1
|
Cheng YW, Chuang YC, Huang SW, Liu CC, Wang JR. An auto-antibody identified from phenotypic directed screening platform shows host immunity against EV-A71 infection. J Biomed Sci 2022; 29:10. [PMID: 35130884 PMCID: PMC8822709 DOI: 10.1186/s12929-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enterovirus A71 (EV-A71) is a neurotropic virus which may cause severe neural complications, especially in infants and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, brainstem encephalitis, pulmonary edema, and other severe neurological diseases. Although there are some vaccines approved, the post-marketing surveillance is still unavailable. In addition, there is no antiviral drugs against EV-A71 available. Methods In this study, we identified a novel antibody that could inhibit viral growth through a human single chain variable fragment (scFv) library expressed in mammalian cells and panned by infection with lethal dose of EV-A71. Results We identified that the host protein α-enolase (ENO1) is the target of this scFv, and anti-ENO1 antibody was found to be more in mild cases than severe EV-A71 cases. Furthermore, we examined the antiviral activity in a mouse model. We found that the treatment of the identified 07-human IgG1 antibody increased the survival rate after virus challenge, and significantly decreased the viral RNA and the level of neural pathology in brain tissue. Conclusions Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody which targets host protein ENO1 and can interfere with the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc., Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan. .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
2
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
3
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Muñoz-Alía MA, Russell SJ. Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses 2019; 11:E688. [PMID: 31357579 PMCID: PMC6722617 DOI: 10.3390/v11080688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.
Collapse
Affiliation(s)
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
6
|
Diebolder P, Keller A, Haase S, Schlegelmilch A, Kiefer JD, Karimi T, Weber T, Moldenhauer G, Kehm R, Eis-Hübinger AM, Jäger D, Federspil PA, Herold-Mende C, Dyckhoff G, Kontermann RE, Arndt MAE, Krauss J. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs 2014; 6:130-42. [PMID: 24256717 PMCID: PMC3929437 DOI: 10.4161/mabs.27236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.
Collapse
|
7
|
Lech PJ, Tobin GJ, Bushnell R, Gutschenritter E, Pham LD, Nace R, Verhoeyen E, Cosset FL, Muller CP, Russell SJ, Nara PL. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies. PLoS One 2013; 8:e52306. [PMID: 23300970 PMCID: PMC3536790 DOI: 10.1371/journal.pone.0052306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022] Open
Abstract
The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs.
Collapse
Affiliation(s)
- Patrycja J Lech
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Geyer CR, McCafferty J, Dübel S, Bradbury ARM, Sidhu SS. Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 2012; 901:11-32. [PMID: 22723092 DOI: 10.1007/978-1-61779-931-0_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the accumulation of detailed knowledge of antibody structure and function has enabled antibody phage display to emerge as a powerful in vitro alternative to hybridoma methods for creating antibodies. Many antibodies produced using phage display technology have unique properties that are not obtainable using traditional hybridoma technologies. In phage display, selections are performed under controlled, in vitro conditions that are tailored to suit demands of the antigen and the sequence encoding the antibody is immediately available. These features obviate many of the limitations of hybridoma methodology, and because the entire process relies on scalable molecular biology techniques, phage display is also suitable for high-throughput applications. Thus, antibody phage display technology is well suited for genome-scale biotechnology and therapeutic applications. This review describes the antibody phage display technology and highlights examples of antibodies with unique properties that cannot easily be obtained by other technologies.
Collapse
|
9
|
Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 2011; 16:3675-700. [PMID: 21540796 PMCID: PMC6263270 DOI: 10.3390/molecules16053675] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 01/12/2023] Open
Abstract
Since the initial description of phage display technology for the generation of human antibodies, a variety of selection methods has been developed. The most critical parameter for all in vitro-based approaches is the quality of the antibody library. Concurrent evolution of the libraries has allowed display and selection technologies to reveal their full potential. They come in different flavors, from naïve to fully synthetic and differ in terms of size, quality, method of preparation, framework and CDR composition. Early on, the focus has mainly been on affinities and thus on library size and diversity. Subsequently, the increased awareness of developability and cost of goods as important success factors has spurred efforts to generate libraries with improved biophysical properties and favorable production characteristics. More recently a major focus on reduction of unwanted side effects through reduced immunogenicity and improved overall biophysical behavior has led to a re-evaluation of library design.
Collapse
Affiliation(s)
| | - Julia Neugebauer
- Author to whom correspondence should be addressed; ; Tel.: +49-89-89927-179; Fax: +49-89-89927-5179
| | | | | |
Collapse
|
10
|
The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739. [PMID: 20644615 PMCID: PMC2903468 DOI: 10.1371/journal.pntd.0000739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/02/2023] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo. Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.
Collapse
|
11
|
Mukhtar MM, Li S, Li W, Wan T, Mu Y, Wei W, Kang L, Rasool ST, Xiao Y, Zhu Y, Wu J. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int J Biochem Cell Biol 2009; 41:554-60. [DOI: 10.1016/j.biocel.2008.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/18/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|
12
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
13
|
Kirsch MI, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall HJ, Hust M, Dübel S. Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 2008; 8:66. [PMID: 18764933 PMCID: PMC2543005 DOI: 10.1186/1472-6750-8-66] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 09/02/2008] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus group. Several species of this family are also pathogenic to humans and are recognized as potential agents of biological warfare and terrorism. The objective of this work was the generation of recombinant antibodies for the detection of VEEV after a potential bioterrorism assault or an natural outbreak of VEEV. RESULTS In this work, human anti-VEEV single chain Fragments variable (scFv) were isolated for the first time from a human naïve antibody gene library using optimized selection processes. In total eleven different scFvs were identified and their immunological specificity was assessed. The specific detection of the VEEV strains TC83, H12/93 and 230 by the selected antibody fragments was proved. Active as well as formalin inactivated virus particles were recognized by the selected antibody fragments which could be also used for Western blot analysis of VEEV proteins and immunohistochemistry of VEEV infected cells. The anti-VEEV scFv phage clones did not show any cross-reactivity with Alphavirus species of the Western equine encephalitis virus (WEEV) and Eastern equine encephalitis virus (EEEV) antigenic complex, nor did they react with Chikungunya virus (CHIKV), if they were used as detection reagent. CONCLUSION For the first time, this study describes the selection of antibodies against a human pathogenic virus from a human naïve scFv antibody gene library using complete, active virus particles as antigen. The broad and sensitive applicability of scFv-presenting phage for the immunological detection and diagnosis of Alphavirus species was demonstrated. The selected antibody fragments will improve the fast identification of VEEV in case of a biological warfare or terroristic attack or a natural outbreak.
Collapse
Affiliation(s)
- Martina Inga Kirsch
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Birgit Hülseweh
- Armed Forces Scientific Institute for Protection Technologies – NBC Protection (WIS), Humboldtstraße 1, 29633, Munster, Germany
| | - Christoph Nacke
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Torsten Rülker
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Armed Forces Scientific Institute for Protection Technologies – NBC Protection (WIS), Humboldtstraße 1, 29633, Munster, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| | - Stefan Dübel
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Spielmannstraβe 7, 38106, Braunschweig, Germany
| |
Collapse
|
14
|
In vitro neutralization of equid herpesvirus 1 mediated by recombinant antibodies. J Immunol Methods 2008; 333:186-91. [DOI: 10.1016/j.jim.2008.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 12/09/2007] [Accepted: 01/21/2008] [Indexed: 11/20/2022]
|
15
|
Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2008; 25:1421-34. [PMID: 18066039 PMCID: PMC7097443 DOI: 10.1038/nbt1363] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.
Collapse
Affiliation(s)
- Wayne A Marasco
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School 44, Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
16
|
Cabezas S, Rojas G, Pavon A, Alvarez M, Pupo M, Guillen G, Guzman MG. Selection of phage-displayed human antibody fragments on Dengue virus particles captured by a monoclonal antibody: Application to the four serotypes. J Virol Methods 2008; 147:235-43. [DOI: 10.1016/j.jviromet.2007.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
17
|
Suzuki K, Akahori Y, Asano Y, Kurosawa Y, Shiraki K. Isolation of therapeutic human monoclonal antibodies for varicella-zoster virus and the effect of light chains on the neutralizing activity. J Med Virol 2007; 79:852-62. [PMID: 17457901 DOI: 10.1002/jmv.20838] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic antibodies against varicella-zoster virus (VZV) were isolated from a combinatorial library of human antibodies using a phage-display system. Purified gH:gL was used to screen the library, and approximately 300 clones were isolated. Eight kinds of Fab-cp3-fused molecules (clones 10, 24, 36, 60, 94, 120, 192, and 431) neutralized viral infectivity. After conversion of Fab-cp3 antibodies to the Fab-protein A form, the concentrations of antibodies showing 50% inhibition of plaque formation ranged from 0.12 to 400 nM. Clones 10, 24, 94, 120 and 431 neutralized wild strains without showing strain specificity and were further converted to human IgG(1). Two clones (24 and 94) were confirmed to react with gH:gL and VZV-infected cells. IgG of clone 94 prevented spreading of infected cells. Thus these antibodies exhibited the typical phenotype of anti-gH antibody. Next the contribution of light (L) chains to neutralizing activity was analyzed by comparing the effect of L chain of clones 10, 120, and 192 with the identical heavy chain on their neutralizing activity. The L chain in the Fab form of clone 94 was replaced by L chains of clones 10, 24, 36, and 60 and the neutralizing activity of these replaced antibodies was weaker than that of the prototype clone 94. When the kappa-L chain of clone 94 was replaced by the lambda-L chain of clone 24, this antibody possessed neutralizing activity despite the kappa-lambda class change. Thus, human antibody library against VZV-gH has been established and characterized the role of the L chain in VZV-neutralizing activity to engineering further an antibody with stronger neutralizing activity.
Collapse
|
18
|
Williams JV, Chen Z, Cseke G, Wright DW, Keefer CJ, Tollefson SJ, Hessell A, Podsiad A, Shepherd BE, Sanna PP, Burton DR, Crowe JE, Williamson RA. A recombinant human monoclonal antibody to human metapneumovirus fusion protein that neutralizes virus in vitro and is effective therapeutically in vivo. J Virol 2007; 81:8315-24. [PMID: 17522220 PMCID: PMC1951312 DOI: 10.1128/jvi.00106-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that is a major cause of lower-respiratory-tract disease. hMPV is associated with more severe disease in infants and persons with underlying medical conditions. Animal studies have shown that the hMPV fusion (F) protein alone is capable of inducing protective immunity. Here, we report the use of phage display technology to generate a fully human monoclonal antibody fragment (Fab) with biological activity against hMPV. Phage antibody libraries prepared from human donor tissues were selected against recombinant hMPV F protein with multiple rounds of panning. Recombinant Fabs then were expressed in bacteria, and supernatants were screened by enzyme-linked immunosorbent assay and immunofluorescent assays. A number of Fabs that bound to hMPV F were isolated, and several of these exhibited neutralizing activity in vitro. Fab DS7 neutralized the parent strain of hMPV with a 60% plaque reduction activity of 1.1 mug/ml and bound to hMPV F with an affinity of 9.8 x10(-10) M, as measured by surface plasmon resonance. To test the in vivo activity of Fab DS7, groups of cotton rats were infected with hMPV and given Fab intranasally 3 days after infection. Nasal turbinates and lungs were harvested on day 4 postinfection and virus titers determined. Animals treated with Fab DS7 exhibited a >1,500-fold reduction in viral titer in the lungs, with a modest 4-fold reduction in the nasal tissues. There was a dose-response relationship between the dose of DS7 and virus titer. Human Fab DS7 may have prophylactic or therapeutic potential against severe hMPV infection.
Collapse
Affiliation(s)
- John V Williams
- Pediatric Infectious Diseases, Vanderbilt University Medical Center, D-7235 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lerner RA. Manufacturing immunity to disease in a test tube: the magic bullet realized. Angew Chem Int Ed Engl 2007; 45:8106-25. [PMID: 17120282 DOI: 10.1002/anie.200603381] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although it took over one hundred years, Ehrlich's concept of the magic bullet is now a reality. Today, therapeutic antibodies are, arguably, the most important class of new drugs for the treatment of illnesses ranging from Alzheimer's disease to cancer. The emergence of therapeutic antibodies had to wait for advances in immunochemistry that allowed construction of antibodies in vitro. The centerpiece of the new technology is the combinatorial antibody library, which essentially allows one to synthesize an artificial immune system with a diversity that exceeds that of the natural repertoire. The construction of such libraries was perceived to be difficult because, if the natural immune system was to be used as the starting material, construction of the libraries would entail protocols that are the opposite of usual cloning. In gene cloning one starts with complexity and reduces it to a singularity. In the generation of diversity by construction of combinatorial antibody libraries, one starts with a collection of clones, randomly expands their complexity, and then returns them to recoverable singularities. The methods developed to accomplish this seemingly formidable task now allow construction of antibodies in a test tube to any antigen. These synthetic antibodies may be qualitatively and quantitatively superior to those of nature.
Collapse
Affiliation(s)
- Richard A Lerner
- Department of Chemistry, The Scripps Research Institute and The Skaggs Institute of Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
|
21
|
Sørensen MD, Sørensen B, Gonzalez-Dosal R, Melchjorsen CJ, Weibel J, Wang J, Jun CW, Huanming Y, Kristensen P. Severe acute respiratory syndrome (SARS): development of diagnostics and antivirals. Ann N Y Acad Sci 2006; 1067:500-5. [PMID: 16804033 PMCID: PMC7167626 DOI: 10.1196/annals.1354.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
abstract: The previously unknown coronavirus that caused severe acute respiratory syndrome (SARS‐CoV) affected more than 8,000 persons worldwide and was responsible for more than 700 deaths during the first outbreak in 2002–2003. For reasons unknown, the SARS virus is less severe and the clinical progression a great deal milder in children younger than 12 years of age. In contrast, the mortality rate can exceed 50% for persons at or above the age of 60. As part of the Sino‐European Project on SARS Diagnostics and Antivirals (SEPSDA), an immune phage‐display library is being created from convalescent patients in a phagemid system for the selection of single‐chain fragment variables (scFv) antibodies recognizing the SARS‐CoV.
Collapse
|
22
|
Rodríguez-Díaz J, Monedero V, Pérez-Martínez G, Buesa J. Single-chain variable fragment (scFv) antibodies against rotavirus NSP4 enterotoxin generated by phage display. J Virol Methods 2004; 121:231-8. [PMID: 15381361 DOI: 10.1016/j.jviromet.2004.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 11/24/2022]
Abstract
The rotavirus non-structural NSP4 protein causes membrane destabilization as well as an increase in intracellular calcium levels in eukaryotic cells and induces diarrhea in young mice, acting as a viral enterotoxin. In this study the phage display technique was used to generate a panel of single-chain variable fragment (scFv) antibodies specific for the NSP4 protein of the human rotavirus strain Wa from a human semi-synthetic scFv library. After several rounds of panning and selection on NSP4 adsorbed to polystyrene tubes, individual scFv were isolated and characterised by fingerprinting and by sequencing the VH and VL genes. The isolated scFv antibodies specifically recognize NSP4 in enzyme immunoassay and in Western blot. Four truncated forms of the NSP4 protein were constructed which allowed us to map the binding region of the selected scFv antibodies to the C-terminal portion of NSP4. The isolated scFv antibodies constitute valuable tools to analyse the mechanisms of NSP4 functions.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Hospital Clinico Universitario, Avda. Blasco Ibañez 17, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
23
|
Petrenko VA, Sorokulova IB. Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods 2004; 58:147-68. [PMID: 15234514 DOI: 10.1016/j.mimet.2004.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/03/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 253 Greene Hall, Auburn, AL 36849, USA.
| | | |
Collapse
|
24
|
Higo-Moriguchi K, Akahori Y, Iba Y, Kurosawa Y, Taniguchi K. Isolation of human monoclonal antibodies that neutralize human rotavirus. J Virol 2004; 78:3325-32. [PMID: 15016854 PMCID: PMC371047 DOI: 10.1128/jvi.78.7.3325-3332.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A human antibody library constructed by utilizing a phage display system was used for the isolation of human antibodies with neutralizing activity specific for human rotavirus. In the library, the Fab form of an antibody fused to truncated cp3 is expressed on the phage surface. Purified virions of strain KU (G1 serotype and P[8] genotype) were used as antigen. Twelve different clones were isolated. Based on their amino acid sequences, they were classified into three groups. Three representative clones-1-2H, 2-3E, and 2-11G-were characterized. Enzyme-linked immunosorbent assay with virus-like particles (VLP-VP2/6 and VLP-VP2/6/7) and recombinant VP4 protein produced from baculovirus recombinants indicated that 1-2H and 2-3E bind to VP4 and that 2-11G binds to VP7. The neutralization epitope recognized by each of the three human antibodies might be human specific, since all of the antigenic mutants resistant to mouse monoclonal neutralizing antibodies previously prepared were neutralized by the human antibodies obtained here. After conversion from the Fab form of an antibody into immunoglobulin G1, the neutralizing activities of these three clones toward various human rotavirus strains were examined. The 1-2H antibody exhibited neutralizing activity toward human rotaviruses with either the P[4] or P[8] genotype. Similarly, the 2-3E antibody showed cross-reactivity against HRVs with the P[6], as well as the P[8] genotype. In contrast, the 2-11G antibody neutralized only human rotaviruses with the G1 serotype. The concentration of antibodies required for 50% neutralization ranged from 0.8 to 20 micro g/ml.
Collapse
Affiliation(s)
- Kyoko Higo-Moriguchi
- Department of Virology and Parasitology. Institute for Comprehensive Medical Science, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Phage display is a molecular diversity technology that allows the presentation of large peptide and protein libraries on the surface of filamentous phage. Phage display libraries permit the selection of peptides and proteins, including antibodies, with high affinity and specificity for almost any target. A crucial advantage of this technology is the direct link that exists between the experimental phenotype and its encapsulated genotype, which allows the evolution of the selected binders into optimized molecules. Phage display facilitates engineering of antibodies with regard to their size, valency, affinity, and effector functions. The selection of antibodies and peptides from libraries displayed on the surface of filamentous phage has proven significant for routine isolation of peptides and antibodies for diagnostic and therapeutic applications. This review serves as an introduction to phage display, antibody engineering, the development of phage-displayed peptides and antibody fragments into viable diagnostic reagents, and recent trends in display technology.
Collapse
Affiliation(s)
- Hassan M E Azzazy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, 21201, USA.
| | | |
Collapse
|
26
|
Santiago C, Björling E, Stehle T, Casasnovas JM. Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 2002; 277:32294-301. [PMID: 12065582 DOI: 10.1074/jbc.m202973200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Measles virus (MV) is a human pathogen using two distinct cell surface receptors for entry into host cells. We present here a comparative analysis for binding of the MV receptors CD46 and SLAM to the measles virus hemagglutinin protein (MVH, Edmonston strain). Soluble monomeric and dimeric MVH variants were prepared in mammalian cells and their conformation assessed using a panel of monoclonal antibodies. The two receptor molecules specifically bound to the MVH protein with distinct binding modes. The association rate (k(a)) for SLAM binding to MVH was very low ( approximately 3000 m(-1)s(-1)), about 20 times lower that the k(a) determined for CD46 binding. However, SLAM bound tighter to the virus protein than CD46, as revealed by a 5-fold lower dissociation rate (k(d), approximately 1.5 x 10(-3) s(-1)). These data suggest that the SLAM receptor binds to a less accessible and more hydrophobic surface on MVH than the CD46 receptor, as illustrated in a binding model. Despite the differences in kinetics, receptor competition binding experiments revealed that they recognize overlapping sites in MVH. Indeed, a panel of anti-MVH monoclonal antibodies equally inhibited binding of both receptor molecules. The similar immune reactivity of the two receptor binding sites suggests that the shift in receptor usage by MV may not be driven by immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Binding Sites
- Dimerization
- Genetic Variation
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- Humans
- Immunoglobulin kappa-Chains
- Immunoglobulins/chemistry
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Kinetics
- Measles virus/physiology
- Membrane Cofactor Protein
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Receptors, Cell Surface
- Receptors, Virus/immunology
- Receptors, Virus/physiology
- Signaling Lymphocytic Activation Molecule Family Member 1
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Cesar Santiago
- Department of Biosciences at NOVUM, Karolinska Institutet, Center for Biotechnology, S141 57 Huddinge, Sweden
| | | | | | | |
Collapse
|