1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Sizikova TE, Lebedev VN, Borisevich SV. [Comparative analysis of the taxonomic classification criteria for a number of groups of pathogenic DNA and RNA viruses based on genomic data]. Vopr Virusol 2024; 69:203-218. [PMID: 38996370 DOI: 10.36233/0507-4088-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.
Collapse
Affiliation(s)
- T E Sizikova
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - V N Lebedev
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - S V Borisevich
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| |
Collapse
|
4
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588743. [PMID: 38645187 PMCID: PMC11030350 DOI: 10.1101/2024.04.09.588743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
5
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. PNAS NEXUS 2024; 3:pgae119. [PMID: 38560529 PMCID: PMC10978064 DOI: 10.1093/pnasnexus/pgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Bosco-Lauth
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Campos RK, Rossi SL, Tesh RB, Weaver SC. Zoonotic mosquito-borne arboviruses: Spillover, spillback, and realistic mitigation strategies. Sci Transl Med 2023; 15:eadj2166. [PMID: 37851824 PMCID: PMC10807030 DOI: 10.1126/scitranslmed.adj2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Emerging zoonotic mosquito-borne viruses pose increasing health threats because of growing mosquito population, geographic expansions, and control challenges. We emphasize the need for global preparedness to effectively mitigate the health, societal, and economic impacts of spillover by these viruses through proactive measures of prediction, surveillance, prevention, and treatment.
Collapse
Affiliation(s)
- Rafael K. Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Robert B. Tesh
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Wang H, Liu S, Lv Y, Wei W. Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res 2023; 328:199081. [PMID: 36854361 DOI: 10.1016/j.virusres.2023.199081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an emerging zoonotic virus in the alphavirus genus. It can be transmitted to humans due to spillover from equid-mosquito cycles. The symptoms caused by VEEV include fever, headache, myalgia, nausea, and vomiting. It can also cause encephalitis in severe cases. The evolutionary features of VEEV are largely unknown. In this study, we comprehensively analyzed the codon usage pattern of VEEV by computing a variety of indicators, such as effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), on 130 VEEV coding sequences retrieved from GenBank. The results showed that the codon usage bias of VEEV is relatively low. ENc-GC3s plot, neutrality plot, and CAI-ENc correlation analyses supported that translational selection plays an important role in shaping the codon usage pattern of VEEV whereas the mutation pressure has a minor influence. Analysis of RSCU values showed that most of the preferred codons in VEEV are C/G-ended. Analysis of dinucleotide composition found that all CG- and UA-containing codons are not preferentially used. Phylogenetic analysis showed that VEEV isolates can be clustered into three genera and evolutionary force affects the codon usage pattern. Furthermore, a correspondence analysis (COA) showed that aromaticity and hydrophobicity as well as geographical distribution also have certain effects on the codon usage variation of VEEV, suggesting the possible involvement of translational selection. Overall, the codon usage of VEEV is comparatively slight and translational selection might be the main factor that shapes the codon usage pattern of VEEV. This study will promote our understanding about the evolution of VEEV and its host adaption, and might provide some clues for preventing the cross-species transmission of VEEV.
Collapse
Affiliation(s)
- Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shijie Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yao Lv
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
8
|
Panny L, Akrhymuk I, Bracci N, Woodson C, Flor R, Elliott I, Zhou W, Narayanan A, Campbell C, Kehn-Hall K. Venezuelan equine encephalitis virus E1 protein interacts with PDIA6 and PDI inhibition reduces alphavirus production. Antiviral Res 2023; 212:105560. [PMID: 36822370 DOI: 10.1016/j.antiviral.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus transmitted by mosquitos that can cause a febrile illness and induce severe neurological complications in humans and equine populations. Currently there are no FDA approved vaccines or antiviral treatments to combat VEEV. Proteomic techniques were utilized to create an interactome of the E1 fusion glycoprotein of VEEV. VEEV E1 interacted with a number of cellular chaperone proteins including protein disulfide isomerase family A member 6 (PDIA6). PDI inhibition through LOC14 and/or nitazoxanide treatment effectively decreased production of VEEV and other alphaviruses in vitro, including eastern equine encephalitis virus, Sindbis virus, and chikungunya virus. Decreased oxidoreductive capabilities of PDIs through LOC14 or nitazoxanide treatment impacted both early and late events in viral replication, including the production of non-infectious virions and decreased VEEV E1 disulfide bond formation. Results from this study identified PDIs as critical regulators of alphavirus replication and potential therapeutic targets.
Collapse
Affiliation(s)
- Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Ivan Akrhymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Caitlin Woodson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Isaac Elliott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | | | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
9
|
León B, González G, Nicoli A, Rojas A, Pizio AD, Ramirez-Carvajal L, Jimenez C. Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis. Vet Sci 2022; 9:258. [PMID: 35737310 PMCID: PMC9229380 DOI: 10.3390/vetsci9060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Venezuelan Equine Encephalitis virus (VEEV) is an arboviral pathogen in tropical America that causes lethal encephalitis in horses and humans. VEEV is classified into six subtypes (I to VI). Subtype I viruses are divided into epizootic (IAB and IC) and endemic strains (ID and IE) that can produce outbreaks or sporadic diseases, respectively. The objective of this study was to reconstruct the phylogeny and the molecular clock of sequences of VEEV subtype I complex and identify mutations within sequences belonging to epizootic or enzootic subtypes focusing on a sequence isolated from a mare in Costa Rica. Bayesian phylogeny of the VEEV subtype I complex tree with 110 VEEV complete genomes was analyzed. Evidence of positive selection was evaluated with Datamonkey server algorithms. The putative effects of mutations on the 3D protein structure in the Costa Rica sequence were evaluated. The phylogenetic analysis showed that Subtype IE-VEEV diverged earlier than other subtypes, Costa Rican VEEV-IE ancestors came from Nicaragua in 1963 and Guatemala in 1907. Among the observed non-synonymous mutations, only 17 amino acids changed lateral chain groups. Fourteen mutations located in the NSP3, E1, and E2 genes are unique in this sequence, highlighting the importance of E1-E2 genes in VEEV evolution.
Collapse
Affiliation(s)
- Bernal León
- LSE Laboratory, Veterinary Service National Laboratory, Animal Health National Service, Ministry of Agriculture and Cattle, Heredia 40104, Costa Rica
- Virology, Universidad Técnica Nacional (UTN), Atenas 20505, Costa Rica
| | - Gabriel González
- National Virus Reference Laboratory, College Dublin, D04 V1W8 Belfield, Ireland;
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José 11501, Costa Rica;
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Lisbeth Ramirez-Carvajal
- Veterinary Medicine Infection and Immunity, Virology, University of Utrecht, 3584 CS Utrecht, The Netherlands;
| | - Carlos Jimenez
- Laboratory of Virology, Tropical Diseases Research Program (PIET), School of Veterinary Medicine, Universidad Nacional, Heredia 40101, Costa Rica;
| |
Collapse
|
10
|
Inactivation of Venezuelan Equine Encephalitis Virus Genome Using Two Methods. Viruses 2022; 14:v14020272. [PMID: 35215864 PMCID: PMC8878209 DOI: 10.3390/v14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an Alphavirus in the Togaviridae family of positive-strand RNA viruses. The viral genome of positive-strand RNA viruses is infectious, as it produces infectious virus upon introduction into a cell. VEEV is a select agent and samples containing viral RNA are subject to additional regulations due to their infectious nature. Therefore, RNA isolated from cells infected with BSL-3 select agent strains of VEEV or other positive-strand viruses must be inactivated before removal from high-containment laboratories. In this study, we tested the inactivation of the viral genome after RNA fragmentation or cDNA synthesis, using the Trinidad Donkey and TC-83 strains of VEEV. We successfully inactivated VEEV genomic RNA utilizing these two protocols. Our cDNA synthesis method also inactivated the genomic RNA of eastern and western equine encephalitis viruses (EEEV and WEEV). We also tested whether the purified VEEV genomic RNA can produce infectious virions in the absence of transfection. Our result showed the inability of the viral genome to cause infection without being transfected into the cells. Overall, this work introduces RNA fragmentation and cDNA synthesis as reliable methods for the inactivation of samples containing the genomes of positive-strand RNA viruses.
Collapse
|
11
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Talavera-Aguilar LG, Murrieta RA, Kiem S, Cetina-Trejo RC, Baak-Baak CM, Ebel GD, Blitvich BJ, Machain-Williams C. Infection, dissemination, and transmission efficiencies of Zika virus in Aedes aegypti after serial passage in mosquito or mammalian cell lines or alternating passage in both cell types. Parasit Vectors 2021; 14:261. [PMID: 34006306 PMCID: PMC8130322 DOI: 10.1186/s13071-021-04726-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04726-1.
Collapse
Affiliation(s)
- Lourdes G Talavera-Aguilar
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sungmin Kiem
- Department of Infectious Diseases in Internal Medicine, Sejong Chungnam National University Hospital, School of Medicine, Chungnam National University, Sejong, Korea
| | - Rosa C Cetina-Trejo
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Carlos M Baak-Baak
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Carlos Machain-Williams
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México.
| |
Collapse
|
13
|
Carrera JP, Cucunubá ZM, Neira K, Lambert B, Pittí Y, Liscano J, Garzón JL, Beltran D, Collado-Mariscal L, Saenz L, Sosa N, Rodriguez-Guzman LD, González P, Lescano AG, Pereyra-Elías R, Valderrama A, Weaver SC, Vittor AY, Armién B, Pascale JM, Donnelly CA. Endemic and Epidemic Human Alphavirus Infections in Eastern Panama: An Analysis of Population-Based Cross-Sectional Surveys. Am J Trop Med Hyg 2020; 103:2429-2437. [PMID: 33124532 PMCID: PMC7695115 DOI: 10.4269/ajtmh.20-0408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/01/2020] [Indexed: 01/26/2023] Open
Abstract
Madariaga virus (MADV) has recently been associated with severe human disease in Panama, where the closely related Venezuelan equine encephalitis virus (VEEV) also circulates. In June 2017, a fatal MADV infection was confirmed in a community of Darien Province. We conducted a cross-sectional outbreak investigation with human and mosquito collections in July 2017, where sera were tested for alphavirus antibodies and viral RNA. In addition, by applying a catalytic, force-of-infection (FOI) statistical model to two serosurveys from Darien Province in 2012 and 2017, we investigated whether endemic or epidemic alphavirus transmission occurred historically. In 2017, MADV and VEEV IgM seroprevalences were 1.6% and 4.4%, respectively; IgG antibody prevalences were MADV: 13.2%, VEEV: 16.8%, Una virus (UNAV): 16.0%, and Mayaro virus: 1.1%. Active viral circulation was not detected. Evidence of MADV and UNAV infection was found near households, raising questions about its vectors and enzootic transmission cycles. Insomnia was associated with MADV and VEEV infections, depression symptoms were associated with MADV, and dizziness with VEEV and UNAV. Force-of-infection analyses suggest endemic alphavirus transmission historically, with recent increased human exposure to MADV and VEEV in Aruza and Mercadeo, respectively. The lack of additional neurological cases suggests that severe MADV and VEEV infections occur only rarely. Our results indicate that over the past five decades, alphavirus infections have occurred at low levels in eastern Panama, but that MADV and VEEV infections have recently increased-potentially during the past decade. Endemic infections and outbreaks of MADV and VEEV appear to differ spatially in some locations of eastern Panama.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Distribution
- Aged
- Aged, 80 and over
- Alphavirus/immunology
- Alphavirus Infections/epidemiology
- Alphavirus Infections/immunology
- Alphavirus Infections/physiopathology
- Animals
- Antibodies, Viral/immunology
- Chikungunya Fever/epidemiology
- Chikungunya Fever/immunology
- Chikungunya Fever/physiopathology
- Chikungunya virus/immunology
- Child
- Child, Preschool
- Cross-Sectional Studies
- Depression/physiopathology
- Dizziness/physiopathology
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Eastern Equine/epidemiology
- Encephalomyelitis, Eastern Equine/immunology
- Encephalomyelitis, Eastern Equine/physiopathology
- Encephalomyelitis, Venezuelan Equine/epidemiology
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/physiopathology
- Endemic Diseases
- Epidemics
- Farmers/statistics & numerical data
- Fatigue/physiopathology
- Female
- Housing/statistics & numerical data
- Humans
- Immunoglobulin G
- Immunoglobulin M
- Male
- Middle Aged
- Mosquito Vectors/virology
- Panama/epidemiology
- Semliki forest virus/immunology
- Seroepidemiologic Studies
- Sleep Initiation and Maintenance Disorders/physiopathology
- Young Adult
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Zulma M. Cucunubá
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| | - Karen Neira
- Emerging Infectious Disease and Climate Change Unit, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Ben Lambert
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
| | - Yaneth Pittí
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Jesus Liscano
- School of Medicine, Columbus University, Panama City, Panama
| | - Jorge L. Garzón
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Davis Beltran
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Luisa Collado-Mariscal
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lisseth Saenz
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Néstor Sosa
- Clinical Research Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | | | - Publio González
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Andrés G. Lescano
- Emerging Infectious Disease and Climate Change Unit, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Reneé Pereyra-Elías
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | - Anayansi Valderrama
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Amy Y. Vittor
- Department of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Blas Armién
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Universidad Interamericana de Panama, Panama City, Panama
| | - Juan-Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Christl A. Donnelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Noval MG, Rodriguez-Rodriguez BA, Rangel MV, Stapleford KA. Evolution-Driven Attenuation of Alphaviruses Highlights Key Glycoprotein Determinants Regulating Viral Infectivity and Dissemination. Cell Rep 2020; 28:460-471.e5. [PMID: 31291581 DOI: 10.1016/j.celrep.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Margarita V Rangel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Carrera JP, Pittí Y, Molares-Martínez JC, Casal E, Pereyra-Elias R, Saenz L, Guerrero I, Galué J, Rodriguez-Alvarez F, Jackman C, Pascale JM, Armien B, Weaver SC, Donnelly CA, Vittor AY. Clinical and Serological Findings of Madariaga and Venezuelan Equine Encephalitis Viral Infections: A Follow-up Study 5 Years After an Outbreak in Panama. Open Forum Infect Dis 2020; 7:ofaa359. [PMID: 33005697 PMCID: PMC7518370 DOI: 10.1093/ofid/ofaa359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human cases of Madariaga virus (MADV) infection were first detected during an outbreak in 2010 in eastern Panama, where Venezuelan equine encephalitis virus (VEEV) also circulates. Little is known about the long-term consequences of either alphavirus infection. METHODS A follow-up study of the 2010 outbreak was undertaken in 2015. An additional survey was carried out 2 weeks after a separate 2017 alphavirus outbreak in a neighboring population in eastern Panama. Serological studies and statistical analyses were undertaken in both populations. RESULTS Among the originally alphavirus-seronegative participants (n = 35 of 65), seroconversion was observed at a rate of 14.3% (95% CI, 4.8%-30.3%) for MADV and 8.6% (95% CI, 1.8%-23.1%) for VEEV over 5 years. Among the originally MADV-seropositive participants (n = 14 of 65), VEEV seroconversion occurred in 35.7% (95% CI, 12.8%-64.9%). In the VEEV-seropositive participants (n = 16 of 65), MADV seroconversion occurred in 6.3% (95% CI, 0.2%-30.2%). MADV seroreversion was observed in 14.3% (95% CI, 1.8%-42.8%) of those who were originally seropositive in 2010. VEEV seroconversion in the baseline MADV-seropositive participants was significantly higher than in alphavirus-negative participants. In the population sampled in 2017, MADV and VEEV seroprevalence was 13.2% and 16.8%, respectively. Memory loss, insomnia, irritability, and seizures were reported significantly more frequently in alphavirus-seropositive participants than in seronegative participants. CONCLUSIONS High rates of seroconversion to MADV and VEEV over 5 years suggest frequent circulation of both viruses in Panama. Enhanced susceptibility to VEEV infection may be conferred by MADV infection. We provide evidence of persistent neurologic symptoms up to 5 years following MADV and VEEV exposure.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Yaneth Pittí
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Juan C Molares-Martínez
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Eric Casal
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Reneé Pereyra-Elias
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Lisseth Saenz
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Isela Guerrero
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Josefrancisco Galué
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Fatima Rodriguez-Alvarez
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Carmela Jackman
- Department of Epidemiology, Ministry of Health, Panama, Panama
| | - Juan Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Blas Armien
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Scott C Weaver
- Institute for Human Infection and Immunity, Department of Microbiology and Immunology, Department of Pathology, and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Christl A Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Amy Y Vittor
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Chapman GE, Sherlock K, Hesson JC, Blagrove MSC, Lycett GJ, Archer D, Solomon T, Baylis M. Laboratory transmission potential of British mosquitoes for equine arboviruses. Parasit Vectors 2020; 13:413. [PMID: 32787904 PMCID: PMC7425075 DOI: 10.1186/s13071-020-04285-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There has been no evidence of transmission of mosquito-borne arboviruses of equine or human health concern to date in the UK. However, in recent years there have been a number of outbreaks of viral diseases spread by vectors in Europe. These events, in conjunction with increasing rates of globalisation and climate change, have led to concern over the future risk of mosquito-borne viral disease outbreaks in northern Europe and have highlighted the importance of being prepared for potential disease outbreaks. Here we assess several UK mosquito species for their potential to transmit arboviruses important for both equine and human health, as measured by the presence of viral RNA in saliva at different time points after taking an infective blood meal. RESULTS The following wild-caught British mosquitoes were evaluated for their potential as vectors of zoonotic equine arboviruses: Ochlerotatus detritus for Venezuelan equine encephalitis virus (VEEV) and Ross River virus (RRV), and Culiseta annulata and Culex pipiens for Japanese encephalitis virus (JEV). Production of RNA in saliva was demonstrated at varying efficiencies for all mosquito-virus pairs. Ochlerotatus detritus was more permissive for production of RRV RNA in saliva than VEEV RNA. For RRV, 27.3% of mosquitoes expectorated viral RNA at 7 days post-infection when incubated at 21 °C and 50% at 24 °C. Strikingly, 72% of Cx. pipiens produced JEV RNA in saliva after 21 days at 18 °C. For some mosquito-virus pairs, infection and salivary RNA titres reduced over time, suggesting unstable infection dynamics. CONCLUSIONS This study adds to the number of Palaearctic mosquito species that demonstrate expectoration of viral RNA, for arboviruses of importance to human and equine health. This work adds to evidence that native mosquito species should be investigated further for their potential to vector zoonotic mosquito-borne arboviral disease of equines in northern Europe. The evidence that Cx. pipiens is potentially an efficient laboratory vector of JEV at temperatures as low as 18 °C warrants further investigation, as this mosquito is abundant in cooler regions of Europe and is considered an important vector for West Nile Virus, which has a comparable transmission ecology.
Collapse
Affiliation(s)
- Gail E. Chapman
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ken Sherlock
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Jenny C. Hesson
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marcus S. C. Blagrove
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Gareth J. Lycett
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Debra Archer
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Matthew Baylis
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
18
|
[Arthropod-borne viruses (arboviruses)]. Uirusu 2020; 70:3-14. [PMID: 33967110 DOI: 10.2222/jsv.70.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
"Arbovirus" is a term for a virus transmitted to mammals by hematophagous arthropods; arboviruses; replicate in both mammals and arthropods. Since the life cycle of arboviruses is highly dependent on arthropods, control of the arthropods (vectors) is generally considered important for the control of arbovirus infection. Various pathogens that cause diseases in the medical and veterinary fields are grouped into arboviruses with a history of their discoveries since the early 20th century. Furthermore, because of recent advances in sequencing technology, new arboviruses have been discovered one after another. Here we would like to overview the known arboviruses and their infections.
Collapse
|
19
|
Warmbrod KL, Patterson EI, Kautz TF, Stanton A, Rockx-Brouwer D, Kalveram BK, Khanipov K, Thangamani S, Fofanov Y, Forrester NL. Viral RNA-dependent RNA polymerase mutants display an altered mutation spectrum resulting in attenuation in both mosquito and vertebrate hosts. PLoS Pathog 2019; 15:e1007610. [PMID: 30947291 PMCID: PMC6467425 DOI: 10.1371/journal.ppat.1007610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/16/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
The presence of bottlenecks in the transmission cycle of many RNA viruses leads to a severe reduction of number of virus particles and this occurs multiple times throughout the viral transmission cycle. Viral replication is then necessary for regeneration of a diverse mutant swarm. It is now understood that any perturbation of the mutation frequency either by increasing or decreasing the accumulation of mutations in an RNA virus results in attenuation of the virus. To determine if altering the rate at which a virus accumulates mutations decreases the probability of a successful virus infection due to issues traversing host bottlenecks, a series of mutations in the RNA-dependent RNA polymerase of Venezuelan equine encephalitis virus (VEEV), strain 68U201, were tested for mutation rate changes. All RdRp mutants were attenuated in both the mosquito and vertebrate hosts, while showing no attenuation during in vitro infections. The rescued viruses containing these mutations showed some evidence of change in fidelity, but the phenotype was not sustained following passaging. However, these mutants did exhibit changes in the frequency of specific types of mutations. Using a model of mutation production, these changes were shown to decrease the number of stop codons generated during virus replication. This suggests that the observed mutant attenuation in vivo may be due to an increase in the number of unfit genomes, which may be normally selected against by the accumulation of stop codons. Lastly, the ability of these attenuated viruses to transition through a bottleneck in vivo was measured using marked virus clones. The attenuated viruses showed an overall reduction in the number of marked clones for both the mosquito and vertebrate hosts, as well as a reduced ability to overcome the known bottlenecks in the mosquito. This study demonstrates that any perturbation of the optimal mutation frequency whether through changes in fidelity or by alterations in the mutation frequency of specific nucleotides, has significant deleterious effects on the virus, especially in the presence of host bottlenecks.
Collapse
Affiliation(s)
- K. Lane Warmbrod
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Edward I. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany F. Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adam Stanton
- School of Computing and Mathematics, University of Keele, Keele, United Kingdom
| | - Dedeke Rockx-Brouwer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte K. Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuriy Fofanov
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Naomi L. Forrester
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
20
|
Marklewitz M, Junglen S. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 2019; 190:52-58. [PMID: 30339799 DOI: 10.1016/j.actatropica.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Abstract
The emergence of arthropod-borne viruses (arboviruses) is of global concern as they can rapidly spread across countries and to new continents as the recent examples of chikungunya virus and Zika virus have demonstrated. Whereas the global movement patterns of emerging arboviruses are comparatively well studied, there is little knowledge on initial emergence processes that enable sylvatic (enzootic) viruses to leave their natural amplification cycle and infect humans or livestock, often also involving infection of anthropophilic vector species. Emerging arboviruses almost exclusively originate in highly biodiverse ecosystems of tropical countries. Changes in host population diversity and density can affect pathogen transmission patterns and are likely to influence arbovirus emergence processes. This review focuses on concepts from disease ecology, explaining the interplay between biodiversity and pathogen emergence.
Collapse
Affiliation(s)
- Marco Marklewitz
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany
| | - Sandra Junglen
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
21
|
Abstract
Equine populations worldwide are at increasing risk of infection by viruses transmitted by biting arthropods, including mosquitoes, biting midges (Culicoides), sandflies and ticks. These include the flaviviruses (Japanese encephalitis, West Nile and Murray Valley encephalitis), alphaviruses (eastern, western and Venezuelan encephalitis) and the orbiviruses (African horse sickness and equine encephalosis). This review provides an overview of the challenges faced in the surveillance, prevention and control of the major equine arboviruses, particularly in the context of these viruses emerging in new regions of the world.
Collapse
Affiliation(s)
- G E Chapman
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - M Baylis
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - D Archer
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - J M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
22
|
Kautz TF, Guerbois M, Khanipov K, Patterson EI, Langsjoen RM, Yun R, Warmbrod KL, Fofanov Y, Weaver SC, Forrester NL. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol 2018; 4:vey004. [PMID: 29593882 PMCID: PMC5841381 DOI: 10.1093/ve/vey004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mathilde Guerbois
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rose M Langsjoen
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruimei Yun
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey L Warmbrod
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
23
|
Patterson EI, Khanipov K, Rojas MM, Kautz TF, Rockx-Brouwer D, Golovko G, Albayrak L, Fofanov Y, Forrester NL. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity. Virus Evol 2018; 4:vey001. [PMID: 29479479 PMCID: PMC5814806 DOI: 10.1093/ve/vey001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Mark M Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Tiffany F Kautz
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Georgiy Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| |
Collapse
|
24
|
Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis 2017; 11:e0005693. [PMID: 28771475 PMCID: PMC5557581 DOI: 10.1371/journal.pntd.0005693] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 08/15/2017] [Accepted: 06/08/2017] [Indexed: 01/19/2023] Open
Abstract
Venezuelan equine encephalitis (VEE) complex alphaviruses are important re-emerging arboviruses that cause life-threatening disease in equids during epizootics as well as spillover human infections. We conducted a comprehensive analysis of VEE complex alphaviruses by sequencing the genomes of 94 strains and performing phylogenetic analyses of 130 isolates using complete open reading frames for the nonstructural and structural polyproteins. Our analyses confirmed purifying selection as a major mechanism influencing the evolution of these viruses as well as a confounding factor in molecular clock dating of ancestors. Times to most recent common ancestors (tMRCAs) could be robustly estimated only for the more recently diverged subtypes; the tMRCA of the ID/IAB/IC/II and IE clades of VEE virus (VEEV) were estimated at ca. 149–973 years ago. Evolution of the IE subtype has been characterized by a significant evolutionary shift from the rest of the VEEV complex, with an increase in structural protein substitutions that are unique to this group, possibly reflecting adaptation to its unique enzootic mosquito vector Culex (Melanoconion) taeniopus. Our inferred tree topologies suggest that VEEV is maintained primarily in situ, with only occasional spread to neighboring countries, probably reflecting the limited mobility of rodent hosts and mosquito vectors. The Venezuelan equine encephalitis (VEE) complex comprises a broadly distributed group of alphaviruses in the Americas that have the potential to emerge and cause severe disease. Historically, VEE complex viruses have caused recurring outbreaks of human and equine encephalitis in Central and South America as well as Mexico, with at least one outbreak resulting in movement of the virus to the southern United States. We present the most comprehensive phylogenetic analysis of complete genomic sequences of the most prominent member of the VEE complex, VEE virus (VEEV). We were able to identify the major forces influencing VEEV evolution, and using the inferred phylogenies we determined that VEEV evolves in geographically segregated lineages with enzootic transmission between rodents and mosquitoes apparently limiting its spread.
Collapse
|
25
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Venezuelan equine encephalitis. EFSA J 2017; 15:e04950. [PMID: 32625617 PMCID: PMC7010095 DOI: 10.2903/j.efsa.2017.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of VEE to be listed, Article 9 for the categorisation of VEE according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to VEE. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether VEE is eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, since it is inconclusive whether VEE can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, the assessment on compliance of VEE with the criteria as in Sections 4 and 5 of Annex IV to the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1), and which animal species can be considered to be listed for VEE according to Article 8(3) of the AHL is also inconclusive.
Collapse
|
26
|
Atkins GJ, Sheahan BJ. Molecular determinants of alphavirus neuropathogenesis in mice. J Gen Virol 2016; 97:1283-1296. [PMID: 27028153 DOI: 10.1099/jgv.0.000467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses are enveloped viruses with a positive-stranded RNA genome, of the family Togaviridae. In mammals and birds they are mosquito-transmitted and are of veterinary and medical importance. They cause primarily two types of disease: encephalitis and polyarthritis. Here we review attempts to understand the molecular basis of encephalitis and virulence for the central nervous system (CNS) in mouse models. Sindbis virus (SINV) was the first virus to be studied in this way. Other viruses analysed are Semliki Forest virus (SFV), Venezuelan equine encephalitis virus, Eastern equine encephalitis virus and Western equine encephalitis virus. Neurovirulence was found to be associated with damage to neurons in the CNS. It mapped mainly to the E2 region of the genome, and to the nsP3 gene. Also, avirulent natural isolates of both SINV and SFV have been found to have more rapid cleavage of nonstructural proteins due to mutations in the nsP1-nsP2 cleavage site. Immune-mediated demyelination for avirulent SFV has been shown to be associated with infection of oligodendrocytes. For Chikungunya virus, an emerging alphavirus that uncommonly causes encephalitis, analysis of the molecular basis of CNS pathogenicity is beginning. Experiments on SINV and SFV have indicated that virulence may be related to the resistance of virulent virus to interferon action. Although the E2 protein may be involved in tropism for neurons and passage across the blood-brain barrier, the role of the nsP3 protein during infection of neurons is unknown. More information in these areas may help to further explain the neurovirulence of alphaviruses.
Collapse
Affiliation(s)
- Gregory J Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| | - Brian J Sheahan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
27
|
Wu JQH. Virulence determinants of New World alphaviruses and broad-acting therapeutic strategies. Future Virol 2015. [DOI: 10.2217/fvl.15.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACT New World alphaviruses of eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) are endemic in North and South America, and infect humans and equine through mosquitoes. In addition, these viruses are highly infectious when aerosolized, making them potential biowarfare and bioterrorism agents. Currently, no approved vaccines or drugs are available for prevention and treatment. Extensive studies have been carried out to understand molecular mechanisms of virulence among New World alphaviruses. This review will focus on virus-encoded, interferon antagonizing proteins which play major role in determination of virulence of New World alphaviruses. Understanding of molecular mechanism of these proteins will shed light on development of broad-acting antivirals against New World alphaviruses.
Collapse
|
28
|
Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching. Virology 2014; 474:154-62. [PMID: 25463613 DOI: 10.1016/j.virol.2014.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
Abstract
Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America.
Collapse
|
29
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
30
|
Pisano MB, Oria G, Beskow G, Aguilar J, Konigheim B, Cacace ML, Aguirre L, Stein M, Contigiani MS. Venezuelan equine encephalitis viruses (VEEV) in Argentina: serological evidence of human infection. PLoS Negl Trop Dis 2013; 7:e2551. [PMID: 24349588 PMCID: PMC3861189 DOI: 10.1371/journal.pntd.0002551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Venezuelan equine encephalitis viruses (VEEV) are responsible for human diseases in the Americas, producing severe or mild illness with symptoms indistinguishable from dengue and other arboviral diseases. For this reason, many cases remain without certain diagnosis. Seroprevalence studies for VEEV subtypes IAB, ID, IF (Mosso das Pedras virus; MDPV), IV (Pixuna virus; PIXV) and VI (Rio Negro virus; RNV) were conducted in persons from Northern provinces of Argentina: Salta, Chaco and Corrientes, using plaque reduction neutralization test (PRNT). RNV was detected in all studied provinces. Chaco presented the highest prevalence of this virus (14.1%). Antibodies against VEEV IAB and -for the first time- against MDPV and PIXV were also detected in Chaco province. In Corrientes, seroprevalence against RNV was 1.3% in the pediatric population, indicating recent infections. In Salta, this was the first investigation of VEEV members, and antibodies against RNV and PIXV were detected. These results provide evidence of circulation of many VEE viruses in Northern Argentina, showing that surveillance of these infectious agents should be intensified. Venezuelan equine encephalitis viruses (VEEV) are responsible for human diseases in the Americas. They produce severe or mild illnesses with symptoms indistinguishable from dengue and other arboviral diseases; for this reason, many cases remain undiagnosed. We detected neutralizing antibodies (NTAbs) against VEEV IAB, VEEV ID, MDPV (VEEV subtype IF), PIXV (VEEV subtype IV) and RNV (VEEV subtype VI) in human serum samples of Northern provinces of Argentina. Chaco province showed presence of NTAbs against VEEV IAB, MDPV, PIXV and RNV. In Corrientes province, we detected NTAbs against RNV in a pediatric population. NTAbs against PIXV and RNV were also detected in Salta province. These findings demonstrated the circulation of many VEEV strains in Northern Argentina and underscore the need for surveillance of dengue like illness in this region.
Collapse
Affiliation(s)
- María Belén Pisano
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina
- * E-mail:
| | - Griselda Oria
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Geraldine Beskow
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Javier Aguilar
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina
| | - Brenda Konigheim
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina
| | | | - Luis Aguirre
- Hospital Dante Tardelli, Pampa del Indio, Chaco, Argentina
| | - Marina Stein
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Marta Silvia Contigiani
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
31
|
Taylor KG, Paessler S. Pathogenesis of Venezuelan equine encephalitis. Vet Microbiol 2013; 167:145-50. [PMID: 23968890 DOI: 10.1016/j.vetmic.2013.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Equine encephalids have high mortality rates and represent a significant zoonotic public health threat. Of these the most pathogenic viruses to equids are the alphaviruses in the family Togaviridae. The focus of this review Venezualen equine encephalitis virus (VEEV) has caused the most widespread and recent epidemic outbreaks of disease. Circulation in naturally occuring rodent-mosquito cycles, results in viral spread to both human and equine populations. However, equines develop a high titer viremia and can transmit the virus back to mosquito populations. As such, the early recognition and control of viral infection in equine populations is strongly associated with prevention of epidemic spread of the virus and limiting of disease incidence in human populations. This review will address identification and pathogenesis of VEEV in equids vaccination and treatment options, and current research for drug and vaccine development.
Collapse
Affiliation(s)
- Katherine G Taylor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, United States.
| | | |
Collapse
|
32
|
Rossi SL, Guerbois M, Gorchakov R, Plante KS, Forrester NL, Weaver SC. IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. Virology 2013; 437:81-8. [PMID: 23351391 DOI: 10.1016/j.virol.2012.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an arbovirus that causes periodic outbreaks that impact equine and human populations in the Americas. One of the VEEV subtypes located in Mexico and Central America (IE) has recently been recognized as an important cause of equine disease and death, and human exposure also appears to be widespread. Here, we describe the use of an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus to stably attenuate VEEV, creating a vaccine candidate independent of unstable point mutations. Mice infected with this virus produced antibodies and were protected against lethal VEEV challenge. This IRES-based vaccine was unable to establish productive infection in mosquito cell cultures or in intrathoracically injected Aedes taeniorhynchus, demonstrating that it cannot be transmitted from a vaccinee. These attenuation, efficacy and safety results justify further development for humans or equids of this new VEEV vaccine candidate.
Collapse
Affiliation(s)
- Shannan L Rossi
- Institute of Human Infection and Immunity, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Trabalza A, Georgiadis C, Eleftheriadou I, Hislop JN, Ellison SM, Karavassilis ME, Mazarakis ND. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther 2012; 20:723-32. [PMID: 23171919 DOI: 10.1038/gt.2012.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 11/09/2022]
Abstract
We have produced high-titre HIV-1 green fluorescent protein-expressing lentiviral (LV) vectors pseudotyped with strain 3908 Venezuelan equine encephalitis virus glycoprotein (VEEV-G) and used them to study transduction of: (1) rat embryonic motor neuron (MN) and striatal neuron primary cultures, (2) differentiated MN cell line NSC-34 and (3) adult rat striatum. In primary neuronal cultures, transduction with VEEV-G-pseudotyped LV was more efficient and more neuronal than with vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped LV. In NSC-34 cells clear retrograde transport of VEEV-G vector particles was observed. In the striatum at the injection site, transduction with the VEEV-G vectors driven by cytomegalovirus or phosphoglycerate kinase promoters exhibited a distinct neuronal tropism with no microglial and only a minor astroglial component, superior to that obtained with VSV-G-pseudotyped LV, irrespective of the promoter used. Neuronal transduction efficiency increased over time. Distal to the injection site transduction of mitral cells in the olfactory bulb, thalamic neurons and dopaminergic neurons in the substantia nigra pars compacta was detected. This, together with observations of retrograde axonal trafficking in vitro indicates that these vectors also possess low level of retrograde neuronal transduction capability in vivo. In this study, we demonstrate both strong neurotropism as well as sustainability of expression and minimal host immune response in vivo, making the VEEV-G-pseudotyped LV vectors potentially useful for gene therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- A Trabalza
- Faculty of Medicine, Gene Therapy, Division of Brain Sciences, Centre for Neuroinflammation & Neurodegeneration, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog 2012; 8:e1002897. [PMID: 23028310 PMCID: PMC3441635 DOI: 10.1371/journal.ppat.1002897] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study. The ability of arboviruses to perpetuate in nature given that they must infect two disparate hosts (the mosquito vector and the vertebrate host) remains a mystery. We studied how viral genetic diversity is impacted by the dual host transmission cycle. Our studies of an enzootic cycle using Venezuelan equine encephalitis virus (VEEV) and its natural mosquito, Culex taeniopus, revealed the stages of infection that result in a viral population bottleneck. Using a set of marked VEEV clones and repeated sampling at various time points following C. taeniopus infection, we determined the number of clones in various mosquito tissues culminating in transmission. Bottlenecks were identified but the stage of occurrence was dependent on the dose that initiated infection. Understanding the points at which mosquito-borne viruses are constrained will shed light on the ways in which virus diversity varies, leading to selection of mutants that may result in host range changes or alterations in virulence.
Collapse
Affiliation(s)
- Naomi L. Forrester
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Seymour
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Sealy Center for Preventative Medicine and Preventative Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, Hardy RW, Bambina SA, Heise MT, Cherry S. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 2011; 10:97-104. [PMID: 21843867 DOI: 10.1016/j.chom.2011.06.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/26/2011] [Accepted: 06/30/2011] [Indexed: 01/28/2023]
Abstract
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection.
Collapse
Affiliation(s)
- Patrick P Rose
- Department of Microbiology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Foo SS, Chen W, Herrero L, Bettadapura J, Narayan J, Dar L, Broor S, Mahalingam S. The genetics of alphaviruses. Future Virol 2011. [DOI: 10.2217/fvl.11.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alphaviruses are emerging human pathogens that are transmitted by arthropod vectors. Their ability to infect a wide range of vertebrate hosts including humans, equines, birds and rodents has brought about a series of epidemic and epizootic outbreaks worldwide. Their potential to cause a pandemic has spurred the interest of researchers globally, leading to the rapid advancement on the characterization of genetic determinants of alphaviruses. In this review, the focal point is placed on the genetics of alphaviruses, whereby the genetic composition, clinical features, evolution and adaptation of alphaviruses, modulation of IFN response by alphavirus proteins and therapeutic aspects of alphaviruses will be discussed.
Collapse
Affiliation(s)
- Suan Sin Foo
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiang Chen
- Singapore Immunology Network, Agency for Science, Technology & Research (A*STAR), Biopolis, Singapore
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lara Herrero
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jayaram Bettadapura
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Lalit Dar
- All India Institute of Medical Sciences, New Delhi, India
| | - Shobha Broor
- All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Mahalingam
- Emerging Viruses & Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
37
|
Forrester NL, Guerbois M, Adams AP, Liang X, Weaver SC. Analysis of intrahost variation in Venezuelan equine encephalitis virus reveals repeated deletions in the 6-kilodalton protein gene. J Virol 2011; 85:8709-17. [PMID: 21715498 PMCID: PMC3165814 DOI: 10.1128/jvi.00165-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/14/2011] [Indexed: 11/20/2022] Open
Abstract
RNA viruses exist as a spectrum of mutants that is generated and maintained during replication within the host. Consensus sequencing overlooks minority genotypes present in the viral sample that may impact the population's phenotype. In-depth sequencing of an original field isolate of subtype IE Venezuelan equine encephalitis virus (VEEV) demonstrated the presence of multiple deletions within the 6,000-molecular-weight (6K) protein gene. Using in vitro and in vivo experiments, similar deletions were generated in an additional VEEV strain originating from an infectious cDNA clone. Time course experiments demonstrated that the deletions are produced during acute infection although not until 24 h postinfection. Molecular clones containing some of these deletions were generated, and although the larger deletions appear to be noninfectious, viruses with the smaller deletions were viable and formed small plaques. Serial passages provided no evidence that these deletion mutants function as defective interfering particles. Furthermore, since wild-type infections generally occur at a low multiplicity of infection, it is unlikely that these deletions are propagated in natural transmission cycles. However, they could affect pathogenesis at later stages of infection. Because they are ubiquitously generated both in vivo and in vitro, further investigation is warranted to understand the generation of these deletions and their significance for disease.
Collapse
Affiliation(s)
- N. L. Forrester
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - M. Guerbois
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - A. P. Adams
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - X. Liang
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - S. C. Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| |
Collapse
|
38
|
Powers AM. Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak. Exp Biol Med (Maywood) 2011; 236:909-14. [DOI: 10.1258/ebm.2011.011078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In our current global community with the rapid movement of products and people across and between continents, the emergence of a human pathogen can have devastating consequences. One dramatic example of this has been the emergence of Chikungunya virus (CHIKV), which causes a severe, prolonged, and debilitating arthralgic disease. This virus emerged in a large outbreak on the east coast of Africa in 2004; over the subsequent seven years, CHIKV has spread across the Indian Ocean, the Indian subcontinent, Southeast Asia and even reached Europe, leaving more than two million people affected. Because CHIKV has a small genome, currently available tools to analyze complete viral genomes have provided scientists with unique opportunities to understand the epidemiology, pathogenesis and transmission of the virus. The most commonly used application of these cutting edge tools has been to track the movement of the virus over time and space. While this is an important concept for identifying areas that remain at risk for outbreaks, these postgenomic era tools can also be applied to the highly significant tasks of understanding how viral microevolutionary changes can affect both invertebrate transmission and vertebrate virulence. Significant alterations in the patterns of CHIKV movement have already been identified using microevolutionary studies. These approaches now need to be further expanded to aid in expanding vaccine, therapeutic and control options. This review will highlight some of the most significant recent research developments obtained using these cutting edge approaches for CHIKV.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control & Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
39
|
Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 2011. [DOI: 10.2217/fvl.11.50] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Venezuelan equine encephalitis (VEE) is an emerging infectious disease in Latin America. Outbreaks have been recorded for decades in countries with enzootic circulation, and the recent implementation of surveillance systems has allowed the detection of additional human cases in countries and areas with previously unknown VEE activity. Clinically, VEE is indistinguishable from dengue and other arboviral diseases and confirmatory diagnosis requires the use of specialized laboratory tests that are difficult to afford in resource-limited regions. Thus, the disease burden of endemic VEE in developing countries remains largely unknown, but recent surveillance suggests that it may represent up to 10% of the dengue burden in neotropical cities, or tens-of-thousands of cases per year throughout Latin America. The potential emergence of epizootic viruses from enzootic progenitors further highlights the need to strengthen surveillance activities, identify mosquito vectors and reservoirs and develop effective strategies to control the disease. In this article, we provide an overview of the current status of endemic VEE that results from spillover of the enzootic cycles, and we discuss public health measures for disease control as well as future avenues for VEE research.
Collapse
Affiliation(s)
- Patricia V Aguilar
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jose G Estrada-Franco
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto Navarro-Lopez
- Comision Mexico-Estados Unidos para la Prevencion de la Fiebre Aftosa & Otras Enfermedades Exoticas de los Animales, Mexico City, Mexico
| | | | - Andrew D Haddow
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
40
|
Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 2011; 6:721-740. [PMID: 21765860 DOI: 10.2217/fvl.11.5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Venezuelan equine encephalitis (VEE) is an emerging infectious disease in Latin America. Outbreaks have been recorded for decades in countries with enzootic circulation, and the recent implementation of surveillance systems has allowed the detection of additional human cases in countries and areas with previously unknown VEE activity. Clinically, VEE is indistinguishable from dengue and other arboviral diseases and confirmatory diagnosis requires the use of specialized laboratory tests that are difficult to afford in resource-limited regions. Thus, the disease burden of endemic VEE in developing countries remains largely unknown, but recent surveillance suggests that it may represent up to 10% of the dengue burden in neotropical cities, or tens-of-thousands of cases per year throughout Latin America. The potential emergence of epizootic viruses from enzootic progenitors further highlights the need to strengthen surveillance activities, identify mosquito vectors and reservoirs and develop effective strategies to control the disease. In this article, we provide an overview of the current status of endemic VEE that results from spillover of the enzootic cycles, and we discuss public health measures for disease control as well as future avenues for VEE research.
Collapse
Affiliation(s)
- Patricia V Aguilar
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 2010; 8:802-13. [PMID: 20938453 PMCID: PMC7097030 DOI: 10.1038/nrmicro2440] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adaptation is often thought to affect the likelihood that a virus will be able to successfully emerge in a new host species. If so, surveillance for genetic markers of adaptation could help to predict the risk of disease emergence. However, adaptation is difficult to distinguish conclusively from the other processes that generate genetic change. In this Review we survey the research on the host jumps of influenza A, severe acute respiratory syndrome-coronavirus, canine parvovirus and Venezuelan equine encephalitis virus to illustrate the insights that can arise from combining genetic surveillance with microbiological experimentation in the context of epidemiological data. We argue that using a multidisciplinary approach for surveillance will provide a better understanding of when adaptations are required for host jumps and thus when predictive genetic markers may be present.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
42
|
Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J, Gianella A, Vallejo E, Madrid C, Aguayo N, Gotuzzo E, Suarez V, Morales AM, Beingolea L, Reyes N, Perez J, Negrete M, Rocha C, Morrison AC, Russell KL, J. Blair P, Olson JG, Kochel TJ. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. PLoS Negl Trop Dis 2010; 4:e787. [PMID: 20706628 PMCID: PMC2919378 DOI: 10.1371/journal.pntd.0000787] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Arthropod-borne viruses (arboviruses) are among the most common agents of human febrile illness worldwide and the most important emerging pathogens, causing multiple notable epidemics of human disease over recent decades. Despite the public health relevance, little is know about the geographic distribution, relative impact, and risk factors for arbovirus infection in many regions of the world. Our objectives were to describe the arboviruses associated with acute undifferentiated febrile illness in participating clinics in four countries in South America and to provide detailed epidemiological analysis of arbovirus infection in Iquitos, Peru, where more extensive monitoring was conducted. METHODOLOGY/FINDINGS A clinic-based syndromic surveillance system was implemented in 13 locations in Ecuador, Peru, Bolivia, and Paraguay. Serum samples and demographic information were collected from febrile participants reporting to local health clinics or hospitals. Acute-phase sera were tested for viral infection by immunofluorescence assay or RT-PCR, while acute- and convalescent-phase sera were tested for pathogen-specific IgM by ELISA. Between May 2000 and December 2007, 20,880 participants were included in the study, with evidence for recent arbovirus infection detected for 6,793 (32.5%). Dengue viruses (Flavivirus) were the most common arbovirus infections, totaling 26.0% of febrile episodes, with DENV-3 as the most common serotype. Alphavirus (Venezuelan equine encephalitis virus [VEEV] and Mayaro virus [MAYV]) and Orthobunyavirus (Oropouche virus [OROV], Group C viruses, and Guaroa virus) infections were both observed in approximately 3% of febrile episodes. In Iquitos, risk factors for VEEV and MAYV infection included being male and reporting to a rural (vs urban) clinic. In contrast, OROV infection was similar between sexes and type of clinic. CONCLUSIONS/SIGNIFICANCE Our data provide a better understanding of the geographic range of arboviruses in South America and highlight the diversity of pathogens in circulation. These arboviruses are currently significant causes of human illness in endemic regions but also have potential for further expansion. Our data provide a basis for analyzing changes in their ecology and epidemiology.
Collapse
Affiliation(s)
- Brett M. Forshey
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Carolina Guevara
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | | | | | | | | | | | | | | | - Eduardo Gotuzzo
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Luis Beingolea
- Dirección General de Epidemiología, Ministerio de Salud, Lima, Peru
| | - Nora Reyes
- Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Juan Perez
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Monica Negrete
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Claudio Rocha
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Amy C. Morrison
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
- University of California Davis, Davis, California, United States of America
| | - Kevin L. Russell
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Patrick J. Blair
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - James G. Olson
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
| | - Tadeusz J. Kochel
- United States Naval Medical Research Center Detachment, Iquitos and Lima, Peru
- * E-mail:
| | | |
Collapse
|
43
|
Acute infection with venezuelan equine encephalitis virus replicon particles catalyzes a systemic antiviral state and protects from lethal virus challenge. J Virol 2009; 83:12432-42. [PMID: 19793821 DOI: 10.1128/jvi.00564-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The host innate immune response provides a critical first line of defense against invading pathogens, inducing an antiviral state to impede the spread of infection. While numerous studies have documented antiviral responses within actively infected tissues, few have described the earliest innate response induced systemically by infection. Here, utilizing Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) to limit infection to the initially infected cells in vivo, a rapid activation of the antiviral response was demonstrated not only within the murine draining lymph node, where replication was confined, but also within distal tissues. In the liver and brain, expression of interferon-stimulated genes was detected by 1 to 3 h following VRP footpad inoculation, reaching peak expression of >100-fold over that in mock-infected animals. Moreover, mice receiving a VRP footpad inoculation 6, 12, or 24 h prior to an otherwise lethal VEE footpad challenge were completely protected from death, including a drastic reduction in challenge virus titers. VRP pretreatment also provided protection from intranasal VEE challenge and extended the average survival time following intracranial challenge. Signaling through the interferon receptor was necessary for antiviral gene induction and protection from VEE challenge. However, VRP pretreatment failed to protect mice from a heterologous, lethal challenge with vesicular stomatitis virus, yet conferred protection following challenge with influenza virus. Collectively, these results document a rapid modulation of the host innate response within hours of infection, capable of rapidly alerting the entire animal to pathogen invasion and leading to protection from viral disease.
Collapse
|
44
|
Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J Virol 2009; 83:10571-81. [PMID: 19656875 DOI: 10.1128/jvi.01041-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important human and veterinary pathogen causing sporadic epizootic outbreaks of potentially fatal encephalitis. The type I interferon (IFN) system plays a central role in controlling VEEV and other alphavirus infections, and IFN evasion is likely an important determinant of whether these viruses disseminate and cause disease within their hosts. Alphaviruses are thought to limit the induction of type I IFNs and IFN-stimulated genes by shutting off host cell macromolecular synthesis, which in the case of VEEV is partially mediated by the viral capsid protein. However, more specific strategies by which alphaviruses inhibit type I IFN signaling have not been characterized. Analyses of cells infected with VEEV and VEEV replicon particles (VRP) demonstrate that viral infection rapidly disrupts tyrosine phosphorylation and nuclear translocation of the transcription factor STAT1 in response to both IFN-beta and IFN-gamma. This effect was independent of host shutoff and expression of viral capsid, suggesting that VEEV uses novel mechanisms to interfere with type I and type II IFN signaling. Furthermore, at times when STAT1 activation was efficiently inhibited, VRP infection did not limit tyrosine phosphorylation of Jak1, Tyk2, or STAT2 after IFN-beta treatment but did inhibit Jak1 and Jak2 activation in response to IFN-gamma, suggesting that VEEV interferes with STAT1 activation by the type I and II receptor complexes through distinct mechanisms. Identification of the viral requirements for this novel STAT1 inhibition will further our understanding of alphavirus molecular pathogenesis and may provide insights into effective alphavirus-based vaccine design.
Collapse
|
45
|
Ortiz DI, Kang W, Weaver SC. Susceptibility of Ae. aegypti (Diptera: Culicidae) to infection with epidemic (subtype IC) and enzootic (subtypes ID, IIIC, IIID) Venezuelan equine encephalitis complex alphaviruses. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1117-1125. [PMID: 19058637 DOI: 10.1603/0022-2585(2008)45[1117:soaadc]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To test the hypothesis that enzootic and epidemic Venezuelan equine encephalitis (VEE) complex alphaviruses can infect and be transmitted by Ae. aegypti, we conducted a series of experimental infection studies. One set of experiments tested the susceptibility of geographic strains of Ae. aegypti from Peru and Texas (U.S.A.) for epidemic (subtype IC) and enzootic (subtype ID) strains from Colombia/Venezuela, whereas the second set of experiments tested the susceptibility of Ae. aegypti from Iquitos, Peru, to enzootic VEE complex strains (subtypes ID, IIIC, and IIID) isolated in the same region, at different infectious doses. Experimental infections using artificial bloodmeals suggested that Ae. aegypti mosquitoes, particularly the strain from Iquitos, Peru, is moderately to highly susceptible to all of these VEE complex alphaviruses. The occurrence of enzootic VEE complex viruses circulating endemically in Iquitos suggests the possibility of a dengue-like transmission cycle among humans in tropical cities.
Collapse
Affiliation(s)
- Diana I Ortiz
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
46
|
A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. PLoS Pathog 2008; 3:e199. [PMID: 18215114 PMCID: PMC2151086 DOI: 10.1371/journal.ppat.0030199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/08/2007] [Indexed: 01/11/2023] Open
Abstract
A concept fundamental to viral pathogenesis is that infection induces specific changes within the host cell, within specific tissues, or within the entire animal. These changes are reflected in a cascade of altered transcription patterns evident during infection. However, elucidation of this cascade in vivo has been limited by a general inability to distinguish changes occurring in the minority of infected cells from those in surrounding uninfected cells. To circumvent this inherent limitation of traditional gene expression profiling methods, an innovative mRNP-tagging technique was implemented to isolate host mRNA specifically from infected cells in vitro as well as in vivo following Venezuelan equine encephalitis virus (VEE) infection. This technique facilitated a direct characterization of the host defense response specifically within the first cells infected with VEE, while simultaneous total RNA analysis assessed the collective response of both the infected and uninfected cells. The result was a unique, multifaceted profile of the early response to VEE infection in primary dendritic cells, as well as in the draining lymph node, the initially targeted tissue in the mouse model. A dynamic environment of complex interactions was revealed, and suggested a two-step innate response in which activation of a subset of host genes in infected cells subsequently leads to activation of the surrounding uninfected cells. Our findings suggest that the application of viral mRNP-tagging systems, as introduced here, will facilitate a much more detailed understanding of the highly coordinated host response to infectious agents.
Collapse
|
47
|
Abstract
The intrinsic plasticity of RNA viruses can facilitate host range changes that lead to epidemics. However, evolutionary processes promoting cross-species transfers are poorly defined, especially for arthropod-borne viruses (arboviruses). In theory, cross species transfers by arboviruses may be constrained by their alternating infection of disparate hosts, where optimal replication in one host involves a fitness tradeoff for the other. Accordingly, freeing arboviruses from alternate replication via specialization in a single host should accelerate adaptation. This hypothesis has been tested by using cell culture model systems with inconclusive results. Therefore, we tested it using an in vivo system with Venezuelan equine encephalitis virus (VEEV), an emerging alphavirus of the Americas. VEEV serially passaged in mosquitoes exhibited increased mosquito infectivity and vertebrate-specialized strains produced higher viremias. Conversely, alternately passaged VEEV experienced no detectable fitness gains in either host. These results suggest that arbovirus adaptation and evolution is limited by obligate host alternation and predict that arboviral emergence via host range changes may be less frequent than that of single host animal RNA viruses.
Collapse
|
48
|
Structural and nonstructural protein genome regions of eastern equine encephalitis virus are determinants of interferon sensitivity and murine virulence. J Virol 2008; 82:4920-30. [PMID: 18353963 DOI: 10.1128/jvi.02514-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) causes sporadic epidemics of human and equine disease in North America, but South American strains have seldom been associated with human neurologic disease or mortality, despite serological evidence of infection. In mice, most North American and South American strains of EEEV produce neurologic disease that resembles that associated with human and equine infections. We identified a South American strain that is unable to replicate efficiently in the brain or cause fatal disease in mice yet produces 10-fold higher viremia than virulent EEEV strains. The avirulent South American strain was also sensitive to human interferon (IFN)-alpha, -beta, and -gamma, like most South American strains, in contrast to North American strains that were highly resistant. To identify genes associated with IFN sensitivity and virulence, infectious cDNA clones of a virulent North American strain and the avirulent South American strain were constructed. Two reciprocal chimeric viruses containing swapped structural and nonstructural protein gene regions of the North American and South American strains were also constructed and found to replicate efficiently in vitro. Both chimeras produced fatal disease in mice, similar to that caused by the virulent North American strain. Both chimeric viruses also exhibited intermediate sensitivity to human IFN-alpha, -beta, and -gamma compared to that of the North American and South American strains. Virulence 50% lethal dose assays and serial sacrifice experiments further demonstrated that both structural and nonstructural proteins are important contributors to neurovirulence and viral tissue tropism. Together, the results of this study emphasize the complex and important influences of structural and nonstructural protein gene regions on EEEV virulence.
Collapse
|
49
|
The Chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 2008; 16:80-8. [PMID: 18191569 DOI: 10.1016/j.tim.2007.12.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 01/10/2023]
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus. Although primarily African and zoonotic, it is known chiefly for its non-African large urban outbreaks during which it is transmitted by the same vectors as those of Dengue viruses. Unlike Dengue viruses, CHIKV displays a re-emergence pattern that closely depends on long-distance migrations including recent re-immigrations from African (putatively zoonotic) sources. Genus-based differences also emerged when comparing the evolution of Dengue-related (Flaviviruses) and of CHIKV-related (Alphaviruses) arboviruses. In this review, we discuss current information on CHIKV genetics, ecology and human infection. Further investigations on African CHIKV ecology and the differences between Flavivirus and Alphavirus members in adaptive changes and evolutionary constraints are likely to help delineate the potential of further CHIKV (re-)emergence.
Collapse
|
50
|
Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 2007; 88:2363-2377. [PMID: 17698645 DOI: 10.1099/vir.0.82858-0] [Citation(s) in RCA: 536] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control & Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA
| | - Christopher H Logue
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control & Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|