1
|
Mitchelson KAJ, O'Connell F, Wynne K, Matallanas D, O'Sullivan J, Roche HM. Saturated fat exacerbates mitochondrial dysfunction through remodelling of ATP production and inflammation in Barrett's oesophagus compared to monounsaturated fat, particularly in contrast to oesophageal adenocarcinoma. Neoplasia 2025; 66:101173. [PMID: 40381373 DOI: 10.1016/j.neo.2025.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Obesity-related oesophageal adenocarcinoma (OAC), arising from Barrett's oesophagus (BO), incidence rates are rising coincident with high-fat diets. However, adipose tissue phenotype drives metabolic characteristics. Prior feeding studies demonstrated that obesogenic diets enriched in saturated fatty acids (SFA) induce a more adverse metabolic and pro-inflammatory adipose phenotype, compared to monounsaturated fatty acids (MUFA) enriched high-fat diets, despite equal obesity. We hypothesise that different fatty acids may alter the progression of BO to OAC, wherein SFA may be more pathogenic compared to MUFA. Proteomic analysis shows that SFA, not MUFA, increases fatty acid metabolism, oncogenic signalling, and mitochondrial respiratory chain to a greater extent in BO but not in OAC cells. Cellular metabolic analysis validated proteomic findings to show mitochondrial dysfunction in BO but showed an increase in glycolysis in OAC following SFA treatment compared to MUFA. Additionally, it showed a decrease in mitochondrial ATP production following treatment of SFA in BO and OAC cells. Reduction of SFA intake may be beneficial as a supplementary treatment approach to manage and/or prevent OAC progression.
Collapse
Affiliation(s)
- Kathleen A J Mitchelson
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Kieran Wynne
- UCD Conway Institute, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
2
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
3
|
Liu Q, Hao T, Yang B, Zhang J, Pan S, Wu C, Tang Y, Zhou Y, Zhao Z, Du J, Li Y, Mai K, Ai Q. Autophagy dysfunction links palmitic acid with macrophage inflammatory responses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110319. [PMID: 40209962 DOI: 10.1016/j.fsi.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Autophagy is a cellular degradation process reliant on lysosome, crucial for preserving intracellular homeostasis. The key saturated fatty acid palmitic acid (PA) has been demonstrated to exert regulatory effects on autophagic activity in mammals. However, the precise impact of PA on autophagy and its role in fish remains incompletely understood. Thus, this study aimed to investigate the regulation of PA on autophagy and explore the role of autophagy in inflammatory responses triggered by PA in the head kidney macrophages of large yellow croaker. This study indicates that PA exposure can inhibit macrophage autophagy by reducing the expression of genes related to autophagy (e.g., beclin1, ulk1, and lc3), activating the negative regulator mTORC1 signaling pathway (p70S6K and S6), and hindering autophagic flux. This effect was observed to be amplified with increasing exposure time and concentration of PA. Similarly to the in vitro results, the palm oil (PO) diet significantly reduced autophagic activity in the head kidney of the croaker in vivo. Subsequent studies demonstrated that restoring autophagy led to a notable reduction in the expression of PA and PO-induced pro-inflammatory genes (il-1β, il-6, tnf-α, and cox-2), the activation of the MAPK signaling pathway (p38 and JNK), and the NLRP3 inflammasome levels, both in vitro and in vivo. In contrast, further inhibition of autophagy produced the opposite effect in vitro. In conclusion, this study demonstrates that PA exerts a dynamic inhibitory effect on autophagy in the head kidney macrophage, which in turn promotes PA-induced inflammatory responses. These findings provide valuable insights into how PA influences autophagy and inflammatory responses in fish immune cells, contributing to the theoretical framework for improving the use of vegetable oils in aquaculture.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jinze Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Shijie Pan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Caixia Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China.
| |
Collapse
|
4
|
Liu C, Zhou R, Chen B, Yan X, Guo L, Tang Y, Zuo X, Guo X, Yu H, Chen J, Guo Z, Wang F, Xu C. Inflammatory microenvironment-responsive nanomicelles for acute lung injury therapy: ROS-scavenging and macrophage repolarization. Mater Today Bio 2025; 31:101622. [PMID: 40104650 PMCID: PMC11919404 DOI: 10.1016/j.mtbio.2025.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The pathogenesis of acute lung injury (ALI) is characterized by an uncontrolled inflammatory response, marked by excessive production of reactive oxygen species (ROS) and the infiltration of inflammatory cells, particularly macrophages, which play a pivotal role in disease progression. The synergistic effect of ROS scavenging and macrophage repolarization provides a promising strategy for effective ALI treatment. Herein, we developed a novel type of self-assembling nanomicelles, which were composed of poly-L-glutamic acid (PLG) and 4-Hydroxymethyl phenylboronic acid (PBA). The nanomicelles (PPDex micelles) had a high drug-loading capacity for dexamethasone (Dex) based on boronic ester bonds, which exhibited reversible cleavage under inflammatory conditions characterized by elevated levels of ROS or decreased pH values. These PPDex micelles revealed rapid drug-responsive release behavior in the inflammatory environment, and in vivo studies demonstrated their efficacy in modulating cytokines, inhibiting oxidative stress, and promoting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, which ultimately suppressed the progression of ALI. Moreover, the PPDex micelles had the effective ability to effectively suppress the NF-кB and ROS/NLRP3 inflammatory pathways. Therefore, this study presented a novel and potent therapeutic strategy for ALI treatment, which could promote the clinical application of polymer nanomicelles in the treatment of ALI.
Collapse
Affiliation(s)
- Chang Liu
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Rui Zhou
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Baiqiao Chen
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xinran Yan
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Lei Guo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yixin Tang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xu Zuo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xiaoping Guo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fang Wang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Caina Xu
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Lei Z, Qin X, Yang Y, Xu M, Zeng N. Recent advances of Sargassum pallidum in chemical and biological aspects. Front Pharmacol 2025; 16:1492671. [PMID: 40176897 PMCID: PMC11961962 DOI: 10.3389/fphar.2025.1492671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Sargassum pallidum (Turn.) C.Ag. (SP) is a traditional Chinese marine medicinal material known for its extensive pharmacological activities and is primarily found in coastal regions. With a long history of medicinal use in China, it is commonly employed to treat conditions such as goiter, hyperplasia of mammary glands, hypertension, and obesity. Modern research on its phytochemical metabolites has identified polysaccharides, flavonoids, and lipids as the primary metabolites derived from SP, with polysaccharides being the most extensively studied. Modern pharmacological studies have demonstrated that extracts and secondary metabolites obtained from SP exert various biological activities, including antioxidant effects, antitumor properties, hypolipidemic and hypoglycemic actions, antibacterial activity, and immunomodulatory capabilities. This review aims to serve as a theoretical reference for further utilization and development of functional foods derived from marine resources like SP, summarizing relevant literature from both domestic and international sources. Despite a comprehensive overview of chemical metabolites and pharmacological properties, existing limitations suggest the need for more precise technical tools and additional toxicological and clinical studies to ensure quality, safety, and efficacy.
Collapse
Affiliation(s)
- Ziqin Lei
- The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Xiaoyan Qin
- The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Min Xu
- The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Balde A, Benjakul S, Nazeer RA. A review on NLRP3 inflammasome modulation by animal venom proteins/peptides: mechanisms and therapeutic insights. Inflammopharmacology 2025; 33:1013-1031. [PMID: 39934538 DOI: 10.1007/s10787-025-01656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The venom peptides from terrestrial as well as aquatic species have demonstrated potential in regulating the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a sophisticated assemblage present in immune cells responsible for detecting and responding to external mediators. The NLRP3 inflammasome plays a role in several pathological conditions such as type 2 diabetes, hyperglycemia, Alzheimer's disease, obesity, autoimmune disorders, and cardiovascular disorders. Venom peptides derived from animal venoms have been discovered to selectively induce certain signalling pathways, such as the NLRP3 inflammasome, mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Experimental evidence has demonstrated that venom peptides can regulate the expression and activation of the NLRP3 inflammasome, resulting in the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Furthermore, these peptides have been discovered to impede the activation of the NLRP3 inflammasome, therefore diminishing inflammation and tissue injury. The functional properties of venom proteins and peptides obtained from snakes, bees, wasps, and scorpions have been thoroughly investigated, specifically targeting the NLRP3 inflammasome pathway, venom proteins and peptides have shown promise as therapeutic agents for the treatment of certain inflammatory disorders. This review discusses the pathophysiology of NLRP3 inflammasome in the onset of various diseases, role of venom as therapeutics. Further, various venom components and their role in the modulation of NLRP3 inflammasome are discoursed. A substantial number of venomous animals and their toxins are yet unexplored, and to comprehensively grasp the mechanisms of action of them and their potential as therapeutic agents, additional research is required which can lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
8
|
Zhao L, Li J, Dang Y, Fisher D, Hien NTT, Musabaev E, Pronyuk K, Zhao L. Protective role of sulforaphane in lipid metabolism-related diseases. Mol Biol Rep 2025; 52:241. [PMID: 39961997 DOI: 10.1007/s11033-025-10358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/11/2025] [Indexed: 05/09/2025]
Abstract
Sulforaphane (SFN) is a phytochemical bioactive substance commonly found in cruciferous plants, such as broccoli and mustard. It has been reported to possess antibacterial, anti-inflammatory, anti-oxidant, anti-cancer and autophagy regulating properties. Recent studies have revealed that SFN regulates fat metabolism both in vivo and in vitro through various mechanisms, including alleviating endoplasmic reticulum stress, inhibiting inflammatory response and improving mitochondrial dysfunction, involving Nrf2/ARE, NF-κB, NLRP3 inflammasome, HDAC8-PGC1α axis and other signaling pathways. By curbing complications associated with abnormal fat metabolic diseases, SFN exhibits therapeutic effects on conditions like obesity, fatty liver disease, atherosclerosis, type 2 diabetes, etc., with minimal side effects. Therefore, it holds promise as a potential alternative treatment for lipid metabolism-related diseases. Although its extraction method has been matured, the thermal instability and preservation difficulties of SFN limit its clinical promotion. More effective and low-cost methods to improve the stability and production of SFN remain to be further studied. This paper reviews the physiological and biological activities of SFN, and summarizes the protective effects and molecular mechanisms of SFN in diseases related to abnormal lipid metabolism. Additionally, it proposes potential challenges, possible solutions and future research directions in the clinical application of SFN.
Collapse
Affiliation(s)
- Lingfeng Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, 7100, South Africa
| | | | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, 100122, Tashkent, Uzbekistan
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kiev, 02132, Ukraine
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Luo L, Wu Q, Xiao Q, Chen Y, Deng Z, Cen C, Lin J. Lipotoxicity-induced upregulation of FIS1 exacerbates mitochondrial fragmentation and promotes NLRP3-dependent pyroptosis in diabetic cardiomyopathy. Free Radic Biol Med 2025; 228:183-196. [PMID: 39734056 DOI: 10.1016/j.freeradbiomed.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Lipotoxicity is a significant factor in the pathogenesis of diabetic cardiomyopathy (DbCM), a condition characterized by mitochondrial fragmentation and pyroptosis. Mitochondrial fission protein 1 (FIS1) plays a role in mitochondrial fission by anchoring dynamin-related protein 1 (DRP1). However, the specific contribution of FIS1 to DbCM remains unclear. This study aims to clarify how lipotoxicity-induced upregulation of FIS1 affects mitochondrial fragmentation and the mechanisms linking this fragmentation to NLRP3-dependent pyroptosis in DbCM. METHODS To model lipotoxicity in DbCM, we used db/db mice and primary neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA) and conducted a series of in vivo and in vitro experiments. Gain- and loss-of-function studies on NRCMs were performed using pharmacological inhibitors and small interfering RNA (siRNA) transfection, and we assessed the expression and function of FIS1, mitochondrial dynamics, mitochondrial reactive oxygen species (mitoROS) production, NLRP3-dependent pyroptosis, and their interrelationships. RESULTS Our results show that in the myocardium of db/db mice, NLRP3-dependent pyroptosis is associated with upregulation of FIS1, mitochondrial fragmentation, and increased oxidative stress. In NRCMs subjected to PA, the application of VX-765 and MCC950 to inhibit caspase-1 and NLRP3, respectively, significantly reduced pyroptosis. Additionally, pretreatment with Mito-TEMPO (MT) demonstrated that mitoROS are critical initiators for NLRP3 inflammasome activation and subsequent pyroptosis. Furthermore, PA-induced upregulation of FIS1 exacerbates mitochondrial fragmentation. Downregulation of FIS1 or inhibition of FIS1/DRP1 interaction reversed mitochondrial fragmentation, reduced mitoROS levels, and mitigated pyroptosis. CONCLUSIONS Lipotoxicity-induced FIS1 upregulation exacerbates mitochondrial fragmentation through its interaction with DRP1, leading to increased mitoROS production and the initiation of NLRP3-dependent pyroptosis in DbCM. Therefore, targeting FIS1 emerges as a potential therapeutic approach for managing DbCM.
Collapse
Affiliation(s)
- Libo Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Qingrui Wu
- State Key Laboratory of Respiratory Disease, Department of Pulmonary Diseases, Guangzhou Chest Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| | - Qingyu Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Yuqiong Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Zhanxiang Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Chunren Cen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Jijin Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Guo D, Wu J, Shen C, Zhang A, Zou T, Chen K, Huang W, Pan Y, Shen Y, Ji P, Zhong Y, Wen Q, Kong B, Xiang M, Ye B. Upregulation of LXRβ/ABCA1 pathway alleviates cochlear hair cell senescence of C57BL/6 J mice via reducing lipid droplet accumulation. Biogerontology 2025; 26:49. [PMID: 39890652 DOI: 10.1007/s10522-025-10192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Senescence and loss of cochlear hair cells is an important pathologic basis of age-related hearing loss. Lipid droplet accumulation has previously been shown to play an important role in neurodegeneration; however, its role in age-related hearing loss has not yet been investigated. LXRβ/ABCA1 is a key pathway that regulates lipid metabolism, while its dysfunction can cause abnormal accumulation of lipid droplets in neurons, leading to neurodegeneration. In this study, we found that decreased expression of LXRβ/ABCA1, elevated levels of lipid droplet accumulation, and increased activation of the NLRP3 inflammasome were demonstrated in senescent cochlear hair cells in both animal and cellular models of age-related hearing loss. We then manipulated the LXRβ/ABCA1 pathway transduction of cochlear hair cells. Upregulation of LXRβ/ABCA1 in senescent hair cells was found to reduce the accumulation of lipid droplets, inhibit NLRP3 inflammasome activation, and ultimately alleviate cochlear hair cell senescence. In our study, we also found that NLRP3 inflammasome activation can abrogate the alleviated effect of LXRβ/ABCA1 pathway on the senescence of cochlear hair cells but did not affect the expression of LXRβ/ABCA1.Our study are the first to demonstrate that abnormal lipid droplet accumulation and decreased LXRβ/ABCA1 pathway are observed in cochlear hair cells following the occurrence of age-related hearing loss. Upregulation of LXRβ/ABCA1 in senescent cochlear hair cells can reduce lipid droplet accumulation in cochlear hair cells and alleviate their senescence, which may be related to the inhibition of NLRP3 inflammasome activation. These findings provide potential targets for the treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenling Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Kong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Yang P, Gao S, Shen J, Liu T, Lu K, Han X, Wang J, Ni HM, Ding WX, Li H, Pan JA, Peng K, Zong WX. TRIM21-mediated ubiquitination of SQSTM1/p62 abolishes its Ser403 phosphorylation and enhances palmitic acid cytotoxicity. Autophagy 2025; 21:178-190. [PMID: 39172027 PMCID: PMC11702951 DOI: 10.1080/15548627.2024.2394308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Long-chain free fatty acids (FFAs) accumulation and oxidative toxicity is a major cause for several pathological conditions. The mechanisms underlying FFA cytotoxicity remain elusive. Here we show that palmitic acid (PA), the most abundant FFA in the circulation, induces S403 phosphorylation of SQSTM1/p62 (sequestosome 1) and its aggregation, which sequesters KEAP1 and activates the non-canonical SQSTM1-KEAP1-NFE2L2 antioxidant pathway. The PA-induced SQSTM1 S403 phosphorylation and aggregation are dependent on SQSTM1 K7-D69 hydrogen bond formation and dimerization in the Phox and Bem1 (PB1) domain, which facilitates the recruitment of TBK1 that phosphorylates SQSTM1 S403. The ubiquitin E3 ligase TRIM21 ubiquitinates SQSTM1 at the K7 residue and abolishes the PB1 dimerization, S403 phosphorylation, and SQSTM1 aggregation. TRIM21 is oxidized at C92, C111, and C114 to form disulfide bonds that lead to its oligomerization and decreased E3 activity. Mutagenizing the three C residues to S (3CS) abolishes TRIM21 oligomerization and increases its E3 activity. TRIM21 ablation leads to decreased SQSTM1 K7 ubiquitination, hence elevated SQSTM1 S403 phosphorylation and aggregation, which confers protection against PA-induced oxidative stress and cytotoxicity. Therefore, TRIM21 is a negative regulator of SQSTM1 phosphorylation, aggregation, and the antioxidant sequestration function. TRIM21 is oxidized to reduce its E3 activity that helps enhance the SQSTM1-KEAP1-NFE2L2 antioxidant pathway. Inhibition of TRIM21 May be a viable strategy to protect tissues from lipotoxicity resulting from long-chain FFAs.Abbreviations: ER: endoplasmic reticulum; FFA: free fatty acid; HMOX1/HO-1: heme oxygenase 1; IB: immunoblotting; IF: immunofluorescence; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; MASH: metabolic dysfunction-associated steatohepatitis; MEF: mouse embryonic fibroblast; NFE2L2/Nrf2: NFE2 like BZIP transcription factor 2; PA: palmitic acid; PB1: Phox and Bem 1; ROS: reactive oxygen species; SLD: steatotic liver disease; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TRIM21: tripartite motif containing 21.
Collapse
Affiliation(s)
- Peng Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Kevin Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kesong Peng
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang322000, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute, New Brunswick, NJ, USA
| |
Collapse
|
12
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Mendes FC, Garcia-Larsen V, Moreira A. Obesity and Asthma: Implementing a Treatable Trait Care Model. Clin Exp Allergy 2024; 54:881-894. [PMID: 38938020 DOI: 10.1111/cea.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Recognition of obesity as a treatable trait of asthma, impacting its development, clinical presentation and management, is gaining widespread acceptance. Obesity is a significant risk factor and disease modifier for asthma, complicating treatment. Epidemiological evidence highlights that obese asthma correlates with poorer disease control, increased severity and persistence, compromised lung function and reduced quality of life. Various mechanisms contribute to the physiological and clinical complexities observed in individuals with obesity and asthma. These encompass different immune responses, including Type IVb, where T helper 2 cells are pivotal and driven by cytokines like interleukins 4, 5, 9 and 13, and Type IVc, characterised by T helper 17 cells and Type 3 innate lymphoid cells producing interleukin 17, which recruits neutrophils. Additionally, Type V involves immune response dysregulation with significant activation of T helper 1, 2 and 17 responses. Finally, Type VI is recognised as metabolic-induced immune dysregulation associated with obesity. Body mass index (BMI) stands out as a biomarker of a treatable trait in asthma, readily identifiable and targetable, with significant implications for disease management. There exists a notable gap in treatment options for individuals with obese asthma, where asthma management guidelines lack specificity. For example, there is currently no evidence supporting the use of incretin mimetics to improve asthma outcomes in asthmatic individuals without Type 2 diabetes mellitus (T2DM). In this review, we advocate for integrating BMI into asthma care models by establishing clear target BMI goals, promoting sustainable weight loss via healthy dietary choices and physical activity and implementing regular reassessment and referral as necessary.
Collapse
Affiliation(s)
- Francisca Castro Mendes
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - André Moreira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
14
|
Behrendt I, Becker K, Steingass CB, Schweiggert R, Michel G, Friedrich E, Grote D, Martin Z, Dötzer HP, Fasshauer M, Speckmann M, Kuntz S. Acylated Anthocyanins From Black Carrots and Their Related Phenolic Acids Diminish Priming and Activation of the NLRP3 Inflammasome in THP-1 Monocytes. Mol Nutr Food Res 2024; 68:e2400356. [PMID: 39425563 PMCID: PMC11605781 DOI: 10.1002/mnfr.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Indexed: 10/21/2024]
Abstract
SCOPE Excessive activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome contributes to chronic inflammation. Thus, targeting NLRP3 inflammasome activation by anthocyanins may prevent inflammatory diseases. Therefore, the present study determines the influence of a black carrot extract (BCE) with high amounts of acylated anthocyanins and their related phenolic acids on the NLRP3 inflammasome. METHODS AND RESULTS THP-1 monocytes are pretreated with a BCE, cyanidin-3-glucoside (C3G), or hydroxycinnamic acids. NLRP3 inflammasome assembly is initiated by priming THP-1 monocytes with lipopolysaccharide and/or activating the NLRP3 inflammasome with nigericin. Flow cytometry is used to assess apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, as well as ASC and NLRP3 protein expression. Caspase-1 activity is measured using a bioluminescent assay, and cytokine concentrations are determined by enzyme-linked immunosorbent assays (ELISA). C3G and phenolic acids diminish ASC and NLRP3 protein expression. In addition, C3G and phenolic acids attenuate ASC speck formation. Furthermore, the BCE and C3G decline caspase-1 activity. Consistently, IL-1β and IL-18 secretion are reduced upon NLRP3 inflammasome activation. CONCLUSION The present study shows that a BCE with high amounts of acylated anthocyanins and their related phenolic acids diminish priming and activation of the NLRP3 inflammasome in THP-1 monocytes.
Collapse
Affiliation(s)
- Inken Behrendt
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Katharina Becker
- Chair of Analysis and Technology of Plant‐based Foods – Focus on BeveragesDepartment of Beverage ResearchGeisenheim UniversityGeisenheimGermany
| | - Christof Björn Steingass
- Chair of Analysis and Technology of Plant‐based Foods – Focus on BeveragesDepartment of Beverage ResearchGeisenheim UniversityGeisenheimGermany
| | - Ralf Schweiggert
- Chair of Analysis and Technology of Plant‐based Foods – Focus on BeveragesDepartment of Beverage ResearchGeisenheim UniversityGeisenheimGermany
| | - Gabriela Michel
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Department of MedicineJustus‐Liebig‐University GiessenGiessenGermany
- Flow Cytometry Core FacilityDepartment of MedicineJustus‐Liebig‐University GiessenGiessenGermany
| | - Elvira Friedrich
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Daniela Grote
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Zoe Martin
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Hanna Pauline Dötzer
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Mathias Fasshauer
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| | - Martin Speckmann
- Institute for Clinical Immunology, Transfusion Medicine and Hemostaseology, Department of MedicineJustus‐Liebig‐University GiessenGiessenGermany
- Flow Cytometry Core FacilityDepartment of MedicineJustus‐Liebig‐University GiessenGiessenGermany
| | - Sabine Kuntz
- Institute of Nutritional Science, Department of Nutritional ScienceJustus‐Liebig‐University GiessenGiessenGermany
| |
Collapse
|
15
|
Liu L, Hu J, Lei H, Qin H, Wang C, Gui Y, Xu D. Regulatory T Cells in Pathological Cardiac Hypertrophy: Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2024; 38:999-1015. [PMID: 37184744 DOI: 10.1007/s10557-023-07463-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathological cardiac hypertrophy is linked to immune-inflammatory injury, and regulatory T cells (Tregs) play a crucial role in suppressing immune-inflammatory responses. However, the precise role of Tregs in pathological cardiac hypertrophy remains unclear. OBJECTIVE To summarize the current knowledge on the role and mechanisms of Tregs in pathological cardiac hypertrophy and explore their perspectives and challenges as a new therapeutic approach. RESULTS Treg cells may play an important protective role in pressure overload (hypertension, aortic stenosis), myocardial infarction, metabolic disorders (diabetes, obesity), acute myocarditis, cardiomyopathy (hypertrophic cardiomyopathy, storage diseases), and chronic obstructive pulmonary disease-related pathological cardiac hypertrophy. Although some challenges remain, the safety and efficacy of Treg-based therapies have been confirmed in some clinical trials, and engineered antigen-specific Treg cells may have better clinical application prospects due to stronger immunosuppressive function and stability. CONCLUSION Targeting the immune-inflammatory response via Treg-based therapies might provide a promising and novel future approach to the prevention and treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Huali Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
17
|
Parolini A, Da Dalt L, Norata GD, Baragetti A. Dietary fats as regulators of neutrophil plasticity: an update on molecular mechanisms. Curr Opin Clin Nutr Metab Care 2024; 27:434-442. [PMID: 39083430 PMCID: PMC11309349 DOI: 10.1097/mco.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Contemporary guidelines for the prevention of cardio-metabolic diseases focus on the control of dietary fat intake, because of their adverse metabolic effects. Moreover, fats alter innate immune defenses, by eliciting pro-inflammatory epigenetic mechanisms on the long-living hematopoietic cell progenitors which, in the bone marrow, mainly give rise to short-living neutrophils. Nevertheless, the heterogenicity of fats and the complexity of the biology of neutrophils pose challenges in the understanding on how this class of nutrients could contribute to the development of cardio-metabolic diseases via specific molecular mechanisms activating the inflammatory response. RECENT FINDINGS The knowledge on the biology of neutrophils is expanding and there are now different cellular networks orchestrating site-specific reprogramming of these cells to optimize the responses against pathogens. The innate immune competence of neutrophil is altered in response to high fat diet and contributes to the development of metabolic alterations, although the precise mechanisms are still poorly understood. SUMMARY Defining the different molecular mechanisms involved in the fat-neutrophil crosstalk will help to reconcile the sparse data about the interaction of dietary fats with neutrophils and to tailor strategies to target neutrophils in the context of cardio-metabolic diseases.
Collapse
Affiliation(s)
- Anna Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
18
|
Rico JE, Barrientos-Blanco MA. Invited review: Ketone biology-The shifting paradigm of ketones and ketosis in the dairy cow. J Dairy Sci 2024; 107:3367-3388. [PMID: 38246539 DOI: 10.3168/jds.2023-23904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Ketosis is currently regarded as a major metabolic disorder of dairy cows, reflective of the animal's efforts to adapt to energy deficit while transitioning into lactation. Currently viewed as a pathology by some, ketosis is associatively implicated in milk production losses and peripartal health complications that increase the risk of early removal of cows from the herd, thus carrying economic losses for dairy farmers and jeopardizing the sustainability of the dairy industry. Despite decades of intense research in the mitigation of ketosis and its sequelae, our ability to lessen its purported effects remains limited. Moreover, the association of ketosis to reduced milk production and peripartal disease is often erratic and likely mired by concurrent potential confounders. In this review, we discuss the potential reasons for these apparent paradoxes in the light of currently available evidence, with a focus on the limitations of observational research and the necessary steps to unambiguously identify the effects of ketosis on cow health and performance via controlled randomized experimentation. A nuanced perspective is proposed that considers the dissociation of ketosis-as a disease-from healthy hyperketonemia. Furthermore, in consideration of a growing body of evidence that highlights positive roles of ketones in the mitigation of metabolic dysfunction and chronic diseases, we consider the hypothetical functions of ketones as health-promoting metabolites and ponder on their potential usefulness to enhance dairy cow health and productivity.
Collapse
Affiliation(s)
- J Eduardo Rico
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 24740.
| | | |
Collapse
|
19
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
20
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
21
|
Liu H, Xiang W, Wu W, Zhou G, Yuan J. Associations of systemic inflammatory regulators with CKD and kidney function: evidence from the bidirectional mendelian randomization study. BMC Nephrol 2024; 25:161. [PMID: 38730296 PMCID: PMC11088104 DOI: 10.1186/s12882-024-03590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Previous observational studies have reported that systemic inflammatory regulators are related to the development of chronic kidney disease (CKD); however, whether these associations are causal remains unclear. The current study aimed to investigate the potential causal relationships between systemic inflammatory regulators and CKD and kidney function. METHOD We performed bidirectional two-sample Mendelian randomization (MR) analyses to infer the underlying causal associations between 41 systemic inflammatory regulators and CKD and kidney function. The inverse-variance weighting (IVW) test was used as the primary analysis method. In addition, sensitivity analyses were executed via the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test and the weighted median test. RESULTS The findings revealed 12 suggestive associations between 11 genetically predicted systemic inflammatory regulators and CKD or kidney function in the forward analyses, including 4 for CKD, 3 for blood urea nitrogen (BUN), 4 for eGFRcrea and 1 for eGFRcys. In the other direction, we identified 6 significant causal associations, including CKD with granulocyte-colony stimulating factor (GCSF) (IVW β = 0.145; 95% CI, 0.042 to 0.248; P = 0.006), CKD with stem cell factor (SCF) (IVW β = 0.228; 95% CI, 0.133 to 0.323; P = 2.40 × 10- 6), eGFRcrea with SCF (IVW β =-2.90; 95% CI, -3.934 to -1.867; P = 3.76 × 10- 8), eGFRcys with GCSF (IVW β =-1.382; 95% CI, -2.404 to -0.361; P = 0.008), eGFRcys with interferon gamma (IFNg) (IVW β =-1.339; 95% CI, -2.313 to -0.366; P = 0.007) and eGFRcys with vascular endothelial growth factor (VEGF) (IVW β =-1.709; 95% CI, -2.720 to -0.699; P = 9.13 × 10- 4). CONCLUSIONS Our findings support causal links between systemic inflammatory regulators and CKD or kidney function both in the forward and reverse MR analyses.
Collapse
Affiliation(s)
- Hailang Liu
- Department of Urology, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Wei Xiang
- Department of Urology, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Wei Wu
- Department of Urology, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Gaofeng Zhou
- Department of Urology, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.
| | - Jingdong Yuan
- Department of Urology, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.
| |
Collapse
|
22
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
23
|
Della Torre L, Beato A, Capone V, Carannante D, Verrilli G, Favale G, Del Gaudio N, Megchelenbrink WL, Benedetti R, Altucci L, Carafa V. Involvement of regulated cell deaths in aging and age-related pathologies. Ageing Res Rev 2024; 95:102251. [PMID: 38428821 DOI: 10.1016/j.arr.2024.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy; IEOS CNR, Napoli 80138, Italy; Programma di Epigenetica Medica, A.O.U. "Luigi Vanvitelli", Piazza Luigi Miraglia 2, Napoli 80138, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy.
| |
Collapse
|
24
|
Li X, Mai K, Ai Q. Palmitic acid activates NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production in large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159428. [PMID: 38029958 DOI: 10.1016/j.bbalip.2023.159428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Studies on marine fish showed that vegetable oils substituted for excessive fish oil increased interleukin-1β (IL-1β) production. However, whether the nucleotide-binding oligomerization domain, leucine-rich repeat-containing family, pyrin domain-containing-3 (NLRP3) inflammasome has a substantial role in fatty acid-induced IL-1β production in fish remains unclear. The associated specific mechanism is also unknown. In this study, nlrp3, caspase-1 and apoptosis-associated speck-like protein containing a CARD (asc) were successfully cloned, and NLRP3 inflammasome consisted of NLRP3, caspase-1 and ASC in large yellow croaker. Primary hepatocytes of fish incubated with palmitic acid (PA) exhibited the highest expression of pro-inflammatory genes (il-1β and tnfα) and NLRP3 inflammasome related genes (nlrp3, caspase-1 and asc), caspase-1 activity and IL-1β production among different treatments. Furthermore, PA-induced NLRP3 inflammasome activation was confirmed to require two signals: the first signal was that PA promoted the NF-κB (P65) protein into the nucleus, and NF-κB increased NLRP3 promoter activity and nlrp3 transcription. The second signal was that PA inhibited AMPK phosphorylation and decreased mitophagy by inhibiting the expression of PINK and parkin proteins, thereby damaging the mitochondria that could not be effectively cleared. Mitochondrial damage generated excessive amounts of reactive oxygen species, which activated the NLRP3 inflammasome and then induced caspase-1 activity and IL-1β production. Therefore, excessive dietary PA activated NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production, thereby leading to inflammation in fish.
Collapse
Affiliation(s)
- Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
25
|
Wu Y, Zhou J, Zuo X, Kuang Y, Sun L, Zhang X. Yanggan Jiangmei Formula alleviates hepatic inflammation and lipid accumulation in non-alcoholic steatohepatitis by inhibiting the NF-κB/NLRP3 signaling pathway. Chin J Nat Med 2024; 22:224-234. [PMID: 38553190 DOI: 10.1016/s1875-5364(24)60595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 04/02/2024]
Abstract
The role of NF-κB and the NLRP3 inflammasome in the chronic inflammatory microenvironment of non-alcoholic steatohepatitis (NASH) has been posited as crucial. The Yanggan Jiangmei Formula (YGJMF) has shown promise in ameliorating hepatic steatosis in NASH patients, yet its pharmacological mechanisms remain largely unexplored. This study was conducted to investigate the efficacy of YGJMF in NASH and to elucidate its pharmacological underpinnings. To simulate NASH both in vivo and in vitro, high-fat-diet (HFD) rats and HepG2 cells stimulated with free fatty acids (FFAs) were utilized. The severity of liver injury and lipid deposition was assessed using serum indicators, histopathological staining, micro-magnetic resonance imaging (MRI), and the liver-to-muscle signal intensity ratio (SIRL/M). Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), immunofluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses was employed to investigate the NF-κB/NLRP3 signaling pathway and associated cytokine levels. The results from liver pathology, MRI assessments, and biochemical tests in rat models demonstrated YGJMF's significant effectiveness in reducing liver damage and lipid accumulation. Additionally, YGJMF markedly reduced hepatocyte inflammation by downregulating inflammatory cytokines in both liver tissue and serum. Furthermore, YGJMF was found to disrupt NF-κB activation, consequently inhibiting the assembly of the NLRP3 inflammasome in both the in vitro and in vivo models. The preliminary findings of this study suggest that YGJMF may alleviate hepatic steatosis and inhibit the NF-κB/NLRP3 signaling pathway, thereby exerting anti-inflammatory effects in NASH.
Collapse
Affiliation(s)
- Yuanyuan Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jingwen Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchen Zuo
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yufeng Kuang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Lixia Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Xiaolong Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
26
|
Lu J, Li XQ, Chen PP, Zhang JX, Li L, Wang GH, Liu XQ, Jiang CM, Ma KL. Acetyl-CoA synthetase 2 promotes diabetic renal tubular injury in mice by rewiring fatty acid metabolism through SIRT1/ChREBP pathway. Acta Pharmacol Sin 2024; 45:366-377. [PMID: 37770579 PMCID: PMC10789804 DOI: 10.1038/s41401-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1β in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.
Collapse
Affiliation(s)
- Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xue-Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei-Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia-Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao-Qi Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Kun-Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
28
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jorgensen SF, Macpherson ME, Skarpengland T, Berge RK, Fevang B, Halvorsen B, Aukrust P. Disturbed lipid profile in common variable immunodeficiency - a pathogenic loop of inflammation and metabolic disturbances. Front Immunol 2023; 14:1199727. [PMID: 37545531 PMCID: PMC10398391 DOI: 10.3389/fimmu.2023.1199727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
The relationship between metabolic and inflammatory pathways play a pathogenic role in various cardiometabolic disorders and is potentially also involved in the pathogenesis of other disorders such as cancer, autoimmunity and infectious diseases. Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults, characterized by increased frequency of airway infections with capsulated bacteria. In addition, a large proportion of CVID patients have autoimmune and inflammatory complications associated with systemic inflammation. We summarize the evidence that support a role of a bidirectional pathogenic interaction between inflammation and metabolic disturbances in CVID. This include low levels and function of high-density lipoprotein (HDL), high levels of triglycerides (TG) and its major lipoprotein very low-density lipoprotein (VLDL), and an unfavorable fatty acid (FA) profile. The dysregulation of TG, VLDL and FA were linked to disturbed gut microbiota profile, and TG and VLDL levels were strongly associated with lipopolysaccharides (LPS), a marker of gut leakage in blood. Of note, the disturbed lipid profile in CVID did not include total cholesterol levels or high low-density lipoprotein levels. Furthermore, increased VLDL and TG levels in blood were not associated with diet, high body mass index and liver steatosis, suggesting a different phenotype than in patients with traditional cardiovascular risk such as metabolic syndrome. We hypothesize that these metabolic disturbances are linked to inflammation in a bidirectional manner with disturbed gut microbiota as a potential contributing factor.
Collapse
Affiliation(s)
- Silje F. Jorgensen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnhild E. Macpherson
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Renzetti S, Gennings C, Calza S. A weighted quantile sum regression with penalized weights and two indices. Front Public Health 2023; 11:1151821. [PMID: 37533534 PMCID: PMC10392701 DOI: 10.3389/fpubh.2023.1151821] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Background New statistical methodologies were developed in the last decade to face the challenges of estimating the effects of exposure to multiple chemicals. Weighted Quantile Sum (WQS) regression is a recent statistical method that allows estimating a mixture effect associated with a specific health effect and identifying the components that characterize the mixture effect. Objectives In this study, we propose an extension of WQS regression that estimates two mixture effects of chemicals on a health outcome in the same model through the inclusion of two indices, one in the positive direction and one in the negative direction, with the introduction of a penalization term. Methods To evaluate the performance of this new model we performed both a simulation study and a real case study where we assessed the effects of nutrients on obesity among adults using the National Health and Nutrition Examination Survey (NHANES) data. Results The method showed good performance in estimating both the regression parameter and the weights associated with the single elements when the penalized term was set equal to the magnitude of the Akaike information criterion of the unpenalized WQS regression. The two indices further helped to give a better estimate of the parameters [Positive direction Median Error (PME): 0.022; Negative direction Median Error (NME): -0.044] compared to the standard WQS without the penalization term (PME: -0.227; NME: 0.215). In the case study, WQS with two indices was able to find a significant effect of nutrients on obesity in both directions identifying sodium and magnesium as the main actors in the positive and negative association, respectively. Discussion Through this work, we introduced an extension of WQS regression that improved the accuracy of the parameter estimates when considering a mixture of elements that can have both a protective and a harmful effect on the outcome; and the advantage of adding a penalization term when estimating the weights.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
31
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
32
|
Javaid HMA, Ko E, Joo EJ, Kwon SH, Park JH, Shin S, Cho KW, Huh JY. TNFα-induced NLRP3 inflammasome mediates adipocyte dysfunction and activates macrophages through adipocyte-derived lipocalin 2. Metabolism 2023; 142:155527. [PMID: 36870601 DOI: 10.1016/j.metabol.2023.155527] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND AIMS Obesity is a state of chronic low-grade systemic inflammation. Recent studies showed that NLRP3 inflammasome initiates metabolic dysregulation in adipose tissues, primarily through activation of adipose tissue infiltrated macrophages. However, the mechanism of NLRP3 activation and its role in adipocytes remains elusive. Therefore, we aimed to examine the activation of TNFα-induced NLRP3 inflammasome in adipocytes and its role on adipocyte metabolism and crosstalk with macrophages. METHODS The effect of TNFα on adipocyte NLRP3 inflammasome activation was measured. Caspase-1 inhibitor (Ac-YVAD-cmk) and primary adipocytes from NLRP3 and caspase-1 knockout mice were utilized to block NLRP3 inflammasome activation. Biomarkers were measured by using real-time PCR, western blotting, immunofluorescence staining, and enzyme assay kits. Conditioned media from TNFα-stimulated adipocytes was used to establish the adipocyte-macrophage crosstalk. Chromatin immunoprecipitation assay was used to identify the role of NLRP3 as a transcription factor. Mouse and human adipose tissues were collected for correlation analysis. RESULTS TNFα treatment induced NLRP3 expression and caspase-1 activity in adipocytes, partly through autophagy dysregulation. The activated adipocyte NLRP3 inflammasome participated in mitochondrial dysfunction and insulin resistance, as evidenced by the amelioration of these effects in Ac-YVAD-cmk treated 3T3-L1 cells or primary adipocytes isolated from NLRP3 and caspase-1 knockout mice. Particularly, the adipocyte NLRP3 inflammasome was involved in glucose uptake regulation. Also, TNFα induced expression and secretion of lipocalin 2 (Lcn2) in a NLRP3-dependent manner. NLRP3 could bind to the promoter and transcriptionally regulate Lcn2 in adipocytes. Treatment with adipocyte conditioned media revealed that adipocyte-derived Lcn2 was responsible for macrophage NLRP3 inflammasome activation, working as a second signal. Adipocytes isolated from high-fat diet mice and adipose tissue from obese individuals showed a positive correlation between NLRP3 and Lcn2 gene expression. CONCLUSIONS This study highlights the importance of adipocyte NLRP3 inflammasome activation and novel role of TNFα-NLRP3-Lcn2 axis in adipose tissue. It adds rational for the current development of NLRP3 inhibitors for treating obesity-induced metabolic diseases.
Collapse
Affiliation(s)
| | - Eun Ko
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Esther Jin Joo
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sooim Shin
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
33
|
Ma Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol Rev 2023; 75:487-520. [PMID: 36669831 PMCID: PMC10121800 DOI: 10.1124/pharmrev.122.000629] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein complex that combines sensing, regulation, and effector functions to regulate inflammation in health and disease. NLRP3 is activated by a diverse range of inflammation-instigating signals known as pathogen associated molecular patterns and danger associated molecular patterns. Upon activation, NLRP3 oligomerizes and recruits partner proteins to form a supramolecular platform to process the maturation and release of interleukin (IL)-1β, IL-18, and gasdermin D, major mediators of inflammation and inflammatory cell death termed pyroptosis. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide range of disease conditions, including chronic inflammatory disease that are associated with lifestyle and dietary changes, aging, and environmental exposures, and have become the leading cause of death worldwide. Pharmacological targeting of NLRP3 and signaling demonstrated promising efficacy in ameliorating a list of disease conditions in animal models. These findings underscore the potential and importance of NLRP3 as a druggable target for treating a range of diseases. In this review, recent progress in understanding the structure and mechanism of action of the NLRP3 inflammasome is discussed with focus on pharmacological inhibition of NLRP3 by small molecule inhibitors. New structural and mechanistic insights into NLRP3 activation and inhibitor-NLRP3 interactions would aid in the rational design and pharmacological evaluation of NLRP3 inhibitors for treatment of human disease. SIGNIFICANCE STATEMENT: The NLRP3 inflammasome plays central role in innate immune sensing and control of inflammation. Pharmacological inhibition of NLRP3 demonstrated promising efficacy in a range of diseases in animal models. Recent elucidation of the structure and inhibitor binding of NLRP3 generated new insights into its mode of action and inhibitor-NLRP3 interaction at molecular levels, providing new framework for developing small chemical inhibitors of NLRP3 with improved efficacy and specificity against chronic disease that has become major health concerns worldwide.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
34
|
Jamar G, Pisani LP. Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis. Eur J Nutr 2023; 62:1077-1091. [PMID: 36484808 DOI: 10.1007/s00394-022-03062-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE High-fat diets have different metabolic responses via gut dysbiosis. In this review, we discuss the complex interaction between the intake of long- and medium-chain saturated fatty acids (SFAs), gut microbiota, and white adipose tissue (WAT) dysfunction, particularly focusing on the type of fat. RESULTS The evidence for the impact of dietary SFAs on the gut microbiota-WAT axis has been mostly derived from in vitro and animal models, but there is now also evidence emerging from human studies. Most current reports show that, in response to high long- and medium-chain SFA diets, WAT functions are altered and can be modulated from microbial metabolites in several manners; and it appears to be also modified under conditions of obesity. SFAs overconsumption can reduce bacterial content and disrupt the gut environment. Both long- and medium-chain SFAs may contribute to proinflammatory cytokines release and TLR4 cascade signaling, either by regulation of endotoxemia markers or myristoylated protein. Palmitic and stearic acids have pathological effects on the intestinal epithelium, microbes, and inflammatory and lipogenic WAT profiles. While myristic and lauric acids display somewhat controversial outcomes, from probiotic effects and contribution to weight loss to cardiometabolic alterations from WAT inflammation. CONCLUSION Identifying an interference of distinct types of SFA in the binomial gut microbiota-WAT may elucidate essential mechanisms of metabolic endotoxemia, which may be the key to triggering obesity, innovating the therapeutic tools for this disease.
Collapse
Affiliation(s)
- Giovana Jamar
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Post-Graduate Program in Nutrition, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil.
- Department of Biosciences, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo-UNIFESP, Rua Silva Jardim, 136/311, Vila Mathias, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
35
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Dual Role of Mitogen-Activated Protein Kinase 8 Interacting Protein-1 in Inflammasome and Pancreatic β-Cell Function. Int J Mol Sci 2023; 24:ijms24054990. [PMID: 36902422 PMCID: PMC10002854 DOI: 10.3390/ijms24054990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic β-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in β-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa β1 (NF-κβ1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1β (IL-1β) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1β, Il-18, Il-6, Asc, and Nf-κβ1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve β-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating β-cells by multiple pathways.
Collapse
|
37
|
Xu R, Zhao H, Qi J, Yao G, He Y, Lu Y, Zhu Q, Wang Y, Ding Y, Zhu Z, Li X, Vankelecom H, Sun Y. Local glucose elevation activates pyroptosis via NLRP3 inflammasome in ovarian granulosa cells of overweight patients. FASEB J 2023; 37:e22807. [PMID: 36826432 DOI: 10.1096/fj.202201796rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
Overweight, with an increasing prevalence worldwide, significantly impairs the clinical outcomes following in vitro fertilization (IVF). Hyperglycemia, hyperlipidemia, and metabolic disorders are always accompanied by the majority of overweight patients. The association between granulosa cell function and metabolic alterations in follicular fluid including lipids, proteins, and growth factors has been extensively documented. However, the effects of higher glucose level on ovarian granulosa cells (GCs), remain largely unknown. In this study, we identified that overweight women had elevated follicular glucose level which profoundly activated NLRP3 inflammasome and pyroptosis. An in vitro correlation between follicular high glucose, NLRP3 inflammasome and pyroptosis was also established. More importantly, in granulosa cells of overweight patients, the activation of the NLRP3 inflammasome and pyroptosis induced by high glucose was involved in the dysregulation of estradiol synthesis. Our study may provide new options to interpretate and improve IVF outcomes in overweight women.
Collapse
Affiliation(s)
- Rui Xu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hanting Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jia Qi
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ying Ding
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zhenyi Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xinyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
38
|
Cui S, Ye J. A protein-lipid complex that detoxifies free fatty acids. Bioessays 2023; 45:e2200210. [PMID: 36585363 PMCID: PMC9974861 DOI: 10.1002/bies.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet-like structure assembled by Fas-Associated Factor 1 (FAF1), a cytosolic protein. This sequestration limits access of PUFAs to Fe2+ , thereby preventing Fe2+ -catalyzed PUFA peroxidation. Consequently, assembly of the FAF1-FFA complex is critical to protect cells from ferroptosis, a cell death pathway triggered by PUFA peroxidation. The observations that free PUFAs in cytosol are not randomly diffused but rather sequestered into a membraneless complex should open new directions to explore signaling pathways by which FFAs regulate cellular physiology.
Collapse
Affiliation(s)
- Shaojie Cui
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Inactivity and obesity: consequences for macrophage-mediated inflammation and the development of cardiometabolic disease. Proc Nutr Soc 2023; 82:13-21. [PMID: 35996926 DOI: 10.1017/s0029665122002671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Obesity and dyslipidaemia are strongly associated with the development of cardiometabolic diseases including CVD, stroke, type 2 diabetes, insulin resistance and non-alcoholic fatty liver disease. While these conditions are preventable, they are leading causes of mortality globally. There is now overwhelming clinical and experimental evidence that these conditions are driven by chronic systemic inflammation, with a growing body of data suggesting that this can be regulated by increasing levels of physical activity and reducing sedentary time. In this review we address the role of macrophage-mediated inflammation on the development of cardiometabolic diseases in individuals with overweight and obesity and how reducing sedentary behaviour and increasing physical activity appears to lessen these pro-inflammatory processes, reducing the risk of developing cardiometabolic diseases. While loss of subcutaneous and visceral fat mass is important for reducing chronic systemic inflammation, the mediating effects of increasing physical activity levels and lowering sedentary time on the development of inflamed adipose tissue also occur independently of changes in adiposity. The message that weight loss is not necessary for the benefits of physical activity in lowering chronic inflammation and improving health should encourage those for whom losing weight is difficult. Additionally, while the health benefits of meeting the recommended physical activity guidelines are clear, simply moving more appears to lower chronic systemic inflammation. Reducing sitting time and increasing light physical activity may therefore provide an alternative, more approachable manner for some with overweight and obesity to become more active, reduce chronic inflammation and improve cardiometabolic health.
Collapse
|
40
|
Sun E, Huang R, Ding K, Wang L, Hou J, Tan X, Wei Y, Feng L, Jia X. Integrating strategies of metabolomics, network pharmacology, and experiment validation to investigate the processing mechanism of Epimedium fried with suet oil to warm kidney and enhance yang. Front Pharmacol 2023; 14:1113213. [PMID: 36762111 PMCID: PMC9905240 DOI: 10.3389/fphar.2023.1113213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Epimedium, a traditional Chinese medicine (TCM) commonly used in ancient and modern China, is one of the traditional Chinese medicines clinically used to treat kidney yang deficiency syndrome (KYDS). There are differences in the efficacy of Epimedium before and after processing, and the effect of warming the kidney and enhancing yang is significantly enhanced after heating with suet oil. However, the active compounds, corresponding targets, metabolic pathways, and synergistic mechanism of frying Epimedium in suet oil to promote yang, remain unclear. Methods: Herein, a strategy based on comprehensive GC-TOF/MS metabolomics and network pharmacology analysis was used to construct an "active compounds-targets-metabolic pathways" network to identify the active compounds, targets and metabolic pathways involved. Subsequently, the targets in kidney tissue were further validated by real-time quantitative polymerase chain reaction (RT-qPCR). Histopathological analysis with physical and biochemical parameters were performed. Results: Fifteen biomarkers from urine and plasma, involving five known metabolic pathways related to kidney yang deficiency were screened. The network pharmacology results showed 37 active compounds (13 from Epimedium and 24 from suet oil), 159 targets, and 267 pathways with significant correlation. Importantly, integrated metabolomics and network pharmacologic analysis revealed 13 active compounds (nine from Epimedium and four from suet oil), 7 corresponding targets (ALDH2, ARG2, GSTA3, GSTM1, GSTM2, HPGDS, and NOS2), two metabolic pathways (glutathione metabolism, arginine and proline metabolism), and two biomarkers (Ornithine and 5-Oxoproline) associated with improved kidney yang deficiency by Epimedium fried with suet oil. Discussion: These finds may elucidate the underlying mechanism of yang enhancement via kidney warming effects. Our study indicated that the mechanism of action mainly involved oxidative stress and amino acid metabolism. Here, we demonstrated the novel strategies of integrating metabolomics and network pharmacology in exploring of the mechanisms of traditional Chinese medicines.
Collapse
Affiliation(s)
- E. Sun
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| | - Ran Huang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Ding
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yingjie Wei
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaobin Jia
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| |
Collapse
|
41
|
Lin Y, Qu L, Wu J, Pu M, Huang Y, Cao Y. Identification of Adipogenesis Subgroups and Immune Infiltration Characteristics in Diabetic Peripheral Neuropathy. J Immunol Res 2023; 2023:3673094. [PMID: 36741233 PMCID: PMC9893521 DOI: 10.1155/2023/3673094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Dysregulation of adipogenesis is related to diabetic peripheral neuropathy (DPN) pathogenesis, which may be mediated by immune infiltration. Nevertheless, the expression patterns of multiple adipogenesis-related genes and the differences of immune infiltration in different lipid metabolism levels remain unknown. GSE95849, a gene expression matrix containing DPN patients and healthy participants, was downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed adipogenesis-related genes (DEARGs) were screened by overlapping the adipogenesis-related genes with differentially expressed genes (DEGs). DPN patients from GSE24290 and GSE148059 were divided into two adipogenesis subgroups according to the expression of DEARGs. The single-sample gene set enrichment analysis (ssGSEA) was used to estimate the abundance of the immune cells between two subgroups. The analysis of immune infiltration suggested that a variety of immune cells and immune processes were elevated in the high expression group of DEARGs. The differentially expressed genes of the two subgroups were mainly enriched in biological processes and signaling pathways related to lipid metabolism. PPARG, FABP4, LIPE, FASN, SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and CEBPA were identified as the hub genes of the two subgroups, whose related transcription factors (TFs) and miRNAs were predicted. An immunohistochemical assay was used to verify the expression of hub genes in DPN nerve tissues. Our comprehensive analysis of adipogenesis subgroups in DPN illustrated that different expression patterns of DEARGs may lead to different immune and inflammatory states. The identification of DEARGs may help to further distinguish the different characteristics of DPN patients and lay the foundation for targeted treatment. Our findings may bring a novel perspective to the diagnosis and treatment of DPN patients.
Collapse
Affiliation(s)
- Yumin Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liyuan Qu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijuan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
44
|
Zhang J, Zeng S, Wang P, Chen Y, Zeng C. NLRP3: A Promising Therapeutic Target for Inflammatory Bowel Disease. Curr Drug Targets 2023; 24:1106-1116. [PMID: 37946354 DOI: 10.2174/0113894501255960231101105113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disease with complicated pathological mechanisms. The incidence of IBD has been increasing in recent years, which has a significant negative impact on the lives of patients. Therefore, it is particularly important to find new therapeutic targets and innovative drugs for the development of IBD. Recent studies have revealed that NLRP3 inflammatory vesicles can play an important role in maintaining intestinal homeostasis and sustaining the intestinal immune response in IBD. On the one hand, aberrant activation of NLRP3 inflammatory vesicles may cause excessive immune response by converting caspase-1, proIL-18, and proIL-1β to their active forms and releasing pro-inflammatory cytokines to stimulate the development and progression of IBD, and we can improve IBD by targeting blockade of NLRP3 activation. On the other hand, NLRP3 may also play an enter protective role by maintaining the homeostasis of the intestinal immune system. In this paper, we reviewed the activation mechanism of NLRP3 inflammasome, and the effects of NLRP3 inflammasome activation on IBD are discussed from two different perspectives: pathology and protection. At the same time, we listed the effects of direct inhibitors, indirect inhibitors, and natural inhibitors of NLRP3 inflammasome on IBD in combination with cutting-edge advances and clinical practice results, providing new targets and new ideas for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Shuyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice. Metabolites 2022; 13:metabo13010014. [PMID: 36676939 PMCID: PMC9862084 DOI: 10.3390/metabo13010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
High-intensity interval training (HIIT), a new type of exercise, can effectively prevent the progression of metabolic diseases. The aim of this study was to investigate the effects of HIIT on liver inflammation and metabolic disorders in type 2 diabetes mellitus (T2DM) mice induced by a high-fat diet (HFD) combined with streptozotocin (STZ) and to explore the possible mechanisms of macrophage polarization and mitochondrial dynamics. Our results showed that HIIT can increase fatty acid oxidation-related gene (PPARα, CPT1α, and ACOX1) mRNA levels and decrease adipogenesis-related gene (PPARγ) mRNA levels to improve liver metabolism in T2DM mice. The improvement of lipid metabolism disorder may occur through increasing liver mitochondrial biosynthesis-related genes (PGC-1α and TFAM) and restoring mitochondrial dynamics-related gene (MFN2 and DRP1) mRNA levels. HIIT can also reduce the mRNA levels of liver inflammatory factors (TNF-α, IL-6, and MCP-1) in T2DM mice. The reduction in liver inflammation may occur through reducing the expression of total macrophage marker (F4/80) and M1 macrophage marker (CD86) mRNA and protein and increasing the expression of M2 macrophage marker (CD163, CD206, and Arg1) mRNA and protein in the liver. HIIT can also increase the expression of insulin signaling pathway (IRS1, PI3K, and AKT) mRNA and protein in the liver of T2DM mice, which may be related to the improvements in liver inflammation and lipid metabolism. In conclusion, these results suggested that 8 weeks of HIIT can improve inflammation and lipid metabolism disorders in the liver of type 2 diabetes mellitus mice, macrophage M1/M2 polarization, and mitochondrial dynamics may be involved in this process.
Collapse
|
46
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
47
|
Liu Y, Wang D, Li T, Yang F, Li Z, Bai X, Wang Y. The role of NLRP3 inflammasome in inflammation-related skeletal muscle atrophy. Front Immunol 2022; 13:1035709. [PMID: 36405697 PMCID: PMC9668849 DOI: 10.3389/fimmu.2022.1035709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 04/04/2024] Open
Abstract
Skeletal muscle atrophy is a common complication in survivors of sepsis, which affects the respiratory and motor functions of patients, thus severely impacting their quality of life and long-term survival. Although several advances have been made in investigations on the pathogenetic mechanism of sepsis-induced skeletal muscle atrophy, the underlying mechanisms remain unclear. Findings from recent studies suggest that the nucleotide-binding and oligomerisation domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, a regulator of inflammation, may be crucial in the development of skeletal muscle atrophy. NLRP3 inhibitors contribute to the inhibition of catabolic processes, skeletal muscle atrophy and cachexia-induced inflammation. Here, we review the mechanisms by which NLRP3 mediates these responses and analyse how NLRP3 affects muscle wasting during inflammation.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [PMID: 36356165 DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
49
|
Mitchelson KAJ, Tran TTT, Dillon ET, Vlckova K, Harrison SM, Ntemiri A, Cunningham K, Gibson I, Finucane FM, O'Connor EM, Roche HM, O'Toole PW. Yeast β-Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota. Mol Nutr Food Res 2022; 66:e2100819. [PMID: 36038526 PMCID: PMC9787509 DOI: 10.1002/mnfr.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β-glucans are potential modulators of the innate immune-metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β-glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high-fat dietary challenge. METHODS AND RESULTS Male C57BL/6J mice are pre-inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high-fat diet (HFD) with/without yeast β-glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β-glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health-related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD-induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β-glucan supplementation. CONCLUSIONS Hepatic metabolism is adversely affected by OBD microbiome colonization with high-fat feeding, but partially resolved by yeast β-glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
| | - Tam T. T. Tran
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Present address:
Vietnam Academy of Science and TechnologyUniversity of Science and Technology of HanoiHanoiVietnam
| | - Eugene T. Dillon
- Mass Spectrometry ResourceConway Institute of Biomolecular & Biomedical ResearchUniversity College DublinDublinDublin 4Republic of Ireland
| | - Klara Vlckova
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Sabine M. Harrison
- UCD School of Agriculture & Food ScienceUniversity College DublinDublinDublin 4Republic of Ireland
| | - Alexandra Ntemiri
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Katie Cunningham
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Irene Gibson
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Francis M. Finucane
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- HRB Clinical Research FacilityNational University of IrelandGalwayH91 TK33Republic of Ireland
| | - Eibhlís M. O'Connor
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Department of Biological SciencesSchool of Natural SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Health Research InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
- Diabetes Complications Research CentreUniversity College DublinDublinDublin 4Republic of Ireland
- The Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastBT9 5DLUK
| | - Paul W. O'Toole
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| |
Collapse
|
50
|
Zheng L, Xu H, Zheng F, Lai Y, Li J, Lv W, Hu Z, Wang W. Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL. Lipids Health Dis 2022; 21:107. [PMID: 36284323 PMCID: PMC9594915 DOI: 10.1186/s12944-022-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background It has been determined through extensive studies that autophagy, the Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and apoptotic responses in macrophages jointly contribute to atherogenesis and its development in the presence of lipid abnormalities. Few studies have investigated in full-scale if the intervention time for lipids abnormality or NLRP3 activation have a significant effect on autophagy, NLRP3 or the apoptotic status in macrophages. Methods Human THP-1 monocyte-derived macrophages were established by challenging THP-1 monocytes with 80 µg/ml oxidized low-density lipoprotein (ox-LDL) for specific durations. Foam cell formation was observed by Oil Red O (ORO) staining. Western blots were employed to determine protein expression. Transmission electron microscope (TEM) and immunofluorescence microscopy were applied to observe the autophagic status of cells. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Results The cells were treated with ox-LDL for 12 h and 36 h, which were considered to represent early and advanced stages of atherogenesis for this study. The results showed that inhibition of ox-LDL phagocytosis by cytochalasin D in the early stage improved autophagic status, reduced NLRP3 activation and the apoptotic response significantly. In contrast, cytochalasin D had little effect on blocking the detrimental effect of ox-LDL at the advanced stage. Moreover, the changes in autophagy, apoptosis and NLRP3 expression after treatment with small interfering (si) RNA targeting NLRP3 in the early and advanced stages of atherogenesis were consistent with the above data. Conclusions Interventions against lipid disorders or inflammatory reactions in the early or advanced stages of atherogenesis may have different results depending on when they are applied during the process of atherosclerotic pathogenesis. These results may help improve therapeutic strategies for atherosclerosis prevention. Furthermore, a healthy lifestyle should still be recommended as the most important and inexpensive measure to prevent atherogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01714-x.
Collapse
Affiliation(s)
- Liang Zheng
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Fufu Zheng
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jie Li
- Department of Thyroid and Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weiming Lv
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Department of Vascular Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|