1
|
Holt CM, Janke AK, Amlashi P, Jamieson PJ, Marinov TM, Georgiev IS. Contrastive Learning Enables Epitope Overlap Predictions for Targeted Antibody Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640114. [PMID: 40060439 PMCID: PMC11888244 DOI: 10.1101/2025.02.25.640114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Computational epitope prediction remains an unmet need for therapeutic antibody development. We present three complementary approaches for predicting epitope relationships from antibody amino acid sequences. First, we analyze ~18 million antibody pairs targeting ~250 protein families and establish that a threshold of >70% CDRH3 sequence identity among antibodies sharing both heavy and light chain V-genes reliably predicts overlapping-epitope antibody pairs. Next, we develop a supervised contrastive fine-tuning framework for antibody large language models which results in embeddings that better correlate with epitope information than those from pretrained models. Applying this contrastive learning approach to SARS-CoV-2 receptor binding domain antibodies, we achieve 82.7% balanced accuracy in distinguishing same-epitope versus different-epitope antibody pairs and demonstrate the ability to predict relative levels of structural overlap from learning on functional epitope bins (Spearman ρ = 0.25). Finally, we create AbLang-PDB, a generalized model for predicting overlapping-epitope antibodies for a broad range of protein families. AbLang-PDB achieves five-fold improvement in average precision for predicting overlapping-epitope antibody pairs compared to sequence-based methods, and effectively predicts the amount of epitope overlap among overlapping-epitope pairs (ρ = 0.81). In an antibody discovery campaign searching for overlapping-epitope antibodies to the HIV-1 broadly neutralizing antibody 8ANC195, 70% of computationally selected candidates demonstrated HIV-1 specificity, with 50% showing competitive binding with 8ANC195. Together, the computational models presented here provide powerful tools for epitope-targeted antibody discovery, while demonstrating the efficacy of contrastive learning for improving epitope-representation.
Collapse
Affiliation(s)
- Clinton M Holt
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexis K Janke
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Parastoo Amlashi
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Parker J Jamieson
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Toma M Marinov
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ivelin S Georgiev
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Wasdin PT, Johnson NV, Janke AK, Held S, Marinov TM, Jordaan G, Vandenabeele L, Pantouli F, Gillespie RA, Vukovich MJ, Holt CM, Kim J, Hansman G, Logue J, Chu HY, Andrews SF, Kanekiyo M, Sautto GA, Ross TM, Sheward DJ, McLellan JS, Abu-Shmais AA, Georgiev IS. Generation of antigen-specific paired chain antibody sequences using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629482. [PMID: 40027781 PMCID: PMC11870394 DOI: 10.1101/2024.12.20.629482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The traditional process of antibody discovery is limited by inefficiency, high costs, and low success rates. Recent approaches employing artificial intelligence (AI) have been developed to optimize existing antibodies and generate antibody sequences in a target-agnostic manner. In this work, we present MAGE (Monoclonal Antibody GEnerator), a sequence-based Protein Language Model (PLM) fine-tuned for the task of generating paired human variable heavy and light chain antibody sequences against targets of interest. We show that MAGE can generate novel and diverse antibody sequences with experimentally validated binding specificity against SARS-CoV-2, an emerging avian influenza H5N1, and respiratory syncytial virus A (RSV-A). MAGE represents a first-in-class model capable of designing human antibodies against multiple targets with no starting template.
Collapse
Affiliation(s)
- Perry T. Wasdin
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Alexis K. Janke
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sofia Held
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Toma M. Marinov
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gwen Jordaan
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Léna Vandenabeele
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fani Pantouli
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J. Vukovich
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clinton M. Holt
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeongryeol Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Grant Hansman
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, 34987 FL, USA
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712 USA
| | - Alexandra A. Abu-Shmais
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ivelin S. Georgiev
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
- Vanderbilt Center for Antibody Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN
- Department of Computer Science, Vanderbilt University, Nashville, TN
- Center for Structural Biology, Vanderbilt University, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237 USA
| |
Collapse
|
3
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
4
|
Kumar S, del Moral-Sánchez I, Singh S, Newby ML, Allen JD, Bijl TPL, Vaghani Y, Jing L, Lodha R, Ortlund EA, Crispin M, Patel A, Sanders RW, Luthra K. The Design and Immunogenicity of an HIV-1 Clade C Pediatric Envelope Glycoprotein Stabilized by Multiple Platforms. Vaccines (Basel) 2025; 13:110. [PMID: 40006657 PMCID: PMC11860714 DOI: 10.3390/vaccines13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Elite-neutralizer-derived HIV-1 envelopes (Envs), which induce broadly neutralizing antibodies (bnAbs), can inform HIV-1 vaccine design by serving as templates for bnAb-eliciting vaccines. Since single Env-based immunizations are insufficient to induce bnAb responses, sequential regimens using multivalent immunogens or Env cocktails hold greater promise. This underscores the need to develop stable Env trimers from diverse HIV-1 strains, particularly clade-C, which accounts for 50% of global infections and over 90% in India and South Africa. While various platforms exist to stabilize soluble Env trimers for use as antigenic baits and vaccines, stabilizing clade C trimers remains challenging. METHODS We stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NPs) and I53-50 two-component NPs, followed by characterization of their biophysical, antigenic, and immunogenic properties. RESULTS The stabilized 329 Envs showed binding to multiple HIV-1 bnAbs, with negligible binding to non-neutralizing antibodies. Negative-stain electron microscopy confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the affinity to HIV-1 bnAbs and showed higher immunogenicity in rabbits. CONCLUSIONS The soluble 329 Env protein could serve as an antigenic bait, and multimeric 329 NP Envs are potential vaccine candidates.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
- Department of Pediatrics, Division of Infectious Diseases, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Iván del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Tom P. L. Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Yog Vaghani
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Liang Jing
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (M.L.N.); (J.D.A.); (M.C.)
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.V.); (L.J.); (E.A.O.); (A.P.)
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.K.); (I.d.M.-S.); (T.P.L.B.)
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
5
|
Jamieson PJ, Shen X, Abu-Shmais AA, Wasdin PT, Janowska K, Edwards RJ, Scapellato G, Richardson SI, Manamela NP, Liu S, Barr M, Gillespie RA, Mimms J, Suryadevara N, Sornberger TA, Zost S, Parks R, Flaherty S, Janke AK, Howard BN, Suresh YP, Ruprecht RM, Crowe JE, Carnahan RH, Bailey JR, Masaru K, Haynes BF, Moore PL, Acharya P, Montefiori DC, Kalams SA, Lu S, Georgiev IS. Glycan-reactive antibodies isolated from human HIV-1 vaccine trial participants show broad pathogen cross-reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633475. [PMID: 39896680 PMCID: PMC11785028 DOI: 10.1101/2025.01.17.633475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
HIV-1 continues to pose a significant global health challenge, requiring ongoing research into effective prevention and treatment strategies. Understanding the B cell repertoire that can be engaged upon vaccination in humans is crucial for the development of future preventive vaccines. In this study, PBMCs from HIV-negative participants in the multivalent HVTN124 human HIV-1 vaccine clinical trial were interrogated for HIV-reactive B cells using LIBRA-seq, a high-throughput B cell mapping technology. We report the discovery of glycan-reactive antibodies capable of neutralizing diverse heterologous HIV-1 virus strains. Further, isolated antibodies showed broad cross-reactivity against antigens from a variety of other pathogens, while remaining mostly negative on autoreactivity assays. The emerging class of glycan-reactive virus-neutralizing antibodies with exceptional breadth of pathogen cross-reactivity may present an effective target for vaccination at the population level.
Collapse
Affiliation(s)
- Parker J Jamieson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garrett Scapellato
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Mimms
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ty A Sornberger
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shelby Flaherty
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexis K Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bethany N Howard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kanekiyo Masaru
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Priyamvada Acharya
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Spyros A Kalams
- Infectious Diseases Unit, Department of Internal Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
6
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of the HIV-1 Fusion Peptide into a Complex Membrane Mimicking the Human T-Cell. J Phys Chem B 2024; 128:12710-12727. [PMID: 39670799 DOI: 10.1021/acs.jpcb.4c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A fundamental understanding of how the HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a nine-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow time scale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of the conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura J S Lopes
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87106,United States
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968,United States
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Wang H, Cheng C, Dal Santo JL, Shen CH, Bylund T, Henry AR, Howe CA, Hwang J, Morano NC, Morris DJ, Pletnev S, Roark RS, Zhou T, Hansen BT, Hoyt FH, Johnston TS, Wang S, Zhang B, Ambrozak DR, Becker JE, Bender MF, Changela A, Chaudhary R, Corcoran M, Corrigan AR, Foulds KE, Guo Y, Lee M, Li Y, Lin BC, Liu T, Louder MK, Mandolesi M, Mason RD, McKee K, Nair V, O'Dell S, Olia AS, Ou L, Pegu A, Raju N, Rawi R, Roberts-Torres J, Sarfo EK, Sastry M, Schaub AJ, Schmidt SD, Schramm CA, Schwartz CL, Smith SC, Stephens T, Stuckey J, Teng IT, Todd JP, Tsybovsky Y, Van Wazer DJ, Wang S, Doria-Rose NA, Fischer ER, Georgiev IS, Karlsson Hedestam GB, Sheng Z, Woodward RA, Douek DC, Koup RA, Pierson TC, Shapiro L, Shaw GM, Mascola JR, Kwong PD. Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques. Cell 2024; 187:7214-7231.e23. [PMID: 39471811 PMCID: PMC11645223 DOI: 10.1016/j.cell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID50] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%-60% (50% inhibitory concentration [IC50] < 50 μg/mL) and total lineage-concentrations estimates of 50-200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
Collapse
Affiliation(s)
- Hua Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Dal Santo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin A Howe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juyun Hwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel J Morris
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan S Roark
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Forrest H Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nair
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindi L Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Modex Therapeutics Inc., Natick, MA 01760, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
8
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Abu-Shmais AA, Vukovich MJ, Wasdin PT, Suresh YP, Marinov TM, Rush SA, Gillespie RA, Sankhala RS, Choe M, Joyce MG, Kanekiyo M, McLellan JS, Georgiev IS. Antibody sequence determinants of viral antigen specificity. mBio 2024; 15:e0156024. [PMID: 39264172 PMCID: PMC11481873 DOI: 10.1128/mbio.01560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Throughout life, humans experience repeated exposure to viral antigens through infection and vaccination, resulting in the generation of diverse, antigen-specific antibody repertoires. A paramount feature of antibodies that enables their critical contributions in counteracting recurrent and novel pathogens, and consequently fostering their utility as valuable targets for therapeutic and vaccine development, is the exquisite specificity displayed against their target antigens. Yet, there is still limited understanding of the determinants of antibody-antigen specificity, particularly as a function of antibody sequence. In recent years, experimental characterization of antibody repertoires has led to novel insights into fundamental properties of antibody sequences but has been largely decoupled from at-scale antigen specificity analysis. Here, using the LIBRA-seq technology, we generated a large data set mapping antibody sequence to antigen specificity for thousands of B cells, by screening the repertoires of a set of healthy individuals against 20 viral antigens representing diverse pathogens of biomedical significance. Analysis uncovered virus-specific patterns in variable gene usage, gene pairing, somatic hypermutation, as well as the presence of convergent antiviral signatures across multiple individuals, including the presence of public antibody clonotypes. Notably, our results showed that, for B-cell receptors originating from different individuals but leveraging an identical combination of heavy and light chain variable genes, there is a specific CDRH3 identity threshold above which B cells appear to exclusively share the same antigen specificity. This finding provides a quantifiable measure of the relationship between antibody sequence and antigen specificity and further defines experimentally grounded criteria for defining public antibody clonality.IMPORTANCEThe B-cell compartment of the humoral immune system plays a critical role in the generation of antibodies upon new and repeated pathogen exposure. This study provides an unprecedented level of detail on the molecular characteristics of antibody repertoires that are specific to each of the different target pathogens studied here and provides empirical evidence in support of a 70% CDRH3 amino acid identity threshold in pairs of B cells encoded by identical IGHV:IGL(K)V genes, as a means of defining public clonality and therefore predicting B-cell antigen specificity in different individuals. This is of exceptional importance when leveraging public clonality as a method to annotate B-cell receptor data otherwise lacking antigen specificity information. Understanding the fundamental rules of antibody-antigen interactions can lead to transformative new approaches for the development of antibody therapeutics and vaccines against current and emerging viruses.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yukthi P. Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Toma M. Marinov
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - M. Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Kumar S, del Moral-Sánchez I, Singh S, Newby ML, Allen JD, Bijl TPL, Vaghani Y, Jing L, Ortlund EA, Crispin M, Patel A, Sanders RW, Luthra K. Design and immunogenicity of an HIV-1 clade C pediatric envelope glycoprotein stabilized by multiple platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613016. [PMID: 39345501 PMCID: PMC11429718 DOI: 10.1101/2024.09.14.613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Various design platforms are available to stabilize soluble HIV-1 envelope (Env) trimers, which can be used as antigenic baits and vaccine antigens. However, stabilizing HIV-1 clade C trimers can be challenging. Here, we stabilized an HIV-1 clade C trimer based on an Env isolated from a pediatric elite-neutralizer (AIIMS_329) using multiple platforms, including SOSIP.v8.2, ferritin nanoparticles (NP) and an I53-50 two-component NP, followed by characterization of their biophysical, antigenic, and immunogenic properties. The stabilized 329 Envs showed binding affinity to trimer-specific HIV-1 broadly neutralizing antibodies (bnAbs), with negligible binding to non-neutralizing antibodies (non-nAbs). Negative-stain electron microscopy (nsEM) confirmed the native-like conformation of the Envs. Multimerization of 329 SOSIP.v8.2 on ferritin and two-component I53-50 NPs improved the overall affinity to HIV-1 bnAbs and immunogenicity in rabbits. These stabilized HIV-1 clade C 329 Envs demonstrate the potential to be used as antigenic baits and as components of multivalent vaccine candidates in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Iván del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, 1105AZ, The Netherlands
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom P. L. Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, 1105AZ, The Netherlands
| | - Yog Vaghani
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liang Jing
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
11
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of HIV-1 Fusion Peptide into Complex Membrane Mimicking Human T-cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606381. [PMID: 39131401 PMCID: PMC11312619 DOI: 10.1101/2024.08.02.606381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | | | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Computer Science, University of New Mexico, Albuquerque NM, USA
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso TX, USA
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos NM USA
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| |
Collapse
|
12
|
Guenaga J, Alirezaei M, Feng Y, Alameh MG, Lee WH, Baboo S, Cluff J, Wilson R, Bale S, Ozorowski G, Lin P, Tam Y, Diedrich JK, Yates JR, Paulson JC, Ward AB, Weissman D, Wyatt RT. mRNA lipid nanoparticles expressing cell-surface cleavage independent HIV Env trimers elicit autologous tier-2 neutralizing antibodies. Front Immunol 2024; 15:1426232. [PMID: 39119336 PMCID: PMC11306127 DOI: 10.3389/fimmu.2024.1426232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is the sole neutralizing determinant on the surface of the virus. The Env gp120 and gp41 subunits mediate receptor binding and membrane fusion and are generated from the gp160 precursor by cellular furins. This cleavage event is required for viral entry. One approach to generate HIV-1 neutralizing antibodies following immunization is to express membrane-bound Env anchored on the cell-surface by genetic means using the natural HIV gp41 transmembrane (TM) spanning domain. To simplify the process of Env trimer membrane expression we sought to remove the need for Env precursor cleavage while maintaining native-like conformation following genetic expression. To accomplish these objectives, we selected our previously developed 'native flexibly linked' (NFL) stabilized soluble trimers that are both near-native in conformation and cleavage-independent. We genetically fused the NFL construct to the HIV TM domain by using a short linker or by restoring the native membrane external proximal region, absent in soluble trimers, to express the full HIV Env ectodomain on the plasma membrane. Both forms of cell-surface NFL trimers, without and with the MPER, displayed favorable antigenic profiles by flow cytometry when expressed from plasmid DNA or mRNA. These results were consistent with the presence of well-ordered cell surface native-like trimeric Env, a necessary requirement to generate neutralizing antibodies by vaccination. Inoculation of rabbits with mRNA lipid nanoparticles (LNP) expressing membrane-bound stabilized HIV Env NFL trimers generated tier 2 neutralizing antibody serum titers in immunized animals. Multiple inoculations of mRNA LNPs generated similar neutralizing antibody titers compared to immunizations of matched NFL soluble proteins in adjuvant. Given the recent success of mRNA vaccines to prevent severe COVID, these are important developments for genetic expression of native-like HIV Env trimers in animals and potentially in humans.
Collapse
Affiliation(s)
- Javier Guenaga
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Mehrdad Alirezaei
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Yu Feng
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Mohamad-Gabriel Alameh
- Weissman Lab, Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Weissman Lab, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wen-Hsin Lee
- Ward Lab, Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| | - Sabyasachi Baboo
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, CA, United States
| | - Jocelyn Cluff
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Richard Wilson
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Shridhar Bale
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Gabriel Ozorowski
- Ward Lab, Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| | - Paulo Lin
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Jolene K. Diedrich
- Paulson Lab, Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - John R. Yates
- Paulson Lab, Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - James C. Paulson
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Paulson Lab, Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - Andrew B. Ward
- Ward Lab, Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, CA, United States
| | - Drew Weissman
- Weissman Lab, Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Weissman Lab, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard T. Wyatt
- Wyatt Lab, Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, CA, United States
| |
Collapse
|
13
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
15
|
Vukovich MJ, Raju N, Kgagudi P, Manamela NP, Abu-Shmais AA, Gripenstraw KR, Wasdin PT, Shen X, Dwyer B, Akoad J, Lynch RM, Montefiori DC, Richardson SI, Moore PL, Georgiev IS. Development of LIBRA-seq for the guinea pig model system as a tool for the evaluation of antibody responses to multivalent HIV-1 vaccines. J Virol 2024; 98:e0147823. [PMID: 38085509 PMCID: PMC10804973 DOI: 10.1128/jvi.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/24/2024] Open
Abstract
Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prudence Kgagudi
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bridget Dwyer
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jumana Akoad
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rebecca M. Lynch
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Immunology and Inflammation, Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson S, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and Characterization of a Pan-betacoronavirus S2-binding antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575741. [PMID: 38293237 PMCID: PMC10827111 DOI: 10.1101/2024.01.15.575741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
Affiliation(s)
- Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C. Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D. Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Alexandria A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena 53100, Italy
- VisMederi S.r.l, Siena 53100, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University; Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University; Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
17
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
18
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Bale S, Yang L, Alirezaei M, Wilson R, Ota T, Doyle ED, Cottrell C, Guenaga J, Tran K, Li W, Stamatatos L, Nemazee D, Ward AB, Wyatt RT. Fusion of the molecular adjuvant C3d to cleavage-independent native-like HIV-1 Env trimers improves the elicited antibody response. Front Immunol 2023; 14:1180959. [PMID: 37283743 PMCID: PMC10239957 DOI: 10.3389/fimmu.2023.1180959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
An effective HIV vaccine likely requires the elicitation of neutralizing antibodies (NAbs) against multiple HIV-1 clades. The recently developed cleavage-independent native flexibly linked (NFL) envelope (Env) trimers exhibit well-ordered conformation and elicit autologous tier 2 NAbs in multiple animal models. Here, we investigated whether the fusion of molecular adjuvant C3d to the Env trimers can improve B- cell germinal center (GC) formation and antibody responses. To generate Env-C3d trimers, we performed a glycine-serine- based (G4S) flexible peptide linker screening and identified a linker range that allowed native folding. A 30-60- amino- acid- long linker facilitates Env-to-C3d association and achieves the secretion of well-ordered trimers and the structural integrity and functional integrity of Env and C3d. The fusion of C3d did not dramatically affect the antigenicity of the Env trimers and enhanced the ability of the Env trimers to engage and activate B cells in vitro. In mice, the fusion of C3d enhanced germinal center formation, the magnitude of Env-specific binding antibodies, and the avidity of the antibodies in the presence of an adjuvant. The Sigma Adjuvant System (SAS) did not affect the trimer integrity in vitro but contributed to altered immunogenicity in vivo, resulting in increased tier 1 neutralization, likely by increased exposure of variable region 3 (V3). Taken together, the results indicate that the fusion of the molecular adjuvant, C3d, to the Env trimers improves antibody responses and could be useful for Env-based vaccines against HIV.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Mehrdad Alirezaei
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard Wilson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Takayuki Ota
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Esmeralda D. Doyle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Javier Guenaga
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Wenjuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Leonidas Stamatatos
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B. Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard T. Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
21
|
Khandhar AP, Landon CD, Archer J, Krieger K, Warner NL, Randall S, Berube BJ, Erasmus JH, Sather DN, Staats HF. Evaluation of repRNA vaccine for induction and in utero transfer of maternal antibodies in a pregnant rabbit model. Mol Ther 2023; 31:1046-1058. [PMID: 36965482 PMCID: PMC10124083 DOI: 10.1016/j.ymthe.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/25/2023] [Accepted: 02/28/2023] [Indexed: 03/27/2023] Open
Abstract
Mother-to-child transmission is a major route for infections in newborns. Vaccination in mothers to leverage the maternal immune system is a promising approach to vertically transfer protective immunity. During infectious disease outbreaks, such as the 2016 Zika virus (ZIKV) outbreak, rapid availability of vaccines can prove critical in reducing widespread disease burden. The recent successes of mRNA vaccines support their evaluation in pregnant animal models to justify their use in neonatal settings. Here we evaluated immunogenicity of self-amplifying replicon (repRNA) vaccines, delivered with our clinical-stage LION nanoparticle formulation, in pregnant rabbits using ZIKV and HIV-1 as model disease targets. We showed that LION/repRNA vaccines induced robust antigen-specific antibody responses in adult pregnant rabbits that passively transferred to newborn kits in utero. Using a matrixed study design, we further elucidate the effect of vaccination in kits on the presence of pre-existing maternal antibodies. Our findings showed that timing of maternal vaccination is critical in maximizing in utero antibody transfer, and subsequent vaccination in newborns maintained elevated antibody levels compared with no vaccination. Overall, our results support further development of the LION/repRNA vaccine platform for maternal and neonatal settings.
Collapse
Affiliation(s)
- Amit P Khandhar
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA; PAI Life Sciences Inc., 1616 Eastlake Avenue E, Suite 250, Seattle, WA 98102, USA.
| | - Chelsea D Landon
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jacob Archer
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Kyle Krieger
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Nikole L Warner
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Samantha Randall
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Bryan J Berube
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - Jesse H Erasmus
- HDT Bio Corp, 1616 Eastlake Avenue E, Suite 280, Seattle, WA 98102, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
22
|
Gorman J, Wang C, Mason RD, Nazzari AF, Welles HC, Zhou T, Bess JW, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele BF, Lifson JD, Liu J, Roederer M, Kwong PD. Cryo-EM structures of prefusion SIV envelope trimer. Nat Struct Mol Biol 2022; 29:1080-1091. [PMID: 36344847 PMCID: PMC10606957 DOI: 10.1038/s41594-022-00852-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Hugh C Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Margolin E, Allen JD, Verbeek M, Chapman R, Meyers A, van Diepen M, Ximba P, Motlou T, Moore PL, Woodward J, Strasser R, Crispin M, Williamson AL, Rybicki EP. Augmenting glycosylation-directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnol Bioeng 2022; 119:2919-2937. [PMID: 35781691 PMCID: PMC9544252 DOI: 10.1002/bit.28169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and β1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Jeremy Woodward
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Anna-Lise Williamson
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Hodge EA, Naika GS, Kephart SM, Nguyen A, Zhu R, Benhaim MA, Guo W, Moore JP, Hu SL, Sanders RW, Lee KK. Structural dynamics reveal isolate-specific differences at neutralization epitopes on HIV Env. iScience 2022; 25:104449. [PMID: 35677643 PMCID: PMC9167985 DOI: 10.1016/j.isci.2022.104449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein (Env) is the sole target for neutralizing antibodies against HIV and the most rapidly evolving, variable part of the virus. High-resolution structures of Env trimers captured in the pre-fusion, closed conformation have revealed a high degree of structural similarity across diverse isolates. Biophysical data, however, indicate that Env is highly dynamic, and the level of dynamics and conformational sampling is believed to vary dramatically between HIV isolates. Dynamic differences likely influence neutralization sensitivity, receptor activation, and overall trimer stability. Here, using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), we have mapped local dynamics across native-like Env SOSIP trimers from diverse isolates. We show that significant differences in epitope order are observed across most sites targeted by broadly neutralizing antibodies. We also observe isolate-dependent conformational switching that occurs over a broad range of timescales. Lastly, we report that hyper-stabilizing mutations that dampen dynamics in some isolates have little effect on others.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gajendra S. Naika
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Sally M. Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Nguyen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Richard Zhu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wenjin Guo
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - John P. Moore
- Division of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rogier W. Sanders
- Division of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Rosenberg YJ, Jiang X, Lees JP, Urban LA, Mao L, Sack M. Enhanced HIV SOSIP Envelope yields in plants through transient co-expression of peptidyl-prolyl isomerase B and calreticulin chaperones and ER targeting. Sci Rep 2022; 12:10027. [PMID: 35705669 PMCID: PMC9200074 DOI: 10.1038/s41598-022-14075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.
Collapse
|
26
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
27
|
Walker LM, Shiakolas AR, Venkat R, Liu ZA, Wall S, Raju N, Pilewski KA, Setliff I, Murji AA, Gillespie R, Makoah NA, Kanekiyo M, Connors M, Morris L, Georgiev IS. High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Front Immunol 2022; 13:855772. [PMID: 35401559 PMCID: PMC8984479 DOI: 10.3389/fimmu.2022.855772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Development of novel technologies for the discovery of human monoclonal antibodies has proven invaluable in the fight against infectious diseases. Among the diverse antibody repertoires elicited by infection or vaccination, often only rare antibodies targeting specific epitopes of interest are of potential therapeutic value. Current antibody discovery efforts are capable of identifying B cells specific for a given antigen; however, epitope specificity information is usually only obtained after subsequent monoclonal antibody production and characterization. Here we describe LIBRA-seq with epitope mapping, a next-generation sequencing technology that enables residue-level epitope determination for thousands of single B cells simultaneously. By utilizing an antigen panel of point mutants within the HIV-1 Env glycoprotein, we identified and confirmed antibodies targeting multiple sites of vulnerability on Env, including the CD4-binding site and the V3-glycan site. LIBRA-seq with epitope mapping is an efficient tool for high-throughput identification of antibodies against epitopes of interest on a given antigen target.
Collapse
Affiliation(s)
- Lauren M. Walker
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhaojing Ariel Liu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amyn A. Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nigel A. Makoah
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022; 7:27. [PMID: 35228534 PMCID: PMC8885667 DOI: 10.1038/s41541-022-00446-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.
Collapse
|
29
|
Murji AA, Raju N, Qin JS, Kaldine H, Janowska K, Fechter EF, Mapengo R, Scheepers C, Setliff I, Acharya P, Morris L, Georgiev IS. Sequence and functional characterization of a public HIV-specific antibody clonotype. iScience 2022; 25:103564. [PMID: 34984325 PMCID: PMC8692997 DOI: 10.1016/j.isci.2021.103564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
Public antibody clonotypes shared among multiple individuals have been identified for several pathogens. However, little is known about the determinants of antibody "publicness". Here, we characterize the sequence and functional properties of antibodies from a public clonotype targeting the CD4 binding site on HIV-1 Env. Our results showed that HIV-1 specificity for the public antibodies studied here, comprising sequences from three individuals, was modulated by the VH, but not VL, germline gene. Non-native pairing of public heavy and light chains from different individuals suggested functional complementation of sequences within this public antibody clonotype. The strength of antigen recognition appeared to be dependent on the specific antibody light chain used, but not on other sequence features such as native-antibody or germline sequence identity. Understanding the determinants of antibody clonotype "publicness" can provide insights into the fundamental rules of host-pathogen interactions at the population level, with implications for clonotype-specific vaccine development.
Collapse
Affiliation(s)
- Amyn A. Murji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Juliana S. Qin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haajira Kaldine
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Katarzyna Janowska
- Division of Structural Biology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Rutendo Mapengo
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Priyamvada Acharya
- Division of Structural Biology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ivelin S. Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Zhang S, Wang K, Wang WL, Nguyen HT, Chen S, Lu M, Go EP, Ding H, Steinbock RT, Desaire H, Kappes JC, Sodroski J, Mao Y. Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. J Virol 2021; 95:e0052921. [PMID: 34549974 PMCID: PMC8610584 DOI: 10.1128/jvi.00529-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160 precursor. gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pretriggered, "closed" (state 1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more "open" Env conformations (states 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and cross-linking decreased the exposure of pNAb epitopes on cell surface gp160; however, after detergent solubilization, cross-linked and BMS-806-treated gp160 sampled non-state-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume state-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a state-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage for a persistent virus like HIV-1.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunyu Wang
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Wei Li Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuobing Chen
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Robert T. Steinbock
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Derking R, Sanders RW. Structure-guided envelope trimer design in HIV-1 vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25797. [PMID: 34806305 PMCID: PMC8606863 DOI: 10.1002/jia2.25797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The development of a human immunodeficiency virus 1 (HIV-1) vaccine remains a formidable challenge. An effective vaccine likely requires the induction of broadly neutralizing antibodies (bNAbs), which likely involves the use of native-like HIV-1 envelope (Env) trimers at some or all stages of vaccination. Development of such trimers has been very difficult, but much progress has been made in the past decade, starting with the BG505 SOSIP trimer, elucidation of its atomic structure and implementing subsequent design iterations. This progress facilitated understanding the weaknesses of the Env trimer, fuelled structure-guided HIV-1 vaccine design and assisted in the development of new vaccine designs. This review summarizes the relevant literature focusing on studies using structural biology to reveal and define HIV-1 Env sites of vulnerability; to improve Env trimers, by creating more stable versions; understanding antibody responses in preclinical vaccination studies at the atomic level; understanding the glycan shield; and to improve "on-target" antibody responses versus "off-target" responses. METHODS The authors conducted a narrative review of recently published articles that made a major contribution to HIV-1 structural biology and vaccine design efforts between the years 2000 and 2021. DISCUSSION The field of structural biology is evolving at an unprecedented pace, where cryo-electron microscopy (cryo-EM) and X-ray crystallography provide complementary information. Resolving protein structures is necessary for defining which Env surfaces are accessible for the immune system and can be targeted by neutralizing antibodies. Recently developed techniques, such as electron microscopy-based polyclonal epitope mapping (EMPEM) are revolutionizing the way we are analysing immune responses and shed light on the immunodominant targets on new vaccine immunogens. Such information accelerates iterative vaccine design; for example, by reducing undesirable off-target responses, while improving immunogens to drive the more desirable on-target responses. CONCLUSIONS Resolving high-resolution structures of the HIV-1 Env trimer was instrumental in understanding and improving recombinant HIV-1 Env trimers that mimic the structure of viral HIV-1 Env spikes. Newly emerging techniques in structural biology are aiding vaccine design efforts and improving immunogens. The role of structural biology in HIV-1 vaccine design has indeed become very prominent and is unlikely to diminish any time soon.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rogier W. Sanders
- Department of Medical MicrobiologyAmsterdam Infection & Immunity InstituteAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
32
|
Ding X, Cao K, Wang J, Wan Y, Chen Q, Ren Y, Zheng Y, Zhu M, Tian R, Wang W, Zhao C, Zhang X, Xu J. Exploration of a Sequential Gp140-Gp145 Immunization Regimen with Heterologous Envs to Induce a Protective Cross-Reactive HIV Neutralizing Antibody Response In Non-human Primates. Virol Sin 2021; 36:784-795. [PMID: 33723807 PMCID: PMC7959301 DOI: 10.1007/s12250-021-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022] Open
Abstract
Raising a heterologous tier 2 neutralizing antibody (nAb) response remains a daunting task for HIV vaccine development. In this study, we explored the utility of diverse HIV-1 envelope (Env) immunogens in a sequential immunization scheme as a solution to this task. This exploration stemmed from the rationale that gp145, a membrane-bound truncation form of HIV Env, may facilitate the focusing of induced antibody response on neutralizing epitopes when sequentially combined with the soluble gp140 form as immunogens in a prime-boost mode. We first showed that gp140 DNA prime-gp145 Tiantan vaccinia (TV) boost likely represents a general format for inducing potent nAb response in mice. However, when examined in rhesus macaque, this modality showed little effectiveness. To improve the efficacy, we extended the original modality by adding a strong protein boost, namely native-like SOSIP.664 trimer displayed on ferritin-based nanoparticle (NP), which was generated by a newly developed click approach. The resulting three-immunization regimen succeeded in eliciting tier-2 nAb response with substantial breadth when implemented in rhesus macaque over a short 8-week schedule. Importantly, the elicited nAb response was able to effectively contain viremia upon a heterologous SHIV challenge. Collectively, our studies highlighted that diversification of Env immunogens, in both types and formulations, under the framework of a sequential immunization scheme might open new opportunity toward HIV vaccine development.
Collapse
Affiliation(s)
- Xiangqing Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Kangli Cao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Qinyun Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Yanqin Ren
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Renrong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
33
|
Murji AA, Qin JS, Hermanus T, Morris L, Georgiev IS. Elicitation of Neutralizing Antibody Responses to HIV-1 Immunization with Nanoparticle Vaccine Platforms. Viruses 2021; 13:v13071296. [PMID: 34372503 PMCID: PMC8310022 DOI: 10.3390/v13071296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
A leading strategy for developing a prophylactic HIV-1 vaccine is the elicitation of antibodies that can neutralize a large fraction of circulating HIV-1 variants. However, a major challenge that has limited the effectiveness of current vaccine candidates is the extensive global diversity of the HIV-1 envelope protein (Env), the sole target for HIV-neutralizing antibodies. To address this challenge, various strategies incorporating Env diversity into the vaccine formulation have been proposed. Here, we assessed the potential of two such strategies that utilize a nanoparticle-based vaccine platform to elicit broadly neutralizing antibody responses. The nanoparticle immunogens developed here consisted of different formulations of Envs from strains BG505 (clade A) and CZA97 (clade C), attached to the N-termini of bacterial ferritin. Single—antigen nanoparticle cocktails, as well as mosaic nanoparticles bearing both Env trimers, elicited high antibody titers in mice and guinea pigs. Furthermore, serum from guinea pigs immunized with nanoparticle immunogens achieved autologous, and in some cases heterologous, tier 2 neutralization, although significant differences between mosaic and single—antigen nanoparticles were not observed. These results provide insights into the ability of different vaccine strategies for incorporating Env sequence diversity to elicit neutralizing antibodies, with implications for the development of broadly protective HIV-1 vaccines.
Collapse
Affiliation(s)
- Amyn A. Murji
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (A.A.M.); (J.S.Q.)
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Juliana S. Qin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (A.A.M.); (J.S.Q.)
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; (T.H.); (L.M.)
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; (T.H.); (L.M.)
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ivelin S. Georgiev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (A.A.M.); (J.S.Q.)
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
34
|
Gulla K, Cibelli N, Cooper JW, Fuller HC, Schneiderman Z, Witter S, Zhang Y, Changela A, Geng H, Hatcher C, Narpala S, Tsybovsky Y, Zhang B, Vrc Production Program, McDermott AB, Kwong PD, Gowetski DB. A non-affinity purification process for GMP production of prefusion-closed HIV-1 envelope trimers from clades A and C for clinical evaluation. Vaccine 2021; 39:3379-3387. [PMID: 34020817 PMCID: PMC8243839 DOI: 10.1016/j.vaccine.2021.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.
Collapse
Affiliation(s)
- Krishana Gulla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Cibelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Cooper
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haley C Fuller
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary Schneiderman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Witter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiu Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Hatcher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vrc Production Program
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Daniel B Gowetski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Schneck NA, Vinitsky AL, Ivleva VB, Wang X, Gowetski DB, Lei QP. Development of a RPLC-UV method for monitoring uncleaved HIV-1 envelope glycoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2183-2188. [PMID: 33954330 DOI: 10.1039/d1ay00072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the HIV-1 vaccine design efforts has focused on developing a recombinant HIV-1 trimeric envelope glycoprotein (Env) as an immunogen to induce broadly neutralizing antibodies. A native-like immunogen, the BG505.DS.SOSIP.664 gp140 (Env) construct has been well-characterized as a vaccine candidate. This vaccine candidate comprises of three identical gp120 and truncated gp41 subunits that form into a trimer of heterodimers. During production, recombinant Env is expressed as a gp140 precursor polypeptide in which a furin cleavable site is engineered to generate a heterodimer of gp120 and gp41 subunits. Each heterodimer is connected by an intermolecular disulfide bond, and three heterodimers form into a trimer. Furin cleavage is an important factor to mimic native-like HIV-1 Env conformations and is needed to help induce an immune response. Therefore, it is critical to monitor cleavage for ensuring functionality of the Env vaccine product. In this paper, a new RPLC-UV method coupled with reduction was developed to routinely determine the percentage of uncleaved gp140 relative to the cleaved gp120 and gp41 subunits. Baseline separation was achieved among the gp120, gp41 and uncleaved gp140 peaks, thus enabling relative quantification of uncleaved gp140. Overall, this RPLC-UV approach has been successfully applied to support Env vaccine candidate developments.
Collapse
Affiliation(s)
- Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Gonelli CA, King HAD, Mackenzie C, Sonza S, Center RJ, Purcell DFJ. Immunogenicity of HIV-1-Based Virus-Like Particles with Increased Incorporation and Stability of Membrane-Bound Env. Vaccines (Basel) 2021; 9:239. [PMID: 33801906 PMCID: PMC8002006 DOI: 10.3390/vaccines9030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A. Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Hannah A. D. King
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Rob J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| |
Collapse
|
37
|
Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. J Virol 2021; 95:JVI.01369-20. [PMID: 33148792 DOI: 10.1128/jvi.01369-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.
Collapse
|
38
|
Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. J Control Release 2020; 330:529-539. [PMID: 33358977 PMCID: PMC7749995 DOI: 10.1016/j.jconrel.2020.12.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
The current health crisis of corona virus disease 2019 (COVID-19) highlights the urgent need for vaccine systems that can generate potent and protective immune responses. Protein vaccines are safe, but conventional approaches for protein-based vaccines often fail to elicit potent and long-lasting immune responses. Nanoparticle vaccines designed to co-deliver protein antigens and adjuvants can promote their delivery to antigen-presenting cells and improve immunogenicity. However, it remains challenging to develop vaccine nanoparticles that can preserve and present conformational epitopes of protein antigens for induction of neutralizing antibody responses. Here, we have designed a new lipid-based nanoparticle vaccine platform (NVP) that presents viral proteins (HIV-1 and SARS-CoV-2 antigens) in a conformational manner for induction of antigen-specific antibody responses. We show that NVP was readily taken up by dendritic cells (DCs) and promoted DC maturation and antigen presentation. NVP loaded with BG505.SOSIP.664 (SOSIP) or SARS-CoV-2 receptor-binding domain (RBD) was readily recognized by neutralizing antibodies, indicating the conformational display of antigens on the surfaces of NVP. Rabbits immunized with SOSIP-NVP elicited strong neutralizing antibody responses against HIV-1. Furthermore, mice immunized with RBD-NVP induced robust and long-lasting antibody responses against RBD from SARS-CoV-2. These results suggest that NVP is a promising platform technology for vaccination against infectious pathogens.
Collapse
|
39
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
40
|
Mogus AT, Liu L, Jia M, Ajayi DT, Xu K, Kong R, Huang J, Yu J, Kwong PD, Mascola JR, Ho DD, Tsuji M, Chackerian B. Virus-Like Particle Based Vaccines Elicit Neutralizing Antibodies against the HIV-1 Fusion Peptide. Vaccines (Basel) 2020; 8:vaccines8040765. [PMID: 33333740 PMCID: PMC7765226 DOI: 10.3390/vaccines8040765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) isolated from HIV-infected individuals delineate vulnerable sites on the HIV envelope glycoprotein that are potential vaccine targets. A linear epitope within the N-terminal region of the HIV-1 fusion peptide (FP8) is the primary target of VRC34.01, a bnAb that neutralizes ~50% of primary HIV isolates. FP8 has attracted attention as a potential HIV vaccine target because it is a simple linear epitope. Here, platform technologies based on RNA bacteriophage virus-like particles (VLPs) were used to develop multivalent vaccines targeting the FP8 epitope. Both recombinant MS2 VLPs displaying the FP8 peptide and Qβ VLPs displaying chemically conjugated FP8 peptide induced high titers of FP8-specific antibodies in mice. Moreover, a heterologous prime-boost-boost regimen employing the two FP8-VLP vaccines and native envelope trimer was the most effective approach for eliciting HIV-1 neutralizing antibodies. Given the potent immunogenicity of VLP-based vaccines, this vaccination strategy-inspired by bnAb-guided epitope mapping, VLP bioengineering, and prime-boost immunization approaches-may be a useful strategy for eliciting bnAb responses against HIV.
Collapse
Affiliation(s)
- Alemu Tekewe Mogus
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Manxue Jia
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
| | - Diane T. Ajayi
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
| | - Kai Xu
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - Rui Kong
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - Jing Huang
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - John R. Mascola
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - David D. Ho
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.T.); (B.C.); Tel.: +1-212-304-6165 (M.T.); +1-505-272-0269 (B.C.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
- Correspondence: (M.T.); (B.C.); Tel.: +1-212-304-6165 (M.T.); +1-505-272-0269 (B.C.)
| |
Collapse
|
41
|
Margolin E, Crispin M, Meyers A, Chapman R, Rybicki EP. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. FRONTIERS IN PLANT SCIENCE 2020; 11:609207. [PMID: 33343609 PMCID: PMC7744475 DOI: 10.3389/fpls.2020.609207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ann Meyers
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
43
|
Cheng C, Duan H, Xu K, Chuang GY, Corrigan AR, Geng H, O'Dell S, Ou L, Chambers M, Changela A, Chen X, Foulds KE, Sarfo EK, Jafari AJ, Hill KR, Kong R, Liu K, Todd JP, Tsybovsky Y, Verardi R, Wang S, Wang Y, Wu W, Zhou T, Arnold FJ, Doria-Rose NA, Koup RA, McDermott AB, Scorpio DG, Worobey M, Shapiro L, Mascola JR, Kwong PD. Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Rep 2020; 32:107981. [PMID: 32755575 PMCID: PMC11075050 DOI: 10.1016/j.celrep.2020.107981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The HIV fusion peptide (FP) is a promising vaccine target. FP-directed monoclonal antibodies from vaccinated macaques have been identified that neutralize up to ∼60% of HIV strains; these vaccinations, however, have involved ∼1 year with an extended neutralization-eclipse phase without measurable serum neutralization. Here, in 32 macaques, we test seven vaccination regimens, each comprising multiple immunizations of FP-carrier conjugates and HIV envelope (Env) trimers. Comparisons of vaccine regimens reveal FP-carrier conjugates to imprint cross-clade neutralizing responses and a cocktail of FP conjugate and Env trimer to elicit the earliest broad responses. We identify a signature, appearing as early as week 6 and involving the frequency of B cells recognizing both FP and Env trimer, predictive of vaccine-elicited breadth ∼1 year later. Immune monitoring of B cells in response to vaccination can thus enable vaccine insights even in the absence of serum neutralization, here identifying FP imprinting, cocktail approach, and early signature as means to improve FP-directed vaccine responses.
Collapse
Affiliation(s)
- Cheng Cheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela R Corrigan
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chambers
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kurt R Hill
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Todd
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21710, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Winston Wu
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Arnold
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
44
|
Chuang GY, Lai YT, Boyington JC, Cheng C, Geng H, Narpala S, Rawi R, Schmidt SD, Tsybovsky Y, Verardi R, Xu K, Yang Y, Zhang B, Chambers M, Changela A, Corrigan AR, Kong R, Olia AS, Ou L, Sarfo EK, Wang S, Wu W, Doria-Rose NA, McDermott AB, Mascola JR, Kwong PD. Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. J Virol 2020; 94:e00074-20. [PMID: 32295908 PMCID: PMC7307166 DOI: 10.1128/jvi.00074-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell 2020; 178:567-584.e19. [PMID: 31348886 DOI: 10.1016/j.cell.2019.06.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.
Collapse
Affiliation(s)
- Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John P Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Malladi SK, Schreiber D, Pramanick I, Sridevi MA, Goldenzweig A, Dutta S, Fleishman SJ, Varadarajan R. One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Curr Res Struct Biol 2020; 2:45-55. [PMID: 33688632 PMCID: PMC7939140 DOI: 10.1016/j.crstbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stabilization of the metastable envelope glycoprotein (Env) of HIV-1 is hypothesized to improve induction of broadly neutralizing antibodies. We improved the expression yield and stability of the HIV-1 envelope glycoprotein BG505SOSIP.664 gp140 by means of a previously described automated sequence and structure-guided computational thermostabilization approach, PROSS. This combines sequence conservation information with computational assessment of mutant stabilization, thus taking advantage of the extensive natural sequence variation present in HIV-1 Env. PROSS is used to design three gp140 variants with 17–45 mutations relative to the parental construct. One of the designs is experimentally observed to have a fourfold improvement in yield and a 4 °C increment in thermostability. In addition, the designed immunogens have similar antigenicity profiles to the native flexible linker version of wild type, BG505SOSIP.664 gp140 (NFL Wt) to major epitopes targeted by broadly neutralizing antibodies. PROSS eliminates the laborious process of screening many variants for stability and functionality, providing a proof of principle of the method for stabilization and improvement of yield without compromising antigenicity for next generation complex, highly glycosylated vaccine candidates. One-step stabilization of HIV-1 Env gp140. One-step yield improvement of HIV-1 Env gp140. Native-like oligomeric conformation of designed vaccine candidates. Unaltered antigenicity of designed vaccine candidates.
Collapse
Affiliation(s)
| | - David Schreiber
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ishika Pramanick
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Adi Goldenzweig
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, India
| |
Collapse
|
47
|
Pedreño-Lopez N, Dang CM, Rosen BC, Ricciardi MJ, Bailey VK, Gutman MJ, Gonzalez-Nieto L, Pauthner MG, Le K, Song G, Andrabi R, Weisgrau KL, Pomplun N, Martinez-Navio JM, Fuchs SP, Wrammert J, Rakasz EG, Lifson JD, Martins MA, Burton DR, Watkins DI, Magnani DM. Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Mol Ther Methods Clin Dev 2020; 16:225-237. [PMID: 32083148 PMCID: PMC7021589 DOI: 10.1016/j.omtm.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/26/2020] [Indexed: 02/04/2023]
Abstract
Structural characterization of the HIV-1 Envelope (Env) glycoprotein has facilitated the development of Env probes to isolate HIV-specific monoclonal antibodies (mAbs). However, preclinical studies have largely evaluated these virus-specific mAbs against chimeric viruses, which do not naturally infect non-human primates, in contrast to the unconstrained simian immunodeficiency virus (SIV)mac239 clone. Given the paucity of native-like reagents for the isolation of SIV-specific B cells, we examined a method to isolate SIVmac239-specific mAbs without using Env probes. We first activated virus-specific B cells by inducing viral replication after the infusion of a CD8β-depleting mAb or withdrawal of antiretroviral therapy in SIVmac239-infected rhesus macaques. Following the rise in viremia, we observed 2- to 4-fold increases in the number of SIVmac239 Env-reactive plasmablasts in circulation. We then sorted these activated B cells and obtained 206 paired Ab sequences. After expressing 122 mAbs, we identified 14 Env-specific mAbs. While these Env-specific mAbs bound to both the SIVmac239 SOSIP.664 trimer and to infected primary rhesus CD4+ T cells, five also neutralized SIVmac316. Unfortunately, none of these mAbs neutralized SIVmac239. Our data show that this method can be used to isolate virus-specific mAbs without antigenic probes by inducing bursts of contemporary replicating viruses in vivo.
Collapse
Affiliation(s)
- Nuria Pedreño-Lopez
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christine M. Dang
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon C. Rosen
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Varian K. Bailey
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Martin J. Gutman
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Matthias G. Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - José M. Martinez-Navio
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian P. Fuchs
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mauricio A. Martins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - David I. Watkins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
48
|
Schneck NA, Ivleva VB, Cai CX, Cooper JW, Lei QP. Characterization of the furin cleavage motif for HIV-1 trimeric envelope glycoprotein by intact LC-MS analysis. Analyst 2020; 145:1636-1640. [PMID: 31932825 PMCID: PMC10246425 DOI: 10.1039/c9an02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Generating a soluble and native-like trimeric envelope glycoprotein (Env) with high efficacy as an immunogen has been a major focus for developing an effective vaccine against HIV-1. The Env immunogen is a heavily glycosylated protein composed of 3 identical surface gp120 and gp41 subunits that form into a trimer of heterodimers (3 × 28 N-glycan sites). During Env immunogen production, endogenous furin works to cleave a hexa-arginine motif connecting the gp120 and gp41 subunits, which is needed to ensure proper protein folding and a native-like conformation of Env. Verification of the overall identity and proteolytic cleavage of Env is therefore important for HIV-1 vaccine development and product quality. Herein, we report the first work using LC-MS to (1) achieve fast and accurate intact mass measurement of Env after deglycosylation and (2) confidently identify the furin cleavage sites.
Collapse
Affiliation(s)
- Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Cindy X Cai
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| |
Collapse
|
49
|
Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 Vaccine Design. Clin Ther 2020; 42:499-514. [PMID: 32035643 PMCID: PMC7102617 DOI: 10.1016/j.clinthera.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The field of HIV-1 vaccinology has evolved during the last 30 years from the first viral vector HIV gene insert constructs to vaccination regimens using a myriad of strategies. These strategies now include germline-targeting, lineage-based, and structure-guided immunogen design. This narrative review outlines the historical context of HIV vaccinology and subsequently highlights the scientific discoveries during the last 6 years that promise to propel the field forward. METHODS We conducted a search of 2 electronic databases, PubMed and EMBASE, for experimental studies that involved new HIV immunogen designs between 2013 and 2019. During the title and abstract reviews, publications were excluded if they were written in language other than English and/or were a letter to the editor, a commentary, or a conference-only presentation. We then used ClinicalTrials.gov to identify completed and ongoing clinical trials using these strategies. FINDINGS The HIV vaccinology field has undergone periods of significant growth during the last 3 decades. Findings elucidated in preclinical studies have revealed the importance of the interaction between the cellular and humoral immune system. As a result, several new rationally designed vaccine strategies have been developed and explored in the last 6 years, including native-like envelope trimers, nanoparticle, and mRNA vaccine design strategies among others. Several of these strategies have shown enough promise in animal models to progress toward first-in-human Phase I clinical trials. IMPLICATIONS Rapid developments in preclinical and early-phase clinical studies suggest that a tolerable and effective HIV vaccine may be on the horizon.
Collapse
Affiliation(s)
- Letitia D Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA
| | - Amelia B Thompson
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA.
| |
Collapse
|
50
|
Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. J Virol 2020; 94:JVI.01883-19. [PMID: 31852794 PMCID: PMC7158715 DOI: 10.1128/jvi.01883-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023] Open
Abstract
We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins.IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.
Collapse
|