1
|
Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, Wentworth DE, Wessner DR, Williams RK, Miura TA. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses 2022; 14:1573. [PMID: 35891553 PMCID: PMC9315735 DOI: 10.3390/v14071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two years, scientific research has moved at an unprecedented rate in response to the COVID-19 pandemic. The rapid development of effective vaccines and therapeutics would not have been possible without extensive background knowledge on coronaviruses developed over decades by researchers, including Kathryn (Kay) Holmes. Kay's research team discovered the first coronavirus receptors for mouse hepatitis virus and human coronavirus 229E and contributed a wealth of information on coronaviral spike glycoproteins and receptor interactions that are critical determinants of host and tissue specificity. She collaborated with several research laboratories to contribute knowledge in additional areas, including coronaviral pathogenesis, epidemiology, and evolution. Throughout her career, Kay was an extremely dedicated and thoughtful mentor to numerous graduate students and post-doctoral fellows. This article provides a review of her contributions to the coronavirus field and her exemplary mentoring.
Collapse
Affiliation(s)
- Aurelio Bonavia
- Vaccine Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA;
| | - Samuel R. Dominguez
- Department of Pediatrics-Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Sara Gagneten
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Megan Howard
- Battelle Memorial Institute, Columbus, OH 43201, USA;
| | | | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100050, China;
| | | | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dina B. Tresnan
- Safety Surveillance and Risk Management, Worldwide Safety, Pfizer, Groton, CT 06340, USA;
| | - David E. Wentworth
- COVID-19 Emergency Response, Virology Surveillance and Diagnosis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA;
| | - David R. Wessner
- Departments of Biology and Public Health, Davidson College, Davidson, NC 28035, USA;
| | | | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
2
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Cataldi M, Pignataro G, Taglialatela M. Neurobiology of coronaviruses: Potential relevance for COVID-19. Neurobiol Dis 2020; 143:105007. [PMID: 32622086 PMCID: PMC7329662 DOI: 10.1016/j.nbd.2020.105007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the first two decades of the 21st century, there have been three outbreaks of severe respiratory infections caused by highly pathogenic coronaviruses (CoVs) around the world: the severe acute respiratory syndrome (SARS) by the SARS-CoV in 2002-2003, the Middle East respiratory syndrome (MERS) by the MERS-CoV in June 2012, and Coronavirus Disease 2019 (COVID-19) by the SARS-CoV-2 presently affecting most countries In all of these, fatalities are a consequence of a multiorgan dysregulation caused by pulmonary, renal, cardiac, and circulatory damage; however, COVID patients may show significant neurological signs and symptoms such as headache, nausea, vomiting, and sensory disturbances, the most prominent being anosmia and ageusia. The neuroinvasive potential of CoVs might be responsible for at least part of these symptoms and may contribute to the respiratory failure observed in affected patients. Therefore, in the present manuscript, we have reviewed the available preclinical evidence on the mechanisms and consequences of CoVs-induced CNS damage, and highlighted the potential role of CoVs in determining or aggravating acute and long-term neurological diseases in infected individuals. We consider that a widespread awareness of the significant neurotropism of CoVs might contribute to an earlier recognition of the signs and symptoms of viral-induced CNS damage. Moreover, a better understanding of the cellular and molecular mechanisms by which CoVs affect CNS function and cause CNS damage could help in planning new strategies for prognostic evaluation and targeted therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
4
|
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 2019; 93:JVI.01046-19. [PMID: 31375571 PMCID: PMC6798120 DOI: 10.1128/jvi.01046-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Mouse hepatitis virus (MHV) uses its N-terminal domain (NTD) of the viral spike (S) protein to bind the host receptor mouse carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) and mediate virus entry. Our previous crystal structure study of the MHV NTD/mCEACAM1a complex (G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, et al., Proc Natl Acad Sci U S A 108:10696-10701, 2011, https://doi.org/10.1073/pnas.1104306108) reveals that there are 14 residues in the NTD interacting with the receptor. However, their contribution to receptor binding and virus entry has not been fully investigated. Here we analyzed 13 out of 14 contact residues by mutagenesis and identified I22 as being essential for receptor binding and virus entry. Unexpectedly, we found that G29 was critical for the conformational changes of the S protein triggered by either receptor binding or high pH. Replacement of G29 with A, D, F, K, M, and T, to different extents, caused spontaneous dissociation of S1 from the S protein, resulting in an enhancement of high-pH-triggered receptor-independent syncytium (RIS) formation in HEK293T cells, compared to the wild type (WT). In contrast, replacement of G29 with P, a turn-prone residue with a strict conformation, hindered virus entry and conformational changes of the S protein triggered by either receptor binding or pH 8.0, suggesting that the structural turn around G29 and its flexibility are critical. Finally, stabilization of the NTD by G29P had almost no effect on pH-independent RIS induced by the Y320A mutation in the C-terminal domain (CTD) of the S1 subunit, indicating that there might be an absence of cross talk between the NTD and CTD during conformational changes of the S protein. Our study will aid in better understanding the mechanism of how conformational changes of the S protein are triggered.IMPORTANCE Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Collapse
|
5
|
Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci 2018; 12:386. [PMID: 30416428 PMCID: PMC6212673 DOI: 10.3389/fncel.2018.00386] [Citation(s) in RCA: 427] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Central Nervous System (CNS) infections are one of the most critical problems in public health, as frequently patients exhibit neurologic sequelae. Usually, CNS pathologies are caused by known neurotropic viruses such as measles virus (MV), herpes virus and human immunodeficiency virus (HIV), among others. However, nowadays respiratory viruses have placed themselves as relevant agents responsible for CNS pathologies. Among these neuropathological viruses are the human respiratory syncytial virus (hRSV), the influenza virus (IV), the coronavirus (CoV) and the human metapneumovirus (hMPV). These viral agents are leading causes of acute respiratory infections every year affecting mainly children under 5 years old and also the elderly. Up to date, several reports have described the association between respiratory viral infections with neurological symptoms. The most frequent clinical manifestations described in these patients are febrile or afebrile seizures, status epilepticus, encephalopathies and encephalitis. All these viruses have been found in cerebrospinal fluid (CSF), which suggests that all these pathogens, once in the lungs, can spread throughout the body and eventually reach the CNS. The current knowledge about the mechanisms and routes used by these neuro-invasive viruses remains scarce. In this review article, we describe the most recent findings associated to neurologic complications, along with data about the possible invasion routes of these viruses in humans and their various effects on the CNS, as studied in animal models.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
DiSano KD, Stohlman SA, Bergmann CC. An optimized method for enumerating CNS derived memory B cells during viral-induced inflammation. J Neurosci Methods 2017; 285:58-68. [PMID: 28495370 PMCID: PMC5545894 DOI: 10.1016/j.jneumeth.2017.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
Memory B cell markers characterizing peripheral B cell phenotypes show more diverse expression patterns in the infected central nervous system (CNS). TLR7/8 stimulation for 2 days prior to ELISPOT analysis achieves optimal conversion of CNS-derived memory B cells to ASC while minimizing cell loss. In vitro stimulation allows simultaneous assessment of antibody secreting cell and memory B cell isotype, antigen specificity, and temporal alterations during CNS inflammation.
Background CNS inflammation resulting from infection, injury, or neurodegeneration leads to accumulation of diverse B cell subsets. Although antibody secreting cells (ASC) within the inflamed CNS have been extensively examined, memory B cell (Bmem) characterization has been limited as they do not secrete antibody without stimulation. Moreover, unlike human Bmem, reliable surface markers for murine Bmem remain elusive. New method Using a viral encephalomyelitis model we developed a modified limiting dilution in vitro stimulation assay to convert CNS-derived virus specific Bmem into ASC. Comparison with existing methods Stimulation methods established for lymphoid tissue cells using prolonged stimulation with viral lysate resulted in substantial ASC loss and minimal Bmem to ASC conversion of CNS-derived cells. By varying stimulation duration, TLR activators, and culture supplements, we achieved optimal conversion by culturing cells with TLR7/8 agonist R848 in the presence of feeder cells for 2 days. Results Flow cytometry markers CD38 and CD73 characterizing murine Bmem from lymphoid tissue showed more diverse expression patterns on corresponding CNS-derived B cell subsets. Using the optimized TLR7/8 stimulation protocol, we compared virus-specific IgG Bmem versus pre-existing ASC within the brain and spinal cord. Increasing Bmem frequencies during chronic infection mirrored kinetics of ASC. However, despite initially similar Bmem and ASC accumulation, Bmem prevailed in the brain, but were lower than ASC in the spinal cord during persistence. Conclusion Simultaneous enumeration of antigen-specific Bmem and ASC using the Bmem assay optimized for CNS-derived cells enables characterization of temporal changes during microbial or auto-antigen induced neuroinflammation.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States; School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
| | - Stephen A Stohlman
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Cornelia C Bergmann
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| |
Collapse
|
7
|
Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. J Virol 2017; 91:JVI.01564-16. [PMID: 28148786 DOI: 10.1128/jvi.01564-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.IMPORTANCE The family Coronaviridae includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate in vivo infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid pH-independent serine protease TMPRSS2, but Zhou et al. (Antiviral Res 116:76-84, 2015, doi:10.1016/j.antiviral.2015.01.011) found that a serine protease inhibitor was more protective than a cathepsin inhibitor in SARS-CoV-infected mice. This paper explores the contributions of endosomal acidification and various proteases to coronavirus infection and identifies an unexpected class of proteases, the matrix metalloproteinase and ADAM families, as potential targets for anticoronavirus therapy.
Collapse
|
8
|
Abstract
The carcinoembryonic antigen (CEA) family comprises a large number of cellular surface molecules, the CEA-related cell adhesion molecules (CEACAMs), which belong to the Ig superfamily. CEACAMs exhibit a complex expression pattern in normal and malignant tissues. The majority of the CEACAMs are cellular adhesion molecules that are involved in a great variety of distinct cellular processes, for example in the integration of cellular responses through homo- and heterophilic adhesion and interaction with a broad selection of signal regulatory proteins, i.e., integrins or cytoskeletal components and tyrosine kinases. Moreover, expression of CEACAMs affects tumor growth, angiogenesis, cellular differentiation, immune responses, and they serve as receptors for commensal and pathogenic microbes. Recently, new insights into CEACAM structure and function became available, providing further elucidation of their kaleidoscopic functions.
Collapse
|
9
|
Taguchi F, Hirai-Yuki A. Mouse Hepatitis Virus Receptor as a Determinant of the Mouse Susceptibility to MHV Infection. Front Microbiol 2012; 3:68. [PMID: 22375141 PMCID: PMC3285771 DOI: 10.3389/fmicb.2012.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/09/2012] [Indexed: 11/13/2022] Open
Abstract
In this review, we report that the receptor of mouse hepatitis virus (MHV), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is an important determinant of mouse susceptibility to MHV infection. This finding was revealed by using mouse strains with two different allelic forms of the MHV receptor, Ceacam1a and Ceacam1b. Although previous studies indicated that susceptibility is determined by a single gene, Ceacam1, our recent work in gene-replaced mice with chimeric Ceacam1 pointed toward the involvement of other host factors (genes) in the susceptibility. Studies on mouse susceptibility to MHV, as well as the factors involved in their susceptibility, are overviewed.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Laboratory of Virology and Viral Infections, Department of Veterinary Medicine, Nippon Veterinary and Life Science UniversityMusashino, Tokyo, Japan
| | - Asuka Hirai-Yuki
- Laboratory of Animal Care, National Institute of Infectious DiseaseMusashi-Murayama, Tokyo, Japan
| |
Collapse
|
10
|
Phillips JM, Weiss SR. Pathogenesis of neurotropic murine coronavirus is multifactorial. Trends Pharmacol Sci 2010; 32:2-7. [PMID: 21144598 PMCID: PMC3022387 DOI: 10.1016/j.tips.2010.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Although coronavirus tropism is most often ascribed to receptor availability, increasing evidence suggests that for the neurotropic strains of the murine coronavirus mouse hepatitis virus (MHV), spike–receptor interactions cannot fully explain neurovirulence. The canonical MHV receptor CEACAM1a and its spike-binding site have been extensively characterized. However, CEACAM1a is poorly expressed in neurons, and the extremely neurotropic MHV strain JHM.SD infects ceacam1a−/− mice and spreads among ceacam1a−/− neurons. Two proposed alternative MHV receptors, CEACAM2 and PSG16, also fail to account for neuronal spread of JHM.SD in the absence of CEACAM1a. It has been reported that JHM.SD has an unusually labile spike protein, enabling it to perform receptor-independent spread (RIS), but it is not clear if the ability to perform RIS is fully responsible for the extremely neurovirulent phenotype. We propose that the extreme neurovirulence of JHM.SD is multifactorial and might include as yet unidentified neuron-specific spread mechanisms.
Collapse
Affiliation(s)
- Judith M Phillips
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
11
|
Lane TE, Hosking MP. The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol 2010; 30:119-30. [PMID: 20370625 DOI: 10.1615/critrevimmunol.v30.i2.20] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mouse hepatitis virus (MHV) is a positive-strand RNA virus that causes an acute encephalomyelitis that later resolves into a chronic fulminating demyelinating disease. Cytokine production, chemokine secretion, and immune cell infiltration into the central nervous system are critical to control viral replication during acute infection. Despite potent antiviral T-lymphocyte activity, sterile immunity is not achieved, and MHV chronically persists within oligodendrocytes. Continued infiltration and activation of the immune system, a result of the lingering viral antigen and RNA within oligodendrocytes, lead directly to the development of an immune-mediated demyelination that bears remarkable similarities, both clinically and histologically, to the human demyelinating disease multiple sclerosis. MHV offers a unique model system for studying host defense during acute viral infection and immune-mediated demyelination during chronic infection.
Collapse
Affiliation(s)
- Thomas E Lane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
12
|
Hirai A, Ohtsuka N, Ikeda T, Taniguchi R, Blau D, Nakagaki K, Miura HS, Ami Y, Yamada YK, Itohara S, Holmes KV, Taguchi F. Role of mouse hepatitis virus (MHV) receptor murine CEACAM1 in the resistance of mice to MHV infection: studies of mice with chimeric mCEACAM1a and mCEACAM1b. J Virol 2010; 84:6654-66. [PMID: 20410265 PMCID: PMC2903249 DOI: 10.1128/jvi.02680-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/07/2010] [Indexed: 01/10/2023] Open
Abstract
Although most inbred mouse strains are highly susceptible to mouse hepatitis virus (MHV) infection, the inbred SJL line of mice is highly resistant to its infection. The principal receptor for MHV is murine CEACAM1 (mCEACAM1). Susceptible strains of mice are homozygous for the 1a allele of mCeacam1, while SJL mice are homozygous for the 1b allele. mCEACAM1a (1a) has a 10- to 100-fold-higher receptor activity than does mCEACAM1b (1b). To explore the hypothesis that MHV susceptibility is due to the different MHV receptor activities of 1a and 1b, we established a chimeric C57BL/6 mouse (cB61ba) in which a part of the N-terminal immunoglobulin (Ig)-like domain of the mCeacam1a (1a) gene, which is responsible for MHV receptor function, is replaced by the corresponding region of mCeacam1b (1b). We compared the MHV susceptibility of these chimeric mice to that of SJL and B6 mice. B6 mice that are homozygous for 1a are highly susceptible to MHV-A59 infection, with a 50% lethal dose (LD(50)) of 10(2.5) PFU, while chimeric cB61ba mice and SJL mice homozygous for 1ba and 1b, respectively, survived following inoculation with 10(5) PFU. Unexpectedly, cB61ba mice were more resistant to MHV-A59 infection than SJL mice as measured by virus replication in target organs, including liver and brain. No infectious virus or viral RNA was detected in the organs of cB61ba mice, while viral RNA and infectious virus were detected in target organs of SJL mice. Furthermore, SJL mice produced antiviral antibodies after MHV-A59 inoculation with 10(5) PFU, but cB61ba mice did not. Thus, cB61ba mice are apparently completely resistant to MHV-A59 infection, while SJL mice permit low levels of MHV-A59 virus replication during self-limited, asymptomatic infection. When expressed on cultured BHK cells, the mCEACAM1b and mCEACAM1ba proteins had similar levels of MHV-A59 receptor activity. These results strongly support the hypothesis that although alleles of mCEACAM1 are the principal determinants of mouse susceptibility to MHV-A59, other as-yet-unidentified murine genes may also play a role in susceptibility to MHV.
Collapse
Affiliation(s)
- Asuka Hirai
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Nobuhisa Ohtsuka
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Toshio Ikeda
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Rie Taniguchi
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Dianna Blau
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Keiko Nakagaki
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Hideka S. Miura
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yasushi Ami
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yasuko K. Yamada
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Shigeyoshi Itohara
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Kathryn V. Holmes
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
13
|
Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010; 5:336-54. [PMID: 20369302 PMCID: PMC2914825 DOI: 10.1007/s11481-010-9202-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/05/2010] [Indexed: 12/15/2022]
Abstract
Murine coronavirus (mouse hepatitis virus, MHV) is a collection of strains that induce disease in several organ systems of mice. Infection with neurotropic strains JHM and A59 causes acute encephalitis, and in survivors, chronic demyelination, the latter of which serves as an animal model for multiple sclerosis. The MHV receptor is a carcinoembryonic antigen-related cell adhesion molecule, CEACAM1a; paradoxically, CEACAM1a is poorly expressed in the central nervous system (CNS), leading to speculation of an additional receptor. Comparison of highly neurovirulent JHM isolates with less virulent variants and the weakly neurovirulent A59 strain, combined with the use of reverse genetics, has allowed mapping of pathogenic properties to individual viral genes. The spike protein, responsible for viral entry, is a major determinant of tropism and virulence. Other viral proteins, both structural and nonstructural, also contribute to pathogenesis in the CNS. Studies of host responses to MHV indicate that both innate and adaptive responses are crucial to antiviral defense. Type I interferon is essential to prevent very early mortality after infection. CD8 T cells, with the help of CD4 T cells, are crucial for viral clearance during acute disease and persist in the CNS during chronic disease. B cells are necessary to prevent reactivation of virus in the CNS following clearance of acute infection. Despite advances in understanding of coronavirus pathogenesis, questions remain regarding the mechanisms of viral entry and spread in cell types expressing low levels of receptor, as well as the unique interplay between virus and the host immune system during acute and chronic disease.
Collapse
Affiliation(s)
- Susan J Bender
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
14
|
Hosking MP, Lane TE. The Biology of Persistent Infection: Inflammation and Demyelination following Murine Coronavirus Infection of the Central Nervous System. ACTA ACUST UNITED AC 2009; 5:267-276. [PMID: 19946572 DOI: 10.2174/157339509789504005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple Sclerosis (MS) is an immune-mediated demyelinating disease of humans. Although causes of MS are enigmatic, underlying elements contributing to disease development include both genetic and environmental factors. Recent epidemiological evidence has pointed to viral infection as a trigger to initiating white matter damage in humans. Mouse hepatitis virus (MHV) is a positive strand RNA virus that, following intracranial infection of susceptible mice, induces an acute encephalomyelitis that later resolves into a chronic fulminating demyelinating disease. Immune cell infiltration into the central nervous system is critical both to quell viral replication and instigate demyelination. Recent efforts by our laboratory and others have focused upon strategies capable of enhancing remyelination in response to viral-induced demyelination, both by dampening chronic inflammation and by surgical engraftment of remyelination - competent neural precursor cells.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900 USA
| | | |
Collapse
|
15
|
Zhao J, Zhao J, Perlman S. De novo recruitment of antigen-experienced and naive T cells contributes to the long-term maintenance of antiviral T cell populations in the persistently infected central nervous system. THE JOURNAL OF IMMUNOLOGY 2009; 183:5163-70. [PMID: 19786545 DOI: 10.4049/jimmunol.0902164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice infected with attenuated strains of mouse hepatitis virus, strain JHM, develop a chronic infection in the brain and spinal cord characterized by low levels of viral Ag persistence and retention of virus-specific CD4 and CD8 T cells at the site of infection. It is not known whether these cells are maintained by proliferation of T cells that entered the CNS during acute infection or are newly recruited from Ag-experienced or naive T cell pools. In this study, using adoptive transfer experiments and bone marrow chimeras, we show that at least some of these cells are recruited from the periphery, predominantly from the viral Ag-experienced T cell pool. Both virus-specific CD4 and CD8 T cells are functional, as assessed by cytokine expression and degranulation after peptide exposure. In addition, populations of virus-specific CD4 T cells undergo dynamic changes in the infected CNS, as previously shown for CD8 T cells, because ratios of cells responding to two CD4 T cell epitopes change by a factor of five during the course of persistence. Collectively, these results show that maintenance of T cell responses in the virus-infected CNS is a dynamic process. Further, virus-specific T cell numbers at this site of infection are maintained by recruitment from peripheral Ag-experienced and naive T cell pools.
Collapse
Affiliation(s)
- Jingxian Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
16
|
Terahara K, Yoshida M, Taguchi F, Igarashi O, Nochi T, Gotoh Y, Yamamoto T, Tsunetsugu-Yokota Y, Beauchemin N, Kiyono H. Expression of newly identified secretory CEACAM1a isoforms in the intestinal epithelium. Biochem Biophys Res Commun 2009; 383:340-6. [DOI: 10.1016/j.bbrc.2009.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/19/2022]
|
17
|
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72:672-85, Table of Contents. [PMID: 19052324 PMCID: PMC2593566 DOI: 10.1128/mmbr.00015-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of approximately 30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.
Collapse
Affiliation(s)
- Matthew Frieman
- University of North Carolina, 210 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
18
|
Thirion G, Feliu AA, Coutelier JP. CD66a (CEACAM1) expression by mouse natural killer cells. Immunology 2008; 125:535-40. [PMID: 18492055 DOI: 10.1111/j.1365-2567.2008.02867.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CD66a (CEACAM1), an adhesion molecule that has regulatory function on T lymphocytes, was found to be expressed on a minority of mouse natural killer (NK) cells, especially in the liver. CD66a expression on NK cells depended on their differentiation stage, with highest levels on immature CD49b(-)NK cells. Expression of CD66a on NK cells was strongly enhanced by in vitro activation with interleukin-12 (IL-12) and IL-18. However, in vivo NK cell stimulation by infection with lactate dehydrogenase-elevating virus did not lead to strong CD66a expression, even on activated interferon--gamma-producing NK cells. These results indicate that CD66a expression is differently regulated, depending on the NK cell activation pathway, which may lead to distinct regulatory mechanisms of the functional subpopulations of these cells.
Collapse
Affiliation(s)
- Gaëtan Thirion
- Unit of Experimental Medicine, Christian de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
19
|
Schaumburg CS, Held KS, Lane TE. Mouse hepatitis virus infection of the CNS: a model for defense, disease, and repair. FRONT BIOSCI-LANDMRK 2008; 13:4393-406. [PMID: 18508518 DOI: 10.2741/3012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral infection of the central nervous system (CNS) results in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences. One of the principal factors that directs the outcome of infection is the localized innate immune response, which is proceeded by the adaptive immune response against the invading viral pathogen. The role of the immune system is to contain and control the spread of virus within the CNS, and paradoxically, this response may also be pathological. Studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV) have provided important insights into how the immune system combats neuroinvasive viruses, and have identified molecular and cellular mechanisms contributing to chronic disease in persistently infected mice.
Collapse
Affiliation(s)
- Chris S Schaumburg
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | | | |
Collapse
|
20
|
The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a-/- Mice. J Virol 2007; 82:755-63. [PMID: 18003729 DOI: 10.1128/jvi.01851-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a(-/-) mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a(-/-) mice. Although Ceacam1a(-/-) mice were completely resistant to i.c. inoculation with 10(6) PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a(-/-) and wild-type mice. For RJHM, the 50% lethal dose (LD(50)) is <10(1.3) in wild-type mice and 10(3.1) in Ceacam1a(-/-) mice. For SJHM/RA59, the LD(50) is <10(1.3) in wild-type mice and 10(3.6) in Ceacam1a(-/-) mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a(-/-) mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.
Collapse
|
21
|
Perlman S, Holmes KV. Receptor-independent spread of a neurotropic murine coronavirus MHV-JHMV in mixed neural culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:327-30. [PMID: 17037554 PMCID: PMC7123934 DOI: 10.1007/978-0-387-33012-9_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
22
|
Gillim-Ross L, Subbarao K. Emerging respiratory viruses: challenges and vaccine strategies. Clin Microbiol Rev 2006; 19:614-36. [PMID: 17041137 PMCID: PMC1592697 DOI: 10.1128/cmr.00005-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed.
Collapse
Affiliation(s)
- Laura Gillim-Ross
- Laboratory of Infectious Diseases, National Insitute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
24
|
Abstract
Viral induced demyelination, in both humans and rodent models, has provided unique insights into the cell biology of oligodendroglia, their complex cell-cell interactions and mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections in which no infectious virus is readily evident, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS). Although of interest in their own right, an understanding of the diverse mechanisms used by viruses to induce demyelination may shed light into the etiology and pathogenesis of the common demyelinating disorder multiple sclerosis (MS). This notion is supported by the persistent view that a viral infection acquired during adolescence might initiate MS after a long period of quiescence. Demyelination in both humans and rodents can be initiated by infection with a diverse group of enveloped and non-enveloped RNA and DNA viruses (Table 1). The mechanisms that ultimately result in the loss of CNS myelin appear to be equally diverse as the etiological agents capable of causing diseases which result in demyelination. Although demyelination can be a secondary result of axonal loss, in many examples of viral induced demyelination, myelin loss is primary and associated with axonal sparing. This suggests that demyelination induced by viral infections can result from: 1) a direct viral infection of oligodendroglia resulting in cell death with degeneration of myelin and its subsequent removal; 2) a persistent viral infection, in the presence or absence of infectious virus, resulting in the loss of normal cellular homeostasis and subsequent oligodendroglial death; 3) a vigorous virus-specific inflammatory response wherein the virus replicates in a cell type other than oligodendroglia, but cytokines and other immune mediators directly damage the oligodendroglia or the myelin sheath; or 4) infection initiates activation of an immune response specific for either oligodendroglia or myelin components. Virus-induced inflammation may be associated with the processing of myelin or oligodendroglial components and their presentation to the host's own T cell compartment. Alternatively, antigenic epitopes derived from the viral proteins may exhibit sufficient homology to host components that the immune response to the virus activates autoreactive T cells, i.e. molecular mimicry. Although it is not clear that each of these potential mechanisms participates in the pathogenesis of human demyelinating disease, analysis of the diverse demyelinating viral infections of both humans and rodents provides examples of many of these potential mechanisms.
Collapse
Affiliation(s)
- S A Stohlman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA.
| | | |
Collapse
|
25
|
Bergmann CC, Lane TE, Stohlman SA. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 2006; 4:121-32. [PMID: 16415928 PMCID: PMC7096820 DOI: 10.1038/nrmicro1343] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several viruses infect the mammalian central nervous system (CNS), some with devastating consequences, others resulting in chronic or persistent infections associated with little or no overt pathology. Coronavirus infection of the murine CNS illustrates the contributions of both the innate immune response and specific host effector mechanisms that control virus replication in distinct CNS cell types. Despite T-cell-mediated control of acute virus infection, host regulatory mechanisms, probably designed to protect CNS integrity, contribute to the failure to eliminate virus. Distinct from cytolytic effector mechanisms expressed during acute infection, non-lytic humoral immunity prevails in suppressing infectious virus during persistence.
Collapse
Affiliation(s)
- Cornelia C. Bergmann
- Cleveland Clinic Foundation, Neurosciences, 9500 Euclid Avenue NC30, Cleveland, 44195 Ohio USA
| | - Thomas E. Lane
- University of California, Irvine, Molecular Biology & Biochemistry, 3205 McGaugh Hall, Irvine, 92697 California USA
| | - Stephen A. Stohlman
- Cleveland Clinic Foundation, Neurosciences, 9500 Euclid Avenue NC30, Cleveland, 44195 Ohio USA
| |
Collapse
|
26
|
Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures. J Virol 2005; 79:6102-10. [PMID: 15857995 PMCID: PMC1091713 DOI: 10.1128/jvi.79.10.6102-6110.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.
Collapse
Affiliation(s)
- Keiko Nakagaki
- Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan.
| | | | | |
Collapse
|
27
|
Thackray LB, Turner BC, Holmes KV. Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHV-A59. Virology 2005; 334:98-110. [PMID: 15749126 PMCID: PMC7111733 DOI: 10.1016/j.virol.2005.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/15/2004] [Accepted: 01/12/2005] [Indexed: 01/17/2023]
Abstract
The host range of the murine coronavirus (MHV) is limited to susceptible mice and murine cell lines by interactions of the spike glycoprotein (S) with its receptor, mCEACAM1a. We identified five residues in S (S33, L79, T82, Y162 and K183) that are conserved in the receptor-binding domain of MHV strains, but not in related coronaviruses. We used targeted RNA recombination to generate isogenic viruses that differ from MHV-A59 by amino acid substitutions in S. Viruses with S33R and K183R substitutions had wild type growth, while L79A/T82A viruses formed small plaques. Viruses with S33G, L79M/T82M or K183G substitutions could only be recovered from cells that over-expressed a mutant mCEACAM1a. Viruses with Y162H or Y162Q substitutions were never recovered, while Y162A viruses formed minute plaques. However, viruses with Y162F substitutions had wild type growth, suggesting that Y162 may comprise part of a hydrophobic domain that contacts the MHV-binding site of mCEACAM1a.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Base Sequence
- Binding Sites/genetics
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Cell Line
- Conserved Sequence
- Coronavirus/genetics
- Coronavirus/growth & development
- Coronavirus/metabolism
- Coronavirus/pathogenicity
- Cricetinae
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Green Fluorescent Proteins/genetics
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
|
28
|
Coronavirus Receptors. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7122215 DOI: 10.1007/0-387-25518-4_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The major receptor for murine coronavirus, mouse hepatitis virus (MHV), is identified as a protein, cell-adhesion molecule 1 in the carcinoembryonic antigen family (CEACAM1), which is classified in the immunoglobulin superfamily. There are four CEACAM1 isoforms, with either four or two ectodomains, resulting from an alternative splicing mechanism. CEACAM1 is expressed on the epithelium and in endothelial cells of a variety of tissues and hemopoietic cells, and functions as a homophilic and heterophilic adhesion molecule. It is used as a receptor for some bacteria as well. The N terminal domain participates in mediating homophilic adhesion. This domain is also responsible for binding to the MHV spike (S) protein; the CC’ face protruding in this domain interacts with an N terminal region of the S protein composed of 330 amino acids (called S1N330). The binding of CEACAM1 with MHV S protein induces S protein conformational changes and converts fusion-negative S protein to a fusion-positive form. The allelic forms of CEACAM1 found among mouse strains are thought to be an important determinant for mouse susceptibility to MHV.
Collapse
|
29
|
Gillim-Ross L, Taylor J, Scholl DR, Ridenour J, Masters PS, Wentworth DE. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol 2004; 42:3196-206. [PMID: 15243082 PMCID: PMC446305 DOI: 10.1128/jcm.42.7.3196-3206.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) is the causative agent of the recent outbreak of severe acute respiratory syndrome. VeroE6 cells, fetal rhesus monkey kidney cells, and human peripheral blood mononuclear cells were the only cells known to be susceptible to SARS-CoV. We developed a multiplex reverse transcription-PCR assay to analyze the susceptibility of cells derived from a variety of tissues and species to SARS-CoV. Additionally, productive infection was determined by titration of cellular supernatants. Cells derived from three species of monkey were susceptible to SARS-CoV. However, the levels of SARS-CoV produced differed by 4 log(10). Mink lung epithelial cells (Mv1Lu) and R-Mix, a mixed monolayer of human lung-derived cells (A549) and mink lung-derived cells (Mv1Lu), are used by diagnostic laboratories to detect respiratory viruses (e.g., influenza virus); they were also infected with SARS-CoV, indicating that the practices of diagnostic laboratories should be examined to ensure appropriate biosafety precautions. Mv1Lu cells produce little SARS-CoV compared to that produced by VeroE6 cells, which indicates that they are a safer alternative for SARS-CoV diagnostics. Evaluation of cells permissive to other coronaviruses indicated that these cell types are not infected by SARS-CoV, providing additional evidence that SARS-CoV binds an alternative receptor. Analysis of human cells derived from lung, kidney, liver, and intestine led to the discovery that human cell lines were productively infected by SARS-CoV. This study identifies new cell lines that may be used for SARS-CoV diagnostics and/or basic research. Our data and other in vivo studies indicate that SARS-CoV has a wide host range, suggesting that the cellular receptor(s) utilized by SARS-CoV is highly conserved and is expressed by a variety of tissues.
Collapse
Affiliation(s)
- Laura Gillim-Ross
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ramakrishna C, Bergmann CC, Holmes KV, Stohlman SA. Expression of the mouse hepatitis virus receptor by central nervous system microglia. J Virol 2004; 78:7828-32. [PMID: 15220458 PMCID: PMC434127 DOI: 10.1128/jvi.78.14.7828-7832.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Detection of the mouse hepatitis virus receptor within the central nervous system (CNS) has been elusive. Receptor expression on microglia was reduced during acute infection and restored following immune-mediated virus control. Receptor down regulation was independent of neutrophils, NK cells, gamma interferon, or perforin. Infection of mice devoid of distinct inflammatory cells revealed CD4(+) T cells as the major cell type influencing receptor expression by microglia. In addition to demonstrating receptor expression on CNS resident cells, these data suggest that transient receptor down regulation on microglia aids in establishing persistence in the CNS by assisting virus infection of other glial cell types.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
31
|
Thackray LB, Holmes KV. Amino acid substitutions and an insertion in the spike glycoprotein extend the host range of the murine coronavirus MHV-A59. Virology 2004; 324:510-24. [PMID: 15207636 PMCID: PMC7127820 DOI: 10.1016/j.virol.2004.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/02/2004] [Accepted: 04/03/2004] [Indexed: 12/14/2022]
Abstract
The murine coronavirus [murine hepatitis virus (MHV)] is limited to infection of susceptible mice and murine cell lines by the specificity of the spike glycoprotein (S) for its receptor, murine carcinoembryonic antigen cell adhesion molecule 1a (mCEACAM1a). We have recently shown that 21 aa substitutions and a 7-aa insert in the N-terminal region of S are associated with the extended host range of a virus variant derived from murine cells persistently infected with the A59 strain of MHV (MHV-A59). We used targeted RNA recombination (TRR) to generate isogenic viruses that differ from MHV-A59 by the 21 aa substitutions or the 7-aa insert in S. Only viruses with both the 21 aa substitutions and the 7-aa insert in S infected hamster, feline, and monkey cells. These viruses also infected murine cells in the presence of blocking anti-mCEACAM1a antibodies. Thus, relatively few changes in the N-terminal region of S1 are sufficient to permit MHV-A59 to interact with alternative receptors on murine and non-murine cells.
Collapse
Affiliation(s)
| | - Kathryn V Holmes
- Corresponding author. Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, 4200 East 9th Avenue, Denver, CO 80262. Fax: +1-303-315-6785.
| |
Collapse
|
32
|
Abstract
A number of viruses can initiate central nervous system (CNS) diseases that include demyelination as a major feature of neuropathology. In humans, the most prominent demyelinating diseases are progressive multifocal leukoencephalopathy, caused by JC papovirus destruction of oligodendrocytes, and subacute sclerosing panencephalitis, an invariably fatal childhood disease caused by persistent measles virus. The most common neurological disease of young adults in the developed world, multiple sclerosis, is also characterized by lesions of inflammatory demyelination; however, the etiology of this disease remains an enigma. A viral etiology is possible, because most demyelinating diseases of known etiology in both man and animals are viral. Understanding of the pathogenesis of virus-induced demyelination derives for the most part from the study of animal models. Studies with neurotropic strains of mouse hepatitis virus, Theiler's virus, and Semliki Forest virus have been at the forefront of this research. These models demonstrate how viruses enter the brain, spread, persist, and interact with immune responses. Common features are an ability to infect and persist in glial cells, generation of predominantly CD8(+) responses, which control and clear the early phase of virus replication but which fail to eradicate the infection, and lesions of inflammatory demyelination. In most cases demyelination is to a limited extent the result of direct virus destruction of oligodendrocytes, but for the most part is the consequence of immune and inflammatory responses. These models illustrate the roles of age and genetic susceptibility and establish the concept that persistent CNS infection can lead to the generation of CNS autoimmune responses.
Collapse
Affiliation(s)
- John K Fazakerley
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, United Kingdom.
| | | |
Collapse
|
33
|
Parra B, Morales S, Chandran R, Stohlman SA. B cell mediated lysis of JHMV infected targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:369-74. [PMID: 11774494 DOI: 10.1007/978-1-4615-1325-4_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- B Parra
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
34
|
Blau DM, Turbide C, Tremblay M, Olson M, Létourneau S, Michaliszyn E, Jothy S, Holmes KV, Beauchemin N. Targeted disruption of the Ceacam1 (MHVR) gene leads to reduced susceptibility of mice to mouse hepatitis virus infection. J Virol 2001; 75:8173-86. [PMID: 11483763 PMCID: PMC115062 DOI: 10.1128/jvi.75.17.8173-8186.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CEACAM1 glycoproteins (formerly called biliary glycoproteins; BGP, C-CAM, CD66a, or MHVR) are members of the carcinoembryonic antigen family of cell adhesion molecules. In the mouse, splice variants of CEACAM1 have either two or four immunoglobulin (Ig) domains linked through a transmembrane domain to either a short or a long cytoplasmic tail. CEACAM1 has cell adhesion activity and acts as a signaling molecule, and long-tail isoforms inhibit the growth of colon and prostate tumor cells in rodents. CEACAM1 isoforms serve as receptors for several viral and bacterial pathogens, including the murine coronavirus mouse hepatitis virus (MHV) and Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis in humans. To elucidate the mechanisms responsible for the many biological activities of CEACAM1, we modified the expression of the mouse Ceacam1 gene in vivo. Manipulation of the Ceacam1 gene in mouse embryonic stem cells that contained the Ceacam1a allele yielded a partial knockout. We obtained one line of mice in which the insert in the Ceacam1a gene had sustained a recombination event. This resulted in the markedly reduced expression of the two CEACAM1a isoforms with four Ig domains, whereas the expression of the two isoforms with two Ig domains was doubled relative to that in wild-type BALB/c (+/+) mice. Homozygous (p/p) Ceacam1a-targeted mice (Ceacam1aDelta4D) had no gross tissue abnormalities and were viable and fertile; however, they were more resistant to MHV A59 infection and death than normal (+/+) mice. Following intranasal inoculation with MHV A59, p/p mice developed markedly fewer and smaller lesions in the liver than +/+ or heterozygous (+/p) mice. The titers of virus produced in the livers were 50- to 100-fold lower in p/p mice than in +/p or +/+ mice. p/p mice survived a dose 100-fold higher than the lethal dose of virus for +/+ mice. +/p mice were intermediate between +/+ and p/p mice in susceptibility to liver damage, virus growth in liver, and susceptibility to killing by MHV. Ceacam1a-targeted mice provide a new model to study the effects of modulation of receptor expression on susceptibility to MHV infection in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Disease Susceptibility
- Gene Targeting
- Genetic Engineering/methods
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/virology
- Kidney/pathology
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/genetics
- Murine hepatitis virus/metabolism
- Murine hepatitis virus/pathogenicity
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- D M Blau
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morales S, Parra B, Ramakrishna C, Blau DM, Stohlman SA. B-cell-mediated lysis of cells infected with the neurotropic JHM strain of mouse hepatitis virus. Virology 2001; 286:160-7. [PMID: 11448169 PMCID: PMC7142306 DOI: 10.1006/viro.2001.0991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells expressing the spike (S) glycoprotein of the neurotropic JHM strain (JHMV) of mouse hepatitis virus (MHV) are susceptible to lysis by B cells derived from naïve mice, including B cells from perforin-deficient mice. Cytolysis requires interaction of the virus receptor and the viral S glycoprotein, is independent of other viral-induced components, and is not a unique property of B cells. Neutralizing anti-S-protein monoclonal antibodies (mAb) and a mAb specific for the viral receptor inhibit lysis. However, cells infected with an MHV strain unable to induce cell-cell fusion are resistant to lysis and lysis of JHMV-infected cells is inhibited by an anti-S-protein nonneutralizing mAb which prevents S-protein-mediated cell fusion. These data suggest that B cells may function as antibody-independent innate immune response during JHMV infection in vivo.
Collapse
Affiliation(s)
- S Morales
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
To gain entry into the host, viruses use host cell surface molecules that normally serve as receptors for other ligands. Herpes simplex virus type 1 (HSV-1) uses heparan sulphate (HS) glycosaminoglycans (GAGs) as receptors for initial attachment to the host cell surface. HS GAGs are both ubiquitous and structurally diverse, and normally serve as critical mediators of interactions between the cell and the extracellular environment. We have used the HS binding ability of HSV-1 to identify the function of a cellular gene, EXT1, which is involved in HS polymerisation. Cellular factors that affect virus growth and replication are often key regulators of the cell cycle and EXT1 is no different-humans with inherited mutations in EXT1 have developmental defects that lead to bone tumours (hereditary multiple exostoses, HME) and sometimes chondrosarcomas. Thus, as a result of using HSV-1 as a molecular probe, a functionally orphaned disease gene now has a defined function. These findings highlight the utility of viruses for investigating important cellular processes.
Collapse
Affiliation(s)
- C McCormick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
37
|
Matsuyama S, Taguchi F. Impaired entry of soluble receptor-resistant mutants of mouse hepatitis virus into cells expressing MHVR2 receptor. Virology 2000; 273:80-9. [PMID: 10891410 DOI: 10.1006/viro.2000.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse hepatitis virus (MHV) JHMV and its soluble receptor-resistant (srr) mutants, srr7, srr11, and srr18, grew and induced syncytia equally well in BHK-R1 cells expressing the MHVR1 receptor derived from MHV-susceptible BALB/c mice. In contrast, srr growth and syncytia formations were drastically reduced relative to wild-type (wt) virus in BHK-R2 cells expressing the MHVR2 receptor from MHV-resistant SJL mice. Infections by these srr mutants in BHK-R2 cells were 0.7 to 1.5 log10 less efficient than those of wt virus. BHK cells expressing both MHVR1 and MHVR2 supported srr replication to the same extent as did BHK-R1 cells, suggesting that inefficient infection by srr mutants in BHK-R2 cells resulted from the absence of the effective receptor MHVR1. Virus-receptor binding tests failed to demonstrate a difference between the abilities of wt and srr18 to bind MHVR2. The binding of srr7 and srr11 to both MHVR1 and MHVR2 was revealed lower by two- to fourfold relative to the wt binding. The fusion activity of srr S proteins as examined by the expression with recombinant vaccinia virus was apparently lower than that of the wt S protein in BHK-R2 cells, while there was not such a remarkable difference in BHK-R1 cells. This suggests that the most likely reason for inefficient infection by mutants in BHK-R2 is impaired virus entry into cells. These observations suggest that inefficient infections in BHK-R2 cells by srr mutants occur in the absence of a functional receptor MHVR1, which plays an important role in srr entry into cells.
Collapse
Affiliation(s)
- S Matsuyama
- National Institute of Neuroscience, NCNP 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | | |
Collapse
|
38
|
Affiliation(s)
- J Schneider-Schaulies
- Institut für Virologie und Immunbiologie, Universität Würzburg, Verbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
39
|
Tishkoff GH, Hunt LT. Unexpected molecular mimicry among peptides MHC class II, blood-clotting factor X, and HIV-1 envelope glycoprotein GP120. Thromb Res 2000; 98:343-6. [PMID: 10822081 DOI: 10.1016/s0049-3848(99)00245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- G H Tishkoff
- Department of Medicine, Michigan State University, 48824, East Lansing, MI, USA
| | | |
Collapse
|
40
|
Koetters PJ, Hassanieh L, Stohlman SA, Gallagher T, Lai MM. Mouse hepatitis virus strain JHM infects a human hepatocellular carcinoma cell line. Virology 1999; 264:398-409. [PMID: 10562501 PMCID: PMC7131271 DOI: 10.1006/viro.1999.9984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse hepatitis virus (MHV) strain JHM is a coronavirus that causes encephalitis and demyelination in susceptible rodents. The known receptors for MHV are all members of the carcinoembryonic antigen family. Although human forms of the MHV receptor can function as MHV receptors in some assays, no human cell line has been identified that can support wild-type MHV infection. Here we describe the infection of a human hepatocellular carcinoma cell line, HuH-7, with MHV. HuH-7 cells were susceptible to strains JHM-DL and JHM-DS, yielding virus titers nearly identical to those seen in mouse DBT cells. In contrast, HuH-7 cells were only marginally susceptible or completely resistant to infection by other MHV strains, including A59. JHM produced a strong cytopathic effect in HuH-7 cells with the formation of round plaques. Studies of various recombinant viruses between JHM and A59 strains suggested that the ability of JHM to infect HuH-7 cells was determined by multiple viral genetic elements. Blocking the viral spike (S) protein with a neutralizing antibody or a soluble form of the MHV receptor inhibited infection of HuH-7 cells, suggesting that infection is mediated through the S protein. Transfection with the prototype mouse receptor, biliary glycoprotein, rendered HuH-7 cells susceptible to infection by other MHV strains as well, suggesting that JHM uses a receptor distinct from the classical MHV receptor to infect HuH-7 cells. Possible implications for human disease are discussed.
Collapse
Affiliation(s)
- P J Koetters
- Department of Molecular Microbiology, University of Southern California Keck School of Medicine, Los Angeles, California, 90033, USA
| | | | | | | | | |
Collapse
|
41
|
Krummenacher C, Rux AH, Whitbeck JC, Ponce-de-Leon M, Lou H, Baribaud I, Hou W, Zou C, Geraghty RJ, Spear PG, Eisenberg RJ, Cohen GH. The first immunoglobulin-like domain of HveC is sufficient to bind herpes simplex virus gD with full affinity, while the third domain is involved in oligomerization of HveC. J Virol 1999; 73:8127-37. [PMID: 10482562 PMCID: PMC112829 DOI: 10.1128/jvi.73.10.8127-8137.1999] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human herpesvirus entry mediator C (HveC/PRR1) is a member of the immunoglobulin family used as a cellular receptor by the alphaherpesviruses herpes simplex virus (HSV), pseudorabies virus, and bovine herpesvirus type 1. We previously demonstrated direct binding of the purified HveC ectodomain to purified HSV type 1 (HSV-1) and HSV-2 glycoprotein D (gD). Here, using a baculovirus expression system, we constructed and purified truncated forms of the receptor containing one [HveC(143t)], two [HveC(245t)], or all three immunoglobulin-like domains [HveC(346t)] of the extracellular region. All three constructs were equally able to compete with HveC(346t) for gD binding. The variable domain bound to virions and blocked HSV infection as well as HveC(346t). Thus, all of the binding to the receptor occurs within the first immunoglobulin-like domain, or V-domain, of HveC. These data confirm and extend those of Cocchi et al. (F. Cocchi, M. Lopez, L. Menotti, M. Aoubala, P. Dubreuil, and G. Campadelli-Fiume, Proc. Natl. Acad. Sci. USA 95:15700, 1998). Using biosensor analysis, we measured the affinity of binding of gD from HSV strains KOS and rid1 to two forms of HveC. Soluble gDs from the KOS strain of HSV-1 had the same affinity for HveC(346t) and HveC(143t). The mutant gD(rid1t) had an increased affinity for HveC(346t) and HveC(143t) due to a faster rate of complex formation. Interestingly, we found that HveC(346t) was a tetramer in solution, whereas HveC(143t) and HveC(245t) formed dimers, suggesting a role for the third immunoglobulin-like domain of HveC in oligomerization. In addition, the stoichiometry between gD and HveC appeared to be influenced by the level of HveC oligomerization.
Collapse
Affiliation(s)
- C Krummenacher
- Department of Microbiology, School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fu DX, Haraguchi Y, Jinno A, Yang D, Hoshino H. Identification of membrane antigens important for adsorption of human T-cell leukaemia virus type I. RESEARCH IN VIROLOGY 1998; 149:383-92. [PMID: 9923014 DOI: 10.1016/s0923-2516(99)80006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We isolated three monoclonal antibodies (mAbs), H3e, H11b and H16h, which were capable of inhibiting syncytium formation induced in a human T-cell line MOLT-4 or a human glioma line U251 MG by coculture with human T-cell leukaemia virus type I (HTLV-I)-positive human T-cell lines. The mAbs partially inhibited the plating of pseudotypes of vesicular stomatitis virus (VSV) bearing envelope antigens of HTLV-I. Formation of proviral DNA was also inhibited when indicator cells were treated with the mAbs before adsorption of HTLV-I, but not after its adsorption. They did not inhibit syncytium formation induced by human immunodeficiency virus type 1. Flow cytometry revealed that H16h hardly reacted with various HTLV-I-positive T cells, while H3e and H11b reacted with HTLV-I-positive human cells as well as HTLV-I-negative human cells. H11b and H16h immunoprecipitated the membrane antigen with a molecular weight of 20 and 110-130 kDa, respectively. Western blot analysis showed that H3e, H11b and H16h bound to the protein of 20, 20 and 110-130 kDa, respectively. Thus, these findings suggest that the 20- and 110-130-kDa cell surface proteins may play a role at the early stage of HTLV-I infection.
Collapse
Affiliation(s)
- D X Fu
- Department of Hygiene and Virology, Gunma University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
43
|
Compton SR. Interactions of enterotropic mouse hepatitis viruses with Bgp2 receptor proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:25-31. [PMID: 9782261 DOI: 10.1007/978-1-4615-5331-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Enterotropic mouse hepatitis virus (MHV) infections are limited to the intestinal mucosa, rarely disseminate to other tissues and cause disease only in neonatal mice. The role of virus-host cell receptor interactions in the limited tissue tropism of enterotropic MHV infections is unclear. Previous studies have shown that enterotropic MHV-Y can infect BHK cells stably transfected with either the MHVR or the mmCGM2 receptor gene. In contrast, enterotropic MHV-RI infects BHK cells stably transfected with the MHVR but not the mmCGM2 receptor gene. Studies to determine whether MHV-Y and -RI can utilize the Bgp2 receptor isoform were performed. Both MHV-Y and -RI infected Vero cells transiently transfected with the Bgp2 receptor gene, though only MHV-Y infected CHO cells stably transfected with the Bgp2 receptor gene. Additionally, pretreatment with anti-MHVR monoclonal antibody (CC1) did not prevent MHV-Y and -RI infection of CMT93 cells. In contrast, pretreatment with CC1 prevented MHV-A59 infection of CMT93 cells. It is likely that MHV-Y and -RI use the Bgp2 receptor to infect CC1 pretreated CMT93 cells, since CMT93 cells are known to possess high levels of the Bgp2 receptor mRNAs, but it is also possible that they use an unidentified receptor.
Collapse
Affiliation(s)
- S R Compton
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8016, USA
| |
Collapse
|
44
|
Zelus BD, Wessner DR, Williams RK, Pensiero MN, Phibbs FT, deSouza M, Dveksler GS, Holmes KV. Purified, soluble recombinant mouse hepatitis virus receptor, Bgp1(b), and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralizing activities. J Virol 1998; 72:7237-44. [PMID: 9696818 PMCID: PMC109946 DOI: 10.1128/jvi.72.9.7237-7244.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1998] [Accepted: 05/28/1998] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus receptor (MHVR) is a murine biliary glycoprotein (Bgp1(a)). Purified, soluble MHVR expressed from a recombinant vaccinia virus neutralized the infectivity of the A59 strain of mouse hepatitis virus (MHV-A59) in a concentration-dependent manner. Several anchored murine Bgps in addition to MHVR can also function as MHV-A59 receptors when expressed at high levels in nonmurine cells. To investigate the interactions of these alternative MHVR glycoproteins with MHV, we expressed and purified to apparent homogeneity the extracellular domains of several murine Bgps as soluble, six-histidine-tagged glycoproteins, using a baculovirus expression system. These include MHVR isoforms containing four or two extracellular domains and the corresponding Bgp1(b) glycoproteins from MHV-resistant SJL/J mice, as well as Bgp2 and truncation mutants of MHVR and Bgp1(b) comprised of the first two immunoglobulin-like domains. The soluble four-domain MHVR glycoprotein (sMHVR[1-4]) had fourfold more MHV-A59 neutralizing activity than the corresponding soluble Bgp1(b) (sBgp1(b)) glycoprotein and at least 1,000-fold more neutralizing activity than sBgp2. Although virus binds to the N-terminal domain (domain 1), soluble truncation mutants of MHVR and Bgp1(b) containing only domains 1 and 2 bound virus poorly and had 10- and 300-fold less MHV-A59 neutralizing activity than the corresponding four-domain glycoproteins. In contrast, the soluble MHVR glycoprotein containing domains 1 and 4 (sMHVR[1,4]) had as much neutralizing activity as the four-domain glycoprotein, sMHVR[1-4]. Thus, the virus neutralizing activity of MHVR domain 1 appears to be enhanced by domain 4. The sBgp1(b)[1-4] glycoprotein had 500-fold less neutralizing activity for MHV-JHM than for MHV-A59. Thus, MHV strains with differences in S-glycoprotein sequence, tissue tropism, and virulence can differ in the ability to utilize the various murine Bgps as receptors.
Collapse
Affiliation(s)
- B D Zelus
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rao PV, Gallagher TM. Intracellular complexes of viral spike and cellular receptor accumulate during cytopathic murine coronavirus infections. J Virol 1998; 72:3278-88. [PMID: 9525655 PMCID: PMC109802 DOI: 10.1128/jvi.72.4.3278-3288.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Murine hepatitis virus (MHV) infections exhibit remarkable variability in cytopathology, ranging from acutely cytolytic to essentially asymptomatic levels. In this report, we assess the role of the MHV receptor (MHVR) in controlling this variable virus-induced cytopathology. We developed human (HeLa) cell lines in which the MHVR was produced in a regulated fashion by placing MHVR cDNA under the control of an inducible promoter. Depending on the extent of induction, MHVR levels ranged from less than approximately 1,500 molecules per cell (designated R(lo)) to approximately 300,000 molecules per cell (designated R(hi)). Throughout this range, the otherwise MHV-resistant HeLa cells were rendered susceptible to infection. However, infection in the R(lo) cells occurred without any overt evidence of cytopathology, while the corresponding R(hi) cells died within 14 h after infection. When the HeLa-MHVR cells were infected with vaccinia virus recombinants encoding MHV spike (S) proteins, the R(hi) cells succumbed within 12 h postinfection; R(lo) cells infected in parallel were intact, as judged by trypan blue exclusion. This acute cytopathology was not due solely to syncytium formation between the cells producing S and MHVR, because fusion-blocking antiviral antibodies did not prevent it. These findings raised the possibility of an intracellular interaction between S and MHVR in the acute cell death. Indeed, we identified intracellular complexes of S and MHVR via coimmunoprecipitation of endoglycosidase H-sensitive forms of the two proteins. We suggest that MHV infections can become acutely cytopathic once these intracellular complexes rise above a critical threshold level.
Collapse
Affiliation(s)
- P V Rao
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
46
|
Musatovova O, Alderete JF. Molecular analysis of the gene encoding the immunodominant phenotypically varying P270 protein of Trichomonas vaginalis. Microb Pathog 1998; 24:223-39. [PMID: 9533894 DOI: 10.1006/mpat.1997.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichomonas vaginalisis a flagellated protozoan responsible for the most common non-viral sexually transmitted disease. The immunogen P270 was previously found to be up-regulated in expression and to undergo phenotypic variation between surface versus cytoplasmic localization in trichoImonads harbouring a dsRNA virus. In this report, we characterize the entire p270 open reading frame (ORF) and the unknown flanking 5;- and 3;-unique, non-repeat coding sequences of the gene in addition to untranslated regions. Consistent with an earlier report (Dailey & Alderete, 1991, Infect. Immun. 59: 2083-88), a significant portion of the gene consists of a tandemly repeated 333 bp element that contains the sequence coding for the epitope DREGRD detected by murine monoclonal antibody and antibody from the sera of patients. The non-repeat coding regions for the 5;- and 3;-ends were 69 nucleotides (23 amino acids) and 1183 nucleotides (395 amino acids), respectively. Sequencing of repeat elements showed them to be identical, affirming the highly-conserved nature of this element throughout the gene. The start codon was immediately preceded by the 12 nucleotide consensus sequence (TCATTTTTAATA) found in other trichomonad protein-coding genes. A very AT-rich, non-coding region was identified upstream of the p270 ORF. P270 appears to contain a leader sequence at the amino-terminus and transmembrane domain at the carboxy-terminus. No significant homology was found with any reported proteins at either the nucleotide or amino acid level.
Collapse
Affiliation(s)
- O Musatovova
- Department of Microbiology, The University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX, 78284-7758, USA
| | | |
Collapse
|
47
|
Wessner DR, Shick PC, Lu JH, Cardellichio CB, Gagneten SE, Beauchemin N, Holmes KV, Dveksler GS. Mutational analysis of the virus and monoclonal antibody binding sites in MHVR, the cellular receptor of the murine coronavirus mouse hepatitis virus strain A59. J Virol 1998; 72:1941-8. [PMID: 9499047 PMCID: PMC109486 DOI: 10.1128/jvi.72.3.1941-1948.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1997] [Accepted: 11/26/1997] [Indexed: 02/06/2023] Open
Abstract
The primary cellular receptor for mouse hepatitis virus (MHV), a murine coronavirus, is MHVR (also referred to as Bgp1a or C-CAM), a transmembrane glycoprotein with four immunoglobulin-like domains in the murine biliary glycoprotein (Bgp) subfamily of the carcinoembryonic antigen (CEA) family. Other murine glycoproteins in the Bgp subfamily, including Bgp1b and Bgp2, also can serve as MHV receptors when transfected into MHV-resistant cells. Previous studies have shown that the 108-amino-acid N-terminal domain of MHVR is essential for virus receptor activity and is the binding site for monoclonal antibody (MAb) CC1, an antireceptor MAb that blocks MHV infection in vivo and in vitro. To further elucidate the regions of MHVR required for virus receptor activity and MAb CC1 binding, we constructed chimeras between MHVR and other members of the CEA family and tested them for MHV strain A59 (MHV-A59) receptor activity and MAb CC1 binding activity. In addition, we used site-directed mutagenesis to introduce selected amino acid changes into the N-terminal domains of MHVR and these chimeras and tested the abilities of these mutant glycoproteins to bind MAb CC1 and to function as MHV receptors. Several recombinant glycoproteins exhibited virus receptor activity but did not bind MAb CC1, indicating that the virus and MAb binding sites on the N-terminal domain of MHVR are not identical. Analysis of the recombinant glycoproteins showed that a short region of MHVR, between amino acids 34 and 52, is critical for MHV-A59 receptor activity. Additional regions of the N-terminal variable domain and the constant domains, however, greatly affected receptor activity. Thus, the molecular context in which the amino acids critical for MHV-A59 receptor activity are found profoundly influences the virus receptor activity of the glycoprotein.
Collapse
Affiliation(s)
- D R Wessner
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Morita E, Ebina H, Muto A, Himeno H, Hatakeyama K, Sugiyama K. Primary structures of hemagglutinin-esterase and spike glycoproteins of murine coronavirus DVIM. Virus Genes 1998; 17:123-8. [PMID: 9857985 PMCID: PMC7089163 DOI: 10.1023/a:1008060522426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diarrhea virus of infant mice (DVIM) is a member of murine hepatitis viruses (MHVs). The nucleotide sequences of the genes encoding the hemagglutinin-esterase (HE) and the spike (S) glycoproteins from DVIM were determined and compared with those of other MHVs. The deduced amino acid sequence of the HE protein was most similar to that of MHV-S strain (94% identity), and the S protein sequence was most similar to that of MHV-Y strain (90% identity). The DVIM HE protein has a unique N-linked glycosylation site in addition to other glycosylation sites common to many MHV strains. Unlike in some typical MHV strain, such as MHV-A59 and MHV-JHM, the vast majority of the S glycoprotein molecules in DVIM exist an uncleaved form probably due to several amino acid substitutions around the cleavage site.
Collapse
Affiliation(s)
- E Morita
- Department of Biology, Faculty of Science, Hirosaki University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Bos EC, Luytjes W, Spaan WJ. The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity. J Virol 1997; 71:9427-33. [PMID: 9371603 PMCID: PMC230247 DOI: 10.1128/jvi.71.12.9427-9433.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.
Collapse
Affiliation(s)
- E C Bos
- Department of Virology, Leiden University, The Netherlands
| | | | | |
Collapse
|
50
|
Gallagher TM. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J Virol 1997; 71:3129-37. [PMID: 9060676 PMCID: PMC191445 DOI: 10.1128/jvi.71.4.3129-3137.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Murine hepatitis virus (MHV), a coronavirus, initiates infection by binding to its cellular receptor (MHVR) via spike (S) proteins projecting from the virion membrane. The structures of these S proteins vary considerably among MHV strains, and this variation is generally considered to be important in determining the strain-specific pathologies of MHV infection, perhaps by affecting the interaction between MHV and the MHVR. To address the relationships between S variation and receptor binding, assays capable of measuring interactions between MHV and MHVR were developed. The assays made use of a novel soluble form of the MHVR, sMHVR-Ig, which comprised the virus-binding immunoglobulin-like domain of MHVR fused to the Fc portion of human immunoglobulin G1. sMHVR-Ig was stably expressed as a disulfide-linked dimer in human 293 EBNA cells and was immobilized to Sepharose-protein G via the Fc domain. The resulting Sepharose beads were used to adsorb radiolabelled MHV particles. At 4 degrees C, the beads specifically adsorbed two prototype MHV strains, MHV JHM (strain 4) and a tissue culture-adapted mutant of MHV JHM, the JHMX strain. A shift to 37 degrees C resulted in elution of JHM but not JHMX. This in vitro observation of JHM (but not JHMX) elution from its receptor at 37 degrees C was paralleled by a corresponding 37 degrees C elution of receptor-associated JHM (but not JHMX) from tissue culture cells. The basis for this difference in maintenance of receptor association was correlated with a large deletion mutation present within the JHMX S protein, as sMHVR-Ig exhibited relatively thermostable binding to vaccinia virus-expressed S proteins containing the deletion. These results indicate that naturally occurring mutations in the coronavirus S protein affect the stability of the initial interaction with the host cell and thus contribute to the likelihood of successful infection by incoming virions. These changes in virus entry features may result in coronaviruses with novel pathogenic properties.
Collapse
Affiliation(s)
- T M Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| |
Collapse
|