1
|
de Ávila AI, Soria ME, Martínez-González B, Somovilla P, Mínguez P, Salar-Vidal L, Esteban-Muñoz M, Martín-García M, Zuñiga S, Sola I, Enjuanes L, Gadea I, Perales C, Domingo E. SARS-CoV-2 biological clones are genetically heterogeneous and include clade-discordant residues. J Virol 2025:e0225024. [PMID: 40272156 DOI: 10.1128/jvi.02250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Defective genomes are part of SARS-CoV-2 quasispecies. High-resolution, ultra-deep sequencing of bulk RNA from viral populations does not distinguish RNA mutations, insertions, and deletions in viable genomes from those in defective genomes. To quantify SARS-CoV-2 infectious variant progeny, virus from four individual plaques (biological clones) of a preparation of isolate USA-WA1/2020, formed on Vero E6 cell monolayers, was subjected to further biological cloning to yield 9 second-generation and 15 third-generation sub-clones. Consensus genomic sequences of the biological clones and sub-clones included an average of 2.8 variations per viable genome, relative to the consensus sequence of the parental USA-WA1/2020 virus. This value is 6.5-fold lower than the estimates for biological clones of other RNA viruses such as bacteriophage Qβ, foot-and-mouth disease virus, or hepatitis C virus in cell culture. The mutant spectrum complexity of the nsp12 (polymerase)- and spike (S)-coding region was unique in the progeny of each of 10 third-generation sub-clones; they shared 2.4% of the total of 164 different mutations and deletions scored in the 3,719 genomic residues that were screened. The presence of minority out-of-frame deletions revealed the ease of defective genome production from an individual infectious genome. Several low-frequency point mutations and deletions were clade-discordant in that they were not typical of USA-WA1/2020 but served to define the consensus sequences of future SARS-CoV-2 clades. Implications for SARS-CoV-2 adaptability and COVID-19 control of the viable genome heterogeneity and the generation of complex mutant spectra from individual genomes are discussed.IMPORTANCESequencing of biological clones is a means to identify mutations, insertions, and deletions located in viable genomes. This distinction is particularly important for viral populations, such as those of SARS-CoV-2, that contain large proportions of defective genomes. By sequencing biological clones and sub-clones, we quantified the heterogeneity of the viable complement of USA-WA1/2020 to be lower than exhibited by other RNA viruses. This difference may be due to a reduced mutation rate or to limited tolerance of the large coronavirus genome to incorporate mutations and deletions and remain functional or a combination of both influences. The presence of clade-discordant residues in the progeny of individual biological sub-clones suggests limitations in the occupation of sequence space by SARS-CoV-2. However, the complex and unique mutant spectra that are rapidly generated from individual genomes suggest an aptness to confront selective constraints.
Collapse
Affiliation(s)
- Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martín-García
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Xu W, Yang M. Genetic variation and evolution of foot-and-mouth disease virus serotype A in relation to vaccine matching. Vaccine 2021; 39:1420-1427. [PMID: 33526282 DOI: 10.1016/j.vaccine.2021.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease that affects a wide variety of domestic and wild cloven-hoofed animals. FMD vaccines can play a vital role in disease control and are very widely used globally each year. However, due to the diversity of FMDV, the choice of FMD vaccine is still a huge challenge. In this study, 45 FMDV/A isolates were phylogenetically categorized into three topotypes: ASIA (n = 31), AFRICA (n = 10), and EURO-SA (n = 4). Three sera collected from vaccinated cattle with FMDV A22/IRQ/24/64, A/IRN/05, and A/ARG/01 were used to evaluate their antigenic relationship (r1) with the field isolates. The IRQ/24/64 serum demonstrated a 39% (17/44) match (r1 ≥ 0.3) to the field isolates, whereas IRN/05 serum and ARG/01serum showed an 18% (8/44) and a 2% (1/44) match (r1 ≥ 0.3) to the field isolates, respectively. The A22/IRQ/24/64 matched with isolates mainly from topotype ASIA, with limited cross-topotype match with isolates from topotypes AFRICA and EURO-SA. However, the A/IRN/05 did not show a cross-topotype match with topotype AFRICA isolates and A/ARG/01 failed to match any isolates from topotypes ASIA and AFRICA. After analyzing the amino acid variation of the known antigenic sites of 45 strains of FMDV/A, it was found that together antigenic sites 1 and 3 contributed about 71% of the amino acid changes to the vaccine evaluated. Based on the capsid sequences, the FMDV/A evolved unequally among topotypes. The topotypes of ASIA and AFRICA evolves faster than that of EURO-SA. The FMDV/A continues to show a high level of genetic diversity driven by a high substitution rate, purifying selection, and positive selection concentrated on antigenic sites or near antigenic sites. The current research shows the challenges of the FMDV/A vaccine selection and emphasizes the importance of continuous monitoring of antigenic evolution for the selection of effective vaccines.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada.
| |
Collapse
|
4
|
Paton DJ, Di Nardo A, Knowles NJ, Wadsworth J, Pituco EM, Cosivi O, Rivera AM, Kassimi LB, Brocchi E, de Clercq K, Carrillo C, Maree FF, Singh RK, Vosloo W, Park MK, Sumption KJ, Ludi AB, King DP. The history of foot-and-mouth disease virus serotype C: the first known extinct serotype? Virus Evol 2021; 7:veab009. [PMID: 35186323 PMCID: PMC8102019 DOI: 10.1093/ve/veab009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by an RNA virus subdivided into seven serotypes that are unevenly distributed in Asia, Africa, and South America. Despite the challenges of controlling FMD, since 1996 there have been only two outbreaks attributed to serotype C, in Brazil and in Kenya, in 2004. This article describes the historical distribution and origins of serotype C and its disappearance. The serotype was first described in Europe in the 1920s, where it mainly affected pigs and cattle but as a less common cause of outbreaks than serotypes O and A. No serotype C outbreaks have been reported in Europe since vaccination stopped in 1990. FMD virus is presumed to have been introduced into South America from Europe in the nineteenth century, although whether serotype C evolved there or in Europe is not known. As in Europe, this serotype was less widely distributed and caused fewer outbreaks than serotypes O and A. Since 1994, serotype C had not been reported from South America until four small outbreaks were detected in the Amazon region in 2004. Elsewhere, serotype C was introduced to Asia, in the 1950s to the 1970s, persisting and evolving for several decades in the Indian subcontinent and for eighteen years in the Philippines. Serotype C virus also circulated in East Africa between 1957 and 2004. Many serotype C viruses from European and Kenyan outbreaks were closely related to vaccine strains, including the most recently recovered Kenyan isolate from 2004. International surveillance has not confirmed any serotype C cases, worldwide, for over 15 years, despite more than 2,000 clinical submissions per year to reference laboratories. Serology provides limited evidence for absence of this serotype, as unequivocal interpretation is hampered by incomplete intra-serotype specificity of immunoassays and the continued use of this serotype in vaccines. It is recommended to continue strengthening surveillance in regions of FMD endemicity, to stop vaccination against serotype C and to reduce working with the virus in laboratories, since inadvertent escape of virus during such activities is now the biggest risk for its reappearance in the field.
Collapse
Affiliation(s)
- David J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Edviges M Pituco
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Ottorino Cosivi
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Alejandro M Rivera
- Pan American Foot-and-Mouth Disease and Veterinary Public Health Center, Pan American Health Organization/World Health Organization (PANAFTOSA/VPH-PAHO/WHO), Rio de Janeiro, Brazil
| | - Labib Bakkali Kassimi
- Animal Health Laboratory, UMR1161 Virology, INRAE, ANSES, ENVA, Paris-Est University, Maisons-Alfort 94700, France
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi, 9. 25124 Brescia, Italy
| | - Kris de Clercq
- Sciensano, Infectious Diseases in Animals, Ukkel 1180, Belgium
| | - Consuelo Carrillo
- Diagnostic Services of the Foreign Animal Disease Diagnostic Laboratories, NVSL-VS-APHIS (USDA), Greenport, NY 11944, USA
| | - Francois F Maree
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa
| | - Raj K Singh
- ICAR-Directorate of Foot-and-Mouth Disease, Uttarakhand, Mukteswar 263138, India
| | - Wilna Vosloo
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| | - Min-Kyung Park
- Status Department, World Organisation for Animal Health (OIE), Paris 75017, France
| | - Keith J Sumption
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome 00153, Italy
| | - Anna B Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
5
|
Chitray M, Opperman PA, Rotherham L, Fehrsen J, van Wyngaardt W, Frischmuth J, Rieder E, Maree FF. Diagnostic and Epitope Mapping Potential of Single-Chain Antibody Fragments Against Foot-and-Mouth Disease Virus Serotypes A, SAT1, and SAT3. Front Vet Sci 2020; 7:475. [PMID: 32851044 PMCID: PMC7432252 DOI: 10.3389/fvets.2020.00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects cloven-hoofed domestic and wildlife animals and an outbreak can cause severe losses in milk production, reduction in meat production and death amongst young animals. Several parts of Asia, most of Africa, and the Middle East remain endemic, thus emphasis on improved FMD vaccines, diagnostic assays, and control measures are key research areas. FMD virus (FMDV) populations are quasispecies, which pose serious implications in vaccine design and efficacy where an effective vaccine should include multiple independent neutralizing epitopes to elicit an adequate immune response. Further investigation of the residues that comprise the antigenic determinants of the virus will allow the identification of mutations in outbreak strains that potentially lessen the efficacy of a vaccine. Additionally, of utmost importance in endemic regions, is the accurate diagnosis of FMDV infection for the control and eradication of the disease. To this end, a phage display library was explored to identify FMDV epitopes for recombinant vaccines and for the generation of reagents for improved diagnostic FMD enzyme-linked immunosorbent assays (ELISAs). A naïve semi-synthetic chicken single chain variable fragment (scFv) phage display library i.e., the Nkuku ® library was used for bio-panning against FMD Southern-African Territories (SAT) 1, SAT3, and serotype A viruses. Biopanning yielded one unique scFv against SAT1, two for SAT3, and nine for A22. SAT1 and SAT3 specific scFvs were exploited as capturing and detecting reagents to develop an improved diagnostic ELISA for FMDV. The SAT1 soluble scFv showed potential as a detecting reagent in the liquid phase blocking ELISA (LPBE) as it reacted specifically with a panel of SAT1 viruses, albeit with different ELISA absorbance signals. The SAT1svFv1 had little or no change on its paratope when coated on polystyrene plates whilst the SAT3scFv's paratope may have changed. SAT1 and SAT3 soluble scFvs did not neutralize the SAT1 and SAT3 viruses; however, three of the nine A22 binders i.e., A22scFv1, A22scFv2, and A22scFv8 were able to neutralize A22 virus. Following the generation of virus escape mutants through successive virus passage under scFv pressure, FMDV epitopes were postulated i.e., RGD+3 and +4 positions respectively, proving the epitope mapping potential of scFvs.
Collapse
Affiliation(s)
- Melanie Chitray
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Pamela Anne Opperman
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Lia Rotherham
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Jeanni Fehrsen
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Wouter van Wyngaardt
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Janine Frischmuth
- Biotechnology Division, National Bioproducts Institute, Pinetown, South Africa
| | - Elizabeth Rieder
- Plum Island Animal Disease Centre, U.S. Department of Agriculture, Agricultural Research Service, Greenport, NY, United States
| | - Francois Frederick Maree
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
7
|
Domingo E. Long-term virus evolution in nature. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153321 DOI: 10.1016/b978-0-12-816331-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates depending on the polymerase copying fidelity during genome replication and a number of environmental influences. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intrahost evolution is generally more rapid that interhost evolution, and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve are very unlikely to render the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes), although a clock is assumed in many calculations. Several computational tools permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of the virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental parameters renders the emergence and reemergence of viral pathogens an unpredictable event, another facet of biological complexity.
Collapse
|
8
|
Ranaweera LT, Wijesundara WWMUK, Jayarathne HSM, Knowles NJ, Wadsworth J, Gray A, Adikari AMJB, Weebadde CK, Sooriyapathirana SDSS. Transboundary movements of foot-and-mouth disease from India to Sri Lanka: A common pattern is shared by serotypes O and C. PLoS One 2019; 14:e0227126. [PMID: 31891636 PMCID: PMC6938362 DOI: 10.1371/journal.pone.0227126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 12/02/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects the livestock industry in a transboundary manner. It is essential to understand the FMD phylodynamics to assist in the disease-eradication. FMD critically affects the Sri Lankan cattle industry causing substantial economic losses. Even though many studies have covered the serotyping and genotyping of FMD virus (FMDV) in Sri Lanka, there is a significant knowledge gap exists in understanding the FMDV phylodynamics in the country. In the present study, the VP1 genomic region of FMD viral isolates belonging to serotype C from Sri Lanka and other South Asian countries were sequenced. All the published VPI sequences of serotype C and most of the published VP1 sequences for lineage ME-SA/Ind-2001d of serotype O from Sri Lanka, India, and other South Asian countries were retrieved. The datasets of serotype C and serotype O were separately analyzed using Bayesian, maximum likelihood, and phylogenetic networking methods to infer the transboundary movements and evolutionary aspects of the FMDV incursions in Sri Lanka. A model-based approach was used to detect any possible recombination events of FMDV incursions. Our results revealed that the invasions of the topotype ASIA of serotype C and the lineage ME-SA/Ind-2001d have a similar pattern of transboundary movement and evolution. The haplotype networks and phylogenies developed in the present study confirmed that FMDV incursions in Sri Lanka mainly originate from the Indian subcontinent, remain quiet after migration, and then cause outbreaks in a subsequent year. Since there are no recombination events detected among the different viral strains across serotypes and topotypes, we can assume that the incursions tend to show the independent evolution compared to the ancestral viral populations. Thus, we highlight the need for thorough surveillance of cattle/ruminants and associated product-movement into Sri Lanka from other regions to prevent the transboundary movement of FMDV.
Collapse
Affiliation(s)
- L. T. Ranaweera
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - W. W. M. U. K. Wijesundara
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - H. S. M. Jayarathne
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - N. J. Knowles
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - J. Wadsworth
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - A. Gray
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - A. M. J. B. Adikari
- Department of Animal and Food Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura, Sri Lanka
| | - C. K. Weebadde
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States of America
| | - S. D. S. S. Sooriyapathirana
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
9
|
Jamal SM, Nazem Shirazi MH, Ozyoruk F, Parlak U, Normann P, Belsham GJ. Evidence for multiple recombination events within foot-and-mouth disease viruses circulating in West Eurasia. Transbound Emerg Dis 2019; 67:979-993. [PMID: 31758840 DOI: 10.1111/tbed.13433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Phylogenetic studies on foot-and-mouth disease viruses (FMDVs) circulating in the West Eurasian region have largely focused on the genomic sequences encoding the structural proteins that determine the serotype. The present study has compared near-complete genome sequences of FMDVs representative of the viruses that circulate in this region. The near-complete genome sequences (ca. 7,600 nt) were generated from multiple overlapping RT-PCR products. These amplicons were from FMDVs belonging to serotypes O, A and Asia-1, including members of the O-PanAsia-II and the A-Iran05 lineages, and of Group-II and Group-VII (Sindh-08) within serotype Asia-1, which are currently predominant and widespread in West Eurasia. These new sequences were analysed together with other sequences obtained from GenBank. Comparison of different regions of the FMDVs genomes revealed evidence for multiple, inter-serotypic, recombination events between FMDVs belonging to the serotypes O, A and Asia-1. It is concluded from the present study that dramatic changes in virus sequences can occur in the field through recombination between different FMDV genomes. These analyses provide information about the ancestry of the serotype O, A and Asia-1 FMDVs that are currently circulating within the West Eurasian region.
Collapse
Affiliation(s)
- Syed M Jamal
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | | | | | | | - Preben Normann
- National Veterinary Institute, Technical University of Denmark, Lindholm, Denmark
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, Denmark
| |
Collapse
|
10
|
Ranaweera LT, Wijesundara UK, Jayarathne HSM, Knowles N, Wadsworth J, Mioulet V, Adikari J, Weebadde C, Sooriyapathirana SS. Characterization of the FMDV-serotype-O isolates collected during 1962 and 1997 discloses new topotypes, CEY-1 and WCSA-1, and six new lineages. Sci Rep 2019; 9:14526. [PMID: 31601911 PMCID: PMC6787213 DOI: 10.1038/s41598-019-51120-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
The genetic diversity of the FMD viruses collected from the outbreaks during the second half of the 20th Century in Sri Lanka was assessed in the present study. We sequenced the VP1 genomic region of the samples collected during FMDV epidemics caused by serotype O in Sri Lanka during 1962 and 1997. For comparison, we sequenced the VP1 of the related viral isolates collected from other Asian countries. We analyzed the VP1 sequences of the viral strains using the UPGMA method with uncorrected pairwise distances. Nucleotide divergence (ND) thresholds of 15%-20% and 5%-<15% were used to differentiate topotypes and lineages, respectively. We calibrated the divergence times and lineage-specific substitution rates using Bayesian-skyline models. Based on the ND estimations and phylogenetic relationships, we identified and named two new topotypes [CEYLON 1 (CEY-1) and WEST, CENTRAL AND SOUTH ASIA 1 (WCSA-1)] and six new lineages (Syr-62, Srl-77, Tur-69, May-78, Tai-87 and Bur-77) of serotype O. We believe that the novel topotypes and lineages named may have disappeared although they have similar substitution rates for epizootic outbreaks. Because the amino acid selection analysis revealed that the two topotypes and six lineages identified were under purifying selection during the outbreaks.
Collapse
Affiliation(s)
- Lahiru Thilanka Ranaweera
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Upendra Kumari Wijesundara
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Nick Knowles
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Jemma Wadsworth
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Valerie Mioulet
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Jayantha Adikari
- Department of Animal and Food Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura, Sri Lanka
| | - Cholani Weebadde
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Suneth S Sooriyapathirana
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
11
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
12
|
Biswal JK, Ranjan R, Subramaniam S, Mohapatra JK, Patidar S, Sharma MK, Bertram MR, Brito B, Rodriguez LL, Pattnaik B, Arzt J. Genetic and antigenic variation of foot-and-mouth disease virus during persistent infection in naturally infected cattle and Asian buffalo in India. PLoS One 2019; 14:e0214832. [PMID: 31226113 PMCID: PMC6588224 DOI: 10.1371/journal.pone.0214832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
The role of foot-and-mouth disease virus (FMDV) persistently infected ruminants in initiating new outbreaks remains controversial, and the perceived threat posed by such animals hinders international trade in FMD-endemic countries. In this study we report longitudinal analyses of genetic and antigenic variations of FMDV serotype O/ME-SA/Ind2001d sublineage during naturally occurring, persistent infection in cattle and buffalo at an organised dairy farm in India. The proportion of animals from which FMDV RNA was recovered was not significantly different between convalescent (post-clinical) and sub-clinically infected animals or between cattle and buffalo across the sampling period. However, infectious virus was isolated from a higher proportion of buffalo samples and for a longer duration compared to cattle. Analysis of the P1 sequences from recovered viruses indicated fixation of mutations at the rate of 1.816 x 10-2substitution/site/year (s/s/y) (95% CI 1.362-2.31 x 10-2 s/s/y). However, the majority of point mutations were transitional substitutions. Within individual animals, the mean dN/dS (ω) value for the P1 region varied from 0.076 to 0.357, suggesting the selection pressure acting on viral genomes differed substantially across individual animals. Statistical parsimony analysis indicated that all of the virus isolates from carrier animals originated from the outbreak virus. The antigenic relationship value as determined by 2D-VNT assay revealed fluctuation of antigenic variants within and between carrier animals during the carrier state which suggested that some carrier viruses had diverged substantially from the protection provided by the vaccine strain. This study contributes to understanding the extent of within-host and within-herd evolution that occurs during the carrier state of FMDV.
Collapse
Affiliation(s)
- Jitendra K. Biswal
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Rajeev Ranjan
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Saravanan Subramaniam
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Jajati K. Mohapatra
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | | | | | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, United States of America
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States of America
| | - Barbara Brito
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, United States of America
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States of America
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, United States of America
| | - Bramhadev Pattnaik
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, United States of America
| |
Collapse
|
13
|
Scott KA, Maake L, Botha E, Theron J, Maree FF. Inherent biophysical stability of foot-and-mouth disease SAT1, SAT2 and SAT3 viruses. Virus Res 2019; 264:45-55. [PMID: 30807778 DOI: 10.1016/j.virusres.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) virus (FMDV) isolates show variation in their ability to withstand an increase in temperature. The FMDV is surprisingly thermolabile, even though this virus is probably subjected to a strong extracellular selective pressure by heat in hot climate regions where FMD is prevalent. The three SAT serotypes, with their particularly low biophysical stability also only yield vaccines of low protective capacity, even with multiple booster vaccinations. The aim of the study was to determine the inherent biophysical stability of field SAT isolates. To characterise the biophysical stability of 20 SAT viruses from Southern Africa, the thermofluor assay was used to monitor capsid dissociation by the release of the RNA genome under a range of temperature, pH and ionic conditions. The SAT2 and SAT3 viruses had a similar range of thermostability of 48-54 °C. However, the SAT1 viruses had a wider range of thermostability with an 8 °C difference but with many viruses being unstable at 43-46 °C. The thermostable A-serotype A24 control virus had the highest thermostability of 55 °C with some SAT2 and SAT3 viruses of similar thermostability. There was a 10 °C difference between the most unstable SAT virus (SAT1/TAN/2/99) and the highly stable A24 control virus. SAT1 viruses were generally more stable compared to SAT2 and SAT3 viruses at the pH range of 6.7-9.1. The effect of ionic buffers on capsid stability showed that SAT1 and SAT2 viruses had an increased stability of 2-9 °C and 2-6 °C, respectively, with the addition of 1 M NaCl. This is in contrast to the SAT3 viruses, which did not show improved stabilisation after addition of 1 M or 0.5 M NaCl buffers. Some buffers showed differing results dependent on the virus tested, highlighting the need to test SAT viruses with different solutions to establish the most stabilising option for storage of each virus. This study confirms for the first time that more stable SAT field viruses are present in the southern Africa region. This could facilitate the selection of the most stable circulating field strains, for adaptation to cultured BHK-21 cells or manipulation by reverse genetics and targeted mutation to produce improved vaccine master seed viruses.
Collapse
Affiliation(s)
- Katherine A Scott
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Lorens Maake
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Elizabeth Botha
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Francois F Maree
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
14
|
Almansour I, Alhagri M, Alfares R, Alshehri M, Bakhashwain R, Maarouf A. IRAM: virus capsid database and analysis resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5531860. [PMID: 31318422 PMCID: PMC6637973 DOI: 10.1093/database/baz079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/12/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
IRAM is an online, open access, comprehensive database and analysis resource for virus capsids. The database includes over 200 000 hierarchically organized capsid-associated nucleotide and amino acid sequences, as well as 193 capsids structures of high resolution (1-5 Å). Each capsid's structure includes a data file for capsid domain (PDB), capsid symmetry unit (PDB) and capsid structure information (PSF); these contain capsid structural information that is necessary to run further computational studies. Physicochemical properties analysis is implemented for calculating capsid total charge at given radii and for calculating charge distributions. This resource includes BLASTn and BLASTp tools, which can be applied to compare nucleotide and amino acid sequences. The diverse functionality of IRAM is valuable to researchers because it integrates different aspects of virus capsids via a user-friendly interface. Such data are critical for studying capsid evolution and patterns of conservation. The IRAM database can also provide initial necessary information for the design of synthetic capsids for various biotechnological applications.
Collapse
Affiliation(s)
- Iman Almansour
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Mazen Alhagri
- Scientific and High Performance Computing Center, Deanship of Information and Communication Technology, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Rahaf Alfares
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Manal Alshehri
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Razan Bakhashwain
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Ahmed Maarouf
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| |
Collapse
|
15
|
Bachanek-Bankowska K, Di Nardo A, Wadsworth J, Henry EKM, Parlak Ü, Timina A, Mischenko A, Qasim IA, Abdollahi D, Sultana M, Hossain MA, King DP, Knowles NJ. Foot-and-Mouth Disease in the Middle East Caused by an A/ASIA/G-VII Virus Lineage, 2015-2016. Emerg Infect Dis 2018; 24:1073-1078. [PMID: 29774839 PMCID: PMC6004861 DOI: 10.3201/eid2406.170715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic analyses of foot-and-mouth disease type A viruses in the Middle East during 2015-2016 identified viruses belonging to the A/ASIA/G-VII lineage, which originated in the Indian subcontinent. Changes in a critical antigenic site within capsid viral protein 1 suggest possible evolutionary pressure caused by an intensive vaccination program.
Collapse
|
16
|
Abeyratne SAE, Amarasekera SSC, Ranaweera LT, Salpadoru TB, Thilakarathne SMNK, Knowles NJ, Wadsworth J, Puvanendiran S, Kothalawala H, Jayathilake BK, Wijithasiri HA, Chandrasena MMPSK, Sooriyapathirana SDSS. The phylogenetic analysis of VP1 genomic region in foot-and-mouth disease virus serotype O isolates in Sri Lanka reveals the existence of 'Srl-97', a newly named endemic lineage. PLoS One 2018; 13:e0194077. [PMID: 29570746 PMCID: PMC5865751 DOI: 10.1371/journal.pone.0194077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/23/2018] [Indexed: 11/25/2022] Open
Abstract
Foot and mouth disease (FMD) has devastated the cattle industry in Sri Lanka many times in the past. Despite its seriousness, limited attempts have been made to understand the disease to ameliorate its effects–current recommendation for vaccines being based solely on immunological assessments rather than on molecular identification. The general belief is that the cattle population in Sri Lanka acquired the FMD virus (FMDV) strains via introductions from India. However, there could be endemic FMDV lineages circulating in Sri Lanka. To infer the phylogenetic relationships of the FMDV strains in the island, we sequenced the VP1 genomic region of the virus isolates collected during the 2014 outbreak together with a few reported cases in 2012 and 1997 and compared them to VP1 sequences from South Asia. The FMDV strains collected in the 2014 outbreak belonged to the lineage, Ind-2001d, of the topotype, ME-SA. The strains collected in 2012 and 1997 belonged to another lineage called 'unnamed' by the World Reference Laboratory for Foot and Mouth Disease (WRLFMD). Based on the present analysis, we designate the lineage 'unnamed' as Srl-97 which we found endemic to Sri Lanka. The evolutionary rates of Srl-97 and Ind-2001d in Sri Lanka were estimated to be 0.0004 and 0.0046 substitutions/site/year, respectively, suggesting that Srl-97 evolves slowly.
Collapse
Affiliation(s)
- S. A. E. Abeyratne
- Animal Virus Laboratory, Veterinary Research Institute, Polgolla, Kandy, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. S. C. Amarasekera
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - L. T. Ranaweera
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T. B. Salpadoru
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. M. N. K. Thilakarathne
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - N. J. Knowles
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - J. Wadsworth
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - S. Puvanendiran
- Animal Virus Laboratory, Veterinary Research Institute, Polgolla, Kandy, Sri Lanka
| | - H. Kothalawala
- Animal Virus Laboratory, Veterinary Research Institute, Polgolla, Kandy, Sri Lanka
| | - B. K. Jayathilake
- Animal Virus Laboratory, Veterinary Research Institute, Polgolla, Kandy, Sri Lanka
| | - H. A. Wijithasiri
- Animal Virus Laboratory, Veterinary Research Institute, Polgolla, Kandy, Sri Lanka
| | | | - S. D. S. S. Sooriyapathirana
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
- * E-mail:
| |
Collapse
|
17
|
Scott KA, Kotecha A, Seago J, Ren J, Fry EE, Stuart DI, Charleston B, Maree FF. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. J Virol 2017; 91:e02312-16. [PMID: 28298597 PMCID: PMC5411616 DOI: 10.1128/jvi.02312-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses.
Collapse
Affiliation(s)
- Katherine A Scott
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Julian Seago
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Life Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | | - Francois F Maree
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Reeve R, Borley DW, Maree FF, Upadhyaya S, Lukhwareni A, Esterhuysen JJ, Harvey WT, Blignaut B, Fry EE, Parida S, Paton DJ, Mahapatra M. Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS One 2016; 11:e0159360. [PMID: 27448206 PMCID: PMC4957747 DOI: 10.1371/journal.pone.0159360] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Quantifying and predicting the antigenic characteristics of a virus is something of a holy grail for infectious disease research because of its central importance to the emergence of new strains, the severity of outbreaks, and vaccine selection. However, these characteristics are defined by a complex interplay of viral and host factors so that phylogenetic measures of viral similarity are often poorly correlated to antigenic relationships. Here, we generate antigenic phylogenies that track the phenotypic evolution of two serotypes of foot-and-mouth disease virus by combining host serology and viral sequence data to identify sites that are critical to their antigenic evolution. For serotype SAT1, we validate our antigenic phylogeny against monoclonal antibody escape mutants, which match all of the predicted antigenic sites. For serotype O, we validate it against known sites where available, and otherwise directly evaluate the impact on antigenic phenotype of substitutions in predicted sites using reverse genetics and serology. We also highlight a critical and poorly understood problem for vaccine selection by revealing qualitative differences between assays that are often used interchangeably to determine antigenic match between field viruses and vaccine strains. Our approach provides a tool to identify naturally occurring antigenic substitutions, allowing us to track the genetic diversification and associated antigenic evolution of the virus. Despite the hugely important role vaccines have played in enhancing human and animal health, vaccinology remains a conspicuously empirical science. This study advances the field by providing guidance for tuning vaccine strains via site-directed mutagenesis through this high-resolution tracking of antigenic evolution of the virus between rare major shifts in phenotype.
Collapse
Affiliation(s)
- Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Daryl W. Borley
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | - Francois F. Maree
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Azwidowi Lukhwareni
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
| | - Jan J. Esterhuysen
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
| | - William T. Harvey
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Belinda Blignaut
- ARC-Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Onderstepoort, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, United Kingdom
| | - Satya Parida
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - David J. Paton
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Mana Mahapatra
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
19
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Das B, Mohapatra JK, Pande V, Subramaniam S, Sanyal A. Evolution of foot-and-mouth disease virus serotype A capsid coding (P1) region on a timescale of three decades in an endemic context. INFECTION GENETICS AND EVOLUTION 2016; 41:36-46. [PMID: 27020544 DOI: 10.1016/j.meegid.2016.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
Abstract
Three decades-long (1977-2013) evolutionary trend of the capsid coding (P1) region of foot-and-mouth disease virus (FMDV) serotype A isolated in India was analysed. The exclusive presence of genotype 18 since 2001 and the dominance of the VP3(59)-deletion group of genotype 18 was evident in the recent years. Clade 18c was found to be currently the only active one among the three clades (18a, 18b and 18c) identified in the deletion group. The rate of evolution of the Indian isolates at the capsid region was found to be 4.96×10(-3)substitutions/site/year. The timescale analysis predicted the most recent common ancestor to have existed during 1962 for Indian FMDV serotype A and around 1998 for the deletion group. The evolutionary pattern of serotype A in India appears to be homogeneous as no spatial or temporal structure was observed. Bayesian skyline plots indicate a sharp decline in the effective number of infections after 2008, which might be a result of mass vaccination or inherent loss of virus fitness. Analyses of variability at 38 known antigenically critical positions in a countrywide longitudinal data set suggested that the substitutions neither followed any specific trend nor remained fixed for a long period since frequent reversions and convergence was noticed. A maximum of 6 different amino acid residues was seen in the gene pool at any antigenically critical site over the decades, suggesting a limited combination of residues being responsible for the observed antigenic variation. Evidence of positive selection at some of the antigenically critical residues and the structurally proximal positions suggest a possible role of pre-existing immunity in the host population in driving evolution. The VP1 C-terminus neither revealed variability nor positive selection, suggesting the possibility that this stretch does not contribute to the antigenic variation and adaptation under immune selection.
Collapse
Affiliation(s)
- Biswajit Das
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, India
| | - Jajati K Mohapatra
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, India.
| | - Veena Pande
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, India
| | - Saravanan Subramaniam
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, India
| | - Aniket Sanyal
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, India.
| |
Collapse
|
21
|
Domingo E. Long-Term Virus Evolution in Nature. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149407 DOI: 10.1016/b978-0-12-800837-9.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates of evolution depending on the polymerase copying fidelity during genome replication. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intra-host evolution is generally more rapid that inter-host evolution and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve render very unlikely the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes). Several computational methods are reviewed that permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental influences, render the emergence and reemergence of viral pathogens an unpredictable event, another example of biological complexity.
Collapse
|
22
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
23
|
Subramaniam S, Mohapatra JK, Sharma GK, Biswal JK, Ranjan R, Rout M, Das B, Dash BB, Sanyal A, Pattnaik B. Evolutionary dynamics of foot-and-mouth disease virus O/ME-SA/Ind2001 lineage. Vet Microbiol 2015; 178:181-9. [PMID: 26049591 DOI: 10.1016/j.vetmic.2015.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Foot-and-mouth disease (FMD) virus serotype O Ind2001 lineage within the Middle East-South Asia topotype is the major cause of recent FMD incidences in India. A sub-lineage of Ind2001 caused severe outbreaks in the southern region of the country during 2013 and also reported for the first time from Libya. In this study, we conducted a detailed evolutionary analysis of Ind2001 lineage. Phylogenetic analysis of Ind2001 lineage based on maximum likelihood method revealed two major splits and three sub-lineages. The mean nucleotide substitution rate for this lineage was calculated to be 6.338×10(-3)substitutions/site/year (s/s/y), which is similar to those of PanAsian sub-lineages. Evolutionary time scale analysis indicated that the Ind2001 lineage might have originated in 1989. The sub-lineage Ind2001d that caused 2013 outbreaks seems to be relatively more divergent genetically from other Ind2001 sub-lineages. Seven codons in the VP1 region of Ind2001 were found to be under positive selection. Four out of 24 recent Ind2001 strains tested in 2D-MNT had antigenic relationship value of <0.3 with the serotype O vaccine strain indicating intra-epidemic antigenic diversity. Amino acid substitutions found in these minor variants with reference to antigenic diversity have been discussed. The dominance of antigenically homologous strains indicates absence of vaccine immunity in the majority of the affected hosts. Taken together, the evolution of Ind2001 lineage deviates from the strict molecular clock and a typical lineage evolutionary dynamics characterized by periodic emergence and re-emergence of Ind2001 and PanAsia lineage have been observed in respect of serotype O.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Jajati K Mohapatra
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Gaurav K Sharma
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Jitendra K Biswal
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Rajeev Ranjan
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Manoranjan Rout
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Biswajit Das
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Bana B Dash
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Aniket Sanyal
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India
| | - Bramhadev Pattnaik
- ICAR-Project Directorate on Foot-and-Mouth Disease, Mukteswar-Kumaon, Nainital 263138, Uttarakhand, India.
| |
Collapse
|
24
|
Alam SMS, Amin R, Rahman MZ, Hossain MA, Sultana M. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV) serotype Asia 1. Adv Appl Bioinform Chem 2013; 6:37-46. [PMID: 23983476 PMCID: PMC3751384 DOI: 10.2147/aabc.s49587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Foot and mouth disease virus (FMDV), with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.
Collapse
Affiliation(s)
- S M Sabbir Alam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | | | | | | |
Collapse
|
25
|
Subramaniam S, Sanyal A, Mohapatra JK, Sharma GK, Biswal JK, Ranjan R, Rout M, Das B, Bisht P, Mathapati BS, Dash BB, Pattnaik B. Emergence of a novel lineage genetically divergent from the predominant Ind2001 lineage of serotype O foot-and-mouth disease virus in India. INFECTION GENETICS AND EVOLUTION 2013; 18:1-7. [DOI: 10.1016/j.meegid.2013.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
|
26
|
Anil KU, Sreenivasa BP, Mohapatra JK, Hosamani M, Kumar R, Venkataramanan R. Sequence analysis of capsid coding region of foot-and-mouth disease virus type A vaccine strain during serial passages in BHK-21 adherent and suspension cells. Biologicals 2012; 40:426-30. [PMID: 23084588 DOI: 10.1016/j.biologicals.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 05/18/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
Sequence variability within the capsid coding region of the foot-and-mouth disease virus type A vaccine strain during serial in vitro passage was investigated. Specifically, two methods of virus propagation were utilized, a monolayer and suspension culture of BHK-21 cells. At three positions (VP2(131) E-K in both monolayer and suspension passages, VP3(85) H-R in late monolayer passages and VP3(139) K-E in only suspension passages), all mapped to surface exposed loops, amino acid substitutions were apparently fixed without reversion till the end of the passage regime. Interestingly, VP2(131, 121) and VP3(85) which form part of the heparan sulphate binding pocket, showed a tendency to acquire positively charged amino acids in either monolayer or suspension environment probably to better interact with the negatively charged cell surface glycosaminoglycans. At three identified antigenically critical positions (VP2(79), VP3(139) and VP1(154)), amino acids substitutions even in the absence of immune pressure were noticed. Hence both random drift and adaptive mutations attributable to the strong selective pressure exerted by the proposed cell surface alternate receptors could play a role in modifying the capsid sequence of cell culture propagated FMDV vaccine virus, which in turn may alter the desired potency of the vaccine formulations.
Collapse
Affiliation(s)
- K U Anil
- Indian Veterinary Research Institute, Hebbal Campus, Bangalore 560 024, India
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
28
|
Jamal SM, Ferrari G, Ahmed S, Normann P, Curry S, Belsham GJ. Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002-2009. J Gen Virol 2011; 92:2849-2864. [PMID: 21813704 DOI: 10.1099/vir.0.035626-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples) or for all four capsid proteins (P1, seven representative samples) of the serotype A FMD viruses circulating in Pakistan and Afghanistan were determined. Phylogenetic analysis of the foot-and-mouth disease virus (FMDV) VP1-coding sequences from these countries collected between 2002 and 2009 revealed the presence of at least four lineages within two distinct genotypes, all belonging to the Asia topotype, within serotype A. The predominant lineage observed was A-Iran05 but three other lineages (a new one is named here A-Pak09) were also identified. The A-Iran05 lineage is still evolving as revealed by the presence of seven distinct variants, the dominant being the A-Iran05AFG-07 and A-Iran05BAR-08 sublineages. The rate of evolution of the A-Iran05 lineage was found to be about 1.2×10(-2) substitutions per nucleotide per year. This high rate of change is consistent with the rapid appearance of new variants of FMDV serotype A in the region. The A22/Iraq FMDV vaccine is antigenically distinct from the A-Iran05BAR-08 viruses. Mapping of the amino acid changes between the capsid proteins of the A22/Iraq vaccine strain and the A-Iran05BAR-08 viruses onto the A22/Iraq capsid structure identified candidate amino acid substitutions, exposed on the virus surface, which may explain this antigenic difference.
Collapse
Affiliation(s)
- Syed M Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.,National Veterinary Laboratory, Park Road, 45500 Islamabad, Pakistan.,National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Giancarlo Ferrari
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Safia Ahmed
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Preben Normann
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Stephen Curry
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
29
|
Jamal SM, Ferrari G, Ahmed S, Normann P, Belsham GJ. Genetic diversity of foot-and-mouth disease virus serotype O in Pakistan and Afghanistan, 1997–2009. INFECTION GENETICS AND EVOLUTION 2011; 11:1229-38. [DOI: 10.1016/j.meegid.2011.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
|
30
|
Abstract
Picornaviruses have some of the highest nucleotide substitution rates among viruses, but there have been no comparisons of evolutionary rates within this broad family. We combined our own Bayesian coalescent analyses of VP1 regions from four picornaviruses with 22 published VP1 rates to produce the first within-family meta-analysis of viral evolutionary rates. Similarly, we compared our rate estimates for the RNA polymerase 3D(pol) gene from five viruses to four published 3D(pol) rates. Both a structural and a nonstructural gene show that enteroviruses are evolving, on average, a half order of magnitude faster than members of other genera within the Picornaviridae family.
Collapse
|
31
|
Le VP, Nguyen T, Park JH, Kim SM, Ko YJ, Lee HS, Nguyen VC, Mai TD, Do TH, Cho IS, Lee KN. Heterogeneity and genetic variations of serotypes O and Asia 1 foot-and-mouth disease viruses isolated in Vietnam. Vet Microbiol 2010; 145:220-9. [PMID: 20478669 DOI: 10.1016/j.vetmic.2010.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 11/26/2022]
Abstract
Six field foot-and-mouth disease viruses (FMDVs), including four serotype O and two serotype Asia 1 strains, were collected from endemic outbreaks in 2005, 2006, and 2007 from four different provinces in Vietnam. The viruses were isolated and genetically characterized for their complete genomic sequences. The genetic analysis based on the complete genomic coding sequences revealed that the four serotype O FMDVs were related to each other, sharing 95.2% nucleotide (nt) identity and 97.5-97.6% amino acid (aa) identity. Genetic analysis and a phylogenetic tree, based on the VP1 gene of FMDV, showed that the four present Vietnamese serotype O strains have a high level of identity with other serotype O representatives of the Mya-98 lineage of the Southeast Asian (SEA) topotype. The four viruses were all clustered into the Mya-98 lineage of the SEA topotype, sharing 92.3-95.6% nt and 93.4-96.7% aa identity. This finding of the Mya-98 lineage was different from previous reports that the Vietnamese serotype O strains belonged to the Cam-94 lineage of the SEA topotype and two other topotypes, Middle East-South Asia (ME-SA) and Cathay. For the two serotype Asia 1 FMDVs, the genetic analysis based on the complete genomic coding sequences as well as on the VP1 gene revealed that they belonged to two genogroups, IV and V. Of note, the As1/VN/QT03/2007 strain of genogroup V, isolated in 2007, was very closely related to the pandemic Asia 1 strain which caused FMD outbreaks in China (Asia1/WHN/CHA/06, FJ906802) and Mongolia (Asia1/MOG/05, EF614458) in 2005, sharing 99.0-99.3% nt and 99.5-100% aa identity. In contrast, the second strain As1/VN/LC04/2005 of genogroup IV, isolated in 2005, was closely related to all referenced Vietnamese serotype Asia 1 strains found in the GenBank databases, sharing 86.4-100% nt and 90.9-100% aa identity with each. This study is the first description of the full-length genomic sequence of Vietnamese FMDV serotypes O and Asia 1 and may provide the evidence of the concurrent circulation of different serotypes and subtypes of FMDV in recent years in Vietnam.
Collapse
Affiliation(s)
- Van Phan Le
- Foreign Animal Disease Division, National Veterinary Research and Quarantine Service, Anyang, Gyeonggi 430-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Low diversity of foot-and-mouth disease serotype C virus in Kenya: evidence for probable vaccine strain re-introductions in the field. Epidemiol Infect 2010; 139:189-96. [DOI: 10.1017/s0950268810000580] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYMost viruses are maintained by complex processes of evolution that enable them to survive but also complicate efforts to achieve their control. In this paper, we study patterns of evolution in foot-and-mouth disease (FMD) serotype C virus isolates from Kenya, one of the few places in the world where serotype C has been endemic and is suspected to remain. The nucleotide sequences encoding the capsid protein VP1 from eight isolates collected between 1967 and 2004 were analysed for patterns of sequence divergence and evolution. Very low nucleotide diversity (π=0·0025) and remarkably little change (only five segregating sites and three amino-acid changes) were observed in these isolates collected over a period of almost 40 years. We interpret these results as being suggestive of re-introductions of the vaccine strain into the field. The implications of these results for the maintenance of serotype C FMD virus and the use of vaccination as a control measure in Kenya are discussed.
Collapse
|
33
|
Kinnear M, Linde CC. Capsid gene divergence in rabbit hemorrhagic disease virus. J Gen Virol 2009; 91:174-81. [DOI: 10.1099/vir.0.014076-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Garabed RB, Johnson WO, Thurmond MC. Analytical Epidemiology of Genomic Variation among Pan Asia Strains of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 2009; 56:142-56. [DOI: 10.1111/j.1865-1682.2009.01068.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Tully DC, Fares MA. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. Virology 2008; 382:250-6. [DOI: 10.1016/j.virol.2008.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 08/17/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|
36
|
Klein J. Understanding the molecular epidemiology of foot-and-mouth-disease virus. INFECTION GENETICS AND EVOLUTION 2008; 9:153-61. [PMID: 19100342 PMCID: PMC7172361 DOI: 10.1016/j.meegid.2008.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 12/28/2022]
Abstract
The use of molecular epidemiology is an important tool in understanding and consequently controlling FMDV. In this review I will present basic information about the disease, needed to perform molecular epidemiology. I will give a short introduction to the history and impact of foot-and-mouth disease, clinical picture, infection route, subclinical and persistent infections, general aspects of the transmission of FMDV, serotype-specific epidemiological characteristics, field epidemiology of FMDV, evolution and molecular epidemiology of FMDV. This is followed by two chapters describing the molecular epidemiology of foot-and-mouth disease in global surveillance and molecular epidemiology of foot-and-mouth disease in outbreak investigation.
Collapse
Affiliation(s)
- Joern Klein
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway.
| |
Collapse
|
37
|
Perez AM, König G, Späth E, Thurmond MC. Variation in the VP1 gene of foot-and-mouth disease virus serotype A associated with epidemiological characteristics of outbreaks in the 2001 epizootic in Argentina. J Vet Diagn Invest 2008; 20:433-9. [PMID: 18599847 DOI: 10.1177/104063870802000404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A mixed binomial Bayesian regression model was used to quantify the relation between nucleotide differences in the VP1 gene of Foot-and-mouth disease virus (FMDV) serotype A, and epidemiologic characteristics of the outbreaks from which the viruses were obtained between January and December 2001 in Argentina. An increase in the probability of different nucleotides between isolates was associated with a longer time between isolation dates, a greater distance between isolation locations, an increase in the difference between attack rates, and an increase in the difference in outbreak durations. The farther apart the outbreak herds were in the southerly and easterly directions, the greater the difference in nucleotide changes. The model accurately predicted genetic distances of isolates obtained in 2001 compared with a 2002 isolate (P < 0.01), which suggested that the predictive modeling approach applied in the present study may be useful in understanding the epidemiology of evolution of FMDV and in forensic analysis of disease epidemics.
Collapse
Affiliation(s)
- Andres M Perez
- Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
38
|
Valarcher JF, Leforban Y, Rweyemamu M, Roeder PL, Gerbier G, Mackay DKJ, Sumption KJ, Paton DJ, Knowles NJ. Incursions of Foot-and-Mouth Disease Virus into Europe between 1985 and 2006. Transbound Emerg Dis 2008; 55:14-34. [DOI: 10.1111/j.1865-1682.2007.01010.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Vagnozzi A, Stein DA, Iversen PL, Rieder E. Inhibition of foot-and-mouth disease virus infections in cell cultures with antisense morpholino oligomers. J Virol 2007; 81:11669-80. [PMID: 17728223 PMCID: PMC2168802 DOI: 10.1128/jvi.00557-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed ungulates that can lead to severe losses in the livestock production and export industries. Although vaccines have been extensively used to control FMD, there is no antiviral therapy available to treat ongoing infections with FMD virus (FMDV). Six peptide-conjugated morpholino oligomers (PPMOs) with sequences complementary to various 21-nucleotide segments of the 5' and 3' untranslated regions (UTRs) of the FMDV genome (strain A(24) Cruzeiro/Brazil/1955 [A(24)Cru]) were evaluated in cell cultures. Three of the PPMOs, targeting domain 5 of the internal ribosome entry site (5D PPMO), and the two translation start codon regions (AUG1 and AUG2 PPMOs), showed high levels of anti-FMDV activity. A dose-dependent and sequence-specific reduction in viral titers of greater than 5 log(10), with a concomitant reduction of viral protein and RNA expression, was achieved at low micromolar concentrations. Under identical conditions, three other PPMOs targeting the 5'-terminal region of the genome, the cis-acting replication element in the 5' UTR, and the 3' "ab" stem-loop showed less dramatic titer reductions of 1.5 log(10) to 2 log(10). Treatment with 5D PPMO reduced the titers of FMDV strains representing five different serotypes by 2 log(10) to 4 log(10) compared to those of the controls. A(24)Cru-infected BHK-21 cells treated repeatedly with 5D or AUG2 PPMO generated resistant viruses for which phenotypic and genotypic properties were defined. Notably, three passages with low concentrations of the AUG1 PPMO extinguished all traces of detectable virus. The results indicate that PPMOs have potential for treating FMDV infections and that they also represent useful tools for studying picornaviral translation and evolution.
Collapse
Affiliation(s)
- Ariel Vagnozzi
- Plum Island Animal Disease Center, U.S. Department of Agriculture-Agricultural Research Service/NAA, Greenport, NY 11944-0848, USA
| | | | | | | |
Collapse
|
40
|
Carrillo C, Lu Z, Borca MV, Vagnozzi A, Kutish GF, Rock DL. Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J Virol 2007; 81:11341-51. [PMID: 17686868 PMCID: PMC2045514 DOI: 10.1128/jvi.00930-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), like other RNA viruses, exhibits high mutation rates during replication that have been suggested to be of adaptive value. However, even though genetic variation in RNA viruses and, more specifically, FMDV has been extensively examined during virus replication in a wide variety of in vitro cell cultures, very little is known regarding the generation and effects of genetic variability of virus replication in the natural host under experimental conditions and no genetic data are available regarding the effects of serial passage in natural hosts. Here, we present the results of 20 serial contact transmissions of the highly pathogenic, pig-adapted O Taiwan 97 (O Tw97) isolate of FMDV in swine. We examined the virus genomic consensus sequences for a total of 37 full-length viral genomes recovered from 20 in vivo passages. The characteristics and distributions of changes in the sequences during the series of pig infections were analyzed in comparison to the O Tw97 genomes recovered from serially infected BHK-21 cell cultures. Unexpectedly, a significant reduction of virulence upon pig passages was observed, and finally, interruption of the viral transmission chain occurred after the14th pig passage (T14). Virus was, however, isolated from the tonsils and nasal swabs of the asymptomatic T15 pigs at 26 days postcontact, consistent with a natural establishment of the carrier state previously described only for ruminants. Surprisingly, the region encoding the capsid protein VP1 (1D) did not show amino acid changes during in vivo passages. These data demonstrate that contact transmission of FMDV O Tw97 in pigs mimics the fitness loss induced by the bottleneck effect, which was previously observed by others during plaque-to-plaque FMDV passage in vitro, suggesting that unknown mechanisms of virulence recovery might be necessary during the evolution and perpetuation of FMDV in nature.
Collapse
Affiliation(s)
- C Carrillo
- Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Barros JJF, Malirat V, Rebello MA, Costa EV, Bergmann IE. Genetic variation of foot-and-mouth disease virus isolates recovered from persistently infected water buffalo (Bubalus bubalis). Vet Microbiol 2006; 120:50-62. [PMID: 17113729 DOI: 10.1016/j.vetmic.2006.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 07/21/2006] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
Genetic variation of foot-and-mouth disease virus (FMDV) isolates, serotype O, recovered serially over a 1-year period from persistently infected buffalos was assessed. The persistent state was established experimentally with plaque-purified FMDV, strain O(1)Campos, in five buffalos (Bubalus bubalis). Viral isolates collected from esophageal-pharyngeal (EP) fluids for up to 71 weeks after infection were analyzed at different times by nucleotide sequencing and T(1) RNase oligonucleotide fingerprinting to assess variability in the VP1-coding region and in the complete genome, respectively. Genetic variation increased, although irregularly, with time after infection. The highest values observed for the VP1-coding region and for the whole genome were 2.5% and 1.8%, respectively. High rates of fixation of mutations were observed using both methodologies, reaching values of 0.65 substitutions per nucleotide per year (s/nt/y) and 0.44s/nt/y for nucleotide sequencing and oligonucleotide fingerprinting, respectively, when selected samples recovered at close time periods were analyzed. The data herein indicate that complex mixtures of genotypes may arise during FMDV type O persistent infection in water buffalos, which can act as viral reservoirs and also represent a potential source of viral variants. These results fit within the quasi-species dynamics described for FMDV, in which viral populations are constituted by related, non-identical genomes that evolve independently from each other, and may predominate at a given time.
Collapse
Affiliation(s)
- José Júnior F Barros
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
42
|
Cottam EM, Haydon DT, Paton DJ, Gloster J, Wilesmith JW, Ferris NP, Hutchings GH, King DP. Molecular epidemiology of the foot-and-mouth disease virus outbreak in the United Kingdom in 2001. J Virol 2006; 80:11274-82. [PMID: 16971422 PMCID: PMC1642183 DOI: 10.1128/jvi.01236-06] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to quantify the extent to which the genetic diversity of foot-and-mouth disease virus (FMDV) arising over the course of infection of an individual animal becomes fixed, is transmitted to other animals, and thereby accumulates over the course of an outbreak. Complete consensus sequences of 23 genomes (each of 8,200 nucleotides) of FMDV were recovered directly from epithelium tissue acquired from 21 farms infected over a nearly 7-month period during the 2001 FMDV outbreak in the United Kingdom. An analysis of these consensus sequences revealed very few apparently ambiguous sites but clear evidence of 197 nucleotide substitutions at 191 different sites. We estimated the rate of nucleotide substitution to be 2.26 x 10(-5) per site per day (95% confidence interval [CI], 1.75 x 10(-5) to 2.80 x 10(-5)) and nucleotide substitutions to accrue in the consensus sequence at an average rate of 1.5 substitutions per farm infection. This is a sufficiently high rate showing that detailed histories of the transmission pathways can be reliably reconstructed. Coalescent methods indicated that the date at which FMDV first infected livestock in the United Kingdom was 7 February 2001 (95% CI, 20 January to 19 February 2001), which was identical to estimates obtained on the basis of purely clinical evidence. Nucleotide changes appeared to have occurred evenly across the genome, and within the open reading frame, the ratio of nonsynonymous-to-synonymous change was 0.09. The ability to recover particular transmission pathways of acutely acting RNA pathogens from genetic data will help resolve uncertainties about how virus is spread and could help in the control of future epidemics.
Collapse
Affiliation(s)
- Eleanor M Cottam
- Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Giridharan P, Hemadri D, Tosh C, Sanyal A, Bandyopadhyay SK. Development and evaluation of a multiplex PCR for differentiation of foot-and-mouth disease virus strains native to India. J Virol Methods 2005; 126:1-11. [PMID: 15847913 DOI: 10.1016/j.jviromet.2005.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 01/07/2005] [Accepted: 01/20/2005] [Indexed: 12/30/2022]
Abstract
A multiplex PCR (mPCR) for the differentiation of Indian FMDV serotypes, O, A, Asia 1 and C was developed and evaluated on 142 clinical and 39 cell culture samples. On the latter samples both the tests worked well with 100% efficiency, whereas on clinical samples mPCR had better efficiency than ELISA. The test was found to be specific for FMDV. The detection limit of the assay was varied among the serotypes; it was most sensitive on types A and Asia 1 and least sensitive on type C. The mPCR clearly identified the serotype and in some cases detected dual infections. The test is sensitive and reliable and can be used for serotyping of ELISA negative samples.
Collapse
Affiliation(s)
- Palani Giridharan
- Project Directorate on Foot-and-Mouth Disease, Indian Veterinary Research Institute Campus, Mukteswar, Nainital-263 138, Uttaranchal, India
| | | | | | | | | |
Collapse
|
44
|
Núñez JI, Fusi P, Borrego B, Brocchi E, Pacciarini ML, Sobrino F. Genomic and antigenic characterization of viruses from the 1993 Italian foot-and-mouth disease outbreak. Arch Virol 2005; 151:127-42. [PMID: 16096711 DOI: 10.1007/s00705-005-0585-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 05/16/2005] [Indexed: 11/24/2022]
Abstract
The origin and evolution of the type O foot-and-mouth disease viruses (FMDV) that caused the outbreak occurrence in Italy in 1993, the first episode of the disease in the EU after adoption of a non-vaccination policy in 1991, have been studied by the analysis of sequences encoding three main antigenic sites on the viral capsid proteins. The phylogenetic tree derived from sequences spanning the carboxyterminal end of VP1 showed that these Italian viruses were grouped in the ME-SA topotype, closely related to viruses that circulated previously in the Middle East. The analysis of the nucleotide sequences in VP1, VP2 and VP3 showed a co-circulation during the epizootic of genetic variants, including viruses with amino acid replacements in VP3. For some of the isolates analyzed, values of fixation of nucleotide substitutions per year were observed in the three regions analyzed, ranging from 1.5 to 5.1 x 10(-2). The use of a panel of new monoclonal antibodies raised against an isolate from this outbreak, as well as monoclonal antibodies to FMDV O1-Switzerland 1965, showed differences in the reactivity pattern among some of the Italian isolates analyzed, which were consistent with the co-circulation of antigenic variants. These results support the potential for FMDV diversification in a limited period of time and under epidemiological conditions in which no vaccination campaigns were being implemented.
Collapse
Affiliation(s)
- J I Núñez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Nagendrakumar SB, Reddy GS, Chandran D, Thiagarajan D, Rangarajan PN, Srinivasan VA. Molecular characterization of foot-and-mouth disease virus type C of Indian origin. J Clin Microbiol 2005; 43:966-9. [PMID: 15695720 PMCID: PMC548106 DOI: 10.1128/jcm.43.2.966-969.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of nucleotide sequences of the partial 1D region of foot-and-mouth disease type C viruses of Indian origin with those of European, South American, and Southeast Asian viruses revealed that the Indian viruses form a distinct genotype. The vaccine strain C IND/51/79 belongs to this genotype and may be a prototype strain of this genotype.
Collapse
|
46
|
Nobiron I, Rémond M, Kaiser C, Lebreton F, Zientara S, Delmas B. The nucleotide sequence of foot-and-mouth disease virus O/FRA/1/2001 and comparison with its British parental strain O/UKG/35/2001. Virus Res 2005; 108:225-9. [PMID: 15681075 DOI: 10.1016/j.virusres.2004.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
The complete nucleotide sequence of foot-and-mouth disease virus (FMDV) O/FRA/1/2001 (bovine isolate) was determined from five cDNA clones covering most of the genome and compared with the British porcine isolate (O/UKG/35/2001) it originated from. Seven substitutions, out of which three resulted in amino acid changes (in the leader protease, 3A protein and 3D RNA-dependent RNA polymerase sequences) were identified and confirmed by direct sequencing of RT-PCR products obtained from in vitro infected cells and skin vesicles of an infected cow. RACE amplification allowed determination of the exact 3' end of the genome. These changes and possibly the unusual 3A substitution between the British and its French derivate may account for the consecutive species shifts.
Collapse
Affiliation(s)
- Isabelle Nobiron
- Unité de Recherches de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
47
|
Kim YJ, Lebreton F, Kaiser C, Crucière C, Rémond M. Isolation of foot-and-mouth disease virus specific bovine antibody fragments from phage display libraries. J Immunol Methods 2004; 286:155-66. [PMID: 15087230 DOI: 10.1016/j.jim.2004.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/09/2003] [Accepted: 01/05/2004] [Indexed: 11/20/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is an important veterinary pathogen which can cause widespread epidemics. Due to the high antigenic variability of FMDV, it is important to undertake mutation analysis under immunological pressure. To study the bovine antibody response at a molecular level, phage display technology was used to produce bovine anti-FMDV Fabs. CH1-VH chains with FMDV specific binding could be isolated after selection from a library made from vaccinated cattle. Though their involvement in the bovine immune response remains to be ascertained, it is planned to express the five different selected VH domains in bacterial or insect systems as sequence homologies with integrin beta6 chain could shed light on the basis of FMDV type receptor specificities.
Collapse
Affiliation(s)
- Yong Joo Kim
- UMR 1161 INRA-AFSSA-ENVA de virologie-Agence française de sécurité sanitaire et alimentaire, 94703 Maisons-Alfort, France
| | | | | | | | | |
Collapse
|
48
|
Sanyal A, Hemadri D, Tosh C, Bandyopadhyay SK. Emergence of a novel subgroup within the widely circulating lineage of foot-and-mouth disease virus serotype Asia 1 in India. Res Vet Sci 2004; 76:151-6. [PMID: 14672859 DOI: 10.1016/j.rvsc.2003.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The complete VP1 encoding (1D) gene of 54 foot-and-mouth disease (FMD) virus serotype Asia1 field isolates, most of which were isolated during 2000 and 2001, was sequenced. The phylogenetic analysis identified a novel subgroup (>10% nucleotide divergence) within the widely circulating lineage of this serotype. The newly emerged viruses were responsible for disease outbreaks in both cattle and buffaloes and were present in six different states in the country. Amino acid sequence comparison of these isolates revealed significant sequence divergence at many of the amino acid positions in comparison to those of lineage VI-A and C. Emergence of such viruses may affect the efficacy of vaccine strain currently used for protection against FMD in India.
Collapse
Affiliation(s)
- A Sanyal
- Project Directorate on Foot-and-Mouth Disease, Indian Veterinary Research Institute Campus, Mukteswar-Kumaon, 263 138, Nainital, Uttaranchal, India.
| | | | | | | |
Collapse
|
49
|
Bastos ADS, Haydon DT, Sangaré O, Boshoff CI, Edrich JL, Thomson GR. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J Gen Virol 2003; 84:1595-1606. [PMID: 12771430 DOI: 10.1099/vir.0.18859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SAT 2 is the serotype most often associated with outbreaks of foot-and-mouth disease (FMD) in livestock in southern and western Africa and is the only SAT type to have been recorded outside the African continent in the last decade. Its epidemiology is complicated by the presence of African buffalo (Syncerus caffer), which play an important role in virus maintenance and transmission. To assess the level of genetic complexity of this serotype among viruses associated with both domestic livestock and wildlife, complete VP1 gene sequences of 53 viruses from 17 countries and three different host species were analysed. Phylogenetic analysis revealed eleven virus lineages, differing from each other by at least 20 % in pairwise nucleotide comparisons, four of which fall within the southern African region, two in West Africa and the remaining five in central and East Africa. No evidence of recombination between these lineages was detected, and thus we conclude that these are independently evolving virus lineages which occur primarily in discrete geographical localities in accordance with the FMD virus topotype concept. Applied to the whole phylogeny, rates of nucleotide substitution are significantly different between topotypes, but most individual topotypes evolve in accordance with a molecular clock at an average rate of approximately 0.002 substitutions per site per year. This study provides an indication of the intratypic complexity of the SAT 2 serotype at the continental level and emphasizes the value of molecular characterization of diverse FMD field strains for tracing the origin of outbreaks.
Collapse
Affiliation(s)
- A D S Bastos
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - D T Haydon
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - O Sangaré
- Laboratoire Central Veterinaire, BP 2295, Bamako, Mali
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| | - C I Boshoff
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| | - J L Edrich
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - G R Thomson
- Organization of African Unity/Inter-African Bureau for Animal Resources (OAU-IBR), PO Box 30786, Nairobi, Kenya
- ARC-Onderstepoort Veterinary Institute, Exotic Diseases Division, Private Bag X5, Onderstepoort 0110, South Africa
| |
Collapse
|
50
|
Hemadri D, Tosh C, Sanyal A, Venkataramanan R. Emergence of a new strain of type O foot-and-mouth disease virus: its phylogenetic and evolutionary relationship with the PanAsia pandemic strain. Virus Genes 2003; 25:23-34. [PMID: 12206305 DOI: 10.1023/a:1020165923805] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In India, Foot-and-mouth disease virus (FMDV) serotype O has been associated with more than 75% of the outbreaks. Previous studies with this serotype have indicated that the viruses circulating in India belong to a single genotype. Recent (February 2001) FMD epidemics in Europe have focussed global attention on the source of the virus and have been traced to a strain, PanAsia (serotype O), which is present in India since 1990. In this study, to further characterize the isolates belonging to the PanAsian strain, we sequenced the complete VP1-encoding (1 D) gene for 71 FMDV serotype O isolates from India recovered from the field outbreaks during the last 4 decades (1962-2001). All the isolates in the tree were distributed in to three major branches (designated as A, B and C); the branch C is further divided into four groups (I-IV), of which the group IV belongs to the PanAsia strain. Furthermore, we show that the PanAsia strain has been circulating endemically since 1982 (not 1990 as reported earlier) and has been the most dominant outbreak strain in the recent years and distributed at least in 17 states of the country. During the year 2001, another new group (group III) of virus with genetic divergence of 5.4-11.1% at nucleotide level from the PanAsia strain is found to co-circulate endemically, and is slowly replacing it. At amino acid level this strain differed from PanAsia strain at five amino acid positions in the VP1. Although these strains are divergent at nucleotide level, they maintained a good antigenic relationship with one of the vaccine strains (IND R2/75) widely used in the country. Given the ability of the PanAsia virus to persist, spread and to outcompete other strains, the present trend could be of serious concern as the newly emerging virus is replacing it. If this is true, then there is another equally divergent strain as PanAsia that may pose a serious threat to the global dairy and meat industries.
Collapse
Affiliation(s)
- Divakar Hemadri
- Project Directorate on Foot-and-Mouth Disease, Indian Veterinary Research Institute, Nainital, Uttaranchal, India.
| | | | | | | |
Collapse
|