1
|
Blutt SE, Miller AD, Conner ME. Dendritic cell expression of MyD88 is required for rotavirus-induced B cell activation. J Virol 2025:e0065325. [PMID: 40304491 DOI: 10.1128/jvi.00653-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Intestinal IgA, produced by local intestinal B cells, is thought to play a major role in protection against intestinal infections. Rotavirus, a well-characterized intestinal virus, induces a rapid viral-specific intestinal IgA response that occurs in the absence of T cells. Previous work has indicated that dendritic cells facilitate the early IgA response to rotavirus. To determine whether the early Peyer's patch B cell activation associated with rotavirus infection in mice requires dendritic cells, we depleted dendritic cells and assessed B cell activation. Depletion of CD11c+ cells in vivo prior to infection resulted in a complete abrogation of Peyer's patch B cell activation. With the use of in vitro cell-based assays, CD11c+, but not T or CD11b+ cells, was shown to be essential for rotavirus-induced activation of B cells. Investigation of several pathways of B cell activation revealed that dendritic cell expression of MyD88 and signaling through the type I interferon receptor were critical for the ability of the virus to induce B cell activation. These findings indicate that CD11c+ dendritic cells can modulate B cell responses to viruses through toll-like receptor and type I interferon signaling pathways.IMPORTANCEDendritic cells are key mediators of immune responses in the intestine. They can capture and process rotavirus antigens and present these antigens to B cells, which produce critical IgA antibody that is essential for clearance of rotavirus infection and protection from reinfection. In the work presented here, we demonstrate that dendritic cell expression of MyD88, a key component of pattern recognition pathways, and not classical IgA pathway molecules such as BAFF and APRIL, is critical for the ability of the dendritic cell to induce the activation of B cells. Our findings emphasize the important role that dendritic cells play in initiating and regulating immune responses including T cell-independent B cell activation. A consideration of the role of dendritic cells in B cell activation and antibody production is an important feature in the development of therapeutic and preventive modalities to combat intestinal viral infections.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Amber D Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Huffington Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Kostanić V, Kunić V, Prišlin Šimac M, Lolić M, Sukalić T, Brnić D. Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus. Vet Sci 2024; 11:671. [PMID: 39729011 DOI: 10.3390/vetsci11120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice.
Collapse
Affiliation(s)
- Vjekoslava Kostanić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Valentina Kunić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | | | - Marica Lolić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 32100 Vinkovci, Croatia
| | - Tomislav Sukalić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 48260 Križevci, Croatia
| | - Dragan Brnić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Lv Y, Tong Z, Liu J, Zhang Z, Wang C, Zeng Y, Liu P, Zong X, Chen G, Chen H, Tan C. Molecular Characterization and Pathogenicity Analysis of Porcine Rotavirus A. Viruses 2024; 16:1842. [PMID: 39772152 PMCID: PMC11680200 DOI: 10.3390/v16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions. Genetic evolutionary analysis revealed that G9 was the predominant genotype among the G-type genotypes, accounting for 25.32% of the total. The VP4 genotypes were P[7] (36.49%) and P[23] (36.49%). The predominant genotypic combinations of RVA were G9P[23] and G9P[7]. Eleven RVA strains were obtained via MA104 cell isolation. A rat model was established to assess the pathogenicity of these strains, with three strains exhibiting high pathogenicity in the model. Specifically, the RVA Porcine CHN HUBEI 2022 (Q-1), RVA Porcine CHN SHANXI 2022 (3.14-E), and RVA Porcine CHN HUBEI 2022 (5.11-U) strains were shown to cause diarrhea in the rats and damage the intestinal villi during the proliferation phase of the infection, leading to characteristic lesions in the small intestine. These data indicate that continuous monitoring of RVA can provide essential data for the prevention and control of this virus.
Collapse
Affiliation(s)
- Yaning Lv
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ze Tong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiaqi Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Zeng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pingxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xin Zong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guosheng Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
4
|
Jalal U. Correspondence on A Two-Centre Case-Control Study Focused on Neurological Manifestations of Rotavirus Infection by Xu et al. J Infect Dis 2023; 228:1805-1806. [PMID: 37572356 DOI: 10.1093/infdis/jiad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Affiliation(s)
- Urba Jalal
- Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
5
|
Zhou X, Niu JW, Zhang JF, Liao M, Zhai SL. Commentary: Identification of pulmonary infections with porcine Rotavirus A in pigs with respiratory disease. Front Vet Sci 2023; 10:1102602. [PMID: 36733638 PMCID: PMC9887174 DOI: 10.3389/fvets.2023.1102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Affiliation(s)
- Xia Zhou
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture of Rural Affairs, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Jia-Wei Niu
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture of Rural Affairs, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Jian-Feng Zhang
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture of Rural Affairs, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Ming Liao
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture of Rural Affairs, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Ming Liao ✉
| | - Shao-Lun Zhai
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Department of Swine Diseases, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture of Rural Affairs, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China,*Correspondence: Shao-Lun Zhai ✉
| |
Collapse
|
6
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
7
|
Nelsen A, Lager KM, Stasko J, Nelson E, Lin CM, Hause BM. Identification of Pulmonary Infections With Porcine Rotavirus A in Pigs With Respiratory Disease. Front Vet Sci 2022; 9:918736. [PMID: 35812854 PMCID: PMC9260157 DOI: 10.3389/fvets.2022.918736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
While rotavirus (RV) is primarily known to cause gastroenteritis in many animals, several epidemiological studies have shown concurrent respiratory symptoms with fecal and nasal virus shedding. However, respiratory RV infections have rarely been investigated. By screening clinical samples submitted for diagnostic testing, porcine rotavirus A (RVA) was detected by quantitative reverse transcription PCR (qRT-PCR) in 28 out of 91 (30.8%) lungs obtained from conventionally reared pigs with respiratory signs. Among the positive cases, intensive RVA signals were mainly localized in alveolar macrophages (n = 3) and bronchiolar epithelial cells (n = 1) by RNAscope® in situ hybridization (ISH). The signals of RVA in bronchiolar epithelial cells were verified by ISH with different probes, immunohistochemistry, and transmission electron microscopy. Furthermore, additional cases with RVA ISH-positive signals in alveolar macrophages (n = 9) and bronchial epithelial cells (n = 1) were identified by screening 120 archived formalin-fixed and paraffin-embedded lung samples using tissue microarrays. Overall, our study showed a high frequency of RVA detection in lungs from conventional pigs with respiratory disease. Further research is needed to determine if RVA infection in the respiratory epithelium correlates with nasal shedding of rotavirus and its contribution to respiratory disease.
Collapse
Affiliation(s)
- April Nelsen
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Kelly M. Lager
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Judith Stasko
- National Animal Disease Center, USDA Agricultural Research Service, Ames, IA, United States
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Chun-Ming Lin
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States,Chun-Ming Lin
| | - Ben M. Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States,*Correspondence: Ben M. Hause
| |
Collapse
|
8
|
Olalemi AO, Akinwumi IM. Microbial health risks associated with rotavirus and enteric bacteria in River Ala in Akure, Nigeria. J Appl Microbiol 2022; 132:3995-4006. [PMID: 35179285 DOI: 10.1111/jam.15497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
AIM This study was carried out to determine the microbial health risks associated with a surface water commonly used for bathing, drinking, domestic and irrigational activities in Akure, Nigeria. METHODS AND RESULTS Water samples were collected from the river from March to June, 2018. The load of enteric bacteria, somatic coliphages and rotavirus in the water samples were determined using culture-based methods and molecular technique. The physicochemical characteristics of the water samples were determined using standard methods. The risks of rotavirus, Salmonella and Shigella infections resulting from ingestion of the water from the river were estimated using dose-response model. Redundancy analysis revealed that the levels of E. coli and Salmonella were highly associated with salinity and turbidity. The risks of infection associated with rotavirus (3.3 × 10-3 ) was higher than those associated with Salmonella (1.3 × 10-4 ) and Shigella (1.3 × 10-3 ), and were all above the WHO acceptable risk limit (10-4 ). CONCLUSION Accidental or intentional ingestion of water from the river may pose potential risks of gastrointestinal illness to humans. SIGNIFICANCE AND IMPACT OF STUDY Quantitative microbial risk assessment is essential in establishing adequate water management practices that must be strictly followed in order to protect human health.
Collapse
Affiliation(s)
- A O Olalemi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| | - I M Akinwumi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| |
Collapse
|
9
|
Tang-Huau TL, Rosenke K, Meade-White K, Carmody A, Smith BJ, Bosio CM, Jarvis MA, Feldmann H. Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses 2021; 13:v13050729. [PMID: 33922222 PMCID: PMC8145423 DOI: 10.3390/v13050729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
The multimammate mouse (Mastomys natalensis; M. natalensis) has been identified as a major reservoir for multiple human pathogens including Lassa virus (LASV), Leishmania spp., Yersinia spp., and Borrelia spp. Although M. natalensis are related to well-characterized mouse and rat species commonly used in laboratory models, there is an absence of established assays and reagents to study the host immune responses of M. natalensis. As a result, there are major limitations to our understanding of immunopathology and mechanisms of immunological pathogen control in this increasingly important rodent species. In the current study, a large panel of commercially available rodent reagents were screened to identify their cross-reactivity with M. natalensis. Using these reagents, ex vivo assays were established and optimized to evaluate lymphocyte proliferation and cytokine production by M. natalensis lymphocytes. In contrast to C57BL/6J mice, lymphocytes from M. natalensis were relatively non-responsive to common stimuli such as phytohaemagglutinin P and lipopolysaccharide. However, they readily responded to concanavalin A stimulation as indicated by proliferation and cytokine production. In summary, we describe lymphoproliferative and cytokine assays demonstrating that the cellular immune responses in M. natalensis to commonly used mitogens differ from a laboratory-bred mouse strain.
Collapse
Affiliation(s)
- Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Michael A. Jarvis
- Faculty of Health: Medicine, Dentistry and Human Sciences, School of Biomedical Sciences, University of Plymouth, PL4 8AA, UK;
- The Vaccine Group (TVG) Ltd., 14 Research Way, Derriford Research Facility, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| |
Collapse
|
10
|
Dian Z, Sun Y, Zhang G, Xu Y, Fan X, Yang X, Pan Q, Peppelenbosch M, Miao Z. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit Rev Microbiol 2021; 47:580-595. [PMID: 33822674 DOI: 10.1080/1040841x.2021.1907738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rotaviruses, double-stranded, non-enveloped RNA viruses, are a global health concern, associated with acute gastroenteritis and secretory-driven watery diarrhoea, especially in infants and young children. Conventionally, rotavirus is primarily viewed as a pathogen for intestinal enterocytes. This notion is challenged, however, by data from patients and animal models documenting extra-intestinal clinical manifestations and viral replication following rotavirus infection. In addition to acute gastroenteritis, rotavirus infection has been linked to various neurological disorders, hepatitis and cholestasis, type 1 diabetes, respiratory illness, myocarditis, renal failure and thrombocytopenia. Concomitantly, molecular studies have provided insight into potential mechanisms by which rotavirus can enter and replicate in non-enterocyte cell types and evade host immune responses. Nevertheless, it is fair to say that the extra-intestinal aspect of the rotavirus infectious process is largely being overlooked by biomedical professionals, and there are gaps in the understanding of mechanisms of pathogenesis. Thus with the aim of increasing public and professional awareness we here provide a description of our current understanding of rotavirus-related extra-intestinal clinical manifestations and associated molecular pathogenesis. Further understanding of the processes involved should prove exceedingly useful for future diagnosis, treatment and prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Ziqin Dian
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Yi Sun
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Guiqian Zhang
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Ya Xu
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xin Fan
- Department of Clinical laboratory, The First People's Hospital of Yunnan province, Kunming, Yunnan, China
| | - Xuemei Yang
- Department of Clinical laboratory, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Farahmand M, Jalilvand S, Arashkia A, Shahmahmoodi S, Afchangi A, Mollaei-Kandelous Y, Shoja Z. Association between circulating rotavirus genotypes and histo-blood group antigens in the children hospitalized with acute gastroenteritis in Iran. J Med Virol 2021; 93:4817-4823. [PMID: 33463743 DOI: 10.1002/jmv.26808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
Rotaviruses are the dominant cause of severe acute gastroenteritis in children under 5 years of age. Previous studies showed that some children are less susceptible to rotavirus gastroenteritis. It has been shown that this resistance depends on the rotavirus genotype and also human histo-blood group antigens (HBGAs), which works as a receptor for rotavirus surface protein (VP4). The present study aimed to evaluate the human genetic susceptibility to rotavirus gastroenteritis in Iran and to obtain a comparative analysis between rotavirus gastroenteritis and secretor or Lewis status in case and control groups in the Iranian population. The study was performed on fecal specimens from 108 children with acute rotavirus gastroenteritis from 2015 to 2017. A total of 50 fecal specimens from children with acute gastroenteritis of unknown etiology were also used as a control group. After the genotyping of positive rotavirus cases and human HBGAs by Sanger sequencing, the phylogenetic tree analysis showed that all rotavirus strains from Iran belonged to P[II]. The most common genotype was P[8] (n = 102; 94.4%), while the remaining belonged to P[4] (n = 3; 2.8%) and P[6] (n = 3; 2.8%) genotypes. The P[8] genotype was found to be associated with secretor and Lewis positive status (p < .05).
Collapse
Affiliation(s)
- Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Kim AH, Hogarty MP, Harris VC, Baldridge MT. The Complex Interactions Between Rotavirus and the Gut Microbiota. Front Cell Infect Microbiol 2021; 10:586751. [PMID: 33489932 PMCID: PMC7819889 DOI: 10.3389/fcimb.2020.586751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Human rotavirus (HRV) is the leading worldwide cause of acute diarrhea-related death in children under the age of five. RV infects the small intestine, an important site of colonization by the microbiota, and studies over the past decade have begun to reveal a complex set of interactions between RV and the gut microbiota. RV infection can temporarily alter the composition of the gut microbiota and probiotic administration alleviates some symptoms of infection in vivo, suggesting reciprocal effects between the virus and the gut microbiota. While development of effective RV vaccines has offered significant protection against RV-associated mortality, vaccine effectiveness in low-income countries has been limited, potentially due to regional differences in the gut microbiota. In this mini review, we briefly detail research findings to date related to HRV vaccine cohorts, studies of natural infection, explorations of RV-microbiota interactions in gnotobiotic pig models, and highlight various in vivo and in vitro models that could be used in future studies to better define how the microbiota may regulate RV infection and host antiviral immune responses.
Collapse
Affiliation(s)
- Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Hogarty
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Vanessa C. Harris
- Department of Medicine, Division of Infectious Diseases and Department of Global Health (AIGHD), Amsterdam University Medical Center, Academic Medical Center, Amsterdam, Netherlands
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Baicalin Is Curative Against Rotavirus Damp Heat Diarrhea by Tuning Colonic Mucosal Barrier and Lung Immune Function. Dig Dis Sci 2020; 65:2234-2245. [PMID: 31802384 DOI: 10.1007/s10620-019-05977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have indicated that rotavirus (RV) is a causative factor for diarrhea and gastroenteritis in pediatric and neonatal settings. Baicalin has many functions, including antibacterial, antiinflammatory, and antihypertensive activities. However, the immunological mechanism of RV-induced diarrhea with heat-dampness syndrome (RV-DH) remains unclear. AIMS The aim of this study is to explore the role of baicalin in RV-DH diarrhea and its underlying mechanism. METHODS A mouse model of pediatric RV-DH diarrhea was established and treated with baicalin. The concentrations of cytokines were detected by enzyme-linked immunosorbent assay. Messenger RNA (mRNA) expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR), while protein expression levels were determined by Western blotting and immunohistochemistry. Flow cytometry was used to detect the frequency of lymphocytes. RESULTS The concentrations of interleukin-1β (IL-1β), IL-2, IL-6, IL-8, RVvb, and secretory immunoglobulin A (SIgA) in bronchoalveolar lavage fluid (BALF) and colonic mucosa were significantly increased in the RV-DH group. Decreased expression of occludin, claudin-1, and zonula occludens-1 (ZO-1) indicated loss of tight junction function and disturbances in intestinal mucosal permeability in the RV-DH group. Flow cytometry analysis showed a high rate of CD8+ lymphocytes and low amount of CD4+ lymphocytes in the RV-DH group. Treatment of RV-DH mice with baicalin significantly reduced the duration of diarrhea and ameliorated the symptoms and pathological and immunological changes. Furthermore, baicalin inhibited STAT1 and activated STAT3 signaling pathways. CONCLUSIONS These findings indicate the curative and immunoregulatory properties of baicalin and have direct practical and clinical relevance for the treatment of RV-DH enteritis in humans.
Collapse
|
15
|
Iša P, Pérez-Delgado A, Quevedo IR, López S, Arias CF. Rotaviruses Associate with Distinct Types of Extracellular Vesicles. Viruses 2020; 12:v12070763. [PMID: 32708544 PMCID: PMC7411906 DOI: 10.3390/v12070763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Rotaviruses are the leading cause of viral gastroenteritis among children under five years of age. Rotavirus cell entry has been extensively studied; however, rotavirus cell release is still poorly understood. Specifically, the mechanism by which rotaviruses leave the cell before cell lysis is not known. Previous works have found rotavirus proteins and viral particles associated with extracellular vesicles secreted by cells. These vesicles have been shown to contain markers of exosomes; however, in a recent work they presented characteristics more typical of microparticles, and they were associated with an increase in the infectivity of the virus. In this work, we purified different types of vesicles from rotavirus-infected cells. We analyzed the association of virus with these vesicles and their possible role in promotion of rotavirus infection. We confirmed a non-lytic rotavirus release from the two cell lines tested, and observed a notable stimulation of vesicle secretion following rotavirus infection. A fraction of the secreted viral particles present in the cell supernatant was protected from protease treatment, possibly through its association with membranous vesicles; the more pronounced association of the virus was with fractions corresponding to cell membrane generated microvesicles. Using electron microscopy, we found different size vesicles with particles resembling rotaviruses associated from both- the outside and the inside. The viral particles inside the vesicles were refractory to neutralization with a potent rotavirus neutralizing monoclonal antibody, and were able to infect cells even without trypsin activation. The association of rotavirus particles with extracellular vesicles suggests these might have a role in virus spread.
Collapse
Affiliation(s)
- Pavel Iša
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
- Correspondence: ; Tel.: +52-777-3291612
| | - Arianna Pérez-Delgado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| | - Iván R. Quevedo
- Departamento de Ingeniería Química Industrial y de Alimentos, Universidad Iberoamericana, Ciudad de México CP 01219, Mexico;
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca CP 62210, Mexico; (A.P.-D.); (S.L.); (C.F.A.)
| |
Collapse
|
16
|
Serial Passaging of the Human Rotavirus CDC-9 Strain in Cell Culture Leads to Attenuation: Characterization from In Vitro and In Vivo Studies. J Virol 2020; 94:JVI.00889-20. [PMID: 32461318 DOI: 10.1128/jvi.00889-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Live oral rotavirus vaccines have been developed by serial passaging in cell culture and found to be safe in infants. However, mechanisms for the adaptation and attenuation of rotavirus vaccines are not fully understood. We prepared a human rotavirus vaccine strain, CDC-9 (G1P[8]), which when grown in MA104 cells to passage 11 or 12 (P11/P12) had no nucleotide or amino acid sequence changes from the original virus in stool. Upon adaptation and passages in Vero cells, the strain underwent five amino acid changes at P28 and one additional change at P44/P45 in the VP4 gene. We performed virologic, immunological, and pathogenic characterization of wild-type CDC-9 virus at P11/P12 and its two mutants at P28 or P44/P45 using in vitro and in vivo model systems. We found that mutants CDC-9 P28 and P44 induced upregulated expression of immunomodulatory cytokines. On the other hand, the two mutant viruses induced lower STAT1 phosphorylation and grew to 2-log-higher titers than wild-type virus in human Caco-2 cells and simian Vero cells. In neonatal rats, CDC-9 P45 showed reduced rotavirus shedding in fecal specimens and did not induce diarrhea compared to wild-type virus and modulated cytokine responses comparably to Rotarix infection. These findings indicate that mutant CDC-9 is attenuated and safe. Our study is the first to provide insight into the possible mechanisms of human rotavirus adaptation and attenuation and supports ongoing efforts to develop CDC-9 as a new generation of rotavirus vaccine for live oral or parenteral administration.IMPORTANCE Mechanisms for in vitro adaptation and in vivo attenuation of human rotavirus vaccines are not known. The present study is the first to comprehensively compare the in vitro growth characteristics, virulence, and host response of a wild-type and an attenuated human rotavirus strain, CDC-9, in Caco-2 cells and neonatal rats. Our study identifies critical sequence changes in the genome that render human rotavirus adapted to growth to high levels in Vero cells and attenuated and safe in neonatal rats; thus, the study supports clinical development of CDC-9 for oral or parenteral vaccination in children.
Collapse
|
17
|
Abstract
This chapter discusses infections of rats with viruses in the following 14 virus families: Adenoviridae, Arenaviridae, Coronaviridae, Flaviviridae, Hantaviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, Pneumoviridae, Polyomaviridae, Poxviridae, and Reoviridae . Serological surveys indicate that parvoviruses, coronaviruses, cardioviruses, and pneumoviruses are the most prevalent in laboratory rats. A new polyomavirus and a new cardiovirus that cause disease in laboratory rats are described. Metagenomic analyses of feces or intestinal contents from wild rats have detected viruses from an additional nine virus families that could potentially cause infections in laboratory rats.
Collapse
|
18
|
Singh S, Singh R, Singh KP, Singh V, Malik YPS, Kamdi B, Singh R, Kashyap G. Immunohistochemical and molecular detection of natural cases of bovine rotavirus and coronavirus infection causing enteritis in dairy calves. Microb Pathog 2019; 138:103814. [PMID: 31639467 PMCID: PMC7127329 DOI: 10.1016/j.micpath.2019.103814] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Bovine rotavirus (BRoV) and bovine coronavirus (BCoV) are major enteric viral pathogens responsible for calve diarrhoea. They are widespread both in dairy and beef cattle throughout the world and causing huge economic losses. The diagnosis of these agents is very difficult due to non-specific nature of lesions and the involvement of some intrinsic and extrinsic risk factors. We performed postmortem of 45 calves, which was below three months of age. Out of 45 necropscid calves, three (6.66%) cases were positive for BRoV and four (8.88%) cases were found positive for BCoV, screened by reverse transcriptase polymerase chain reaction (RT-PCR). Further RT-PCR positive cases were confirmed by immunohistochemistry (IHC) in paraffin-embedded intestinal tissue sections. Three cases of enteritis caused by BRoV showed the hallmark lesions of the shortening and fusion of villi, denudation and infiltration of mononuclear cells in the lamina propria. The BRoV antigen distribution was prominent within the lining epithelium of the villi, peyer's patches in the ileum and strong immunoreactions in the lymphocytes and some macrophages of the mesenteric lymph nodes. Four cases in which BCoV was detected, grossly lesions characterized by colonic mucosa covered with thick, fibrinous and diphtheritic membrane. Histopathologically, jejunum showed skipping lesion of micro-abscesses in crypts. The BCoV antigen distribution was prominent within the necrotic crypts in the jejunum and cryptic micro-abscesses in the colon and ileum. It is the first report of BRoV and BCoV antigen demonstration in the jejunum, colon, ileum, Peyer's patches and mesenteric lymph nodes of naturally infected calves from India by using IHC. The present study was to investigation of natural cases of BRoV and BCoV infection causing enteritis in dairy calves. Out of 45 necropscid calves, 6.66% cases for BRoV and 8.88% cases for BCoV were found positive. BRoV and BCoV antigen demonstration in the jejunum, colon, ileum, Peyer's patches and mesenteric lymph nodes of infected calves by using IHC.
Collapse
Affiliation(s)
- Shailendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - K P Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - V Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Y P S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Bhupesh Kamdi
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Gayatri Kashyap
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
19
|
Gene-edited vero cells as rotavirus vaccine substrates. Vaccine X 2019; 3:100045. [PMID: 31660537 PMCID: PMC6806661 DOI: 10.1016/j.jvacx.2019.100045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Rotavirus (RV) is a leading cause of severe gastroenteritis globally and can cause substantial morbidity associated with gastroenteritis in children <5 years of age. Orally administered live-attenuated RV vaccines offer protection against disease but vaccination efforts have been hampered by high manufacturing costs and the need to maintain a cold chain. Methods A subset of Vero cell host genes was identified by siRNA that when knocked down increased RV replication and these anti-viral host genes were individually deleted using CRISPR-Cas9. Results Fully-sequenced gene knockout Vero cell substrates were assessed for increased RV replication and RV vaccine antigen expression compared to wild type Vero cells. The results showed that RV replication and antigen production were logs higher in Vero cells having an EMX2 gene deletion compared to other Vero cell substrates tested. Conclusions We used siRNAs to screen for host genes that negatively affected RV replication, then CRISPR-Cas9 gene editing to delete select genes. The gene editing led to the development of enhanced RV vaccine substrates supporting a potential path forward for improving RV vaccine production.
Collapse
|
20
|
Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Sci Rep 2019; 9:10822. [PMID: 31346185 PMCID: PMC6658527 DOI: 10.1038/s41598-019-46856-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.
Collapse
|
21
|
Justino MCA, Campos EA, Mascarenhas JDP, Soares LS, Guerra SDFS, Furlaneto IP, Pavão MJC, Maciel TS, Farias FP, Bezerra OM, Vinente CBG, Barros RJS, Linhares AC. Rotavirus antigenemia as a common event among children hospitalised for severe, acute gastroenteritis in Belém, northern Brazil. BMC Pediatr 2019; 19:193. [PMID: 31189470 PMCID: PMC6560848 DOI: 10.1186/s12887-019-1535-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Rotavirus antigenemia and RNAemia (the presence of rotavirus RNA in serum) have been commonly identified among paediatric patients with acute gastroenteritis. In this study we examined the association between rotavirus antigenemia and clinical features, and sought to determine the genotypes of rotaviruses detected in paired stool and serum samples. Methods Paired stool and serum samples were obtained from children hospitalised for acute gastroenteritis in Belém, Brazil, between June 2012 and June 2015. The 20-point Vesikari scoring system was used to assess the disease severity upon a retrospective medical record review. Stool and serum samples were primarily screened for the presence of rotavirus antigen using a commercial ELISA assay. The rotavirus isolates from stool and serum samples were genotyped by using the classical reverse-transcriptase polymerase chain reaction (RT-PCR) and/or through nucleotide sequencing of VP4 and VP7 genes. Viral load was estimated using real-time RT-PCR. Results In total rotavirus antigen was detected in 109 (24.2%) stool samples from 451 children, whereas antigenemia occurred in 38.5% (42/109) of these patients. We demonstrated that patients positive for rotavirus RNA in paired stool and serum samples were more likely to have a higher frequency of vomiting episodes in a 24-h period (p = 0.0035). Our findings also suggested that children not vaccinated against rotavirus are more likely to develop antigenemia, as compared to those given at least one vaccine dose (p = 0.0151). G12P [8] and G2P [4] genotypes were predominant throughout the study period, accounting for 52.3% (57/109) and 27.5% (30/109) of the typed isolates, respectively. Ten stool-serum pairs could be typed for VP4 and VP7 genes. Seven of these pairs showed concordant results with G2P [4] genotype being detected in stool and serum samples, whereas discrepancies between genotypes (G2P [4]/G2P[NT] and G12P [8]/G2P[NT]) were seen in three pairs. Conclusions Rotavirus antigenemia and RNAemia occur in a significant number of children hospitalised for acute gastroenteritis in Belém, Brazil, and may contribute to a greater disease severity, particularly translated into a greater number of vomiting episodes. This study documented a high concordance of genotypes detected in a subgroup of paired stool and serum samples. Electronic supplementary material The online version of this article (10.1186/s12887-019-1535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Cleonice A Justino
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil.
| | - Erika A Campos
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Joana D'arc P Mascarenhas
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Luana S Soares
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Sylvia de Fátima S Guerra
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | | | | | | | | | | | - Caio Breno G Vinente
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Rodrigo José S Barros
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Alexandre C Linhares
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| |
Collapse
|
22
|
Tamim S, Matthijnssens J, Heylen E, Zeller M, Van Ranst M, Salman M, Hasan F. Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010. Arch Virol 2019; 164:1781-1791. [PMID: 31079214 DOI: 10.1007/s00705-019-04271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/30/2019] [Indexed: 10/26/2022]
Abstract
Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan.
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Herestraat 49 box 1040, 3000, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
23
|
Development of a live attenuated trivalent porcine rotavirus A vaccine against disease caused by recent strains most prevalent in South Korea. Vet Res 2019; 50:2. [PMID: 30616694 PMCID: PMC6323864 DOI: 10.1186/s13567-018-0619-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022] Open
Abstract
Porcine rotaviruses cause severe economic losses in the Korean swine industry due to G- and P-genotype mismatches between the predominant field and vaccine strains. Here, we developed a live attenuated trivalent porcine group A rotavirus vaccine using 80 cell culture passages of the representative Korean predominant strains G8P[7] 174-1, G9P[23] PRG942, and G5P[7] K71. Vaccination with the trivalent vaccine or its individual components induced no diarrhea during the first 2 weeks post-vaccination, i.e., the vaccines were attenuated. Challenge of trivalent-vaccinated or component-vaccinated piglets with homologous virulent strain(s) did not induce diarrhea for 2 weeks post-challenge. Immunization with the trivalent vaccine or its individual components also alleviated the histopathological lesions in the small intestines caused by challenge with the corresponding original virulent strain(s). Fecal secretory IgAs specific for each of vaccine strains were detected starting at 14 days post-vaccination (dpv), and IgA levels gradually increased up to 28 dpv. Oral immunization with the trivalent vaccine or its individual components induced high levels of serum virus-neutralizing antibody by 7 dpv. No diarrhea was observed in any experimental piglets during five consecutive passages of each vaccine strain. Our data indicated that the live attenuated trivalent vaccine was safe and effective at protecting piglets from diarrhea induced by challenge exposure of homologous virulent strains. This trivalent vaccine will potentially contribute toward controlling porcine rotavirus disease in South Korea and other countries where rotavirus infections with similar G and P genotypes are problematic.
Collapse
|
24
|
Gómez-Rial J, Sánchez-Batán S, Rivero-Calle I, Pardo-Seco J, Martinón-Martínez JM, Salas A, Martinón-Torres F. Rotavirus infection beyond the gut. Infect Drug Resist 2018; 12:55-64. [PMID: 30636886 PMCID: PMC6307677 DOI: 10.2147/idr.s186404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The landscape of rotavirus (RV) infection has changed substantially in recent years. Autoimmune triggering has been added to clinical spectrum of this pathology, which is now known to be much broader than diarrhea. The impact of RV vaccines in these other conditions is becoming a growing field of research. The importance of host genetic background in RV susceptibility has been revealed, therefore increasing our understanding of vaccine effectiveness and giving some clues about the limited efficacy of RV vaccines in low-income settings. Also, interaction of RV with intestinal microbiota seems to play a key role in the process of infection vaccine effect. This article reviews current findings on the extraintestinal impact of RV infection and their widening clinical picture, and the recently described mechanisms of host susceptibility to infection and vaccine effectiveness. RV infection is a systemic disease with clinical and pathophysiological implications beyond the gut. We propose an “iceberg” model for this pathology with almost hidden clinical implications away from the gastrointestinal tract and eventually triggering the development of autoimmune diseases. Impact of current vaccines is being influenced by host genetics and gut microbiota interactions and these factors must be taken into account in the development of public health programs.
Collapse
Affiliation(s)
- José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Sonia Sánchez-Batán
- Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - José María Martinón-Martínez
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Antonio Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forense, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| |
Collapse
|
25
|
Yin N, Yang FM, Qiao HT, Zhou Y, Duan SQ, Lin XC, Wu JY, Xie YP, He ZL, Sun MS, Li HJ. Neonatal rhesus monkeys as an animal model for rotavirus infection. World J Gastroenterol 2018; 24:5109-5119. [PMID: 30568388 PMCID: PMC6288652 DOI: 10.3748/wjg.v24.i45.5109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a rotavirus (RV)-induced diarrhea model using RV SA11 in neonatal rhesus monkeys for the study of the pathogenic and immune mechanisms of RV infection and evaluation of candidate vaccines.
METHODS Neonatal rhesus monkeys with an average age of 15-20 d and an average weight of 500 g ± 150 g received intragastric administration of varying doses of SA11 RV ( 107 PFUs/mL, 106 PFUs/mL, or 105 PFUs/mL, 10 mL/animal) to determine whether the SA11 strain can effectively infect these animals by observing their clinical symptoms, fecal shedding of virus antigen by ELISA, distribution of RV antigen in the organs by immunofluorescence, variations of viral RNA load in the organs by qRT-PCR, histopathological changes in the small intestine by HE staining, and apoptosis of small intestinal epithelial cells by TUNEL assay.
RESULTS The RV monkey model showed typical clinical diarrhea symptoms in the 108 PFUs SA11 group, where we observed diarrhea 1-4 d post infection (dpi) and viral antigen shed in the feces from 1-7 dpi. RV was found in jejunal epithelial cells. We observed a viral load of approximately 5.85 × 103 copies per 100 mg in the jejunum at 2 dpi, which was increased to 1.09 × 105 copies per 100 mg at 3 dpi. A relatively high viral load was also seen in mesenteric lymph nodes at 2 dpi and 3 dpi. The following histopathological changes were observed in the small intestine following intragastric administration of SA11 RV: vacuolization, edema, and atrophy. Apoptosis in the jejunal villus epithelium was also detectable at 3 dpi.
CONCLUSION Our results indicate that we have successfully established a RV SA11 strain diarrhea model in neonatal rhesus monkeys. Future studies will elucidate the mechanisms underlying the pathogenesis of RV infection, and we will use the model to evaluate the protective effect of candidate vaccines.
Collapse
Affiliation(s)
- Na Yin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Feng-Mei Yang
- Primate Experimental Center of the Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Hong-Tu Qiao
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Su-Qin Duan
- Primate Experimental Center of the Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Xiao-Chen Lin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Jin-Yuan Wu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Yu-Ping Xie
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Zhan-Long He
- Primate Experimental Center of the Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Mao-Sheng Sun
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Hong-Jun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| |
Collapse
|
26
|
Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep 2018; 8:13931. [PMID: 30224682 PMCID: PMC6141481 DOI: 10.1038/s41598-018-32352-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.
Collapse
|
27
|
McCowan C, Crameri S, Kocak A, Shan S, Fegan M, Forshaw D, Rubbenstroth D, Chen H, Holmes C, Harper J, Dearnley M, Batovska J, Bergfeld J, Walker C, Wang J. A novel group A rotavirus associated with acute illness and hepatic necrosis in pigeons (Columba livia), in Australia. PLoS One 2018; 13:e0203853. [PMID: 30204797 PMCID: PMC6133385 DOI: 10.1371/journal.pone.0203853] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Cases of vomiting and diarrhoea were reported in racing pigeons in Western Australia in May, 2016. Morbidity and mortality rates were high. Similar clinical disease was seen in Victoria in December and by early 2017 had been reported in all states except the Northern Territory, in different classes of domestic pigeon–racing, fancy and meat bird–and in a flock of feral pigeons. Autopsy findings were frequently unremarkable; histological examination demonstrated significant hepatic necrosis as the major and consistent lesion, often with minimal inflammatory infiltration. Negative contrast tissue suspension and thin section transmission electron microscopy of liver demonstrated virus particles consistent with a member of the Reoviridae. Inoculation of trypsin-treated Vero, MDBK and MA-104 cell lines resulted in cytopathic changes at two days after infection. Next generation sequencing was undertaken using fresh liver samples and a previously undescribed group A rotavirus (genotype G18P[17]) of avian origin was identified and the virus was isolated in several cell lines. A q-RT-PCR assay was developed and used to screen a wider range of samples, including recovered birds. Episodes of disease have continued to occur and to reoccur in previously recovered lofts, with variable virulence reported. This is the first report of a rotavirus associated with hepatic necrosis in any avian species.
Collapse
Affiliation(s)
| | - Sandra Crameri
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ayfer Kocak
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - Songhua Shan
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mark Fegan
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - David Forshaw
- Department of Primary Industries and Regional Development, Albany, Western Australia, Australia
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald–Insel Riems, Germany
| | - Honglei Chen
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Clare Holmes
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jenni Harper
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jana Batovska
- Agriculture Victoria, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Jemma Bergfeld
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Colin Walker
- Melbourne Bird Veterinary Clinic, Scoresby, Melbourne, Australia
| | - Jianning Wang
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
28
|
Kashyap G, Singh R, Malik Y, Agrawal R, Singh K, Kumar P, Sahoo M, Gupta D, Singh R. Experimental bovine rotavirus-A (RV-A)infection causes intestinal and extra-intestinal pathology in suckling mice. Microb Pathog 2018; 121:22-26. [DOI: 10.1016/j.micpath.2018.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/17/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022]
|
29
|
Liu L, Liu Y, Xu B, Liu C, Jia Y, Liu T, Fang C, Wang W, Ren J, He Z, Men K, Liang X, Luo M, Shao B, Mao Y, Xiao H, Qian Z, Geng J, Dong B, Mi P, Jiang Y, Wei Y, Wei X. Negative regulation of cationic nanoparticle-induced inflammatory toxicity through the increased production of prostaglandin E2 via mitochondrial DNA-activated Ly6C + monocytes. Theranostics 2018; 8:3138-3152. [PMID: 29896308 PMCID: PMC5996362 DOI: 10.7150/thno.21693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/13/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Cationic nanocarriers present with well-known toxicities, including inflammatory toxicity, which limit their clinical application. How the cationic nanocarrier-induced inflammatory response is negatively regulated is unknown. Herein, we found that following a sublethal dose of cationic nanocarriers, the induced inflammatory response is characterized by early neutrophil infiltration and spontaneous resolution within 1 week. Methods: C57BL/6 mice were intravenously injected with a dosage of 1-100 mg/kg cationic DOTAP liposomes as well as other cationic materials. Cell necrosis was detected by flow cytometry. Release of mitochondrial DNA was quantified by qPCR via Taqman probes. Signal proteins were detected by Western blotting. PGE2 production in the supernatant was quantitated using an enzyme immunoassay (EIA). The infiltrated inflammatory cells were observed in WT mice, Ccr2-/- mice, Sting-/-mice and Tlr9-/-mice. Results: The early stage (24-48 h) inflammatory neutrophil infiltration was followed by an increasing percentage of monocytes; and, compared with WT mice, Ccr2-/- mice presented with more severe pulmonary inflammation. A previously uncharacterized population of regulatory monocytes expressing both inflammatory and immunosuppressive cytokines was identified in this model. The alteration in monocyte phenotype was directly induced by mtDNA release from cationic nanocarrier-induced necrotic cells via a STING- or TLR9-dependent pathway. Neutrophil activation was specifically inhibited by PGE2 from Ly6C+ inflammatory monocytes, and intravenous injections of dual-phenotype monocytes beneficially modified the immune response; this inhibitory effect was abolished after treatment with indomethacin. Moreover, we provide clear evidence that mitochondrial DNA activated Ly6C+ monocytes and increased PGE2 production through TLR9- or STING-mediated MAPK-NF-κB-COX2 pathways. Conclusion: Our findings suggest that Ly6C+ monocytes and mtDNA-induced Ly6C+ monocyte PGE2 production may be part of a feedback mechanism that contributes to the resolution of cationic nanocarrier-induced inflammatory toxicity and may have important implications for understanding nanoparticle biocompatibility and designing better, safer drug delivery systems.
Collapse
|
30
|
Deol P, Kattoor JJ, Sircar S, Ghosh S, Bányai K, Dhama K, Malik YS. Avian Group D Rotaviruses: Structure, Epidemiology, Diagnosis, and Perspectives on Future Research Challenges. Pathogens 2017; 6:E53. [PMID: 29064408 PMCID: PMC5750577 DOI: 10.3390/pathogens6040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
In 1981, a new virus (virus 132) was described for the first time with morphological and biochemical similarities to rotaviruses (RVs), but without antigenic similarity to any of the previously known rotavirus groups. Subsequently, it was re-designated as D/132, and formed a new serogroup among rotaviruses, the group D rotavirus (RVD). Since their identification, RVs are the leading cause of enteritis and diarrhea in humans and various animal species, and are also associated with abridged growth, particularly in avian species. Recently, RVD has been suggested to play a role in the pathogenesis of runting and stunting syndrome (RSS), alongside other viruses such as reovirus, astrovirus, coronavirus, and others, all of which cause colossal economic losses to the poultry industry. RVD has been reported from several countries worldwide, and to date, only one complete genome sequence for RVD is available. Neither an immunodiagnostic nor a vaccine is available for the detection and prevention of RVD infection. Despite our growing understanding about this particular group, questions remain regarding its exact prevalence and pathogenecity, and the disease-associated annual losses for the poultry industry. Here, we describe the current knowledge about the identification, epidemiology, diagnosis, and prevention of RVD in poultry.
Collapse
Affiliation(s)
- Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P. O. Box 334, Basseterre, St. Kitts, West Indies.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungáriakrt. 21, Budapest 1143, Hungary.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| |
Collapse
|
31
|
Sugata K, Hull J, Wang H, Foytich K, Moon SS, Takahashi Y, Kojima S, Yoshikawa T, Jiang B. Investigation of a Rotavirus Gastroenteritis Outbreak among Immunosuppressed Patients in a Hospital Setting. JOURNAL OF IMMUNOLOGICAL TECHNIQUES IN INFECTIOUS DISEASES 2017; 6:10.4172/2329-9541.1000153. [PMID: 35923213 PMCID: PMC9344559 DOI: 10.4172/2329-9541.1000153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Rotavirus (RV) is the most common cause of severe dehydrating diarrhoea in healthy infants and young children. The aims of this study were to investigate a RV outbreak in the pediatric hematology and oncology ward and to examine possible associations between immune status and RV infection. PATIENTS AND METHODS Twenty-eight children (19 boys and 9 girls) who were hospitalized for treatment of hematological malignancy and solid organ tumor during the RV outbreak were enrolled in this study. Fourteen of the 28 patients developed RV gastroenteritis (GE) during the observation period. RV antigen and RV IgG and IgA were measured by enzyme-linked immunosorbent assays. RV G and P types were determined by reverse transcriptase-polymerase chain reaction. RESULTS Mean duration of RVGE in 14 patients was 13.9 days and mean severity score was 7.4. Two RV strains (G3P [8] and G2P [4]) were mainly circulating in the ward, which might result in the formation of a reassortant G2P [8] strain and mixed infection with G2+3P [8] in the immunocompromised patients. RV antigenemia was detected in 22 of the 28 patients (78.6%). RV-specific IgG titers in acute-phase sera of RVGE group were significantly lower than those in non-RVGE group (P=0.001). Mean age of the patients was significantly lower in RVGE group (5.5 ± 4.6 years) than non RVGE group (10.6 ± 4.5 years) (P=0.015). CONCLUSION Our data demonstrate that host factors including age, underlying diseases, and immune status may be associated with the susceptibility of RV infection in immunocompromised patients at the time of the nosocomial infection.
Collapse
Affiliation(s)
- Ken Sugata
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
- Department of Pediatrics, Fujita Health University, The Second Teaching Hospital, 3-6-10,Otobashi Nakagawaku Nagoya-shi, 454-8509 Aichi, Japan
| | - Jennifer Hull
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - Houping Wang
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - Kimberly Foytich
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - Sung-Sil Moon
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | | | | | | | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| |
Collapse
|
32
|
Beards G. Rotavirus. WIKIJOURNAL OF MEDICINE 2017. [DOI: 10.15347/wjm/2017.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Xiong X, Hu Y, Liu C, Li X. Rotavirus NSP4 86-175 interacts with H9c2(2-1) cells in vitro, elevates intracellular Ca 2+ levels and can become cytotoxic: a possible mechanism for extra-intestinal pathogenesis. Virus Genes 2016; 53:179-189. [PMID: 28000081 DOI: 10.1007/s11262-016-1419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
Rotavirus (RV) is the predominant cause of infantile gastroenteritis with multiple pathogenic factors, among which enterotoxin NSP4 is the most significant factor. NSP4 has been shown to induce elevation of the intracellular calcium concentration, alteration of the cytoskeleton organization, and cytopathic effect among other processes. However, increasing evidence suggests that RVs can escape from the gastrointestinal tract and invade other organs and tissues to cause extra-intestinal diseases. In this study, we investigated whether NSP4 has a pathogenic effect on extra-intestinal cells and examined possible molecular mechanisms in vitro. Our results showed that NSP486-175 has important functions in increasing intracellular Ca2+ concentration, altering actin cytoskeleton organization and inducing cellular damage in H9c2(2-1) cells. Blockade of the integrin α2 receptor using a specific antibody attenuated the increase of intracellular Ca2+ concentration and alleviated the observed cytopathic effects, suggesting that integrin α2 may be a receptor for NSP486-175. Collectively, these results indicate that extracellular NSP486-175 can induce elevation of the intracellular Ca2+ concentration, cause cytotoxic changes, and disrupt the actin cytoskeleton in H9c2(2-1) cells, which may constitute a possible mechanism for RV extra-intestinal pathogenesis.
Collapse
Affiliation(s)
- Xiaoshun Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Yinyin Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Caixia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Xiangyang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
Rotavirus gastroenteritis and a rare case accompanying acute pancreatitis. GASTROENTEROLOGY REVIEW 2016; 12:68-69. [PMID: 28337241 PMCID: PMC5360661 DOI: 10.5114/pg.2016.64606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
|
35
|
Ali Z, Harastani H, Hammadi M, Reslan L, Ghanem S, Hajar F, Sabra A, Haidar A, Inati A, Rajab M, Fakhouri H, Ghanem B, Baasiri G, Gerbaka B, Zaraket H, Matar GM, Dbaibo G. Rotavirus Genotypes and Vaccine Effectiveness from a Sentinel, Hospital-Based, Surveillance Study for Three Consecutive Rotavirus Seasons in Lebanon. PLoS One 2016; 11:e0161345. [PMID: 27571515 PMCID: PMC5003350 DOI: 10.1371/journal.pone.0161345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction Globally, rotavirus (RV) is the leading cause of gastroenteritis (GE) in children. Longitudinal data about changes in RV genotype distribution and vaccine effectiveness (VE) are scarce. This study was conducted in Lebanon over 3 consecutive RV seasons to estimate the rate of RVGE hospitalization, identify RV genotypes, determine the seasonal and geographical variations, and calculate RV VE. Materials and Methods This prospective, multicenter, hospital-based surveillance study was conducted between 2011 and 2013 and enrolled children (<5 years) admitted for GE. Socio-demographic and clinical data about the current episode of GE at admission were collected. Genotypes were determined from stool samples testing positive for RV by PCR. Results Of 1,414 cases included in the final analysis, 83% were <2 years old and 55.6% were boys. Median duration of hospitalization was 4 days and 91.6% of GE cases were severe (Vesikari score ≥11). PCR testing showed that 30.3% of subjects were RV-positive of which 62.1% had fever versus 71.1% of RV-negative subjects (P = 0.001). RV was predominantly detected in the cold season from November till March (69.9%). G and P genotype pairs for all RV-positive stool specimens showed a predominance of G1P[8] in 36% (n = 154) of specimens, G9P[8] in 26.4% (n = 113), and G2P[4] in 17.8% (n = 76). RV-negative subjects were more likely to be RV-vaccinated (21%) compared to the RV-positive subjects (11.3%) (P<0.001), with a vaccine breakthrough rate of 18.8%. The ratio of RV1-vaccinated for each RV5-vaccinated subject was 7.8 and VE against RV disease was 68.4% (95%CI, 49.6%-80.2%). Conclusion RV is a major cause of GE requiring hospitalization of children under 5 years of age in Lebanon. A few genotypes predominated over the three RV seasons studied. Mass RV vaccination will likely decrease the burden of hospitalization due to RV. VE is similar to what has been observed for other middle-income countries.
Collapse
Affiliation(s)
- Zainab Ali
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Houda Harastani
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Moza Hammadi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Lina Reslan
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Soha Ghanem
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Farah Hajar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Ahmad Sabra
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Amjad Haidar
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Adlette Inati
- Department of Pediatrics, Nini Hospital, Tripoli, Lebanon
| | - Mariam Rajab
- Department of Pediatrics, Makassed General Hospital, Beirut, Lebanon
| | - Hassan Fakhouri
- Department of Pediatrics, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Bassam Ghanem
- Department of Pediatrics, Nabatieh Governmental Hospital, Nabatieh, Lebanon
| | | | - Bernard Gerbaka
- Department of Pediatrics, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Hassan Zaraket
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan M. Matar
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
- * E-mail: ;
| |
Collapse
|
36
|
Li JT, Wei J, Guo HX, Han JB, Ye N, He HY, Yu TT, Wu YZ. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs. World J Gastroenterol 2016; 22:7135-7145. [PMID: 27610023 PMCID: PMC4988310 DOI: 10.3748/wjg.v22.i31.7135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines.
METHODS: 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography.
RESULTS: When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea.
CONCLUSION: These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.
Collapse
|
37
|
Karandikar UC, Crawford SE, Ajami NJ, Murakami K, Kou B, Ettayebi K, Papanicolaou GA, Jongwutiwes U, Perales MA, Shia J, Mercer D, Finegold MJ, Vinjé J, Atmar RL, Estes MK. Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. J Gen Virol 2016; 97:2291-2300. [PMID: 27412790 DOI: 10.1099/jgv.0.000545] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) can often cause chronic infections in solid organ and haematopoietic stem cell transplant (HSCT) patients. Based on histopathological changes observed during HuNoV infections, the intestine is the presumed site of virus replication in patients; however, the cell types infected by HuNoVs remain unknown. The objective of this study was to characterize histopathological changes during HuNoV infection and to determine the cell types that may be permissive for HuNoV replication in transplant patients. We analysed biopsies from HuNoV-infected and non-infected (control) transplant patients to assess histopathological changes in conjunction with detection of HuNoV antigens to identify the infected cell types. HuNoV infection in immunocompromised patients was associated with histopathological changes such as disorganization and flattening of the intestinal epithelium. The HuNoV major capsid protein, VP1, was detected in all segments of the small intestine, in areas of biopsies that showed histopathological changes. Specifically, VP1 was detected in enterocytes, macrophages, T cells and dendritic cells. HuNoV replication was investigated by detecting the non-structural proteins, RdRp and VPg. We detected RdRp and VPg along with VP1 in duodenal and jejunal enterocytes. These results provide critical insights into histological changes due to HuNoV infection in immunocompromised patients and propose human enterocytes as a physiologically relevant cell type for HuNoV cultivation.
Collapse
Affiliation(s)
- Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Baijun Kou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Genovefa A Papanicolaou
- Infectious Disease and Adult Bone Marrow Transplant Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ubonvan Jongwutiwes
- Infectious Disease and Adult Bone Marrow Transplant Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY , USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Mercer
- Department of Surgery, University for Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Milton J Finegold
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Nuñez LFN, Parra SHS, Astolfi-Ferreira CS, Carranza C, Torre DIDL, Pedroso AC, Ferreira AJP. Detection of enteric viruses in pancreas and spleen of broilers with runting-stunting syndrome (RSS). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000700006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Enteric disease is a multifactorial problem in chickens, which causes gastrointestinal alterations, elevated feed conversions and impairment. In the last years, several enteric viruses were implicated in enteric disease; case reports have shown their presence alone or in concomitant infections during outbreaks and have suggested that they might be determining factors in the aetiology of enteric disease. This study shows high detection rates of enteric viruses in the pancreas and spleen in samples from an outbreak of enteritis and malabsorption in 16 chicken flocks (n=80 broilers). Avian nephritis virus (ANV) was the most ubiquitous virus, present in 75% of the flocks followed by avian rotavirus group A (ART-A) with 68.75%, and by chicken astrovirus (CAstV) and chicken parvovirus (ChPV) in 43.75% of samples. Viruses were present in the pancreas of positive flocks at extremely high rates: 100% for ART-A, 91.7% for ANV, 100% for CAstV and 57.14% for ChPV. By contrast, only 16.7% and 57.14% of intestine samples were positive for ANV and CAstV, respectively. Avian reovirus (AReo) and avian adenovirus group 1 (FAdV-1) were not detected. These results suggest that high viral detection rates in pancreas samples may be a result of viremia during enteric disease, with subsequent damage of the exocrine pancreas, leading to runting-stunting syndrome (RSS).
Collapse
|
39
|
Abstract
A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
40
|
Furuya K, Nakajima H, Sasaki Y, Urita Y. An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility. Biomed Rep 2016; 4:331-334. [PMID: 26998270 DOI: 10.3892/br.2016.585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate co-infection in the gastrointestinal tract in terms of viruses, bacteria and the ABO blood group. We hypothesized that a combination of norovirus (NV) and bacteria in the gastrointestinal tract could affect the likelihood of an individual to contracting NV. Histo-blood group antigens (HBGAs) are considered to act as receptors that can lead to NV susceptibility. In addition to genetics, co-infection in the gastrointestinal tract may be associated with this mechanism. A total of 370 patients with acute gastroenteritis presenting with diarrhea (14-89 years) were recruited. The male/female ratio was 20/17. Single infection (bacteria or virus), co-infection with two viruses, and co-infection with one virus and one bacterium were statistically analyzed. In total, 88 of the 376 subjects (23.4%) were positive for one virus, and 50 (13.3%) were positive for one bacterium. Co-transfection with bacteria and a virus were detected in 46 (47.9%) of the 96 bacterial gastroenteritis cases. Statistical analysis revealed that co-infection of bacteria and NV was not significant in all viral infections (P=0.768). In terms of the ABO histo-blood group type and NV infection, the frequency in the O type was not significantly increased (P=0.052). Co-infection of bacteria and a virus occurred frequently in the gastrointestinal tract. The ABO blood phenotype expression was not a significant factor in NV infection in the present case series and the results did not suggest an affinity of NV for specific bacteria.
Collapse
Affiliation(s)
- Kenta Furuya
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Hitoshi Nakajima
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Yousuke Sasaki
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Omori Hospital, Tokyo 143-8541, Japan
| |
Collapse
|
41
|
Comparative In Vitro and In Vivo Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. J Virol 2015; 90:142-51. [PMID: 26468523 DOI: 10.1128/jvi.02401-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines.
Collapse
|
42
|
Mitake H, Ito N, Okadera K, Kasahara K, Okada K, Nihongi T, Sakurai S, Nakagawa K, Tsunemitsu H, Tanaka T, Sugiyama M, Katsuragi K. Persistence of the rotavirus A genome in mesenteric lymph nodes of cattle raised on farms. J Gen Virol 2015; 96:2708-2713. [DOI: 10.1099/vir.0.000191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Rotavirus Infects Human Biliary Epithelial Cells and Stimulates Secretion of Cytokines IL-6 and IL-8 via MAPK Pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:697238. [PMID: 26247025 PMCID: PMC4515493 DOI: 10.1155/2015/697238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
Biliary atresia (BA) is an infantile inflammatory cholangiopathy of unknown etiology although epidemiologic studies and animal models utilizing rotavirus (RV) have suggested a role for viral infection. Proinflammatory and profibrotic cytokines have been detected in infants with BA. The purpose of our study was to investigate the susceptibility of human cholangiocytes (H69 cells) to infection with RRV and to determine if this infection resulted in cytokine secretion. Infection of H69 cells by RRV was noncytolytic and resulted in a time-dependent increase in the release of both infectious virions and cytokines IL-6 and IL-8 into the supernate. The greatest difference in cytokine supernatant levels between infected and mock-infected cells was noted at 24 hours postinfection (h p.i.) for IL-8, 556 ± 111 versus 77 ± 68 pg/mL (p < 0.0001), and at 48 h p.i. for IL-6, 459 ± 64 versus 67 ± 2 pg/mL (p < 0.0001). Production of both cytokines following RRV infection was significantly reduced by pretreating the H69 cells with inhibitors of mitogen-activated protein kinase (MAPK). Conclusion. RRV can infect human cholangiocytes resulting in the production of proinflammatory and profibrotic cytokines via the MAPK pathway. RRV-infected H69 cells could be a useful model system for investigating the viral hypothesis of BA.
Collapse
|
44
|
Innate immune responses to rotavirus infection in macrophages depend on MAVS but involve neither the NLRP3 inflammasome nor JNK and p38 signaling pathways. Virus Res 2015; 208:89-97. [PMID: 26079065 DOI: 10.1016/j.virusres.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/24/2022]
Abstract
Rotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN). Macrophages, the front-line cells of innate immunity, produce IFN and other cytokines in response to viral infection. However, the role of macrophages during rotavirus infection is not well defined. We demonstrate here that RRV rotavirus triggers the production of proinflammatory cytokines from mouse bone marrow-derived macrophages. IFN and antiviral cytokine production was abolished in rotavirus-infected MAVS (-/-) macrophages. This indicates that rotavirus triggers innate immunity in macrophages through RIG-I and/or MDA5 viral recognition, and MAVS signaling is essential for cytokine responses in macrophages. Rotavirus induced IFN expression in both wild type and MDA5 (-/-) macrophages, showing that MDA5 is not essential for IFN secretion following infection, and RIG-I and MDA5 may act redundantly in promoting rotavirus recognition. Interestingly, rotavirus neither stimulated mitogen-activated protein kinases p38 and JNK nor activated the NLRP3 inflammasome, demonstrating that these components might not be involved in innate responses to rotavirus infection in macrophages. Our results indicate that rotavirus elicits intracellular signaling in macrophages, resulting in the induction of IFN and antiviral cytokines, and advance our understanding of the involvement of these cells in innate responses against rotavirus.
Collapse
|
45
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Huang W, Samanta M, Crawford SE, Estes MK, Neill FH, Atmar RL, Palzkill T. Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Eng Des Sel 2014; 27:339-49. [PMID: 24946948 PMCID: PMC4191442 DOI: 10.1093/protein/gzu023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/19/2014] [Accepted: 05/23/2014] [Indexed: 11/14/2022] Open
Abstract
Norovirus infections are a common cause of gastroenteritis and new methods to rapidly diagnose norovirus infections are needed. The goal of this study was to identify antibodies that have broad reactivity of binding to various genogroups of norovirus. A human scFv phage display library was used to identify two antibodies, HJT-R3-A9 and HJT-R3-F7, which bind to both genogroups I and II norovirus virus-like particles (VLPs). Mapping experiments indicated that the HJT-R3-A9 clone binds to the S-domain while the HJT-R3-F7 clone binds the P-domain of the VP1 capsid protein. In addition, a family of scFv antibodies was identified by elution of phage libraries from the GII.4 VLP target using a carbohydrate that serves as an attachment factor for norovirus on human cells. These antibodies were also found to recognize both GI and GII VLPs in enzyme-linked immunosorbent assay (ELISA) experiments. The HJT-R3-A9, HJT-R3-F7 and scFv antibodies identified with carbohydrate elution were shown to detect antigen from a clinical sample known to contain GII.4 norovirus but not a negative control sample. Finally, phages displaying the HJT-R3-A9 scFv can be used directly to detect both GI.1 and GII.4 norovirus from stool samples, which has the potential to simplify and reduce the cost of diagnostics based on antibody-based ELISA methods.
Collapse
Affiliation(s)
- Wanzhi Huang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Moumita Samanta
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
47
|
Park JG, Kim DS, Matthijnssens J, Kwon HJ, Zeller M, Alfajaro MM, Son KY, Hosmillo M, Ryu EH, Kim JY, Lee JH, Park SJ, Kang MI, Kwon J, Choi JS, Cho KO. Comparison of pathogenicities and nucleotide changes between porcine and bovine reassortant rotavirus strains possessing the same genotype constellation in piglets and calves. Vet Microbiol 2014; 172:51-62. [DOI: 10.1016/j.vetmic.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
|
48
|
Watanabe E, Tanaka K, Takeda N, Watanabe M. Six cases of life-threatening peptic ulcer bleeding associated with virus infection. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2014. [DOI: 10.1016/j.epsc.2014.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J 2014; 33:366-71. [PMID: 24136370 DOI: 10.1097/inf.0000000000000118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rotavirus (RV) antigenemia and RNAemia are common findings in rotavirus-infected children. Sporadic associations between RV antigenemia and extraintestinal manifestations of RV infection have been observed. We examined the clinical severity of RV gastroenteritis in patients with and without RV antigenemia or RNAemia. METHODS Stool, serum and whole blood samples were collected from children seen with acute gastroenteritis in Tampere University Hospital and studied for RV using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Only exclusively RV-positive specimens were included into this study. The patients were divided into groups according to RV findings from stool, serum and blood specimens. Clinical manifestations were graded according to 20-point Vesikari scoring system. RESULTS Of 374 children, 155 (41%) had RV in their stools. Of these 155 children, 105 (67%) were found to have RV RNA in the serum; of those, 94 (90%) had also RV enzyme-linked immunosorbent assay antigen. Thus antigenemia occurred in 61% (94 cases) of RV-infected children all of whom had concomitant RNAemia. Neither antigenemia nor RNAemia were detected in 85 patients with non-RV gastroenteritis. Patients who had RV RNA and RV antigen in both serum and stools were more likely to have a higher level of fever and more severe vomiting than patients who had RV only in stools. G1 genogroup RV was more often associated with RNAemia and antigenemia than other genogroups combined. CONCLUSION Rotavirus antigenemia and viremia are commonly detected in children hospitalized for RV gastroenteritis and may be associated with increased severity of fever and vomiting.
Collapse
|
50
|
Evidences and consequences of extra-intestinal spread of rotaviruses in humans and animals. Virusdisease 2014; 25:186-94. [PMID: 25674584 DOI: 10.1007/s13337-014-0197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022] Open
Abstract
Rotavirus is recognized as one of the main diarrheal pathogens in young children and animals. The prevailing central dogma of rotavirus infection states that the infection is confined in the gastrointestinal tract. However, increasing evidences indicate that rotavirus infection is systemic. Clinical case reports of systemic manifestations to rotavirus infection in children has continued to accumulate over the past years. The use of animal models provided pathological and molecular evidences for extra-intestinal infection of rotaviruses. The mechanism correlated with the extra-intestinal spread of rotavirus infection from the intestine is through cell-free and cell-associated viremia. The extent of the extra-intestinal spread of rotavirus infection has not yet been fully elucidated; whether it can only affect a limited number of organs and tissues or capable of involving the body as a whole. Moreover, the influence of systemic rotavirus infections remains to be determined. In this review, combination of previous and new data are outlined to help in better understanding of the extra-intestinal infections of rotaviruses.
Collapse
|