report the establishment of a stable production system of HCVpp with enhanced infectivity through the overexpression of p7NS2 ORF contributing to improve HCV entry assessment assays widely used in antiviral drug discovery and vaccine development.
Collapse
Affiliation(s)
- Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Ferreira-Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana I Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Mateusz Marchel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
33
|
Merat SJ, Bru C, van de Berg D, Molenkamp R, Tarr AW, Koekkoek S, Kootstra NA, Prins M, Ball JK, Bakker AQ, de Jong MD, Spits H, Beaumont T, Schinkel J. Cross-genotype AR3-specific neutralizing antibodies confer long-term protection in injecting drug users after HCV clearance. J Hepatol 2019; 71:14-24. [PMID: 30797052 DOI: 10.1016/j.jhep.2019.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS In order to design an effective vaccine against hepatitis C virus (HCV) infection, it is necessary to understand immune protection. A number of broadly reactive neutralizing antibodies have been isolated from B cells of HCV-infected patients. However, it remains unclear whether B cells producing such antibodies contribute to HCV clearance and long-term immune protection against HCV. METHODS We analysed the B cell repertoire of 13 injecting drug users from the Amsterdam Cohort Study, who were followed up for a median of 17.5 years after primary infection. Individuals were classified into 2 groups based on the outcome of HCV infection: 5 who became chronically infected either after primary infection or after reinfection, and 8 who were HCV RNA negative following spontaneous clearance of ≥1 HCV infection(s). From each individual, 10,000 CD27+IgG+B cells, collected 0.75 year after HCV infection, were cultured to characterize the antibody repertoire. RESULTS Using a multiplex flow cytometry-based assay to study the antibody binding to E1E2 from genotype 1 to 6, we found that a high frequency of cross-genotype antibodies was associated with spontaneous clearance of 1 or multiple infections (p = 0.03). Epitope specificity of these cross-genotype antibodies was determined by alanine mutant scanning in 4 individuals who were HCV RNA negative following spontaneous clearance of 1 or multiple infections. Interestingly, the cross-genotype antibodies were mainly antigenic region 3 (AR3)-specific and showed cross-neutralizing activity against HCV. In addition to AR3 antibodies, 3 individuals developed antibodies recognizing antigenic region 4, of which 1 monoclonal antibody showed cross-neutralizing capacity. CONCLUSIONS Together, these data suggest that a strong B cell response producing cross-genotype and neutralizing antibodies, especially targeting AR3, contributes to HCV clearance and long-term immune protection against HCV. LAY SUMMARY Although effective treatments against hepatitis C virus (HCV) are available, 500,000 people die from liver disease caused by HCV each year and approximately 1.75 million people are newly infected. This could be prevented by a vaccine. To design a vaccine against HCV, more insight into the role of antibodies in the protection against HCV infection is needed. In a cohort of injecting drug users, we found that antibodies interfering with virus cell entry, and recognizing multiple HCV genotypes, conferred long-term protection against chronic HCV infection.
Collapse
Affiliation(s)
| | - Camille Bru
- AIMM Therapeutics, Amsterdam, the Netherlands
| | | | - Richard Molenkamp
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander W Tarr
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Sylvie Koekkoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Public Health Service of Amsterdam, Amsterdam, the Netherlands; Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Mulama DH, Mutsvunguma LZ, Totonchy J, Ye P, Foley J, Escalante GM, Rodriguez E, Nabiee R, Muniraju M, Wussow F, Barasa AK, Ogembo JG. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits. Vaccine 2019; 37:4184-4194. [PMID: 31201053 DOI: 10.1016/j.vaccine.2019.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Collapse
Affiliation(s)
- David H Mulama
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Biological Sciences Department, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Peng Ye
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joslyn Foley
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gabriela M Escalante
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ramina Nabiee
- Chapman University, School of Pharmacy, Irvine, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Felix Wussow
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Anne K Barasa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| |
Collapse
|
35
|
Urbanowicz RA, Wang R, Schiel JE, Keck ZY, Kerzic MC, Lau P, Rangarajan S, Garagusi KJ, Tan L, Guest JD, Ball JK, Pierce BG, Mariuzza RA, Foung SKH, Fuerst TR. Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. J Virol 2019; 93:e01403-18. [PMID: 30651366 PMCID: PMC6430559 DOI: 10.1128/jvi.01403-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Ruixue Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - John E Schiel
- University of Maryland Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Kerzic
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sneha Rangarajan
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kyle J Garagusi
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Lei Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Johnathan D Guest
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Brian G Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas R Fuerst
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
36
|
Jalal PJ, Urbanowicz RA, Horncastle E, Pathak M, Goddard C, Saeed A, Mason CP, Ball JK, Irving WL, McClure CP, King BJ, Tarr AW. Expression of human ficolin-2 in hepatocytes confers resistance to infection by diverse hepatotropic viruses. J Med Microbiol 2019; 68:642-648. [PMID: 30747617 DOI: 10.1099/jmm.0.000935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The liver-expressed pattern recognition receptors mannose-binding lectin (MBL), ficolin-2 and ficolin-3 contribute to the innate immune response by activating complement. Binding of soluble ficolin-2 to viral pathogens can directly neutralize virus entry. We observed that the human hepatoma cell line HuH7.5, which is routinely used for the study of hepatotropic viruses, is deficient in expression of MBL, ficolin-2 and ficolin-3. We generated a cell line that expressed and secreted ficolin-2. This cell line (HuH7.5 [FCN2]) was more resistant to infection with hepatitis C virus (HCV), ebolavirus and vesicular stomatitis virus, but surprisingly was more susceptible to infection with rabies virus. Cell-to-cell spread of HCV was also inhibited in ficolin-2 expressing cells. This illustrates that ficolin-2 expression in hepatocytes contributes to innate resistance to virus infection, but some viruses might utilize ficolin-2 to facilitate entry.
Collapse
Affiliation(s)
- Paywast J Jalal
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Biology Department, Faculty of Science, University of Sulaimani, Sulaimani, Iraq
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Emma Horncastle
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Monika Pathak
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Chun Goddard
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Amanj Saeed
- Biology Department, Faculty of Science, University of Sulaimani, Sulaimani, Iraq
| | - Christopher P Mason
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
37
|
Soares HR, Castro R, Tomás HA, Carrondo MJT, Alves PM, Coroadinha AS. Pseudotyping retrovirus like particles vaccine candidates with Hepatitis C virus envelope protein E2 requires the cellular expression of CD81. AMB Express 2019; 9:22. [PMID: 30729353 PMCID: PMC6367494 DOI: 10.1186/s13568-019-0741-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatitis C virus (HCV) infects 3% of world population being responsible for nearly half a million deaths annually urging the need for a prophylactic vaccine. Retrovirus like particles are commonly used scaffolds for antigens presentation being the core of diverse vaccine candidates. The immunogenicity of host proteins naturally incorporated in retrovirus was hypothesized to impact the performance of retrovirus based vaccines. In this work, the capacity of engineered retrovirus like particles devoided of host protein CD81 to display HCV envelope antigens was compared to non-engineered particles. A persistent inability of CD81 negative VLPs to incorporate HCV E2 protein as a result from the inefficient transport of HCV E2 to the plasma membrane, was observed. This work enabled the identification of a CD81-mediated transport of HCV E2 while stressing the importance of host proteins for the development of recombinant vaccines.
Collapse
|
38
|
Bailey JR, Urbanowicz RA, Ball JK, Law M, Foung SKH. Standardized Method for the Study of Antibody Neutralization of HCV Pseudoparticles (HCVpp). Methods Mol Biol 2019; 1911:441-450. [PMID: 30593644 PMCID: PMC6398441 DOI: 10.1007/978-1-4939-8976-8_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hepatitis C virus (HCV) pseudoparticles (HCVpp) are generated by cotransfection of HCV envelope (E1 and E2) genes along with a retroviral packaging/reporter construct into HEK293T cells. Enveloped particles bearing HCV E1E2 proteins on their surface are released through a retroviral budding process into the supernatant. Viral E1E2 glycoproteins facilitate a single round of receptor-mediated entry of HCVpp into hepatoma cells, which can be quantified by reporter gene expression. These HCVpp have been employed to study mechanisms of HCV entry into hepatoma cells, as well as HCV neutralization by immune sera or HCV-specific monoclonal antibodies.
Collapse
Affiliation(s)
- Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, UK
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Abstract
Experimental characterization of the properties of authentic viruses circulating in infected individuals presents a problem when investigating RNA viruses with error-prone polymerases. The hepatitis C virus provides an extreme example of RNA virus genetic variability, as the nucleotide composition of HCV genomes can vary by more than 30% between strains. The envelope glycoproteins E1 and E2 in particular are able to tolerate a particularly high level of variation. They are under continual selection pressure from the host antibody response during chronic infection and can tolerate adaptive mutations, leading to great diversity in a single host. The diversity of E1/E2 in circulating viruses has hindered investigations of their function and development of a vaccine that will generate antibodies able to potently neutralize entry of genetically distinct strains.Here we describe methods used in our laboratory to overcome the limitations of investigating the properties of the envelope glycoproteins representing only small numbers of HCV variants. Using a high-fidelity, limiting dilution ("endpoint") PCR approach to amplify single E1/E2 cDNA templates, which can then generate recombinant model viral particles using retrovirus packaging/reporter constructs. These retroviral pseudoparticles (pseudotypes) facilitate investigation of the properties of authentic E1/E2 glycoproteins in a single-round infection assay. We also describe optimized methods for generation of infectious pseudoparticles from patient-isolated E1/E2 and methods for performing neutralization assays with both anti-virus and anti-host antibodies.
Collapse
|
40
|
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156:418-430. [PMID: 30268785 PMCID: PMC6340767 DOI: 10.1053/j.gastro.2018.08.060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.
Collapse
Affiliation(s)
- Justin R. Bailey
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, Oxford University, UK
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland,Reprint requests Address requests for reprints to: Andrea L. Cox, MD, PhD, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 551 Rangos Building, 855 N Wolfe Street, Baltimore, Maryland 21205. fax: (443)769-1221.
| |
Collapse
|
41
|
Tarr AW, Backx M, Hamed MR, Urbanowicz RA, McClure CP, Brown RJP, Ball JK. Immunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antiviral Res 2018; 160:25-37. [PMID: 30217650 DOI: 10.1016/j.antiviral.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
Global eradication of hepatitis C virus (HCV) infection will require an efficacious vaccine capable of eliciting protective immunity against genetically diverse HCV strains. Natural spontaneous resolution of HCV infection is associated with production of broadly-neutralizing antibodies targeting the HCV glycoproteins E1 and E2. As such, production of cross-neutralizing antibodies is an important endpoint for experimental vaccine trials. Varying success generating cross-neutralizing antibodies has been achieved with immunogens derived from naturally-occurring HCV strains. In this study the challenge of minimising the genetic diversity between the vaccine strain and circulating HCV isolates was addressed. Two novel synthetic E2 glycoprotein immunogens (NotC1 and NotC2) were derived from consensus nucleotide sequences deduced from samples of circulating genotype 1 HCV strains. These two synthetic sequences differed in their relative positions in the overall genotype 1a/1b phylogeny. Expression of these constructs in Drosophila melanogaster S2 cells resulted in high yields of correctly-folded, monomeric E2 protein, which were recognised by broadly neutralizing monoclonal antibodies. Immunization of guinea pigs with either of these consensus immunogens, or a comparable protein representing a circulating genotype 1a strain resulted in high titres of cross-reactive anti-E2 antibodies. All immunogens generated antibodies capable of neutralizing the H77 strain, but NotC1 elicited antibodies that more potently neutralized virus entry. These vaccine-induced antibodies neutralized some viruses representing genotype 1, but not strains representing genotype 2 or genotype 3. Thus, while this approach to vaccine design resulted in correctly folded, immunogenic protein, cross-neutralizing epitopes were not preferentially targeted by the host immune response generated by this immunogen. Greater immunofocussing of vaccines to common epitopes is necessary to successfully elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Matthijs Backx
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Mohamed R Hamed
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Richard A Urbanowicz
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Richard J P Brown
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
42
|
Yost SA, Wang Y, Marcotrigiano J. Hepatitis C Virus Envelope Glycoproteins: A Balancing Act of Order and Disorder. Front Immunol 2018; 9:1917. [PMID: 30197646 PMCID: PMC6117417 DOI: 10.3389/fimmu.2018.01917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis C virus infection often leads to liver cirrhosis and primary liver cancer. In 2015, an estimated 71 million people were living with chronic HCV. Although infection rates have decreased in many parts of the world over the last several decades, incidence of HCV infection doubled between 2010 and 2014 in the United States mainly due to increases in intravenous drug use. The approval of direct acting antiviral treatments is a necessary component in the elimination of HCV, but inherent barriers to treatment (e.g., cost, lack of access to healthcare, adherence to treatment, resistance, etc.) prevent dramatic improvements in infection rates. An effective HCV vaccine would significantly slow the spread of the disease. Difficulties in the development of an HCV culture model system and expression of properly folded- and natively modified-HCV envelope glycoproteins E1 and E2 have hindered vaccine development efforts. The recent structural and biophysical studies of these proteins have demonstrated that the binding sites for the cellular receptor CD-81 and neutralizing antibodies are highly flexible in nature, which complicate vaccine design. Furthermore, the interactions between E1 and E2 throughout HCV infection is poorly understood, and structural flexibility may play a role in shielding antigenic epitopes during infection. Here we discuss the structural complexities of HCV E1 and E2.
Collapse
Affiliation(s)
- Samantha A Yost
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Yuanyuan Wang
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Marcotrigiano
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Kinchen VJ, Bailey JR. Defining Breadth of Hepatitis C Virus Neutralization. Front Immunol 2018; 9:1703. [PMID: 30116237 PMCID: PMC6082923 DOI: 10.3389/fimmu.2018.01703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Extraordinary genetic diversity is a hallmark of hepatitis C virus (HCV). Therefore, accurate measurement of the breadth of antibody neutralizing activity across diverse HCV isolates is key to defining correlates of immune protection against the virus, and essential to guide vaccine development. Panels of HCV pseudoparticle (HCVpp) or replication-competent cell culture viruses (HCVcc) can be used to measure neutralizing breadth of antibodies. These in vitro assays have been used to define neutralizing breadth of antibodies in serum, to characterize broadly neutralizing monoclonal antibodies, and to identify mechanisms of HCV resistance to antibody neutralization. Recently, larger and more diverse panels of both HCVpp and HCVcc have been described that better represent the diversity of circulating HCV strains, but further work is needed to expand and standardize these neutralization panels.
Collapse
Affiliation(s)
- Valerie J Kinchen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Cowton VM, Singer JB, Gifford RJ, Patel AH. Predicting the Effectiveness of Hepatitis C Virus Neutralizing Antibodies by Bioinformatic Analysis of Conserved Epitope Residues Using Public Sequence Data. Front Immunol 2018; 9:1470. [PMID: 30013555 PMCID: PMC6036255 DOI: 10.3389/fimmu.2018.01470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes.
Collapse
Affiliation(s)
| | | | | | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| |
Collapse
|
45
|
Fuerst TR, Pierce BG, Keck ZY, Foung SKH. Designing a B Cell-Based Vaccine against a Highly Variable Hepatitis C Virus. Front Microbiol 2018; 8:2692. [PMID: 29379486 PMCID: PMC5775222 DOI: 10.3389/fmicb.2017.02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to use structure-based design and engineering to control the molecular shape and reactivity of an immunogen to induce protective responses shows great promise, along with corresponding advancements in vaccine testing and evaluation systems. We describe in this review new paradigms for the development of a B cell-based HCV vaccine. Advances in test systems to measure in vitro and in vivo antibody-mediated virus neutralization include retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp), infectious cell culture-derived HCV virions (HCVcc), and surrogate animal models mimicking acute HCV infection. Their applications have established the role of broadly neutralizing antibodies to control HCV infection. However, the virus has immunogenic regions in the viral envelope glycoproteins that are associated with viral escape or non-neutralizing antibodies. These regions serve as immunologic decoys that divert the antibody response from less prominent conserved regions mediating virus neutralization. This review outlines the immunogenic regions on E2, which are roughly segregated into the hypervariable region 1 (HVR1), and five clusters of overlapping epitopes designated as antigenic domains A-E. Understanding the molecular architecture of conserved neutralizing epitopes within these antigenic domains, and how other antigenic regions or decoys deflect the immune response from these conserved regions will provide a roadmap for the rational design of an HCV vaccine.
Collapse
Affiliation(s)
- Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
46
|
Gopal R, Jackson K, Tzarum N, Kong L, Ettenger A, Guest J, Pfaff JM, Barnes T, Honda A, Giang E, Davidson E, Wilson IA, Doranz BJ, Law M. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathog 2017; 13:e1006735. [PMID: 29253863 PMCID: PMC5749897 DOI: 10.1371/journal.ppat.1006735] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/02/2018] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Kelli Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Andrew Ettenger
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Johnathan Guest
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | | | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
47
|
Desombere I, Mesalam AA, Urbanowicz RA, Van Houtte F, Verhoye L, Keck ZY, Farhoudi A, Vercauteren K, Weening KE, Baumert TF, Patel AH, Foung SKH, Ball J, Leroux-Roels G, Meuleman P. A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Res 2017; 148:53-64. [PMID: 29074219 PMCID: PMC5785094 DOI: 10.1016/j.antiviral.2017.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
Infections with hepatitis C virus (HCV) represent a worldwide health burden and a prophylactic vaccine is still not available. Liver transplantation (LT) is often the only option for patients with HCV-induced end-stage liver disease. However, immediately after transplantation, the liver graft becomes infected by circulating virus, resulting in accelerated progression of liver disease. Although the efficacy of HCV treatment using direct-acting antivirals has improved significantly, immune compromised LT-patients and patients with advanced liver disease remain difficult to treat. As an alternative approach, interfering with viral entry could prevent infection of the donor liver. We generated a human monoclonal antibody (mAb), designated 2A5, which targets the HCV envelope. The neutralizing activity of mAb 2A5 was assessed using multiple prototype and patient-derived HCV pseudoparticles (HCVpp), cell culture produced HCV (HCVcc), and a human-liver chimeric mouse model. Neutralization levels observed for mAb 2A5 were generally high and mostly superior to those obtained with AP33, a well-characterized HCV-neutralizing monoclonal antibody. Using humanized mice, complete protection was observed after genotype 1a and 4a HCV challenge, while only partial protection was achieved using gt1b and 6a isolates. Epitope mapping revealed that mAb 2A5 binding is conformation-dependent and identified the E2-region spanning amino acids 434 to 446 (epitope II) as the predominant contact domain. CONCLUSION mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence represent a valuable candidate to prevent HCV recurrence in LT-patients. In addition, the detailed identification of the neutralizing epitope can be applied for the design of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Isabelle Desombere
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Therapeutic Chemistry Department, National Research Centre (NRC), Dokki, Cairo, Egypt.
| | - Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Freya Van Houtte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Lieven Verhoye
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ali Farhoudi
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Koen Vercauteren
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Karin E Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg et Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jonathan Ball
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Geert Leroux-Roels
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
48
|
King B, Tarr AW. How have retrovirus pseudotypes contributed to our understanding of viral entry? Future Virol 2017. [DOI: 10.2217/fvl-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Study of virus entry into host cells is important for understanding viral tropism and pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly change phenotype in vitro can all benefit from alternative models of entry. Retrovirus particles can be engineered to display the envelope proteins of heterologous enveloped viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have addressed these challenges and improved our understanding of the entry pathways of diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C virus.
Collapse
Affiliation(s)
- Barnabas King
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
49
|
Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope. J Virol 2017; 91:JVI.01032-17. [PMID: 28794021 DOI: 10.1128/jvi.01032-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines.IMPORTANCE Hepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies. In vivo results in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.
Collapse
|
50
|
Naik AS, Owsianka A, Palmer BA, O’Halloran CJ, Walsh N, Crosbie O, Kenny-Walsh E, Patel AH, Fanning LJ. Reverse epitope mapping of the E2 glycoprotein in antibody associated hepatitis C virus. PLoS One 2017; 12:e0175349. [PMID: 28558001 PMCID: PMC5448734 DOI: 10.1371/journal.pone.0175349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
The humoral immune system responds to chronic hepatitis C virus (HCV) infection by producing neutralising antibodies (nAb). In this study we generated three HCV pseudoparticles in which E1E2 glycoprotein sequence was targeted by the host humoral immune system. We used patient derived virus free Fabs (VF-Fabs) obtained from HCV genotype 1a (n = 3), genotype 1b (n = 7) and genotype 3a (n = 1) for neutralisation of HCVpp produced in this study both individually and in combination. Based on the available anti-HCV monoclonal nAb mapping information we selected amino acid region 384-619 for conformational epitope mapping. Amongst our notable findings, we observed significant reduction in HCVpp infectivity (p<0.05) when challenged with a combination of inter genotype and subtype VF-Fabs. We also identified five binding motifs targeted by patient derived VF-Fab upon peptide mapping, of which two shared the residues with previously reported epitopes. One epitope lies within an immunodominant HVR1 and two were novel. In summary, we used a reverse epitope mapping strategy to identify preferred epitopes by the host humoral immune system. Additionally, we have combined different VF-Fabs to further reduce the HCVpp infectivity. Our data indicates that combining the antigen specificity of antibodies may be a useful strategy to reduce (in-vitro) infectivity.
Collapse
Affiliation(s)
- Amruta S. Naik
- Department of Medicine, University College Cork, Cork, Ireland
| | - Ania Owsianka
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Nicole Walsh
- Department of Medicine, University College Cork, Cork, Ireland
| | - Orla Crosbie
- Department of Hepatology, Cork University Hospital, Cork, Ireland
| | | | - Arvind H. Patel
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
- APC-Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|