1
|
Yang J, Wang Y, Liu F, Zhang Y, Han F. Crosstalk between ferroptosis and endoplasmic reticulum stress: A potential target for ovarian cancer therapy (Review). Int J Mol Med 2025; 55:97. [PMID: 40314096 PMCID: PMC12045474 DOI: 10.3892/ijmm.2025.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Ferroptosis is a unique mode of cell death driven by iron‑dependent phospholipid peroxidation, and its mechanism primarily involves disturbances in iron metabolism, imbalances in the lipid antioxidant system and accumulation of lipid peroxides. Protein processing, modification and folding in the endoplasmic reticulum (ER) are closely related regulatory processes that determine cell function, fate and survival. The uncontrolled proliferative capacity of malignant cells generates an unfavorable microenvironment characterized by high metabolic demand, hypoxia, nutrient deprivation and acidosis, which promotes the accumulation of misfolded or unfolded proteins in the ER, leading to ER stress (ERS). Ferroptosis and ERS share common pathways in several diseases, and the two interact to affect cell survival and death. Additionally, cell death pathways are not linear signaling cascades, and different pathways of cell death may be interrelated at multiple levels. Ferroptosis and ERS in ovarian cancer (OC) have attracted increasing research interest; however, both are discussed separately regarding OC. The present review aims to summarize the associations and potential links between ferroptosis and ERS, aiming to provide research references for the development of therapeutic approaches for the management of OC.
Collapse
Affiliation(s)
- Jiaqi Yang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yu Wang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fangyuan Liu
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yizhong Zhang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fengjuan Han
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
2
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Shahzad M, Walton GE, Andrews SC. A review of the effect of iron supplementation on the gut microbiota of children in developing countries and the impact of prebiotics. Nutr Res Rev 2025; 38:229-237. [PMID: 38586996 DOI: 10.1017/s0954422424000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Rose Ward, Prospect Park Hospital, Berkshire Healthcare NHS Foundation Trust, Reading, RG30 4EJ, UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Muhammed Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
3
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
4
|
Di Lorenzo R, Marzetti E, Coelho-Junior HJ, Calvani R, Pesce V, Landi F, Leeuwenburgh C, Picca A. Iron Metabolism and Muscle Aging: Where Ferritinophagy Meets Mitochondrial Quality Control. Cells 2025; 14:672. [PMID: 40358196 PMCID: PMC12072144 DOI: 10.3390/cells14090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired MQC contributes to muscle dysfunction during aging. The autophagy-lysosome system plays a critical role in MQC by tagging and engulfing proteins and organelles for degradation in lysosomes. The endolysosomal system is also instrumental in transferrin recycling, which, in turn, regulates cellular iron uptake. In the neuromuscular system, the autophagy-lysosome system supports the structural integrity of neuromuscular junctions, and its dysfunction contributes to muscle atrophy. While MQC was thought to protect against iron-induced cell death, the discovery of ferroptosis, a form of iron-dependent cell death, has highlighted a complex interplay between MQC and iron-inflicted damage. Ferritinophagy, the autophagic degradation of ferritin, if overactivated, can induce ferroptosis. Alternatively, aging may impair ferritinophagy, leading to ferritin accumulation and the release of toxic labile iron under stress, exacerbating oxidative damage and cellular senescence. Physical activity supports muscle health also by preserving mitochondrial quantity and quality and enhancing bioenergetics. However, therapeutic strategies for preventing or reversing physical function decline in aging are still lacking due to the insufficient understanding of the underlying mechanisms. Unveiling how disruptions in iron homeostasis impact muscle quality in older adults may allow for the development of therapeutic strategies targeting iron handling to alleviate age-associated muscle decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Helio José Coelho-Junior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Vito Pesce
- Department of Biosciences, Biotechnologies, and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (H.J.C.-J.); (A.P.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
5
|
Song L, Gao F, Man J. Ferroptosis: the potential key roles in idiopathic pulmonary fibrosis. Eur J Med Res 2025; 30:341. [PMID: 40296070 PMCID: PMC12036158 DOI: 10.1186/s40001-025-02623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by recurrent injury to alveolar epithelial cells, epithelial-mesenchymal transition, and fibroblast activation, which leads to excessive deposition of extracellular matrix (ECM) proteins. However, effective preventative and therapeutic interventions are currently lacking. Ferroptosis, a unique form of iron-dependent lipid peroxidation-induced cell death, exhibits distinct morphological, physiological, and biochemical features compared to traditional programmed cell death. Recent studies have revealed a close relationship between iron homeostasis and the pathogenesis of pulmonary interstitial fibrosis. Ferroptosis exacerbates tissue damage and plays a crucial role in regulating tissue repair and the pathological processes involved. It leads to recurrent epithelial injury, where dysregulated epithelial cells undergo epithelial-mesenchymal transition via multiple signaling pathways, resulting in the excessive release of cytokines and growth factors. This dysregulated environment promotes the activation of pulmonary fibroblasts, ultimately culminating in pulmonary fibrosis. This review summarizes the latest advancements in ferroptosis research and its role in the pathogenesis and treatment of IPF, highlighting the significant potential of targeting ferroptosis for IPF management. Importantly, despite the rapid developments in this emerging research field, ferroptosis studies continue to face several challenges and issues. This review also aims to propose solutions to these challenges and discusses key concepts and pressing questions for the future exploration of ferroptosis.
Collapse
Affiliation(s)
- Longfei Song
- Department of Rehabilitation Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428 Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Fusheng Gao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Jun Man
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, No. 4948, Shengli East Street, Kuiwen District, Weifang City, 261041, Shandong Province, China.
| |
Collapse
|
6
|
Cuisiniere T, Hajjar R, Oliero M, Calvé A, Fragoso G, Rendos HV, Gerkins C, Taleb N, Gagnon-Konamna M, Dagbert F, Loungnarath R, Sebajang H, Schwenter F, Wassef R, Ratelle R, De Broux É, Richard C, Santos MM. Initial gut microbiota composition is a determining factor in the promotion of colorectal cancer by oral iron supplementation: evidence from a murine model. MICROBIOME 2025; 13:100. [PMID: 40259408 PMCID: PMC12013013 DOI: 10.1186/s40168-025-02101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) development is influenced by both iron and gut microbiota composition. While iron supplementation is routinely used to manage anemia in CRC patients, it may also impact gut microbiota and promote tumorigenesis. In this study, we investigated the impact of initial gut microbiota composition on iron-promoted tumorigenesis. We performed fecal microbiota transplantation (FMT) in ApcMin/+ mice using samples from healthy controls, CRC patients, and mice, followed by exposure to iron sufficient or iron excess diets. RESULTS We found that iron supplementation promoted CRC and resulted in distinct gut microbiota changes in ApcMin/+ mice receiving FMT from CRC patients (FMT-CRC), but not from healthy controls or mice. Oral treatment with identified bacterial strains, namely Faecalibaculum rodentium, Holdemanella biformis, Bifidobacterium pseudolongum, and Alistipes inops, protected FMT-CRC mice against iron-promoted tumorigenesis. CONCLUSIONS Our findings suggest that microbiota-targeted interventions may mitigate tumorigenic effects of iron supplementation in anemic patients with CRC.
Collapse
Affiliation(s)
- Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Roy Hajjar
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Manon Oliero
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Hervé Vennin Rendos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Claire Gerkins
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Nassima Taleb
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Marianne Gagnon-Konamna
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - François Dagbert
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Rasmy Loungnarath
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Herawaty Sebajang
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Frank Schwenter
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Ramses Wassef
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Richard Ratelle
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Éric De Broux
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Carole Richard
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada.
- Institut du Cancer de Montréal, Montréal, Québec, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Lei H, Shawki A, Santos AN, Canale V, Manz S, Crawford MS, Chatterjee P, Spalinger MR, Scharl M, McCole DF. PTPN2 Regulates Iron Handling Protein Expression in Inflammatory Bowel Disease Patients and Prevents Iron Deficiency in Mice. Int J Mol Sci 2025; 26:3356. [PMID: 40244226 PMCID: PMC11989999 DOI: 10.3390/ijms26073356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Anemia is the most common extraintestinal manifestation of inflammatory bowel disease (IBD). Iron deficiency is the most frequent cause of anemia in IBD; however, the mechanisms involved are still poorly understood. Here, we investigated the role of the IBD risk gene, protein tyrosine phosphatase non-receptor type 2 (PTPN2), in regulating iron homeostasis. Proteomic analyses were performed on serum from IBD patients genotyped for the IBD-associated loss-of-function rs1893217 PTPN2 variant. Constitutive Ptpn2 wild type (WT), heterozygous (Het), and knockout (KO) mice were analyzed for iron content, blood parameters, and expression of iron handling proteins. Iron absorption was assessed through radiotracer assays. Serum proteomic analyses revealed that the "iron homeostasis signaling pathway" was the main pathway downregulated in Crohn's disease (CD) patients carrying the PTPN2 risk allele, independent of disease activity. Ptpn2-KO mice showed characteristics of anemia, including reduced hemoglobin concentrations along with serum and tissue iron deficiency and elevated serum hepcidin levels vs. Ptpn2-WT and Het mice. 55Fe absorption via oral gavage was significantly impaired in Ptpn2-KO mice. Correspondingly, Ptpn2-KO mice showed reduced apical membrane expression of the iron transporter DMT1. CD patients with the PTPN2 loss-of-function rs1893217 variant display alterations in serum iron handling proteins. Loss of Ptpn2 in mice caused features of anemia, including iron deficiency associated with reduced apical membrane expression of DMT1. These findings identify an important role for PTPN2 in regulating systemic iron homeostasis.
Collapse
Affiliation(s)
- Hillmin Lei
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Ali Shawki
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Alina N. Santos
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Vinicius Canale
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Salomon Manz
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Meli’sa S. Crawford
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Pritha Chatterjee
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Marianne R. Spalinger
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Declan F. McCole
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| |
Collapse
|
8
|
Zhang L, Li F, Liu X, Liu XA, Lu D, Luo Q, Liu Q, Jiang G. Long-term effects of SARS-CoV-2 infection on metal homeostasis. J Trace Elem Med Biol 2025; 88:127625. [PMID: 40023939 DOI: 10.1016/j.jtemb.2025.127625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The outbreak of COVID-19 pandemic has caused substantial health loss worldwide, and the long-term sequelae of COVID, resulting from repeated coronavirus infection, have emerged as a new public health concern. We report the widespread presence of abnormal metallomic profiles in the sera of patients who have recovered from SARS-CoV-2 coronavirus infection, even after 6 months post-discharge from hospital. We measured the concentrations of Fe, Cu, Zn, Se, Cr, Mn, Ba, Ni, Pb, Ag, As, Cd, Co, and V in the sera of 25 recovered participants and 38 healthy controls in the cross-sectional study. Higher concentrations of Cu, Ag, As, Ba, Cd, Ni, Pb, Cr and V were observed in the recovered participants, whereas lower concentrations of Fe and Se were obtained in these participants. Except for Zn, Mn, and Co, all other elements showed significant differences (p < 0.05) between the two groups, with variations dependent on age and gender. Further correlation analysis between metallome and metabolome indicated that SARS-CoV-2 infection continues to disrupt metallic homeostasis and affect metabolic processes, such as lipid metabolism and cell respiration, as well as the functions of certain organs (e.g., liver, kidney, and heart), even after 6 months recovery. Our findings provide novel insights into the potential long-term effect of COVID-19 on the human body from a new perspective of metallomics.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xin-An Liu
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
10
|
Papagiannaki M. Understanding and managing iron deficiency anaemia. Nurs Stand 2025; 40:61-66. [PMID: 39865761 DOI: 10.7748/ns.2025.e12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 01/28/2025]
Abstract
Iron deficiency anaemia develops when there is not enough iron in the body to sustain normal red blood cell production. It is a major cause of morbidity worldwide and is linked to a range of comorbid conditions, including gastrointestinal cancer. In the UK, iron deficiency anaemia is the most common cause of anaemia identified in primary care and is estimated to affect 3% of men and 8% of women. Nurses can support the management of iron deficiency anaemia by identifying possible causes, ordering blood tests, advising on diet and iron supplementation, and referring patients for additional investigations as required. This article provides an overview of the pathophysiology, identification and diagnosis of iron deficiency anaemia, describes sources of dietary iron and factors influencing dietary iron absorption, and discusses patient management.
Collapse
Affiliation(s)
- Maria Papagiannaki
- programme leader BSc (Hons) Nutrition, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, England
| |
Collapse
|
11
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
12
|
Qiu L, Frazer DM, Hu M, Song R, Liu X, Qin X, Ma J, Zhou J, Tan Z, Ren F, Collins JF, Wang X. Mechanism and regulation of iron absorption throughout the life cycle. J Adv Res 2025:S2090-1232(25)00002-5. [PMID: 39814221 DOI: 10.1016/j.jare.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements. AIM OF REVIEW This review aims to provide an overview of recent researches on the regulation of iron absorption throughout mammalian life cycle, with the potential to reveal novel molecules and pathways at special stage of life. Such insights may pave the way for new treatments for disorders associated with aberrant iron homeostasis in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first summarize the mechanism and regulation of iron absorption throughout various life stages, highlighting that regulatory mechanisms have developed to precisely align iron absorption to iron requirements. In adults, iron absorption is enhanced when body is deficient of iron, conversely, iron absorption is reduced when iron demand decreases via systemic regulator Hepcidin and cellular regulation. In the elderly, age-related inflammation, hormonal changes, and chronic diseases may affect the production of Hepcidin, affecting iron absorption. In infants, intestinal iron absorption and its regulatory mechanism are different from that in adults and there might be an alternative pathway independent of DMT1 and FPN due to high iron absorption. Unique to the fetus, iron is absorbed from maternal stores for its own use through the placenta and is regulated by maternal iron status. This review also proposes directions for further studies, offering promising avenues for developing new treatments for disorders associated with aberrant iron homeostasis.
Collapse
Affiliation(s)
- Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston 4029 Australia
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jie Ma
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jun Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Zidi Tan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Fazheng Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China.
| |
Collapse
|
13
|
Hernández-Gallardo AK, Arcos-López T, Bahena-Lopez JM, Tejeda-Guzmán C, Gallardo-Hernández S, Webb SM, Kroll T, Solari PL, Sánchez-López C, Den Auwer C, Quintanar L, Missirlis F. In situ detection of ferric reductase activity in the intestinal lumen of an insect. J Biol Inorg Chem 2024; 29:773-784. [PMID: 39617837 PMCID: PMC11638316 DOI: 10.1007/s00775-024-02080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024]
Abstract
The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1. In mammals, duodenal cytochrome b is a ferric reductase of the intestinal epithelium, but how insects reduce and absorb dietary iron remains unknown. Here we provide indirect evidence of extracellular ferric reductase activity in a small subset of Drosophila melanogaster intestinal epithelial cells, positioned at the neck of the midgut's anterior region. Dietary-supplemented bathophenanthroline sulphate (BPS) captures locally generated ferrous iron and precipitates into pink granules, whose chemical identity was probed combining in situ X-ray absorption near edge structure and electron paramagnetic resonance spectroscopies. An increased presence of manganese ions upon BPS feeding was also found. Control animals were fed with ferric ammonium citrate, which is accumulated into ferritin iron in distinct intestinal subregions suggesting iron trafficking between different cells inside the animal. Spectroscopic signals from the biological samples were compared to purified Drosophila and horse spleen ferritin and to chemically synthesized BPS-iron and BPS-manganese complexes. The results corroborated the presence of BPS-iron in a newly identified ferric iron reductase region of the intestine, which we propose constitutes the major site of iron absorption in this organism.
Collapse
Affiliation(s)
| | | | | | - Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico
| | | | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Pier Lorenzo Solari
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | | | | | - Liliana Quintanar
- Departamento de Química, Cinvestav, 07360, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Cinvestav, 14330, Mexico City, Mexico
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico.
| |
Collapse
|
14
|
Schloss JV, Szabo S. On the origin of cysteamine-induced duodenal cytotoxicity and type II ferroptosis. Inflammopharmacology 2024; 32:3739-3744. [PMID: 39261408 DOI: 10.1007/s10787-024-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Cysteamine (CA) induces duodenal ulcers in rodents (Selye and Szabo, Nature 244:458-459, 1973). Cysteine (Cys), a precursor for the formation of CA (via catabolism of coenzyme A), does not cause lesions in the duodenum (Szabo et al., J Pharmacol Exp Ther 223:68-76, 1982). CA also has antimutagenic and anticancer pharmacology (Fujisawa et al., PLoS ONE 7, 2012; Lee, Adv Pharmacol Pharm Sci 2023:2419444, 2023). We propose a mechanism of CA-induced cell death dependent on oxygen and CA dioxygenase (ADO) that can explain the 50-year-old mystery as to why CA is, but Cys is not, ulcerogenic. Those cells expressing coenzyme A-catabolizing enzymes are subject to a unique type of oxygen- and enzyme-bound-Fe2+-dependent death, type II ferroptosis.
Collapse
Affiliation(s)
- John V Schloss
- American University of Health Sciences, Signal Hill, CA, 90755, USA.
| | - Sandor Szabo
- American University of Health Sciences, Signal Hill, CA, 90755, USA
- University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Aedh AI. Coffee Consumption in Association with Serum Iron Levels: A Cross-sectional Study. Biol Trace Elem Res 2024; 202:5386-5394. [PMID: 38396066 DOI: 10.1007/s12011-024-04112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
This study determines the association between adult Saudi Arabian coffee consumption and serum iron levels. The extensive Saudi Arabian population, including both sexes - male and female, participated in this cross-sectional community-based study from 1 October 2020 to 31 June 2022. The participants were selected arbitrarily using the systematic simple random position. The current study enrolled 113 participants with a mean age of 33 years, including 94 (83.2%) females and 19 (16.8%) males. The concentration of iron absorption assessed among 62 individuals who participated in the group of occasional coffee drinkers was higher (54.9%) than the 51 individuals who participated in the group of regular coffee drinkers (45.1%). In daily coffee consumption, paired samples statistics in mean baseline WBC level (103/μl) was 6.396. On day 31 of June 2022, WBC level (103/μl) was 6.114. Paired samples statistics in mean baseline iron level was 44.29. On day 31 of June 2022, iron level was 72.15. The paired samples correlation in baseline and day 31 iron levels was 0.719, with a significant difference of 0.000. It is critical to acquire the most recent information and local statistics on the frequency of low serum iron levels in Saudi Arabia's diverse adult population. The adult population of Saudi Arabia correlates with coffee consumption and changes in serum ferritin or iron levels and WBC counts. Neither the WBC numbers nor the iron levels were significantly altered. Further research is needed to determine the potential mechanisms causing these relationships.
Collapse
Affiliation(s)
- Abdullah I Aedh
- Internal Medicine, Najran University, Najran, Saudi Arabia.
- Najran University Hospital, King Abdulaziz Rd, Najran, Saudi Arabia.
| |
Collapse
|
16
|
Chieppa M, Kashyrina M, Miraglia A, Vardanyan D. Enhanced CRC Growth in Iron-Rich Environment, Facts and Speculations. Int J Mol Sci 2024; 25:12389. [PMID: 39596454 PMCID: PMC11594836 DOI: 10.3390/ijms252212389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The contribution of nutritional factors to disease development has been demonstrated for several chronic conditions including obesity, type 2 diabetes, metabolic syndrome, and about 30 percent of cancers. Nutrients include macronutrients and micronutrients, which are required in large and trace quantities, respectively. Macronutrients, which include protein, carbohydrates, and lipids, are mainly involved in energy production and biomolecule synthesis; micronutrients include vitamins and minerals, which are mainly involved in immune functions, enzymatic reactions, blood clotting, and gene transcription. Among the numerous micronutrients potentially involved in disease development, the present review will focus on iron and its relation to tumor development. Recent advances in the understanding of iron-related proteins accumulating in the tumor microenvironment shed light on the pivotal role of iron availability in sustaining pathological tumor hallmarks, including cell cycle regulation, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Marcello Chieppa
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| | - Marianna Kashyrina
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| | - Alessandro Miraglia
- Institute of Science of Food Production, Unit of Lecce, C.N.R., 73100 Lecce, Italy;
| | - Diana Vardanyan
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| |
Collapse
|
17
|
Dentand AL, Schubert MG, Krayenbuehl PA. Current iron therapy in the light of regulation, intestinal microbiome, and toxicity: are we prescribing too much iron? Crit Rev Clin Lab Sci 2024; 61:546-558. [PMID: 38606523 DOI: 10.1080/10408363.2024.2331477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Iron deficiency is a widespread global health concern with varying prevalence rates across different regions. In developing countries, scarcity of food and chronic infections contribute to iron deficiency, while in industrialized nations, reduced food intake and dietary preferences affect iron status. Other causes that can lead to iron deficiency are conditions and diseases that result in reduced intestinal iron absorption and blood loss. In addition, iron absorption and its bioavailability are influenced by the composition of the diet. Individuals with increased iron needs, including infants, adolescents, and athletes, are particularly vulnerable to deficiency. Severe iron deficiency can lead to anemia with performance intolerance or shortness of breath. In addition, even without anemia, iron deficiency leads to mental and physical fatigue, which points to the fundamental biological importance of iron, especially in mitochondrial function and the respiratory chain. Standard oral iron supplementation often results in gastrointestinal side effects and poor compliance. Low-dose iron therapy seems to be a valid and reasonable therapeutic option due to reduced hepatic hepcidin formation, facilitating efficient iron resorption, replenishment of iron storage, and causing significantly fewer side effects. Elevated iron levels influence gut microbiota composition, favoring pathogenic bacteria and potentially disrupting metabolic and immune functions. Protective bacteria, such as bifidobacteria and lactobacilli, are particularly susceptible to increased iron levels. Dysbiosis resulting from iron supplementation may contribute to gastrointestinal disorders, inflammatory bowel disease, and metabolic disturbances. Furthermore, gut microbiota alterations have been linked to mental health issues. Future iron therapy should consider low-dose supplementation to mitigate adverse effects and the impact on the gut microbiome. A comprehensive understanding of the interplay between iron intake, gut microbiota, and human health is crucial for optimizing therapeutic approaches and minimizing potential risks associated with iron supplementation.
Collapse
Affiliation(s)
- Anaëlle L Dentand
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Morton G Schubert
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Pierre-Alexandre Krayenbuehl
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Pantopoulos K. Oral iron supplementation: new formulations, old questions. Haematologica 2024; 109:2790-2801. [PMID: 38618666 PMCID: PMC11367235 DOI: 10.3324/haematol.2024.284967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/16/2024] Open
Abstract
Iron-deficiency anemia and pre-anemic iron deficiency are the most frequent pathologies. The first line of treatment involves oral iron supplementation. The simplest, least expensive, and most commonly prescribed drug is ferrous sulfate, while other ferrous salts and ferric complexes with polysaccharides or succinylated milk proteins are also widely used. In recent years, novel iron formulations have been developed, such as the lipophilic iron donor ferric maltol, or nanoparticle encapsulated sucrosomial® iron. Oral iron supplementation is usually efficacious in correcting iron-deficiency anemia and replenishing iron stores but causes gastrointestinal side effects that reduce compliance. When oral iron supplementation is contraindicated, intravenous iron therapy can rapidly achieve therapeutic targets without gastrointestinal complications. Herein, we critically review literature on relative efficacy and tolerability of currently available oral iron supplements, and summarize recent data on optimal dosage and frequency.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec.
| |
Collapse
|
19
|
Kirthan JPA, Somannavar MS. Pathophysiology and management of iron deficiency anaemia in pregnancy: a review. Ann Hematol 2024; 103:2637-2646. [PMID: 37787837 DOI: 10.1007/s00277-023-05481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
According to World Health Organization (WHO), iron deficiency anaemia (IDA) is considered the most prevalent nutritional deficiency worldwide, affecting approximately 30% of the global population. While gastrointestinal bleeding and menstruation in women are the primary causes of IDA, insufficient dietary iron intake and reduced iron absorption contribute to the condition. The aim of IDA treatment is to restore iron stores and normalise haemoglobin levels in affected patients. Iron plays a critical role in various cellular mechanisms, including oxygen delivery, electron transport, and enzymatic activity. During pregnancy, the mother's blood volume increases, and the growing foetus requires a significant increase in iron. Iron deficiency during pregnancy is associated with adverse outcomes such as maternal illness, low birth weight, preterm birth, and intrauterine growth restriction. Iron supplementation is commonly used to treat IDA; however, not all patients benefit from this therapy due to factors such as low compliance and ineffectiveness. In the past, IV iron therapy was underutilised due to its unfavourable and occasionally unsafe side effects. Nevertheless, the development of new type II and III iron complexes has improved compliance, tolerability, efficacy, and safety profiles. This article aims to provide an updated overview of the diagnosis and management of IDA during pregnancy. It will discuss the advantages and limitations of oral versus intravenous iron and the pathophysiology, diagnosis, treatment, and overall management of IDA in pregnancy.
Collapse
Affiliation(s)
- J P Akshay Kirthan
- Department of Biochemistry, JN Medical College, KLE Academy of Higher Education and Research, Nehru Nagar, Belgaum, 590010, Karnataka, India.
| | - Manjunath S Somannavar
- Department of Biochemistry, JN Medical College, KLE Academy of Higher Education and Research, Nehru Nagar, Belgaum, 590010, Karnataka, India
| |
Collapse
|
20
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
21
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
22
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
23
|
Vavallo M, Cingolani S, Cozza G, Schiavone FP, Dottori L, Palumbo C, Lahner E. Autoimmune Gastritis and Hypochlorhydria: Known Concepts from a New Perspective. Int J Mol Sci 2024; 25:6818. [PMID: 38999928 PMCID: PMC11241626 DOI: 10.3390/ijms25136818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Autoimmune atrophic gastritis is an immune-mediated disease resulting in autoimmune destruction of the specialized acid-producing gastric parietal cells. As a consequence, in autoimmune atrophic gastritis, gastric acid secretion is irreversibly impaired, and the resulting hypochlorhydria leads to the main clinical manifestations and is linked, directly or indirectly, to the long-term neoplastic complications of this disease. In the last few years, autoimmune atrophic gastritis has gained growing interest leading to the acquisition of new knowledge on different aspects of this disorder. Although reliable serological biomarkers are available and gastrointestinal endoscopy techniques have substantially evolved, the diagnosis of autoimmune atrophic gastritis is still affected by a considerable delay and relies on histopathological assessment of gastric biopsies. One of the reasons for the diagnostic delay is that the clinical presentations of autoimmune atrophic gastritis giving rise to clinical suspicion are very different, ranging from hematological to neurological-psychiatric up to gastrointestinal and less commonly to gynecological-obstetric symptoms or signs. Therefore, patients with autoimmune atrophic gastritis often seek advice from physicians of other medical specialties than gastroenterologists, thus underlining the need for increased awareness of this disease in a broad medical and scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edith Lahner
- Gastroenterology Unit, Sant’Andrea University Hospital, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy (G.C.); (F.P.S.)
| |
Collapse
|
24
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
25
|
Xiao H, Li Y, Liu X, Wen Q, Yao C, Zhang Y, Xie W, Wu W, Wu L, Ma X, Li Y, Ji A, Cai T. High ambient temperature may increase the risk of anemia in pregnancy: Identifying susceptible exposure windows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172059. [PMID: 38556012 DOI: 10.1016/j.scitotenv.2024.172059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Anemia in pregnancy (AIP) is associated with multiple severe maternal and perinatal adverse outcomes. However, there is a lack of evidence on the association between environmental factors and AIP. Aim to explore the association between ambient temperature and the risk of AIP, and identify susceptible exposure windows, we conducted a matched case-control study from 2013 to 2016 in Xi'an, China, which included 710 women with AIP and 1420 women without AIP. The conditional logistic regression model was used to evaluate the association between ambient temperature and AIP at different gestational weeks and gestational months. The association between extreme temperature and AIP was evaluated using the distributed lag nonlinear model (DLNM). We conducted stratified analyses of age, parity, and season of conception, and estimated the interaction between ambient temperature and air pollutants on AIP. Ambient temperature was significantly positively associated with the risk of AIP, and the susceptible exposure windows were 2-25 gestational weeks and 1-6 gestational months, respectively. The strongest effect was observed in the week 8 and month 2, for each 1 °C increase in weekly and monthly mean temperature, the odds ratio (OR) for AIP was 1.038 (95 % confidence interval (CI): 1.022, 1.055) and 1.040 (95 % CI: 1.020, 1.060), respectively. Extreme heat may increase the risk of AIP. Stratified analyses showed that there was no significant difference among different age, parity, and season of conception groups. No significant interaction effect of ambient temperature with air pollution on AIP was found. In summary, high ambient temperature may increase the risk of AIP, and the first and second trimesters may be susceptible exposure windows. Understanding the effect of temperature on pregnant women will be beneficial to reduce the occurrence of AIP.
Collapse
Affiliation(s)
- Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yunlong Li
- Department of Hematology, Chongqing Hospital of Jiangsu Province Hospital (Qijiang People Hospital), Chongqing 401420, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), 400037, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Wu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ailing Ji
- Department of Digital Health, Chongqing College of Architecture and Technology, Chongqing 401331, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
26
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Naelitz BD, Khooblall PS, Parekh NV, Vij SC, Rotz SJ, Lundy SD. The effect of red blood cell disorders on male fertility and reproductive health. Nat Rev Urol 2024; 21:303-316. [PMID: 38172196 DOI: 10.1038/s41585-023-00838-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Prajit S Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seth J Rotz
- Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
28
|
Barnes AJ, Bennett EF, Vezina B, Hudson AW, Hernandez GE, Nutter NA, Bray AS, Nagpal R, Wyres KL, Zafar MA. Ethanolamine metabolism through two genetically distinct loci enables Klebsiella pneumoniae to bypass nutritional competition in the gut. PLoS Pathog 2024; 20:e1012189. [PMID: 38713723 PMCID: PMC11101070 DOI: 10.1371/journal.ppat.1012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Collapse
Affiliation(s)
- Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Emma F. Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Noah A. Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States of America
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
29
|
Zeidan RS, Martenson M, Tamargo JA, McLaren C, Ezzati A, Lin Y, Yang JJ, Yoon HS, McElroy T, Collins JF, Leeuwenburgh C, Mankowski RT, Anton S. Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging 2024; 28:100212. [PMID: 38489995 DOI: 10.1016/j.jnha.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian McLaren
- Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jae Jeong Yang
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hyung-Suk Yoon
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James F Collins
- Department of Food Science & Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
30
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Absorption: Molecular and Pathophysiological Aspects. Metabolites 2024; 14:228. [PMID: 38668356 PMCID: PMC11052485 DOI: 10.3390/metabo14040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the other hand, excess iron may lead to cell and tissue damage. Consequently, iron balance is strictly regulated. As iron excretion is not physiologically controlled, systemic iron homeostasis is maintained at the level of absorption, which is mainly influenced by the amount of iron stores and the level of erythropoietic activity, the major iron consumer. Here, we outline recent advances that increased our understanding of the molecular aspects of iron absorption. Moreover, we examine the impact of these recent insights on dietary strategies for maintaining iron balance.
Collapse
Affiliation(s)
| | | | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.C.); (E.G.); (S.R.)
| | | |
Collapse
|
31
|
Park S, Lee S, Kim T, Choi A, Lee S, Kim P. Development strategy of non-GMO organism for increased hemoproteins in Corynebacterium glutamicum: a growth-acceleration-targeted evolution. Bioprocess Biosyst Eng 2024; 47:549-556. [PMID: 38499686 PMCID: PMC11003892 DOI: 10.1007/s00449-024-02986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutamicum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants was cured. The evolved strains showed improved specific growth rates from 0.59 h-1 to 0.62 h-1, 20% enhanced resistance to oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22-15.24 µg/g-DCW. Notably, the putative peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO industrial strains with increased bio-product productivity.
Collapse
Affiliation(s)
- Sehyeon Park
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Taeyeon Kim
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Ahyoung Choi
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Soyeon Lee
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Pil Kim
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea.
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea.
| |
Collapse
|
32
|
Huang W, Das NK, Radyk MD, Keeley T, Quiros M, Jain C, El-Derany MO, Swaminathan T, Dziechciarz S, Greenson JK, Nusrat A, Samuelson LC, Shah YM. Dietary Iron Is Necessary to Support Proliferative Regeneration after Intestinal Injury. J Nutr 2024; 154:1153-1164. [PMID: 38246358 PMCID: PMC11181351 DOI: 10.1016/j.tjnut.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Megan D Radyk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Theresa Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Chesta Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thaarini Swaminathan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
33
|
Rogez J, Urbanski G, Vinatier E, Lavigne C, Emmanuel L, Dupin I, Ravaiau C, Lacombe V. Iron deficiency in pernicious anemia: Specific features of iron deficient patients and preliminary data on response to iron supplementation. Clin Nutr 2024; 43:1025-1032. [PMID: 38527394 DOI: 10.1016/j.clnu.2024.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND & AIMS While vitamin B12 (B12) deficiency is considered as the hallmark of pernicious anemia (PA), iron deficiency (ID) is also prevalent. Indeed, this auto immune gastritis is responsible for parietal cell atrophy and increase in gastric pH, leading to impaired iron absorption. We compared PA patients' features according to their iron status at PA diagnosis, and we assessed the iron status recovery after oral or intravenous iron supplementation. METHODS We prospectively included patients presenting with a newly diagnosed PA in a tertiary referral hospital between November 2018 and October 2020. Iron status was assessed at PA diagnosis then regularly during a standardized follow-up. In case of ID, the decision of treatment with oral and/or intravenous iron supplementation was left to the clinician convenience. RESULTS We included 28 patients with newly diagnosed PA. ID was observed in 21/28 (75.0%) patients: from the PA diagnosis in 13 patients, or during the follow-up in 8 patients. Iron deficient PA patients had higher plasma B12 (p = 0.04) and lower homocysteine levels (p = 0.04). Also, ID was independently associated with the 'APCA (anti-parietal cell antibodies) alone' immunological status (absence of anti-intrinsic factor antibodies) after adjustment for age, gender and B12 level (aOR 12.1 [1.1-141.8], p = 0.04). High level of APCA was associated with lower ferritin level. After 3 months of supplementation, 3/11 PA patients normalized the iron status with oral iron supplementation, versus 7/8 with intravenous iron supplementation (p = 0.02). CONCLUSION The high frequency of iron deficiency in PA highlights the interest of regular assessment of iron status in this condition. ID was associated with a profile including APCA alone and less pronounced B12 deficiency. Intravenous iron supplementation seemed to be more efficient than an oral supplementation in these preliminary data.
Collapse
Affiliation(s)
- Juliette Rogez
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France; Department of Immunology and Allergology, Geneva University Hospital, Geneve, Switzerland; Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Emeline Vinatier
- Laboratory of Immunology, Angers University Hospital, Angers, France
| | - Christian Lavigne
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France
| | - Léa Emmanuel
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France
| | - Iris Dupin
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France
| | - Camille Ravaiau
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France
| | - Valentin Lacombe
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, Angers, France; Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| |
Collapse
|
34
|
Ebea PO, Vidyasagar S, Connor JR, Frazer DM, Knutson MD, Collins JF. Oral iron therapy: Current concepts and future prospects for improving efficacy and outcomes. Br J Haematol 2024; 204:759-773. [PMID: 38253961 PMCID: PMC10939879 DOI: 10.1111/bjh.19268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Pearl O. Ebea
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | | | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - David M. Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mitchell D. Knutson
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - James F. Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Li S, Xing W, Gang Y, Zhang M, Zhao Z, Wu H, Zhu S. Gum Arabic-Derived Hydroxyproline-Rich Peptides Stimulate Intestinal Nonheme Iron Absorption via HIF2α-Dependent Upregulation of Iron Transport Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3622-3632. [PMID: 38347764 DOI: 10.1021/acs.jafc.3c09588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The stimulation of host iron absorption is a promising antianemia strategy adjunctive/alternative to iron intervention. Here, gum arabic (GA) containing 3.14 ± 0.56% hydroxyproline-rich protein with repetitive X-(Pro/Hyp)n motifs was found to increase iron reduction, uptake, and transport to upregulate duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferroportin, and hephaestin to inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) and to stabilize HIF2α in polarized Caco-2 cell monolayers in a dose-dependent manner, and this was dependent on its protein fraction, rather than the polysaccharide fraction. Three abundant GA-derived hydroxyproline-containing dipeptides of Hyp-Hyp, Pro-Hyp, and Ser-Hyp were detected by liquid chromatography-mass spectrometry in the lysates of polarized Caco-2 cell monolayers at the maximum levels of 0.167 ± 0.021, 0.134 ± 0.017, and 0.089 ± 0.015 μg/mg of protein, respectively, and showed desirable docking affinity energy values of -7.53, - 7.91, and -7.39 kcal/mol, respectively, against human PHD3. GA-derived peptides also acutely increased duodenal HIF2α stability and Dcytb, DMT1, ferroportin, and hephaestin transcription in rats (P < 0.05). Overall, GA-derived hydroxyproline-rich peptides stimulated intestinal iron absorption via PHD inhibition, HIF2α stabilization, and subsequent upregulation of iron transport proteins.
Collapse
Affiliation(s)
- Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wenshuo Xing
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxin Gang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Zifang Zhao
- Hainan/Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| |
Collapse
|
36
|
Choque-Quispe BM, Vásquez-Velásquez C, Gonzales GF. Evaluation of dietary composition between hemoglobin categories, total body iron content and adherence to multi-micronutrients in preschooler residents of the highlands of Puno, Peru. BMC Nutr 2024; 10:28. [PMID: 38347656 PMCID: PMC10860272 DOI: 10.1186/s40795-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The anemia prevalence is higher in highlands populations. It is assumed that iron deficiency anemia (IDA) in children is mainly due to low dietary intake. However, other suggest that high prevalence of anemia is due to an inappropriate hemoglobin (Hb) adjustment for altitude. MATERIALS AND METHODS Cross-sectional study conducted in 338 preschoolers (PSC) from Puno-Peru. Hb was measured in whole blood, and ferritin, Soluble transferrin receptor, and Interleukin 6 in serum.The dietary iron intake was assessed by 24-h dietary recall, using NutriCap Software. Hb concentration was assessed as adjusted or unadjusted for altitude. RESULTS With unadjusted Hb, the anemia prevalence was 4.7%, whereas after Hb correction, the prevalence raised-up to 65.6% (p < 0.001). Reciprocally, erythrocytosis proportion decreased from 20.35 to 0.30% (p < 0.001). Total Body Iron (TBI) showed that 7.44% had ID and 0.32% had IDA. PSC with normal unadjusted Hb levels have more protein and micronutrients intake than anemic ones. PSC with erythrocytosis consumed less fat, and more niacin and ascorbic acid than anemics. Total iron intake was lower in anemic than the other groups, but without statistical significance due to the standard deviation of the data in a small number of anemic PSC (n = 16). TBI, unadjusted Hb, and adjusted Hb were not different between groups consuming or not multimicronutrients. CONCLUSIONS The consumption of iron and iron status in children who live at high altitude is adequate, and that anemia could be due to other micronutrient deficiencies and/or that the adjustment of Hb by altitude is inappropriate.
Collapse
Affiliation(s)
| | - Cinthya Vásquez-Velásquez
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
37
|
Stefos GC, Dalaka E, Papoutsi G, Palamidi I, Andreou V, Katsaros G, Bossis I, Politis I, Theodorou G. In vitro evaluation of the effect of yogurt acid whey fractions on iron bioavailability. J Dairy Sci 2024; 107:683-694. [PMID: 37709016 DOI: 10.3168/jds.2023-23643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
A side effect of the raised consumption of Greek yogurt is the generation of massive amounts of yogurt acid whey (YAW). The dairy industry has tried several methods for handling these quantities, which constitute an environmental problem. Although the protein content of YAW is relatively low, given the huge amounts of produced YAW, the final protein amount in the produced YAW should not be underestimated. Taking into consideration the increased interest for bioactive peptides and the increased demand for dietary proteins, combined with protein and peptides content of YAW, efforts should be made toward reintroducing the latter in the food supply chain. In this context and in view of the prevalent dietary iron deficiency problem, the objective of the present study was the investigation of YAW fractions' effect on Fe bioavailability. With this purpose, an in vitro digest approach, following the INFOGEST protocol, was coupled with the Caco2 cell model. To evaluate whether YAW digest fractions exert positive, negative or neutral effect on Fe bioavailability, they were compared with the ones derived from milk, a well-studied food in this context. Milk and YAW showed the same effectiveness on both Fe bioavailability and the expression of relative genes (DCYTB, DMT1, FPN1, and HEPH). Focusing further on YAW fractions, by comparison with their blank digest control counterparts, it resulted that YAW 3- to 10-kDa digests fraction had a superior effect over the 0- to 3-kDa fraction on Fe-uptake, which was accompanied by a similar effect on the expression of Fe metabolism-related genes (DCYTB, FPN1, and HEPH). Finally, although the 3- to 10-kDa fraction of bovine YAW digests resulted in a nonsignificant increased Fe uptake, compared with the ovine and caprine YAW, the expression of DCYTB and FPN1 genes underlined this difference by showing a similar pattern with statistically significant higher expression of bovine compared with ovine and bovine compared with both ovine and caprine, respectively. The present study deals with the novel concept that YAW may contain factors affecting Fe bioavailability. The results show that it does not exert any negative effect and support the extensive investigation for specific peptides with positive effect as well as that YAW proteins should be further assessed on the prospect that they can be used in human nutrition.
Collapse
Affiliation(s)
- Georgios C Stefos
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece.
| | - Eleni Dalaka
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| | - Georgia Papoutsi
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| | - Irida Palamidi
- Laboratory of Nutritional Physiology & Feeding, Department of Animal Science, Agricultural University of Athens, 112 55 Athens, Greece
| | - Varvara Andreou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi 14123, Attica, Greece
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi 14123, Attica, Greece
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece
| | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 118 55 Athens, Greece.
| |
Collapse
|
38
|
Bao H, Wang Y, Xiong H, Xia Y, Cui Z, Liu L. Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. Int J Mol Sci 2024; 25:727. [PMID: 38255801 PMCID: PMC10815743 DOI: 10.3390/ijms25020727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Iron is a vital trace element that plays an important role in humans and other organisms. It plays an active role in the growth, development, and reproduction of bacteria, such as Bifidobacteria. Iron deficiency or excess can negatively affect bacterial hosts. Studies have reported a major role of iron in the human intestine, which is necessary for maintaining body homeostasis and intestinal barrier function. Organisms can maintain their normal activities and regulate some cancer cells in the body by regulating iron excretion and iron-dependent ferroptosis. In addition, iron can modify the interaction between hosts and microorganisms by altering their growth and virulence or by affecting the immune system of the host. Lactic acid bacteria such as Lactobacillus acidophilus (L. acidophilus), Lactobacillus rhamnosus (L. rhamnosus), and Lactobacillus casei (L. casei) were reported to increase trace elements, protect the host intestinal barrier, mitigate intestinal inflammation, and regulate immune function. This review article focuses on the two aspects of the iron and gut and generally summarizes the mechanistic role of iron ions in intestinal immunity and the remodeling of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| |
Collapse
|
39
|
Moreno-Navarrete JM, Fernández-Real JM. Iron: The silent culprit in your adipose tissue. Obes Rev 2024; 25:e13647. [PMID: 37789591 DOI: 10.1111/obr.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
40
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
41
|
Wang H, Huang Z, Du C, Dong M. Iron Dysregulation in Cardiovascular Diseases. Rev Cardiovasc Med 2024; 25:16. [PMID: 39077672 PMCID: PMC11263000 DOI: 10.31083/j.rcm2501016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 07/31/2024] Open
Abstract
Iron metabolism plays a crucial role in various physiological functions of the human body, as it is essential for the growth and development of almost all organisms. Dysregulated iron metabolism-manifested either as iron deficiency or overload-is a significant risk factor for the development of cardiovascular disease (CVD). Moreover, emerging evidence suggests that ferroptosis, a form of iron-dependent programed cell death, may also contribute to CVD development. Understanding the regulatory mechanisms of iron metabolism and ferroptosis in CVD is important for improving disease management. By integrating different perspectives and expertise in the field of CVD-related iron metabolism, this overview provides insights into iron metabolism and CVD, along with approaches for diagnosing, treating, and preventing CVD associated with iron dysregulation.
Collapse
Affiliation(s)
- Hui Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Zhongmin Huang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Chenyan Du
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and
Translation, Chengdu Fifth People's Hospital, 611137 Chengdu, Sichuan, China
| |
Collapse
|
42
|
Perera DN, Palliyaguruge CL, Eapasinghe DD, Liyanage DM, Seneviratne RACH, Demini SMD, Jayasinghe JASM, Faizan M, Rajagopalan U, Galhena BP, Hays H, Senathilake K, Tennekoon KH, Samarakoon SR. Factors affecting iron absorption and the role of fortification in enhancing iron levels. NUTR BULL 2023; 48:442-457. [PMID: 37965925 DOI: 10.1111/nbu.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
Iron is an important micronutrient required for a number of biological processes including oxygen transport, cellular respiration, the synthesis of nucleic acids and the activity of key enzymes. The World Health Organization has recognised iron deficiency as the most common nutritional deficiency globally and as a major determinant of anaemia. Iron deficiency anaemia affects 40% of all children between the ages of 6 and 59 months, 37% of mothers who are pregnant and 30% of women between the ages of 15 and 49 years worldwide. Dietary iron exists in two main forms known as haem iron and non-haem iron. Haem iron is obtained from animal sources such as meat and shows higher bioavailability than non-haem iron, which can be obtained from both plant and animal sources. Different components in food can enhance or inhibit iron absorption from the diet. Components such as meat proteins and organic acids increase iron absorption, while phytate, calcium and polyphenols reduce iron absorption. Iron levels in the body are tightly regulated since both iron overload and iron deficiency can exert harmful effects on human health. Iron is stored mainly as haemoglobin and as iron bound to proteins such as ferritin and hemosiderin. Iron deficiency affects individuals at increased risk due to factors such as age, pregnancy, menstruation and various diseases. Different solutions for iron deficiency are applied at individual and community levels. Iron supplements and intravenous iron can be used to treat individuals with iron deficiency, while various types of iron-fortified foods and biofortified crops can be employed for larger communities. Foods such as rice, flour and biscuits have been used to prepare fortified iron products. However, it is important to ensure the fortification process does not exert significant negative effects on organoleptic properties and the shelf life of the food product.
Collapse
Affiliation(s)
- Dipun Nirmal Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - Dasuni Dilkini Eapasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Dilmi Maleesha Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - R A C Haily Seneviratne
- Department of Food Sciences Technology, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - S M D Demini
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - J A S M Jayasinghe
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - B Prasanna Galhena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Hasi Hays
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kamani H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
43
|
Zeng Y, Yin H, Zhou X, Wang C, Zhou B, Wang B, Tang B, Huang L, Chen X, Zou X. Effect of replacing inorganic iron with iron-rich microbial preparations on growth performance, serum parameters and iron metabolism of weaned piglets. Vet Res Commun 2023; 47:2017-2025. [PMID: 37402083 DOI: 10.1007/s11259-023-10162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to investigate the effects of replacing of dietary inorganic iron with iron-rich Lactobacillus plantarum and iron-rich Candida utilis on the growth performance, serum parameters, immune function and iron metabolism of weaned piglets. Fifty-four 28-day-old healthy Duroc × Landrace × Yorkshire castrated male weanling piglets of similar body weight were randomly and equally divided into three groups. The piglets were kept in three pens per group, with six pigs in each pen. The dietary treatments were (1) a basal diet + ferrous sulfate preparation containing 120 mg/kg iron (CON); (2) a basal diet + iron-rich Candida utilis preparation containing 120 mg/kg iron (CUI); and (3) a basal diet + iron-rich Lactobacillus plantarum preparation containing 120 mg/kg iron (LPI). The entire feeding trial lasted for 28 days, after which blood, viscera, and intestinal mucosa were collected. The results showed no significant difference in growth parameters and organ indices of the heart, liver, spleen, lung, and kidney of weaned piglets when treated with CUI and LPI compared with the CON group (P > 0.05). However, CUI and LPI significantly reduced the serum contents of AST, ALP, and LDH (P < 0.05). Serum ALT content was significantly lower in the LPI treatment compared to the CON group (P < 0.05). Compared to CON, CUI significantly increased the contents of serum IgG and IL-4 (P < 0.05), and CUI significantly decreased the content of IL-2. LPI significantly increased the contents of serum IgA, IgG, IgM and IL-4 (P < 0.05), while LPI significant decreased the levels of IL-1β, IL-2, IL-6, IL-8, and TNF-α compared to CON (P < 0.05). CUI led to a significant increase in ceruloplasmin activity and TIBC (P < 0.05). LPI significantly increased the contents of serum Fe and ferritin, and increased the serum ceruloplasmin activity and TIBC compared to CON (P < 0.05). Furthermore, CUI resulted in a significant increase in the relative mRNA expression of FPN1 and DMT1 in the jejunal mucosa (P < 0.05). LPI significantly increased the relative mRNA expression of TF, FPN1, and DMT1 in the jejunal mucosa (P < 0.05). Based on these results, the replacement of dietary inorganic iron with an iron-rich microbial supplement could improve immune function, iron absorption and storage in piglets.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Hongmei Yin
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoling Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Chunping Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, 410009, China
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Bingxuan Tang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Lihong Huang
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xian Chen
- Hunan Institute of Microbiology, Changsha, 410009, China
| | - Xiaoyan Zou
- College of Pharmacy, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
44
|
Wu C, Zhang W, Yan F, Dai W, Fang F, Gao Y, Cui W. Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice. PHARMACEUTICAL BIOLOGY 2023; 61:37-49. [PMID: 36573499 PMCID: PMC9809354 DOI: 10.1080/13880209.2022.2151632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored. OBJECTIVE This study investigates the antioxidant properties of SL-GAC in vitro and in mice, and its remediating effects against liver injury by iron-overloaded. MATERIALS AND METHODS In vitro, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. In vivo, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques. RESULTS In vitro, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC50 values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%). CONCLUSIONS These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Caihong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenxin Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feifei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenwen Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yanli Gao
- Department of Pediatric Ultrosonic, The First Hospital of Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
45
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
46
|
Kang DY, Park S, Song KS, Bae SW, Lee JS, Jang KJ, Park YM. Anticancer Effects of 6-Gingerol through Downregulating Iron Transport and PD-L1 Expression in Non-Small Cell Lung Cancer Cells. Cells 2023; 12:2628. [PMID: 37998363 PMCID: PMC10670414 DOI: 10.3390/cells12222628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Sanghyeon Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeong-Sang Lee
- Department of Functional Foods and Biotechnology, College of Medical Sciences, Jeonju University, Jeonju 55069, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
47
|
Chen H, Han Z, Wang Y, Su J, Lin Y, Cheng X, Liu W, He J, Fan Y, Chen L, Zuo H. Targeting Ferroptosis in Bone-Related Diseases: Facts and Perspectives. J Inflamm Res 2023; 16:4661-4677. [PMID: 37872954 PMCID: PMC10590556 DOI: 10.2147/jir.s432111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Ferroptosis is a new cell fate decision discovered in recent years. Unlike apoptosis, autophagy or pyroptosis, ferroptosis is characterized by iron-dependent lipid peroxidation and mitochondrial morphological changes. Ferroptosis is involved in a variety of physiological and pathological processes. Since its discovery, ferroptosis has been increasingly studied concerning bone-related diseases. In this review, we focus on the latest research progress and prospects, summarize the regulatory mechanisms of ferroptosis, and discuss the role of ferroptosis in the pathogenesis of bone-related diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and osteosarcoma (OS), as well as its therapeutic potential.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Yi Wang
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Junyan Su
- Department of Orthopaedics, The First People’s Hospital of Longquanyi District, Chengdu, 610000, People’s Republic of China
| | - Yumeng Lin
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Xuhua Cheng
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Wen Liu
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Jingyu He
- Sichuan Judicial and Police Officers Professional College, Deyang, 618000, People’s Republic of China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Houdong Zuo
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| |
Collapse
|
48
|
Tomosugi N, Koshino Y, Ogawa C, Maeda K, Shimada N, Tomita K, Daimon S, Shikano T, Ryu K, Takatani T, Sakamoto K, Ueyama S, Nagasaku D, Nakamura M, Ra S, Nishimura M, Takagi C, Ishii Y, Kudo N, Takechi S, Ishizu T, Yanagawa T, Fukuda M, Nitta Y, Yamaoka T, Saito T, Imayoshi S, Omata M, Oshima J, Onozaki A, Ichihashi H, Matsushima Y, Takae H, Nakazawa R, Ikeda K, Tsuboi M, Konishi K, Kato S, Ooura M, Koyama M, Naganuma T, Ogi M, Katayama S, Okumura T, Kameda S, Shirai S. Oral Iron Absorption of Ferric Citrate Hydrate and Hepcidin-25 in Hemodialysis Patients: A Prospective, Multicenter, Observational Riona-Oral Iron Absorption Trial. Int J Mol Sci 2023; 24:13779. [PMID: 37762085 PMCID: PMC10531220 DOI: 10.3390/ijms241813779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Oral ferric citrate hydrate (FCH) is effective for iron deficiencies in hemodialysis patients; however, how iron balance in the body affects iron absorption in the intestinal tract remains unclear. This prospective observational study (Riona-Oral Iron Absorption Trial, R-OIAT, UMIN 000031406) was conducted at 42 hemodialysis centers in Japan, wherein 268 hemodialysis patients without inflammation were enrolled and treated with a fixed amount of FCH for 6 months. We assessed the predictive value of hepcidin-25 for iron absorption and iron shift between ferritin (FTN) and red blood cells (RBCs) following FCH therapy. Serum iron changes at 2 h (ΔFe2h) after FCH ingestion were evaluated as iron absorption. The primary outcome was the quantitative delineation of iron variables with respect to ΔFe2h, and the secondary outcome was the description of the predictors of the body's iron balance. Generalized estimating equations (GEEs) were used to identify the determinants of iron absorption during each phase of FCH treatment. ΔFe2h increased when hepcidin-25 and TSAT decreased (-0.459, -0.643 to -0.276, p = 0.000; -0.648, -1.099 to -0.197, p = 0.005, respectively) in GEEs. FTN increased when RBCs decreased (-1.392, -1.749 to -1.035, p = 0.000) and hepcidin-25 increased (0.297, 0.239 to 0.355, p = 0.000). Limiting erythropoiesis to maintain hemoglobin levels induces RBC reduction in hemodialysis patients, resulting in increased hepcidin-25 and FTN levels. Hepcidin-25 production may prompt an iron shift from RBC iron to FTN iron, inhibiting iron absorption even with continued FCH intake.
Collapse
Affiliation(s)
- Naohisa Tomosugi
- Division of Systems Bioscience for Drug Discovery, Project Research Center, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | | | - Chie Ogawa
- Maeda Institute of Renal Research Musashikosugi, Kawasaki 211-0063, Kanagawa, Japan;
| | - Kunimi Maeda
- Maeda Institute of Renal Research Shakujii, Nerima 177-0041, Tokyo, Japan;
| | | | - Kimio Tomita
- The Chronic Kidney Disease Research Center, Tomei Atsugi General Hospital, Atsugi 243-8571, Kanagawa, Japan;
| | - Shoichiro Daimon
- Department of Nephrology, Daimon Clinic for Internal Medicine, Nonoichi 921-8802, Ishikawa, Japan;
| | - Tsutomu Shikano
- Kyoto Okamoto Memorial Hospital, Kuze 613-0034, Kyoto, Japan; (T.S.); (K.R.)
| | - Kazuyuki Ryu
- Kyoto Okamoto Memorial Hospital, Kuze 613-0034, Kyoto, Japan; (T.S.); (K.R.)
| | - Toru Takatani
- Nephrology Division, Tojinkai Hospital, Fushimi 612-8026, Kyoto, Japan;
| | - Kazuya Sakamoto
- Department of Urology, Tomakomai Nisshou Hospital, Tomakomai 053-0803, Hokkaido, Japan;
| | - Satonori Ueyama
- Jinaikai Ueyama Hospital, Kagoshima 890-0073, Kagoshima, Japan;
| | | | | | - Shibun Ra
- Noheji Clinic, Noheji 039-3152, Aomori, Japan;
| | | | | | - Yoji Ishii
- Nozatomon Clinic, Himeji 670-0011, Hyogo, Japan;
| | | | | | - Takashi Ishizu
- Department of Nephrology, Tsukuba Central Hospital, Ushiku 300-1211, Ibaraki, Japan; (T.I.); (T.Y.)
| | - Takamoto Yanagawa
- Department of Nephrology, Tsukuba Central Hospital, Ushiku 300-1211, Ibaraki, Japan; (T.I.); (T.Y.)
| | | | - Yutaka Nitta
- The Department of Nephrology, Saiseikai Shimonoseki General Hospital, Shimonoseki 759-6603, Yamaguchi, Japan; (Y.N.); (T.Y.)
| | - Takayuki Yamaoka
- The Department of Nephrology, Saiseikai Shimonoseki General Hospital, Shimonoseki 759-6603, Yamaguchi, Japan; (Y.N.); (T.Y.)
| | - Taku Saito
- Saito Memorial Hospital, Kawaguchi 332-0034, Saitama, Japan; (T.S.); (S.I.)
| | - Suzuko Imayoshi
- Saito Memorial Hospital, Kawaguchi 332-0034, Saitama, Japan; (T.S.); (S.I.)
| | - Momoyo Omata
- Department of Internal Medicine, Hachioji Azumacho Clinic, Hachioji-shi 192-0082, Tokyo, Japan;
| | - Joji Oshima
- Kubojima Clinic, Kumagaya 360-0831, Saitama, Japan;
| | - Akira Onozaki
- Tokatsu-Clinic Hospital, Matsudo 271-0067, Chiba, Japan;
| | | | | | | | | | - Koichi Ikeda
- Tokatsu Clinic Koiwa, Edogawa 133-0056, Tokyo, Japan;
| | - Masato Tsuboi
- Kaikoukai Anjo Kyoritsu Clinic, Anjo 446-0065, Aichi, Japan;
| | | | - Shouzaburo Kato
- Nishi Interchange Clinic for Internal Medicine and Dialysis, Kanazawa 921-8001, Ishikawa, Japan;
| | - Maki Ooura
- Maro Clinic, Tanabe 646-0004, Wakayama, Japan;
| | | | - Tsukasa Naganuma
- Department of Nephrology, Yamanashi Prefectural Central Hospital, Kofu 400-0027, Yamanashi, Japan;
| | - Makoto Ogi
- Department of Internal Medicine, Yuurinkouseikai Fuji Hospital, Gotemba 412-0043, Shizuoka, Japan;
| | | | | | - Shigemi Kameda
- Joetsu General Hospital, Joetsu 943-8507, Niigata, Japan;
| | - Sayuri Shirai
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University Yokohama Seibu Hospital, Yokohama 241-0811, Kanagawa, Japan;
| |
Collapse
|
49
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
50
|
Zhang Q, Ding H, Yu X, Wang Q, Li X, Zhang R, Feng J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2041-2055. [PMID: 37452897 DOI: 10.1007/s11427-022-2347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoxuan Ding
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Yu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|