1
|
Donnelly NA, Tsang RSM, Foley ÉM, Fraser H, Hanson AL, Khandaker GM. Blood immuno-metabolic biomarker signatures of depression and affective symptoms in young adults. Brain Behav Immun 2025; 128:S0889-1591(25)00186-2. [PMID: 40374127 DOI: 10.1016/j.bbi.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025] Open
Abstract
BACKGROUND Depression is associated with alterations in immuno-metabolic biomarkers, but it remains unclear whether these alterations are limited to specific markers, and whether there are subtypes of depression and depressive symptoms which are associated with specific patterns of immuno-metabolic dysfunction. METHODS To investigate whether immuno-metabolic biomarkers could be used to profile subtypes of depression, we applied regression, clustering, and machine learning to a dataset comprising depression diagnosis, depressive and anxiety symptoms, and blood-based immunological and metabolic biomarkers (n = 118). We measured inflammatory proteins, cell count, lipids, hormones, and metabolites from up to n = 4161 participants (2363 female, 337 with depression) aged 24 years from the Avon Longitudinal Study of Parents and Children birth cohort. RESULTS Depression at age 24 was associated with both altered concentrations of immuno-metabolic markers, and increased extreme-valued inflammatory markers. Inflammatory and metabolic biomarkers show distinct, opposing associations with somatic and anxiety symptoms. We identified two latent components representing the relationship between blood biomarkers, symptoms, and covariates, one characterised by higher somatic symptoms and inflammatory markers (neutrophils, WBC, IL-6), and the other characterised by higher anxiety and worry and lower inflammatory markers (CRP, WBC, IL-6). Individuals with higher somatic-inflammatory component scores had greater depressive symptoms severity over the next five years. Immuno-metabolic biomarkers predicted depression diagnosis (Balanced Accuracy = 0.580) and depression with high somatic symptoms (Balanced Accuracy = 0.575) better than chance, but not depression with high anxiety symptoms (Balanced Accuracy = 0.479). CONCLUSIONS Alterations in immuno-metabolic homeostasis is present in young adults with depression well before the typical age of onset of cardiometabolic diseases. The relationships between affective symptoms and blood immuno-metabolic biomarkers indicate two biotypes of depressive symptoms (somatic-inflamed vs anxious-non-inflamed). These patterns are relevant for prognosis and prediction, highlighting the potential usefulness of immuno-metabolic biomarkers for depression subtyping.
Collapse
Affiliation(s)
- Nicholas A Donnelly
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK.
| | - Ruby S M Tsang
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Éimear M Foley
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Holly Fraser
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Aimee L Hanson
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
2
|
Rose JP, Morgan DA, Sullivan AI, Fu X, Inigo-Vollmer M, Burgess SC, Meyerholz DK, Rahmouni K, Potthoff MJ. FGF21 reverses MASH through coordinated actions on the CNS and liver. Cell Metab 2025:S1550-4131(25)00252-9. [PMID: 40367940 DOI: 10.1016/j.cmet.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/24/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing public health burden with limited therapeutic options. Recent studies have revealed that fibroblast growth factor 21 (FGF21)-based analogs can significantly improve MASH, but the mechanisms for this effect are not well understood. Here, we demonstrate that the beneficial metabolic effects of FGF21 to reverse MASH are mediated through distinct mechanisms to independently lower hepatic triglyceride and cholesterol levels. Specifically, FGF21 signaling directly to glutamatergic neurons in the central nervous system (CNS) stimulates hepatic triglyceride reduction and reversal of fibrosis, whereas FGF21 signaling directly to hepatocytes is necessary and sufficient to reduce hepatic cholesterol levels in mice. Mechanistically, we show that FGF21 acts in the CNS to increase sympathetic nerve activity to the liver, which suppresses hepatic de novo lipogenesis. These results provide critical insights into a promising pharmacological target to treat MASH.
Collapse
Affiliation(s)
- Jesse P Rose
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - David K Meyerholz
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans' Affairs Medical Center, Iowa City, IA 52242, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA.
| |
Collapse
|
3
|
Wong SW, Yang YY, Chen H, Xie L, Shen XZ, Zhang NP, Wu J. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 2025; 46:1145-1155. [PMID: 39870846 PMCID: PMC12032127 DOI: 10.1038/s41401-024-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.
Collapse
Affiliation(s)
- Shu Wei Wong
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Abulaban A, Al‐kuraishy H, Al‐Gareeb A, Ahmed E, Alruwaili M, Alexiou A, Papadakis M, El‐Saber Batiha G. The Possible Role of Metformin and Fibroblast Growth Factor-21 in Multiple Sclerosis Neuropathology: Birds of a Feather Flock Together. Eur J Neurosci 2025; 61:e70067. [PMID: 40172524 PMCID: PMC11963988 DOI: 10.1111/ejn.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
Multiple sclerosis (MS) is a progressive demyelinating disease of the CNS, characterized by inflammation, the formation of CNS plaques, and damage to the neuronal myelin sheath (Graphical abstract). Fibroblast growth factor 21 (FGF21) is involved in various metabolic disorders and neurodegenerative diseases. FGF21 and its co-receptor β-Kloth are essential in the remyelination process of MS. Metformin, an insulin-sensitizing drug that is the first-line treatment for type 2 diabetes mellitus (T2DM), may have a potential neuroprotective impact by up-regulating the production of FGF21, which may prevent the onset of neurodegenerative diseases including MS. The purpose of this review is to clarify how metformin affects MS neuropathology mechanistically via modifying FGF21. Metformin increases the expression of FGF21. Metformin also increases the expression of β-Klotho, modulates oxidative stress, reduces glutamate-induced excitotoxicity, and regulates platelet function and coagulation cascades. In conclusion, metformin can enhance the functional activity of FGF21 in counteracting the development and progression of MS. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad A. Abulaban
- College of MedicineKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
- Division of Neurology, King Abdulaziz Medical CityMinistry of the National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
6
|
Zhang X, Li Z, Wang S, Chen Y. Distinct Fgf21 Expression Patterns in Various Tissues in Response to Different Dietary Regimens Using a Reporter Mouse Model. Nutrients 2025; 17:1179. [PMID: 40218937 PMCID: PMC11990235 DOI: 10.3390/nu17071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Fibroblast growth factor 21 (FGF21), a secreted protein, plays a crucial role in regulating metabolism and energy homeostasis. Nevertheless, the expression pattern of Fgf21 across diverse tissues and its responsiveness to various dietary regimens remain incompletely understood. Methods: In this study, we developed a Fgf21-enhanced green fluorescent protein (EGFP) reporter mouse model to explore the expression of endogenous Fgf21 in different tissues under four dietary conditions: normal chow, low-protein diet, fasting, and fasting-refeeding. Results: A low-protein diet was found to induce Fgf21 expression in both the liver and skeletal muscle. Notably, Fgf21 was predominantly expressed in the periportal region of the liver. In the pancreas, Fgf21 exhibited a patchy expression pattern in the exocrine portion, but was absent in the endocrine part, regardless of the dietary regimens. Regarding the spleen, fasting triggered the expression of Fgf21, which was mainly localized in the red pulp area. Moreover, under fasting conditions, Fgf21 showed a scattered expression pattern in the small intestine. Conclusions: The Fgf21-EGFP reporter mouse model serves as a valuable tool for dissecting the expression of endogenous Fgf21 in different tissues under various dietary and stress conditions. Further investigations using this model may contribute to uncovering the hitherto unrecognized functions of locally produced FGF21.
Collapse
Affiliation(s)
- Xinhui Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixuan Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuying Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Chen L, Gao M, Ong SB, Gong G. Functions of FGF21 and its role in cardiac hypertrophy. J Adv Res 2025:S2090-1232(25)00148-1. [PMID: 40089060 DOI: 10.1016/j.jare.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND FGF21 is a stress-inducible hormone that operates in the autocrine or paracrine manner. Recent reports have revealed that FGF21 is highly expressed in cardiac hypertrophy to protect against heart injury and dysfunction. FGF21 is used to treat cardiac hypertrophy in mouse models. However, preclinical and clinical trials are restricted. AIM OF REVIEW This review mainly elucidates the diverse functions of FGF21 and explores the relationship between these functions and cardiac hypertrophy. It also discusses challenges and future perspectives in treating cardiac hypertrophy with FGF21. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the functions of FGF21, including energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. We also summarize vital functions and the underlying mechanisms through which FGF21 regulates the initiation and development of cardiac hypertrophy, connecting energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. Finally, we propose that FGF21 may be a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meng Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
9
|
Dzhemileva LU, Zakharova EN, Goncharenko AO, Vorontsova MV, Rumyantsev SA, Mokrysheva NG, Loguinova MY, Chekhonin VP. Current views on etiology, diagnosis, epidemiology and gene therapy of maturity onset diabetes in the young. Front Endocrinol (Lausanne) 2025; 15:1497298. [PMID: 39902162 PMCID: PMC11788143 DOI: 10.3389/fendo.2024.1497298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
MODY, or maturity-onset diabetes of the young, is a group of monogenic diseases characterized by autosomal dominant inheritance of a non-insulin-dependent form of diabetes that classically manifests in adolescence or in young adults under 25 years of age. MODY is a rare cause of diabetes, accounting for 1% of all cases, and is often misdiagnosed as type 1 or type 2 diabetes. It is of great importance to accurately diagnose MODY, as this allows for the most appropriate treatment of patients and facilitates early diagnosis for them and their families. This disease has a high degree of phenotypic and genetic polymorphism. The most prevalent forms of the disease are attributed to mutations in three genes: GCK (MODY 2) and (HNF)1A/4A (MODY 3 and MODY 1). The remaining MODY subtypes, which are less prevalent, have been identified by next generation sequencing (NGS) in the last decade. Mutations in the GCK gene result in asymptomatic, stable fasting hyperglycemia, which does not require specific treatment. Mutations in the HNF1A and HNF4A genes result in pancreatic β-cell dysfunction, which in turn causes hyperglycemia. This often leads to diabetic angiopathy. The most commonly prescribed drugs for the treatment of hyperglycemia are sulfonylurea derivatives. Nevertheless, with advancing age, some patients may require insulin therapy due to the development of resistance to sulfonylurea drugs. The strategy of gene therapy for monogenic forms of MODY is still an experimental approach, and it is unlikely to be widely used in the clinic due to the peculiarities of MODY structure and the high genetic polymorphism and clinical variability even within the same form of the disease. Furthermore, there is a lack of clear gene-phenotypic correlations, and there is quite satisfactory curability in the majority of patients. This review presents the main clinical and genetic characteristics and mutation spectrum of common and rarer forms of MODY, with a detailed analysis of the field of application of AVV vectors in the correction of hyperglycemia and insulin resistance.
Collapse
|
10
|
Yoshida Y, Shinomiya A, Oikawa M, Shimada T, Hanaki KI, Watanabe Y. [Neonatal Malnutrition Impacts Fibroblast Growth Factor 21-induced Neurite Outgrowth and Growth Hormone-releasing Hormone Secretion in Neonatal Mouse Brain]. YAKUGAKU ZASSHI 2025; 145:183-188. [PMID: 40024730 DOI: 10.1248/yakushi.24-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Neonatal malnutrition has been suggested as a factor contributing to neurological and other disorders. However, the details of this mechanism remain unclear. We focused on fibroblast growth factor 21 (FGF21), an endocrine factor produced in the liver during lactation-the main source of nutrition during the neonatal period- and analyzed its role in the brain. From the RNA-seq analysis of mouse brains, we analyzed the genes whose expression was regulated by FGF21 and their respective functions. We found that FGF21 has two functions in the neonatal brain; FGF21 induces the production of growth hormone-releasing hormone (GHRH) in the hypothalamus and is involved in isoform determination of Kalirin, a Ras homologous guanine nucleotide exchange factor, and promotes neurite outgrowth in the brain. Furthermore, the above mechanism is regulated by SH2-containing tyrosine phosphatase (SHP2) activity downstream of the FGF receptor. Additionally, the conserved intron of the SHP2 gene, Ptpn11, shows altered activity in malnourished mouse brains. In summary, FGF21 functions in neurite outgrowth and GHRH production in the neonatal mouse brain, with the mechanism being regulated by SHP2. However, SHP2 activity depends on nutritional status. Our goal was to elucidate the mechanisms by which FGF21 is involved in the maintenance of the central nervous system during the neonatal period. This study provides new insights into the role of FGF21 in diseases caused by dysfunction due to malnutrition.
Collapse
Affiliation(s)
- Yuko Yoshida
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | | | | | | | - Ken-Ichi Hanaki
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | - Yoshifumi Watanabe
- Faculty of Pharmacy, Musashino University
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
11
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
12
|
Obo T, Hashiguchi H, Matsuda E, Kawade S, Ogiso K, Iwai H, Ataka K, Yasuda O, Arimura A, Deguchi T, Morino K, Asakawa A, Nishio Y. The Anti-Obesity Effect of Fish Oil in Diet-Induced Obese Mice Occurs via Both Decreased Food Intake and the Induction of Heat Production Genes in Brown but Not White Adipose Tissue. Int J Mol Sci 2024; 26:302. [PMID: 39796158 PMCID: PMC11719521 DOI: 10.3390/ijms26010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice. C57BL/6J mice were fed a lard-based high-fat diet (LD) for 8 weeks and then assigned to either a fish oil-based high-fat diet (FOD) or continued the LD for additional 8 weeks. A control group was fed a standard diet for 16 weeks. Mice fed the FOD showed weight loss, reduced adipose tissue mass, and lower plasma insulin and leptin levels compared to those fed the LD. Rectal temperatures were higher in the FOD and LD groups compared to the control group. Energy intake was lower in the FOD group than the LD group but similar to the control group. The FOD and LD groups exhibited increased expression of heat-producing genes such as Ppargc1a, Ucp1, Adrb3, and Ppara in brown adipose tissue but not in white adipose tissue. The FOD reduced food consumption and increased rectal temperature and heat-producing genes in brown adipose tissue. Fish oil may therefore be a potential therapeutic approach to obesity.
Collapse
MESH Headings
- Animals
- Fish Oils/pharmacology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Obesity/metabolism
- Obesity/etiology
- Obesity/drug therapy
- Obesity/genetics
- Mice
- Diet, High-Fat/adverse effects
- Male
- Mice, Inbred C57BL
- Eating/drug effects
- Anti-Obesity Agents/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Mice, Obese
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Leptin/blood
- Insulin/blood
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- PPAR alpha/genetics
- PPAR alpha/metabolism
Collapse
Affiliation(s)
- Takahiko Obo
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Eriko Matsuda
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shigeru Kawade
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Koji Ataka
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, Kagoshima Immaculate Heart University, Kagoshima 895-0011, Japan;
| | - Osamu Yasuda
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya 891-2311, Japan;
| | - Aiko Arimura
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Katsutaro Morino
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (T.O.); (H.H.); (S.K.); (K.O.); (A.A.); (T.D.); (Y.N.)
| |
Collapse
|
13
|
Zheng X, Zhu Z, Zhong C, Guo D, Bu X, Peng H, Xu T, Zhang Y. Plasma fibroblast growth factor 21 and risk of cognitive impairment among patients with ischemic stroke. Neuroscience 2024; 563:129-135. [PMID: 39536857 DOI: 10.1016/j.neuroscience.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Previous study reported that plasma fibroblast growth factor 21 (FGF-21) was associated with poor prognosis in patients with ischemic stroke. The purpose of present study was to prospectively investigate the relationship between plasma FGF-21 and post-stroke cognitive impairment (PSCI). METHODS A total of 600 patients from 7 hospitals were included in this study and plasma FGF-21 levels were examined for all the participants. Cognitive impairment was evaluated using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) at 3 months after ischemic stroke onset. RESULTS 323(53.8 %) or 419(69.8 %) participants had PSCI according to MMSE or MoCA at 3 months, respectively. After adjustment for age, National Institutes of Health stroke score, education, and other covariates, the odds ratio of PSCI defined by MMSE and MoCA for the highest vs lowest quartile of plasma FGF-21 was 1.77(1.05-2.98) and 2.40(1.35-4.29), respectively. Multiple-adjusted spline regression model showed a linear association between FGF-21 levels and PSCI (all P < 0.005 for linearity). Subgroup analyses further confirmed these results. CONCLUSION Elevated plasma FGF-21 level was associated with PSCI at 3 months after stroke independently of established conventional risk factors, suggesting that plasma FGF-21 may have potential prognostic value in risk stratification of PSCI.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Valdecantos MP, Ruiz L, Folgueira C, Rada P, Gomez-Santos B, Solas M, Hitos AB, Field J, Francisco V, Escalona-Garrido C, Zagmutt S, Calderon-Dominguez M, Mera P, Garcia-Martinez I, Maymó-Masip E, Grajales D, Alen R, Mora A, Sáinz N, Vides-Urrestarazu I, Vilarrasa N, Arbones-Mainar JM, Zaragoza C, Moreno-Aliaga MJ, Aspichueta P, Fernández-Veledo S, Vendrell J, Serra D, Herrero L, Schreiber R, Zechner R, Sabio G, Hornigold D, Rondinone CM, Jermutus L, Grimsby J, Valverde ÁM. The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk. Nat Commun 2024; 15:10342. [PMID: 39609390 PMCID: PMC11605122 DOI: 10.1038/s41467-024-54080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery. These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
- Faculty of Experimental Science, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain.
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Joss Field
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Vera Francisco
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Calderon-Dominguez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Irene Vides-Urrestarazu
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Nuria Vilarrasa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Obesity Unit and Endocrinology and Nutrition Departments, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Arbones-Mainar
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria/Servicio de Cardiología, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María J Moreno-Aliaga
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - David Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cristina M Rondinone
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Pep2Tango Therapeutics Inc., Potomac, MD, USA
| | - Lutz Jermutus
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joseph Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Regeneron Pharmaceuticals, Inc., Internal Medicine, Tarrytown, NY, USA
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Byun JK, Jung GS. Gemigliptin mitigates TGF-β-induced renal fibrosis through FGF21-mediated inhibition of the TGF-β/Smad3 signaling pathway. Biochem Biophys Res Commun 2024; 733:150425. [PMID: 39053104 DOI: 10.1016/j.bbrc.2024.150425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor 21 (FGF21), a well-known regulator of metabolic disorders, exhibits the potential to prevent renal fibrosis by negatively regulating the transforming growth factor β (TGF-β)/Smad3 signaling pathway. Gemigliptin and other dipeptidyl peptidase-4 inhibitors are frequently used for the management of patients with type 2 diabetes. However, the protective effect of gemigliptin against renal fibrosis, particularly its potential to upregulate the expression of FGF21, remains incompletely understood. This study assessed the renoprotective effects of gemigliptin against TGF-β-induced renal fibrosis by enhancing the expression of FGF21 in the cultured human proximal tubular epithelial cell line HK-2. Treatment with FGF21 effectively prevented TGF-β-induced renal fibrosis by attenuating the TGF-β/Smad3 signaling pathway. Similarly, gemigliptin exhibited protective effects against TGF-β-induced renal fibrosis by mitigating TGF-β/Smad3 signaling through the upregulation of FGF21 expression. However, the protective effects of gemigliptin were blocked when FGF21 expression was knocked down in TGF-β-treated HK-2 cells. These results indicate that gemegliptin has the potential to exhibit protective effects against TGF-β-induced renal fibrosis by elevating FGF21 expression levels in cultured human proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Jun-Kyu Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Gwon-Soo Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea.
| |
Collapse
|
16
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Zhou W, Du Z. Oleuropein mitigates non-alcoholic fatty liver disease (NAFLD) and modulates liver metabolites in high-fat diet-induced obese mice via activating PPARα. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8634-8645. [PMID: 38952322 DOI: 10.1002/jsfa.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism of oleuropein (OLE) ameliorates non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms. RESULTS Male C57BL/6J mice were fed either a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.03% (w/w) OLE for 16 weeks. OLE supplementation decreased body weight and liver weight, improved serum lipid profiles, and ameliorated HFD-induced hepatic dysfunction. Liver metabolomics analysis revealed that OLE increased the levels of nicotinamide, tauroursodeoxycholic acid, taurine, and docosahexaenoic acid, which were beneficial for lipid homeostasis and inflammation regulation. OLE exerted its protective effects by activating peroxisome proliferator-activated receptor alpha (PPARα), a key transcription factor that regulates fibroblast growth factor 21 (FGF21) expression and modulates lipid oxidation, lipogenesis and inflammation pathways. Importantly, OLE supplementation did not significantly affect body weight or liver weight in PPARα knockout (PPARα KO) mice, indicating that PPARα is essential for OLE-mediated NAFLD prevention. CONCLUSION Our results suggest that OLE alleviates NAFLD in mice by activating PPARα and modulating liver metabolites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Du
- The First People's Hospital of Lianyungang Public Health Department, Lianyungang, China
| |
Collapse
|
18
|
Pérez-Gutiérrez AM, Carmona R, Loucera C, Cervilla JA, Gutiérrez B, Molina E, Lopez-Lopez D, Pérez-Florido J, Zarza-Rebollo JA, López-Isac E, Dopazo J, Martínez-González LJ, Rivera M. Mutational landscape of risk variants in comorbid depression and obesity: a next-generation sequencing approach. Mol Psychiatry 2024; 29:3553-3566. [PMID: 38806690 DOI: 10.1038/s41380-024-02609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Major depression (MD) and obesity are complex genetic disorders that are frequently comorbid. However, the study of both diseases concurrently remains poorly addressed and therefore the underlying genetic mechanisms involved in this comorbidity remain largely unknown. Here we examine the contribution of common and rare variants to this comorbidity through a next-generation sequencing (NGS) approach. Specific genomic regions of interest in MD and obesity were sequenced in a group of 654 individuals from the PISMA-ep epidemiological study. We obtained variants across the entire frequency spectrum and assessed their association with comorbid MD and obesity, both at variant and gene levels. We identified 55 independent common variants and a burden of rare variants in 4 genes (PARK2, FGF21, HIST1H3D and RSRC1) associated with the comorbid phenotype. Follow-up analyses revealed significantly enriched gene-sets associated with biological processes and pathways involved in metabolic dysregulation, hormone signaling and cell cycle regulation. Our results suggest that, while risk variants specific to the comorbid phenotype have been identified, the genes functionally impacted by the risk variants share cell biological processes and signaling pathways with MD and obesity phenotypes separately. To the best of our knowledge, this is the first study involving a targeted sequencing approach toward the study of the comorbid MD and obesity. The framework presented here allowed a deep characterization of the genetics of the co-occurring MD and obesity, revealing insights into the mutational and functional profile that underlies this comorbidity and contributing to a better understanding of the relationship between these two disabling disorders.
Collapse
Affiliation(s)
- Ana M Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Rosario Carmona
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Jorge A Cervilla
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Psychiatry, Faculty of Medicine, University of Granada, Granada, Spain
| | - Blanca Gutiérrez
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Psychiatry, Faculty of Medicine, University of Granada, Granada, Spain
| | - Esther Molina
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Daniel Lopez-Lopez
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Javier Pérez-Florido
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Luis Javier Martínez-González
- Genomics Unit, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain.
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain.
| |
Collapse
|
19
|
Wilson RB, Chen YJ, Zhang R, Maini S, Andrews TS, Wang R, Borradaile NM. Elongation factor 1A1 inhibition elicits changes in lipid droplet size, the bulk transcriptome, and cell type-associated gene expression in MASLD mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 327:G608-G622. [PMID: 39136056 PMCID: PMC11482270 DOI: 10.1152/ajpgi.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Eukaryotic elongation factor 1A1 (EEF1A1), originally identified for its role in protein synthesis, has additional functions in diverse cellular processes. Of note, we previously discovered a role for EEF1A1 in hepatocyte lipotoxicity. We also demonstrated that a 2-wk intervention with the EEF1A1 inhibitor didemnin B (DB) (50 µg/kg) decreased liver steatosis in a mouse model of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) [129S6/SvEvTac mice fed Western diet (42% fat) for 26 wk]. Here, we further characterized the hepatic changes occurring in these mice by assessing lipid droplet (LD) size, bulk differential expression, and cell type-associated alterations in gene expression. Consistent with the previously demonstrated decrease in hepatic steatosis, we observed decreased median LD size in response to DB. Bulk RNA sequencing (RNA-Seq) followed by gene set enrichment analysis revealed alterations in pathways related to energy metabolism and proteostasis in DB-treated mouse livers. Deconvolution of bulk data identified decreased cell type association scores for cholangiocytes, mononuclear phagocytes, and mesenchymal cells in response to DB. Overrepresentation analyses of bulk data using cell type marker gene sets further identified hepatocytes and cholangiocytes as the primary contributors to bulk differential expression in response to DB. Thus, we show that chemical inhibition of EEF1A1 decreases hepatic LD size and decreases gene expression signatures associated with several liver cell types implicated in MASLD progression. Furthermore, changes in hepatic gene expression were primarily attributable to hepatocytes and cholangiocytes. This work demonstrates that EEF1A1 inhibition may be a viable strategy to target aspects of liver biology implicated in MASLD progression.NEW & NOTEWORTHY Chemical inhibition of EEF1A1 decreases hepatic lipid droplet size and decreases gene expression signatures associated with liver cell types that contribute to MASLD progression. Furthermore, changes in hepatic gene expression are primarily attributable to hepatocytes and cholangiocytes. This work highlights the therapeutic potential of targeting EEF1A1 in the setting of MASLD, and the utility of RNA-Seq deconvolution to reveal valuable information about tissue cell type composition and cell type-associated gene expression from bulk RNA-Seq data.
Collapse
Affiliation(s)
- Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Yun Jin Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Siddhant Maini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tallulah S Andrews
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
20
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
21
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Guha A, Si Y, Smith R, Kazamel M, Jiang N, Smith KA, Thalacker-Mercer A, Singh BK, Ho R, Andrabi SA, Pereira JDTDS, Salgado JS, Agrawal M, Velic EH, King PH. The myokine FGF21 associates with enhanced survival in ALS and mitigates stress-induced cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.611693. [PMID: 39314333 PMCID: PMC11419072 DOI: 10.1101/2024.09.11.611693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-related and fatal neurodegenerative disease characterized by progressive muscle weakness. There is marked heterogeneity in clinical presentation, progression, and pathophysiology with only modest treatments to slow disease progression. Molecular markers that provide insight into this heterogeneity are crucial for clinical management and identification of new therapeutic targets. In a prior muscle miRNA sequencing investigation, we identified altered FGF pathways in ALS muscle, leading us to investigate FGF21. We analyzed human ALS muscle biopsy samples and found a large increase in FGF21 expression with localization to atrophic myofibers and surrounding endomysium. A concomitant increase in FGF21 was detected in ALS spinal cords which correlated with muscle levels. FGF21 was increased in the SOD1G93A mouse beginning in presymptomatic stages. In parallel, there was dysregulation of the co-receptor, β-Klotho. Plasma FGF21 levels were increased and high levels correlated with slower disease progression, prolonged survival, and increased body mass index. In NSC-34 motor neurons and C2C12 muscle cells expressing SOD1G93A or exposed to oxidative stress, ectopic FGF21 mitigated loss of cell viability. In summary, FGF21 is a novel biomarker in ALS that correlates with slower disease progression and exerts trophic effects under conditions of cellular stress.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Reed Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nan Jiang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Katherine A. Smith
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anna Thalacker-Mercer
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brijesh K. Singh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaida A Andrabi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joao D Tavares Da Silva Pereira
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Juliana S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emina Horvat Velic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
23
|
Wang T, Tyler RE, Ilaka O, Cooper D, Farokhnia M, Leggio L. The crosstalk between fibroblast growth factor 21 (FGF21) system and substance use. iScience 2024; 27:110389. [PMID: 39055947 PMCID: PMC11269927 DOI: 10.1016/j.isci.2024.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Existing literature indicates that communication between the central nervous system and the peripheral nervous system is disrupted by substance use disorders (SUDs), including alcohol use disorder (AUD). Fibroblast growth factor 21 (FGF21), a liver-brain axis hormone governing energy homeostasis, has been shown to modulate alcohol intake/preference and other substances. To further elucidate the relationship between FGF21, alcohol use, and other substance use, we conducted a scoping review to explore the association between FGF21 and SUDs. Increases in FGF21 reduce alcohol consumption while suppressing FGF21 increases alcohol consumption, demonstrating an inverse relationship. Alcohol elevates FGF21 levels primarily via the liver, subsequently promoting neuronal signals to curb alcohol intake. FGF21 activation engages molecular pathways that defend against alcohol-induced fat accumulation, oxidative stress, and inflammation. Considering the bidirectional association between FGF21 and alcohol, further studies on the FGF21 system as a potential pharmacotherapy for AUD and alcohol-associated liver disease are warranted.
Collapse
Affiliation(s)
- Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Ryan E. Tyler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Oyenike Ilaka
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Albany Medical College, Albany, NY, USA
| | - Diane Cooper
- National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
24
|
Łukawska A, Mulak A. A correlation of serum fibroblast growth factor 21 level with inflammatory markers and indicators of nutritional status in patients with inflammatory bowel disease. Front Physiol 2024; 15:1394030. [PMID: 38983722 PMCID: PMC11231369 DOI: 10.3389/fphys.2024.1394030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that regulates nutrient and metabolic homeostasis. Inflammatory state is one of the stimulators of FGF21 secretion. The aim of the study was to assess correlations between serum FGF21 level and inflammatory markers as well as nutritional status indicators in patients with inflammatory bowel disease (IBD). Methods Fasting serum FGF21 level was measured using ELISA test in 105 IBD patients and 17 healthy controls. There were 31 subjects with active ulcerative colitis (UC), 16 with inactive UC, 36 with active Crohn's disease (CD), and 22 with inactive CD. Clinical and endoscopic activity of IBD was evaluated based on validated scales and indices. Fecal calprotectin, serum CRP, and selected parameters of nutritional status were tested in all patients. Results Serum FGF21 level was characterized by fluctuations depending on the IBD activity. FGF21 level was significantly higher in both active UC and CD compared to inactive phases of the diseases and to the controls. A correlation between FGF21 and fecal calprotectin levels was also found in UC and CD. Additionally, in CD, FGF21 level positively correlated with CRP level. In both UC and CD, a negative correlation was noted between FGF21 level and nutritional status parameters including cholesterol, protein, albumin levels, and BMI. Conclusion The intensity of intestinal inflammation is related to FGF21 level, which correlates negatively with nutritional status indicators in IBD. The disturbances in FGF21 secretion may contribute to the multifactorial pathogenesis of malnutrition and weight loss in IBD patients.
Collapse
Affiliation(s)
- Agata Łukawska
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Chui ZSW, Shen Q, Xu A. Current status and future perspectives of FGF21 analogues in clinical trials. Trends Endocrinol Metab 2024; 35:371-384. [PMID: 38423900 DOI: 10.1016/j.tem.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Recent advances in fibroblast growth factor 21 (FGF21) biology and pharmacology have led to the development of several long-acting FGF21 analogues and antibody-based mimetics now in various phases of clinical trials for the treatment of obesity-related metabolic comorbidities. The efficacy of these FGF21 analogues/mimetics on glycaemic control and weight loss is rather mild and inconsistent; nevertheless, several promising therapeutic benefits have been reproducibly observed in most clinical studies, including amelioration of dyslipidaemia (particularly hypertriglyceridaemia) and hepatic steatosis, reduction of biomarkers of liver fibrosis and injury, and resolution of metabolic dysfunction-associated steatohepatitis (MASH). Evidence is emerging that combination therapy with FGF21 analogues and other hormones (such as glucagon-like peptide 1; GLP-1) can synergise their pharmacological benefits, thus maximising the therapeutic efficacy for obesity and its comorbidities.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qing Shen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
26
|
Yang S, Wang F, Sun L, Liu X, Li S, Chen Y, Chen L, Pan Z, Kang Y, Chen YH, Wang W, Chen L, Li X, Tang C, Liu Y. The effects of BDNF rs6265 and FGF21 rs11665896 polymorphisms on alcohol use disorder-related impulsivity in Han Chinese adults. Front Psychiatry 2024; 15:1339558. [PMID: 38721616 PMCID: PMC11078301 DOI: 10.3389/fpsyt.2024.1339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. METHODS We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. RESULTS The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. CONCLUSION AND SIGNIFICANCE The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Lanrong Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xinqian Liu
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Lingling Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zeheng Pan
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Yu-Hsin Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chonghui Tang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Yanlong Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Kundimi S, Chinta G, Alluri KV, Golakoti T, Veeramachaneni S, Ramanathan G, Sengupta K. A Synergistic Botanical Composition Increases Resting Energy Expenditure and Reduces Adiposity in High-Fat Diet-Fed Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:286-295. [PMID: 38015050 DOI: 10.1080/27697061.2023.2280777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE An imbalance between dietary energy intake and energy expenditure may result in body fat gain or obesity. Increasing resting energy expenditure (REE) is an attractive strategy for managing body fat gain. The objective of the current study was to generate proof-of-concept data on a synergistic composition (LN19183) of Citrus aurantifolia fruit rind (CA) and Theobroma cacao seed (TC) extracts to increase REE and reduce body fat gain in a high-fat diet (HFD)-fed rats. METHOD In in vitro cell-based experiments, CA, TC, or LN19183 were tested for fibroblast growth factor 21 (FGF-21) production from 3T3-L1 mouse adipocytes. Uncoupling protein 1 (UCP-1) and beta3-adrenergic receptor (β3-AR) protein expressions in LN19183-treated 3T3-L1 lysates were also tested. The 56-day in vivo study in male Sprague Dawley (SD) rats (age: 12-14 weeks; body weight [b.w.]: 115-197 g) contained 2 phases of 28 days each of induction and supplementation. Seven rats received a regular rodent diet (RD) over 56 days. In the induction phase, 21 rats received HFD; in the supplementation phase, the obese rats (n = 7) received either HFD alone or in concurrence with a daily oral dose of either 100 or 250 mg/kg b.w. of LN19183 for 28 days. RESULTS In 3T3-L1 adipocytes, LN19183 synergistically increased FGF-21 production and dose-dependently increased β3-AR and UCP-1 protein expression. In HFD-fed rats, both doses of LN19183 supplementation significantly (p < 0.05) decreased the body weight gain, total fat mass, and liver weight and increased (p < 0.05) REE. High-dose LN19183 also significantly (p < 0.05) increased fat oxidation and UCP-1 protein expression in white fat tissue and reduced liver triglyceride (TG) level. LN19183-supplemented groups substantially reduced serum TG and glucose levels compared to the HFD rats. CONCLUSIONS LN19183 reduces body fat mass and weight gain via increased REE and fat oxidation in HFD-fed obese rats.
Collapse
Affiliation(s)
- Sreenath Kundimi
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Gopichand Chinta
- Department of Medical Affairs, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishnaraju Venkata Alluri
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Trimurtulu Golakoti
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | | | - Guru Ramanathan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Krishanu Sengupta
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
29
|
Zhang X, Zheng H, Ni Z, Shen Y, Wang D, Li W, Zhao L, Li C, Gao H. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cereb Cortex 2024; 34:bhad502. [PMID: 38220573 PMCID: PMC10839844 DOI: 10.1093/cercor/bhad502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3β signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhitao Ni
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenqing Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
30
|
Chen H, Lee SJ, Li R, Sura A, Suen N, Dilip A, Pomogov Y, Vuppalapaty M, Suen TT, Lu C, Post Y, Li Y. BRAIDing receptors for cell-specific targeting. eLife 2024; 12:RP90221. [PMID: 38193894 PMCID: PMC10945505 DOI: 10.7554/elife.90221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Systemic toxicity is a major challenge in the development of therapeutics. Consequently, cell-type-specific targeting is needed to improve on-target efficacy while reducing off-target toxicity. Here, we describe a cell-targeting system we have termed BRAID (BRidged Activation by Intra/intermolecular Division) whereby an active molecule is divided into two inactive or less active parts that are subsequently brought together via a so-called 'bridging receptor' on the target cell. This concept was validated using the WNT/β-catenin signaling system, demonstrating that a multivalent WNT agonist molecule divided into two inactive components assembled from different epitopes via the hepatocyte receptor βKlotho induces signaling specifically on hepatocytes. These data provide proof of concept for this cell-specific targeting strategy, and in principle, this may also allow activation of multiple signaling pathways where desirable. This approach has broad application potential for other receptor systems.
Collapse
Affiliation(s)
- Hui Chen
- Surrozen IncSouth San FranciscoUnited States
| | | | - Ryan Li
- Surrozen IncSouth San FranciscoUnited States
| | - Asmiti Sura
- Surrozen IncSouth San FranciscoUnited States
| | | | | | - Yan Pomogov
- Surrozen IncSouth San FranciscoUnited States
| | | | | | | | - Yorick Post
- Surrozen IncSouth San FranciscoUnited States
| | - Yang Li
- Surrozen IncSouth San FranciscoUnited States
| |
Collapse
|
31
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Van Hove JL, Friederich MW, Strode DK, Van Hove RA, Miller KR, Sharma R, Shah H, Estrella J, Gabel L, Horslen S, Kohli R, Lovell MA, Miethke AG, Molleston JP, Romero R, Squires JE, Alonso EM, Guthery SL, Kamath BM, Loomes KM, Rosenthal P, Mysore KR, Cavallo LA, Valentino PL, Magee JC, Sundaram SS, Sokol RJ. Protein biomarkers GDF15 and FGF21 to differentiate mitochondrial hepatopathies from other pediatric liver diseases. Hepatol Commun 2024; 8:e0361. [PMID: 38180987 PMCID: PMC10781130 DOI: 10.1097/hc9.0000000000000361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Mitochondrial hepatopathies (MHs) are primary mitochondrial genetic disorders that can present as childhood liver disease. No recognized biomarkers discriminate MH from other childhood liver diseases. The protein biomarkers growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) differentiate mitochondrial myopathies from other myopathies. We evaluated these biomarkers to determine if they discriminate MH from other liver diseases in children. METHODS Serum biomarkers were measured in 36 children with MH (17 had a genetic diagnosis); 38 each with biliary atresia, α1-antitrypsin deficiency, and Alagille syndrome; 20 with NASH; and 186 controls. RESULTS GDF15 levels compared to controls were mildly elevated in patients with α1-antitrypsin deficiency, Alagille syndrome, and biliary atresia-young subgroup, but markedly elevated in MH (p<0.001). FGF21 levels were mildly elevated in NASH and markedly elevated in MH (p<0.001). Both biomarkers were higher in patients with MH with a known genetic cause but were similar in acute and chronic presentations. Both markers had a strong performance to identify MH with a molecular diagnosis with the AUC for GDF15 0.93±0.04 and for FGF21 0.90±0.06. Simultaneous elevation of both markers >98th percentile of controls identified genetically confirmed MH with a sensitivity of 88% and specificity of 96%. In MH, independent predictors of survival without requiring liver transplantation were international normalized ratio and either GDF15 or FGF21 levels, with levels <2000 ng/L predicting survival without liver transplantation (p<0.01). CONCLUSIONS GDF15 and FGF21 are significantly higher in children with MH compared to other childhood liver diseases and controls and, when combined, were predictive of MH and had prognostic implications.
Collapse
Affiliation(s)
- Johan L.K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Dana K. Strode
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Roxanne A. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Kristen R. Miller
- Section of Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rohit Sharma
- Department of Molecular Biology and Department of Medicine, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Hardik Shah
- Department of Molecular Biology and Department of Medicine, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Estrella
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Linda Gabel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Simon Horslen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mark A. Lovell
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Alexander G. Miethke
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jean P. Molleston
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Indiana University and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - James E. Squires
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Estella M. Alonso
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Stephen L. Guthery
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Spencer F. Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Intermountain Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip Rosenthal
- Departments of Pediatrics and Surgery, University of California San Francisco, San Francisco, California, USA
| | - Krupa R. Mysore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Laurel A. Cavallo
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Pamela L. Valentino
- Division of Gastroenterology and Hepatology, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - John C. Magee
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shikha S. Sundaram
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
33
|
Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, Freire T, Pulpitel T, Senior AM, Hoy AJ, Aung O, Le Couteur DG, Raubenheimer D, Rose AJ, Conigrave AD, Simpson SJ. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. Cell Rep 2023; 42:113536. [PMID: 38060447 DOI: 10.1016/j.celrep.2023.113536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Medicine, The University of Notre Dame, Darlinghurst, NSW 2010, Australia.
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Okka Aung
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW 2139, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
34
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
35
|
Goyon V, Besse‐Patin A, Zunino R, Ignatenko O, Nguyen M, Coyaud É, Lee JM, Nguyen BN, Raught B, McBride HM. MAPL loss dysregulates bile and liver metabolism in mice. EMBO Rep 2023; 24:e57972. [PMID: 37962001 PMCID: PMC10702803 DOI: 10.15252/embr.202357972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Mitochondrial and peroxisomal anchored protein ligase (MAPL) is a dual ubiquitin and small ubiquitin-like modifier (SUMO) ligase with roles in mitochondrial quality control, cell death and inflammation in cultured cells. Here, we show that MAPL function in the organismal context converges on metabolic control, as knockout mice are viable, insulin-sensitive, and protected from diet-induced obesity. MAPL loss leads to liver-specific activation of the integrated stress response, inducing secretion of stress hormone FGF21. MAPL knockout mice develop fully penetrant spontaneous hepatocellular carcinoma. Mechanistically, the peroxisomal bile acid transporter ABCD3 is a primary MAPL interacting partner and SUMOylated in a MAPL-dependent manner. MAPL knockout leads to increased bile acid production coupled with defective regulatory feedback in liver in vivo and in isolated primary hepatocytes, suggesting cell-autonomous function. Together, our findings establish MAPL function as a regulator of bile acid synthesis whose loss leads to the disruption of bile acid feedback mechanisms. The consequences of MAPL loss in liver, along with evidence of tumor suppression through regulation of cell survival pathways, ultimately lead to hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Vanessa Goyon
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | | | - Rodolfo Zunino
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Olesia Ignatenko
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Mai Nguyen
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| | - Étienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Jonathan M Lee
- Biochemistry, Microbiology & ImmunologyUniversity of OttawaOttawaONCanada
| | - Bich N Nguyen
- Department of Pathology and Cell BiologyUniversity of MontrealMontrealQCCanada
- University of Montreal Health NetworkMontrealQCCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Heidi M McBride
- Montreal Neurological InstituteMcGill UniversityMontrealQCCanada
| |
Collapse
|
36
|
Yang C, Wang W, Deng P, Wang X, Zhu L, Zhao L, Li C, Gao H. Fibroblast growth factor 21 ameliorates behavior deficits in Parkinson's disease mouse model via modulating gut microbiota and metabolic homeostasis. CNS Neurosci Ther 2023; 29:3815-3828. [PMID: 37334756 PMCID: PMC10651963 DOI: 10.1111/cns.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
AIMS The effects of FGF21 on Parkinson's disease (PD) and its relationship with gut microbiota have not been elucidated. This study aimed to investigate whether FGF21 would attenuate behavioral impairment through microbiota-gut-brain metabolic axis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice model. METHODS Male C57BL/6 mice were rendomized into 3 groups: vehicle (CON); MPTP 30 mg/kg/day i.p. injection (MPTP); FGF21 1.5 mg/kg/d i.p. injection plus MPTP 30 mg/kg/day i.p. injection (FGF21 + MPTP). The behavioral features, metabolimics profiling, and 16 s rRNA sequencing were performed after FGF21 treatment for 7 days. RESULTS MPTP-induced PD mice showed motor and cognitive deficits accompanied by gut microbiota dysbiosis and brain-region-specific metabolic abnormalities. FGF21 treatment dramatically attenuated motor and cognitive dysfunction in PD mice. FGF21 produced a region-specific alteration in the metabolic profile in the brain in ways indicative of greater ability in neurotransmitter metabolism and choline production. In addition, FGF21 also re-structured the gut microbiota profile and increased the relative abundance of Clostridiales, Ruminococcaceae, and Lachnospiraceae, thereby rescuing the PD-induced metabolic disorders in the colon. CONCLUSION These findings indicate that FGF21 could affect behavior and brain metabolic homeostasis in ways that promote a favorable colonic microbiota composition and through effects on the microbiota-gut-brain metabolic axis.
Collapse
Affiliation(s)
- Changwei Yang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Wuqiong Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Pengxi Deng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Lin Zhu
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
37
|
Vankrunkelsven W, Thiessen S, Derde S, Vervoort E, Derese I, Pintelon I, Matheussen H, Jans A, Goossens C, Langouche L, Van den Berghe G, Vanhorebeek I. Development of muscle weakness in a mouse model of critical illness: does fibroblast growth factor 21 play a role? Skelet Muscle 2023; 13:12. [PMID: 37537627 PMCID: PMC10401744 DOI: 10.1186/s13395-023-00320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/09/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.
Collapse
Affiliation(s)
- Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Steven Thiessen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ellen Vervoort
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hanne Matheussen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Alexander Jans
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
38
|
Yong F, Yan M, Zhang L, Ji W, Zhao S, Gao Y. Analysis of Functional Promoter of Camel FGF21 Gene and Identification of Small Compounds Targeting FGF21 Protein. Vet Sci 2023; 10:452. [PMID: 37505857 PMCID: PMC10383868 DOI: 10.3390/vetsci10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The fibroblast growth factor 21 (FGF21) gene plays an important role in the mechanism of glucose and lipid metabolism and is a promising therapeutic target for metabolic disease. Camels display a unique regulation characteristic of glucose and lipid metabolism, endowing them with the ability to adapt to survive drought and chronic hunger. However, the knowledge about the camel FGF21 gene regulation and its differences between humans and mice is still limited. In this study, camel FGF21 gene promoter was obtained for ~2000 bp upstream of the transcriptional start site (TSS). Bioinformatics analysis showed that the proximal promoter region sequences near the TSS between humans and camels have high similarity. Two potential core active regions are located in the -445-612 bp region. In addition, camel FGF21 promoter contains three CpG islands (CGIs), located in the -435~-1168 bp regions, significantly more and longer than in humans and mice. The transcription factor binding prediction showed that most transcription factors, including major functional transcription factors, are the same in different species although the binding site positions in the promoter are different. These results indicated that the signaling pathways involved in FGF21 gene transcription regulation are conservative in mammals. Truncated fragments recombinant vectors and luciferase reporter assay determined that camel FGF21 core promoter is located within the 800 bp region upstream of the TSS and an enhancer may exist between the -1000 and -2000 bp region. Combining molecular docking and in silico ADMET druggability prediction, two compounds were screened as the most promising candidate drugs specifically targeting FGF21. This study expanded the functions of these small molecules and provided a foundation for drug development targeting FGF21.
Collapse
Affiliation(s)
- Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
39
|
Le TDV, Fathi P, Watters AB, Ellis BJ, Besing GLK, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Fibroblast growth factor-21 is required for weight loss induced by the glucagon-like peptide-1 receptor agonist liraglutide in male mice fed high carbohydrate diets. Mol Metab 2023; 72:101718. [PMID: 37030441 PMCID: PMC10131131 DOI: 10.1016/j.molmet.2023.101718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, β-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal β-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.
Collapse
Affiliation(s)
- Thao D V Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Payam Fathi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Amanda B Watters
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Blair J Ellis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Misty B Perez
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Jesse P Rose
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Laurie L Baggio
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Jacqueline Koehler
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Jennifer L Brown
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA
| | - Michelle B Bales
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Kaitlyn G Nwaba
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA.
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Randy J Seeley
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
Lu C, Jin L, Bi J, Jin H, You X, Peng L, Fan H, Wang H, Wang L, Fan Z, Wang X, Liu B. Toxicokinetics of recombinant human fibroblast growth factor 21 for injection in cynomolgus monkey for 3 months. Front Pharmacol 2023; 14:1176136. [PMID: 37288111 PMCID: PMC10242211 DOI: 10.3389/fphar.2023.1176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Recombinant human fibroblast growth factor 21 (FGF-21) is a potential therapeutic agent for multiple metabolic diseases. However, little is known about the toxicokinetic characteristics of FGF-21. Methods: In the present study, we investigated the toxicokinetics of FGF-21 delivered via subcutaneous injection in vivo. Twenty cynomolgus monkeys were injected subcutaneously with different doses of FGF-21 for 86 days. Serum samples were collected at eight different time points (0, 0.5, 1.5, 3, 5, 8, 12, and 24 h) on day 1, 37 and 86 for toxicokinetic analysis. The serum concentrations of FGF-21 were measured using a double sandwich Enzyme-linked immunosorbent assay. Blood samples were collected on day 0, 30, 65, and 87 for blood and blood biochemical tests. Necropsy and pathological analysis were performed on d87 and d116 (after recovery for 29 days). Results: The average AUC(0-24h) values of low-dose FGF-21 on d1, d37, and d86 were 5253, 25268, and 60445 μg h/L, and the average AUC(0-24h) values of high-dose FGF-21 on d1, d37, and d86 were 19964, 78999, and 1952821 μg h/L, respectively. Analysis of the blood and blood biochemical indexes showed that prothrombin time and AST content in the high-dose FGF-21 group increased. However, no significant changes in other blood and blood biochemical indexes were observed. The anatomical and pathological results showed that continuous subcutaneous injection of FGF-21 for 86 days did not affect organ weight, the organ coefficient, and histopathology in cynomolgus monkeys. Discussion: Our results have guiding significance for the preclinical research and clinical use of FGF-21.
Collapse
Affiliation(s)
- Chao Lu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Lei Jin
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Jianing Bi
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongyi Jin
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Xinyi You
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Lulu Peng
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Haibing Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Huan Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Liangshun Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Zhengkai Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science, Wenzhou, China
| | - Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| |
Collapse
|
41
|
Du X, Cui Z, Zhang R, Zhao K, Wang L, Yao J, Liu S, Cai C, Cao Y. The Effects of Rumen-Protected Choline and Rumen-Protected Nicotinamide on Liver Transcriptomics in Periparturient Dairy Cows. Metabolites 2023; 13:metabo13050594. [PMID: 37233635 DOI: 10.3390/metabo13050594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
To investigate the effects of rumen-protected choline (RPC) and rumen-protected nicotinamide (RPM) on liver metabolic function based on transcriptome in periparturient dairy cows, 10 healthy Holstein dairy cows with similar parity were allocated to RPC and RPM groups (n = 5). The cows were fed experimental diets between 14 days before and 21 days after parturition. The RPC diet contained 60 g RPC per day, and the RPM diet contained 18.7 g RPM per day. Liver biopsies were taken 21 days after calving for the transcriptome analysis. A model of fat deposition hepatocytes was constructed using the LO2 cell line with the addition of NEFA (1.6 mmol/L), and the expression level of genes closely related to liver metabolism was validated and divided into a CHO group (75 μmol/L) and a NAM group (2 mmol/L). The results showed that the expression of a total of 11,023 genes was detected and clustered obviously between the RPC and RPM groups. These genes were assigned to 852 Gene Ontology terms, the majority of which were associated with biological process and molecular function. A total of 1123 differentially expressed genes (DEGs), 640 up-regulated and 483 down-regulated, were identified between the RPC and RPM groups. These DEGs were mainly correlated with fat metabolism, oxidative stress and some inflammatory pathways. In addition, compared with the NAM group, the gene expression level of FGF21, CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1 and CDH11 in the CHO group increased significantly (p < 0.05). We proposed that that RPC could play a prominent role in the liver metabolism of periparturient dairy cows by regulating metabolic processes such as fatty acid synthesis and metabolism and glucose metabolism; yet, RPM was more involved in biological processes such as the TCA cycle, ATP generation and inflammatory signaling.
Collapse
Affiliation(s)
- Xue'er Du
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhijie Cui
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rui Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Keliang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
42
|
Heparin is essential for optimal cell signaling by FGF21 and for regulation of βKlotho cellular stability. Proc Natl Acad Sci U S A 2023; 120:e2219128120. [PMID: 36745784 PMCID: PMC9962926 DOI: 10.1073/pnas.2219128120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While important insights were gained about how FGF21 and other endocrine fibroblast growth factors (FGFs) bind to Klotho proteins, the exact mechanism of Klotho/FGF receptor assembly that drives receptor dimerization and activation has not been elucidated. The prevailing dogma is that Klotho proteins substitute for the loss of heparan sulfate proteoglycan (HSPG) binding to endocrine FGFs by high-affinity binding of endocrine FGF molecules to Klotho receptors. To explore a potential role of HSPG in FGF21 signaling, we have analyzed the dynamic properties of FGF21-induced FGF21-βKlotho-FGFR1c complexes on the surface of living wild-type (WT) or HSPG-deficient Chinese hamster ovary (CHO) cells by employing quantitative single-molecule fluorescence imaging analyses. Moreover, detailed analyses of FGF21 and FGF1 stimulation of cellular signaling pathways activated in WT or in HSPG-deficient CHO cells are also analyzed and compared. These experiments demonstrate that heparin is required for the formation of FGF21-βKlotho-FGFR1c complexes on the cell membrane and that binding of heparin or HSPG to FGFR1c is essential for optimal FGF21 stimulation of FGFR1c activation, mitogen-activated protein kinase responses, and intracellular Ca2+ release. It is also shown that FGF1 binding stimulates assembly of βKlotho and FGFR1c on cell membranes, resulting in endocytosis and degradation of βKlotho. We conclude that heparin or HSPG is essential for FGF21 signaling and for regulation of βKlotho cellular stability by acting as a coligand of FGFR1c.
Collapse
|
43
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
44
|
Gao Y, Zhao S, Zhang W, Tang H, Yan M, Yong F, Bai X, Wu X, Zhang Y, Zhang Q. Localization of FGF21 Protein and Lipid Metabolism-Related Genes in Camels. Life (Basel) 2023; 13:life13020432. [PMID: 36836789 PMCID: PMC9959858 DOI: 10.3390/life13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wangdong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Wu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| |
Collapse
|
45
|
Fritsche K, Ziková-Kloas A, Marx-Stoelting P, Braeuning A. Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification. Int J Mol Sci 2023; 24:ijms24032686. [PMID: 36769005 PMCID: PMC9916672 DOI: 10.3390/ijms24032686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Collapse
Affiliation(s)
- Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andrea Ziková-Kloas
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-18412-25100
| |
Collapse
|
46
|
Ernesti I, Baratta F, Watanabe M, Risi R, Camajani E, Persichetti A, Tuccinardi D, Mariani S, Lubrano C, Genco A, Spera G, Gnessi L, Basciani S. Predictors of weight loss in patients with obesity treated with a Very Low-Calorie Ketogenic Diet. Front Nutr 2023; 10:1058364. [PMID: 36761216 PMCID: PMC9905243 DOI: 10.3389/fnut.2023.1058364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The Very Low-Calorie Ketogenic Diet (VLCKD) has emerged as a safe and effective intervention for the management of metabolic disease. Studies examining weight loss predictors are scarce and none has investigated such factors upon VLCKD treatment. Among the molecules involved in energy homeostasis and, more specifically, in metabolic changes induced by ketogenic diets, Fibroblast Growth Factor 21 (FGF21) is a hepatokine with physiology that is still unclear. Methods We evaluated the impact of a VLCKD on weight loss and metabolic parameters and assessed weight loss predictors, including FGF21. VLCKD is a severely restricted diet (<800 Kcal/die), characterized by a very low carbohydrate intake (<50 g/day), 1.2-1.5 g protein/kg of ideal body weight and 15-30 g of fat/day. We treated 34 patients with obesity with a VLCKD for 45 days. Anthropometric parameters, body composition, and blood and urine chemistry were measured before and after treatment. Results We found a significant improvement in body weight and composition and most metabolic parameters. Circulating FGF21 decreased significantly after the VLCKD [194.0 (137.6-284.6) to 167.8 (90.9-281.5) p < 0.001] and greater weight loss was predicted by lower baseline FGF21 (Beta = -0.410; p = 0.012), male sex (Beta = 0.472; p = 0.011), and central obesity (Beta = 0.481; p = 0.005). Discussion VLCKD is a safe and effective treatment for obesity and obesity related metabolic derangements. Men with central obesity and lower circulating FGF21 may benefit more than others in terms of weight loss obtained following this diet. Further studies investigating whether this is specific to this diet or to any caloric restriction are warranted.
Collapse
Affiliation(s)
- Ilaria Ernesti
- Surgical Endoscopy Unit, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy,*Correspondence: Ilaria Ernesti,
| | - Francesco Baratta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Renata Risi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Rome, Italy
| | - Agnese Persichetti
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Stefania Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo Genco
- Surgical Endoscopy Unit, Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Spera
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Jagodzińska A, Chudecka-Głaz A, Michalczyk K, Pius-Sadowska E, Wieder-Huszla S, Jurczak A, Machaliński B. The Diagnostic Role of FGF 21 in Endometrial Cancer and Other Pathologies of the Uterine Corpus. Diagnostics (Basel) 2023; 13:diagnostics13030399. [PMID: 36766504 PMCID: PMC9914808 DOI: 10.3390/diagnostics13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Endometrial cancer is becoming an increasing problem. Taking into account its pathomechanisms, we aimed to investigate whether FGF 21, an important metabolism regulator, could be used as a biomarker for endometrial cancer. The study included 233 patients who were classified into five subgroups depending on the result of the histological examination: endometrial carcinomas, sarcomas, endometrial polyps, fibroids, and normal endometrium. Statistically significantly higher FGF 21 levels were found in patients diagnosed with malignant lesions (p < 0.001). FGF 21 concentration correlated with the degree of cellular differentiation (p = 0.020) and the presence of lymph node metastases (p = 0.009). The diagnostic performance characteristics of FGF 21 as an EC diagnostic marker demonstrated an AUC of 0.677. Of all of the assessed biomarkers, FGF 21 had the highest specificity (90%), yet limited sensitivity (41%). Additionally, HE4 and CA 125 were confirmed to have roles as EC biomarkers, with a higher accuracy for HE4 (79% vs. 72%).
Collapse
Affiliation(s)
- Anna Jagodzińska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Kaja Michalczyk
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-204 Szczecin, Poland
- Correspondence:
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Sylwia Wieder-Huszla
- Department of Clinical Nursing, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Anna Jurczak
- Department of Clinical Nursing, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
48
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
49
|
Mizumoto T, Yoshizawa T, Sato Y, Ito T, Tsuyama T, Satoh A, Araki S, Tsujita K, Tamura M, Oike Y, Yamagata K. SIRT7 Deficiency Protects against Aging-Associated Glucose Intolerance and Extends Lifespan in Male Mice. Cells 2022; 11:cells11223609. [PMID: 36429037 PMCID: PMC9688483 DOI: 10.3390/cells11223609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.
Collapse
Affiliation(s)
- Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Tomonori Tsuyama
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba-shi 305-0074, Japan
| | - Yuichi Oike
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: ; Tel.: +81-96-373-5068; Fax: +81-96-364-6940
| |
Collapse
|
50
|
Falamarzi K, Malekpour M, Tafti MF, Azarpira N, Behboodi M, Zarei M. The role of FGF21 and its analogs on liver associated diseases. Front Med (Lausanne) 2022; 9:967375. [PMID: 36457562 PMCID: PMC9705724 DOI: 10.3389/fmed.2022.967375] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 07/25/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of fibroblast growth factor family, is a hormone-like growth factor that is synthesized mainly in the liver and adipose tissue. FGF21 regulates lipid and glucose metabolism and has substantial roles in decreasing lipogenesis and increasing hepatic insulin sensitivity which causing lipid profile improvement. FGF21 genetic variations also affect nutritional and addictive behaviors such as smoking and alcohol consumption and eating sweets. The role of FGF21 in metabolic associated diseases like diabetes mellitus had been confirmed previously. Recently, several studies have demonstrated a correlation between FGF21 and liver diseases. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease worldwide. NAFLD has a wide range from simple steatosis to steatohepatitis with or without fibrosis and cirrhosis. Elevated serum levels of FGF21 associated with NAFLD and its pathogenesis. Alcoholic fatty liver disease (AFLD), another condition that cause liver injury, significantly increased FGF21 levels as a protective factor; FGF21 can reverse the progression of AFLD and can be a potential therapeutic agent for it. Also, NAFLD and AFLD are the most important risk factors for hepatocellular carcinoma (HCC) which is the fourth deadliest cancer in the world. Several studies showed that lack of FGF21 induced oncogenic condition and worsened HCC. In this review article, we intend to discuss different aspects of FGF21 in NAFLD, AFLD and HCC; including the role of FGF21 in pathophysiology of these conditions, the effects of FGF21 mutations, the possible use of the FGF21 as a biomarker in different stages of these diseases, as well as the usage of FGF21 and its analog molecules in the treatment of these diseases.
Collapse
Affiliation(s)
- Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Fallah Tafti
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Behboodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|