1
|
Zanditenas E, Ankri S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024; 15:2289775. [PMID: 38058008 PMCID: PMC10761080 DOI: 10.1080/21505594.2023.2289775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
2
|
Lee YA, Shin MH. Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica. PARASITES, HOSTS AND DISEASES 2023; 61:388-396. [PMID: 38043534 PMCID: PMC10693973 DOI: 10.3347/phd.23094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Myeong Heon Shin
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
3
|
Yanagawa Y, Singh U. Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Trop Med Infect Dis 2023; 8:tropicalmed8050255. [PMID: 37235303 DOI: 10.3390/tropicalmed8050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
Collapse
Affiliation(s)
- Yasuaki Yanagawa
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Silva Oliveira FM, Claúdia de Carvalho Fernandes A, Henrique de Cicco Sandes S, Prata LO, Junior MA, Vilela da Silva CA, Campolina-Silva GH, Lorenzo de Jesus Oliveira M, Oliveira CA, Neumann E, Nunes ÁC, Gomes MA, Caliari MV. Co-infection by Salmonella enterica subsp. Enterica serovar typhimurium and Entamoeba dispar pathogenic strains enhances colitis and the expression of amoebic virulence factors. Microb Pathog 2021; 158:105010. [PMID: 34126224 DOI: 10.1016/j.micpath.2021.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Amebiasis is the most severe protozoan infection affecting the human intestine, and the second leading cause of death among parasitic diseases. The mechanisms of amoebic virulence factors acquisition are poorly understood, and there are few studies showing the interaction between Entamoeba dispar and bacteria. Salmonella enterica subsp. enterica serovar typhimurium is also a common cause of gastroenteritis in humans. Considering the high rates of amebiasis and salmonellosis, it is possible that these diseases may co-exist in the human intestine, leading to co-infection. Due to the scarcity of studies showing the influence of enteropathogenic bacteria on amoebic virulence, our research group proposed to evaluate the impact of S. typhimurium on E. dispar trophozoites. We assessed whether co-infection of S. typhimurium and E. dispar can change the progression of amoebic colitis, and the inflammatory response profile in the caecum mucosa, using a co-infection experimental model in rats. In vitro assays was used to investigate whether S. typhimurium induces changes in amoebic virulence phenotype. In the present work, we found that S. typhimurium co-infection exacerbates amoebic colitis and intestinal inflammation. The in vitro association of S. typhimurium and E. dispar trophozoites contributed to increase the expression of amoebic virulence factors. Also, we demonstrated, for the first time, the cysteine proteinase 5 expression in E. dispar MCR, VEJ and ADO strains, isolated in Brazil. Together, our results show that S. typhimurium and E. dispar co-infection worsens amoebic colitis, possibly by increasing the expression of amoebic virulence factors.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Brazil; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | | | - Sávio Henrique de Cicco Sandes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Luana Oliveira Prata
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Mario Abatemarco Junior
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | | | | | | | | | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
5
|
Ayele BH, Geleto A, Ayana DA, Redi M. Prevalence of feco-oral transmitted protozoan infections and associated factors among university students in Ethiopia: a cross-sectional study. BMC Infect Dis 2019; 19:499. [PMID: 31174474 PMCID: PMC6555915 DOI: 10.1186/s12879-019-4095-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background An estimated 60% of the world’s population is infected with one form of intestinal parasites. Amoebiasis and giardiasis are among the leading intestinal protozoan infections that affected mankind. However, literature that shows the magnitude of the problem among university students in Ethiopia is at scarce. Therefore, this study was aimed at assessing the prevalence of feco-oral transmitted protozoan infections and associated factors among sport festival participant universities in Ethiopia. Methods A cross-sectional study design was conducted among 483 randomly selected university sport festival participant students. A self-administered questionnaire was used to collect the data. Stool specimens were examined using direct wet mount and formol-ether concentration techniques. The data were entered into Epi Info version 6.04 and were analyzed using SPSS version 20.0 statistical software. Multivariable logistic regression analysis was done to control the possible confounders and an odds ratio with a 95% confidence interval at p < 0.05 was used to identify an association between variables. Result The overall prevalence of intestinal protozoan infections was 140(28.9%) with the predominantly higher prevalence of E. histolytica/E. dispar 95(19.7%). The female respondents were at lower risk of infections compared to their male counterparts (AOR = 0.48, 95% CI: 0.22, 0.97]. Participants with educated father (AOR = 0.62, 95% CI: 0.12, 0.86) and those who received pocket money of > 347 Ethiopian Birr (~ 14 USD) per month (AOR = 0.20, 95% CI: 0.12, 0.74) were at lower risk of infections. However, being married (AOR = 1.42, 95% CI: 1.10, 2.23), rural resident (AOR = 1.82, 95% CI: 1.21, 3.32) and university stay for two or more years (AOR = 2.21, 95%CI: 1.48, 3.87) were more likely to be infected with protozoan infections. Conclusion The prevalence of intestinal protozoan infection among students who attend higher educational institutions was very high. Infection prevention strategies should be undertaken at respective universities with special focus to senior students and students from the rural area. Electronic supplementary material The online version of this article (10.1186/s12879-019-4095-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Behailu Hawulte Ayele
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| | - Ayele Geleto
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Desalegn Admassu Ayana
- Department of Medical Laboratory Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Muhedin Redi
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
6
|
Mohammed SEA, Kabbashi AS, Koko WS, Ansari MJ, Adgaba N, Al-Ghamdi A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J Biol Sci 2019; 26:238-243. [PMID: 31485160 PMCID: PMC6717097 DOI: 10.1016/j.sjbs.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022] Open
Abstract
Considering the potentiality of honey in combating diseases, the present study was carried out aiming to assess the in vitro antiprotozoal activity of several honeys (Ziziphus spina-christi, Acacia nilotica, Acacia seyal, and Cucurbita maxima) against Entamoeba histolytica and Giardia lamblia by employing the sub-culture method. All the tested honeys inhibited the growth of trophozoites, and the level of inhibition varied according to the assayed concentrations and incubation times. Acacia seyal honey had completely stopped motility of E. histolytica trophozoites at a concentration ≤ 50 µg/ml after incubation for 72 h. Ziziphus spina-christi, Acacia seyal, and Acacia nilotica honeys had completely inhibited the growth of Giardia lamblia trophozoites at concentration ≤ 200 µg/ml after 72 h. These inhibitory activities were similar to that of Metronidazole™ which showed IC50 = 0.27. The mammalian cytotoxicity of these honeys against normal Vero cell line which determined by applying MTT method verified the nontoxicity of the examined honeys. Also the proximate composition of the samples indicated compliance with the natural honey standards. The findings of the study indicate the need for in vivo studies and further investigations to identify active principles with antiprotozoal activities from natural honeys.
Collapse
Affiliation(s)
- Seif Eldin A. Mohammed
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S. Kabbashi
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, P.O. Box 2404, National Center for Research, Khartoum, Sudan
| | - Waleed S. Koko
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, P.O. Box 2404, National Center for Research, Khartoum, Sudan
| | - Mohammad Javed Ansari
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nuru Adgaba
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Al-Ghamdi
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Popovic A, Bourdon C, Wang PW, Guttman DS, Voskuijl W, Grigg ME, Bandsma RHJ, Parkinson J. Design and application of a novel two-amplicon approach for defining eukaryotic microbiota. MICROBIOME 2018; 6:228. [PMID: 30572961 PMCID: PMC6302507 DOI: 10.1186/s40168-018-0612-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Due to a lack of systematic diagnostics, our understanding of the diversity and role of eukaryotic microbiota in human health is limited. While studies have shown fungal communities to be significant modulators of human health, information on the prevalence of taxa such as protozoa and helminths has been limited to a small number of species for which targeted molecular diagnostics are available. To probe the diversity of eukaryotic microbes and their relationships with other members of the microbiota, we applied in silico and experimental approaches to design a novel two-amplicon surveillance tool, based on sequencing regions of ribosomal RNA genes and their internal transcribed spacers. We subsequently demonstrated the utility of our approach by characterizing the eukaryotic microbiota of 46 hospitalized Malawian children suffering from Severe Acute Malnutrition (SAM). RESULTS Through in silico analysis and validation on a diverse panel of eukaryotes, we identified 18S rRNA variable genetic regions 4 and 5 (18S V4 V5), together with a region encoding 28S rRNA variable genetic region 2 and the internal transcribed spacers (transITS), as optimal for the systematic classification of eukaryotes. Sequencing of these regions revealed protozoa in all stool samples from children with SAM and helminths in most, including several eukaryotes previously implicated in malnutrition and diarrheal disease. Clinical comparisons revealed no association between protozoan parasites and diarrhea or HIV reactivity. However, the presence of Blastocystis correlated with bacterial alpha diversity and increased abundance of specific taxa, including Sporobacter, Cellulosibacter, Oscillibacter, and Roseburia. CONCLUSION We suggest this novel two-amplicon based strategy will prove an effective tool to deliver new insights into the role of eukaryotic microbiota in health and disease.
Collapse
Affiliation(s)
- Ana Popovic
- Program in Molecular Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle Suite 5207, Toronto, ON M5S 1A8 Canada
| | - Celine Bourdon
- Program in Translational Medicine, The Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi Coordination Centre, P.O Box 43640-00100, 197 Lenana Place 2nd Floor, Nairobi, Kenya
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St Suite 4038, Toronto, ON M5S 3B2 Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St Suite 4038, Toronto, ON M5S 3B2 Canada
| | - Wieger Voskuijl
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi Coordination Centre, P.O Box 43640-00100, 197 Lenana Place 2nd Floor, Nairobi, Kenya
- Department of Pediatrics and Child Health, the College of Medicine, University of Malawi, Mahatma Gandhi, Private Bag 360, Chichiri, Blantyre, Malawi
- Global Child Health Group, Emma Children’s Hospital, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, 5601 Fishers Lane, MSC 9806, Bethesda, MD 20892-9806 USA
| | - Robert H. J. Bandsma
- Program in Translational Medicine, The Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi Coordination Centre, P.O Box 43640-00100, 197 Lenana Place 2nd Floor, Nairobi, Kenya
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, 525 University Avenue, Toronto, ON M5G 2L3 Canada
- Centre for Global Child Health, Hospital for Sick Children, 525 University Avenue Suite 702, Toronto, ON M5G 2L3 Canada
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King’s College Circle Suite 5253A, Toronto, ON M5S 1A8 Canada
- Department of Biomedical Sciences, College of Medicine, University of Malawi, Mahatma Gandhi, Private Bag 360 Chichiri, Blantyre, Malawi
| | - John Parkinson
- Program in Molecular Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle Suite 5207, Toronto, ON M5S 1A8 Canada
- Department of Molecular Genetics, University of Toronto, Medical Sciences Building, 1 King’s College Circle Suite 4386, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
8
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
9
|
O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123:285-295. [DOI: 10.1016/j.micpath.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
|
10
|
Gruber J, Pletzer A, Hess M. Cholesterol supplementation improves growth rates of Histomonas meleagridis in vitro. Exp Parasitol 2018; 185:53-61. [PMID: 29317242 DOI: 10.1016/j.exppara.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 11/15/2022]
Abstract
Research on the energy metabolism of various protozoan parasites showed the essentiality and benefits of cholesterol in the cultivation of these organisms. However, not much is known about the energy metabolism of Histomonas meleagridis, although such information is of high importance to improve cultivation of the parasite for advancements in diagnostics, research and vaccine development. By supplementing a serum enriched cultivation medium with cholesterol, numbers of parasites could be doubled in comparison to unsupplemented negative controls. This effect was demonstrated for two different strains of the parasite, at different levels of in vitro-passages and for histomonads under xenic or monoxenic settings. Supplementing medium free of serum with cholesterol, resulted in significant growth of the parasite over 72 h. However, there were differences in growth behaviour in serum free medium between the different histomonad cultures and continuous passaging of the cultures without serum was not possible. Monitoring the bacterial growth of two different co-cultivated E. coli strains in monoxenic histomonad cultures during these experiments showed that there was no significant impact of cholesterol on the bacteria. Therefore, a direct effect of cholesterol on the parasite itself could be demonstrated. The results of these experiments supply new insights into the metabolism of H. meleagridis and it can be concluded that cholesterol is an important component to enhance parasite growth in vitro.
Collapse
Affiliation(s)
- Janine Gruber
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Austria.
| | - Alena Pletzer
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Austria
| | - Michael Hess
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Austria; Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
11
|
Abstract
With the advent of low-cost, high-throughput sequencing, taxonomic profiling of complex microbial communities through 16S rRNA marker gene surveys has received widespread interest, uncovering a wealth of information concerning the bacterial composition of microbial communities, as well as their association with health and disease. On the other hand, little is known concerning the eukaryotic components of microbiomes. Such components include single-celled parasites and multicellular worms that are known to adversely impact the health of millions of people worldwide. Current molecular methods to detect eukaryotic microbes rely on the use of directed PCR analyses that are limited by their inability to inform beyond the taxon targeted. With increasing interest to develop equivalent marker-based surveys as used for bacteria, this chapter presents a stepwise protocol to characterize the diversity of eukaryotic microbes in a sample, using amplicon sequencing of hypervariable regions in the eukaryotic 18S rRNA gene.
Collapse
|
12
|
Campos-Rodríguez R, Gutiérrez-Meza M, Jarillo-Luna RA, Drago-Serrano ME, Abarca-Rojano E, Ventura-Juárez J, Cárdenas-Jaramillo LM, Pacheco-Yepez J. A review of the proposed role of neutrophils in rodent amebic liver abscess models. ACTA ACUST UNITED AC 2016; 23:6. [PMID: 26880421 PMCID: PMC4754534 DOI: 10.1051/parasite/2016006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/31/2016] [Indexed: 01/20/2023]
Abstract
Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Manuel Gutiérrez-Meza
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Rosa Adriana Jarillo-Luna
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - María Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Unidad Xochimilco, Universidad Autónoma Metropolitana, Distrito Federal, México
| | - Edgar Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Judith Pacheco-Yepez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| |
Collapse
|
13
|
Lee YA, Saito-Nakano Y, Kim KA, Min A, Nozaki T, Shin MH. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins. Exp Parasitol 2014; 149:7-15. [PMID: 25500214 DOI: 10.1016/j.exppara.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
14
|
Faust DM, Marquay Markiewicz J, Santi-Rocca J, Guillen N. New insights into host-pathogen interactions during Entamoeba histolytica liver infection. Eur J Microbiol Immunol (Bp) 2014; 1:10-8. [PMID: 24466432 DOI: 10.1556/eujmi.1.2011.1.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amoebiasis is the third worldwide disease due to a parasite. The causative agent of this disease, the unicellular eukaryote Entamoeba histolytica, causes dysentery and liver abscesses associated with inflammation and human cell death. During liver invasion, before entering the parenchyma, E. histolytica trophozoites are in contact with liver sinusoidal endothelial cells (LSEC). We present data characterizing human LSEC responses to interaction with E. histolytica and identifying amoebic factors involved in the process of cell death in this cell culture model potentially relevant for early steps of hepatic amoebiasis. E. histolytica interferes with host cell adhesion signalling and leads to diminished adhesion and target cell death. Contact with parasites induces disruption of actin stress fibers and focal adhesion complexes. We conclude that interference with LSEC signalling may result from amoeba-triggered changes in the mechanical forces in the vicinity of cells in contact with parasites, sensed and transmitted by focal adhesion complexes. The study highlights for the first time the potential role in the onset of hepatic amoebiasis of the loss of liver endothelium integrity by disturbance of focal adhesion function and adhesion signalling. Among the amoebic factors required for changed LSEC adherence properties we identified the Gal/GalNAC lectin, cysteine proteases and KERP1.
Collapse
Affiliation(s)
- D M Faust
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| | | | - J Santi-Rocca
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| | - N Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| |
Collapse
|
15
|
Lobo ML, Augusto J, Antunes F, Ceita J, Xiao L, Codices V, Matos O. Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and other intestinal parasites in young children in Lobata province, Democratic Republic of São Tomé and Principe. PLoS One 2014. [PMID: 24846205 DOI: 10.1371/journal.pone.0097708.ecollection2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rare systemic studies concerning prevalence of intestinal parasites in children have been conducted in the second smallest country in Africa, the Democratic Republic of São Tomé and Príncipe. Fecal specimens from 348 children (214 in-hospital attending the Aires de Menezes Hospital and 134 from Agostinho Neto village) in São Tome Island were studied by parasitological and molecular methods. Of the 134 children from Agostinho Neto, 52.2% presented intestinal parasites. 32.1% and 20.2% of these children had monoparasitism and polyparasitism, respectively. Ascaris lumbricoides (27.6%), G. duodenalis (7.5%), T. trichiura (4.5%) and Entamoeba coli (10.5%) were the more frequent species identified in the children of this village. Giardia duodenalis (7.5%) and E. bieneusi (5.2%) were identified by PCR. Nested-PCR targeting G. duodenalis TPI identified Assemblage A (60%) and Assemblage B (40%). The E. bieneusi ITS-based sequence identified genotypes K (57.1%), KIN1 (28.6%) and KIN3 (14.3%). Among the 214 in-hospital children, 29.4% presented intestinal parasites. In 22.4% and 7.0% of the parasitized children, respectively, one or more species were concurrently detected. By microscopy, A. lumbricoides (10.3%) and Trichiuris trichiura (6.5%) were the most prevalent species among these children, and Cryptosporidium was detected by PCR in 8.9% of children. GP60 locus analysis identified 6.5% of C. hominis (subtypes IaA27R3 [35.7%], IaA23R3 [14.3%], IeA11G3T3 [28.6%] and IeA11G3T3R1 [21.4%]) and 2.3% of C. parvum (subtypes IIaA16G2R1 [20.0%], IIaA15G2R1 [20.0%], IIdA26G1 [40.0%] and IIdA21G1a [20.0%]). G. duodenalis and E. bieneusi were identified in 0.5% and 8.9% of the in-hospital children, respectively. G. duodenalis Assemblage B was characterized. The E. bieneusi genotypes K (52.6%), D (26.4%), A (10.5%) and KIN1 (10.5%) were identified. Although further studies are required to clarify the epidemiology of these infectious diseases in this endemic region the significance of the present results highlights that it is crucial to strength surveillance on intestinal pathogens.
Collapse
Affiliation(s)
- Maria Luísa Lobo
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Augusto
- Centro Hospitalar do Algarve, Hospital de Portimão, Portimão, Portugal
| | | | - José Ceita
- Hospital Aires de Menezes, São Tomé, São Tomé e Príncipe
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vera Codices
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Olga Matos
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Lobo ML, Augusto J, Antunes F, Ceita J, Xiao L, Codices V, Matos O. Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and other intestinal parasites in young children in Lobata province, Democratic Republic of São Tomé and Principe. PLoS One 2014; 9:e97708. [PMID: 24846205 PMCID: PMC4028242 DOI: 10.1371/journal.pone.0097708] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Rare systemic studies concerning prevalence of intestinal parasites in children have been conducted in the second smallest country in Africa, the Democratic Republic of São Tomé and Príncipe. Fecal specimens from 348 children (214 in-hospital attending the Aires de Menezes Hospital and 134 from Agostinho Neto village) in São Tome Island were studied by parasitological and molecular methods. Of the 134 children from Agostinho Neto, 52.2% presented intestinal parasites. 32.1% and 20.2% of these children had monoparasitism and polyparasitism, respectively. Ascaris lumbricoides (27.6%), G. duodenalis (7.5%), T. trichiura (4.5%) and Entamoeba coli (10.5%) were the more frequent species identified in the children of this village. Giardia duodenalis (7.5%) and E. bieneusi (5.2%) were identified by PCR. Nested-PCR targeting G. duodenalis TPI identified Assemblage A (60%) and Assemblage B (40%). The E. bieneusi ITS-based sequence identified genotypes K (57.1%), KIN1 (28.6%) and KIN3 (14.3%). Among the 214 in-hospital children, 29.4% presented intestinal parasites. In 22.4% and 7.0% of the parasitized children, respectively, one or more species were concurrently detected. By microscopy, A. lumbricoides (10.3%) and Trichiuris trichiura (6.5%) were the most prevalent species among these children, and Cryptosporidium was detected by PCR in 8.9% of children. GP60 locus analysis identified 6.5% of C. hominis (subtypes IaA27R3 [35.7%], IaA23R3 [14.3%], IeA11G3T3 [28.6%] and IeA11G3T3R1 [21.4%]) and 2.3% of C. parvum (subtypes IIaA16G2R1 [20.0%], IIaA15G2R1 [20.0%], IIdA26G1 [40.0%] and IIdA21G1a [20.0%]). G. duodenalis and E. bieneusi were identified in 0.5% and 8.9% of the in-hospital children, respectively. G. duodenalis Assemblage B was characterized. The E. bieneusi genotypes K (52.6%), D (26.4%), A (10.5%) and KIN1 (10.5%) were identified. Although further studies are required to clarify the epidemiology of these infectious diseases in this endemic region the significance of the present results highlights that it is crucial to strength surveillance on intestinal pathogens.
Collapse
Affiliation(s)
- Maria Luísa Lobo
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Augusto
- Centro Hospitalar do Algarve, Hospital de Portimão, Portimão, Portugal
| | | | - José Ceita
- Hospital Aires de Menezes, São Tomé, São Tomé e Príncipe
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vera Codices
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Olga Matos
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
17
|
Rubin E, Tanguy A, Perrigault M, Pales Espinosa E, Allam B. Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 2014; 15:245. [PMID: 24678810 PMCID: PMC3986615 DOI: 10.1186/1471-2164-15-245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The hard clam or northern quahog, Mercenaria mercenaria, is one of the most valuable seafood products in the United States representing the first marine resource in some Northeastern states. Severe episodes of hard clam mortality have been consistently associated with infections caused by a thraustochytrid parasite called Quahog Parasite Unknown (QPX). QPX is considered as a cold/temperate water organism since the disease occurs only in the coastal waters of the northwestern Atlantic Ocean from Maritime Canada to Virginia. High disease development at cold temperatures was also confirmed in laboratory studies and is thought to be caused predominantly by immunosuppression of the clam host even though the effect of temperature on QPX virulence has not been fully investigated. In this study, the QPX transcriptome was sequenced using Roche 454 technology to better characterize this microbe and initiate research on the molecular basis of QPX virulence towards hard clams. RESULTS Close to 18,000 transcriptomic sequences were generated and functionally annotated. Results revealed a wide array of QPX putative virulence factors including a variety of peptidases, antioxidant enzymes, and proteins involved in extracellular mucus production and other secretory proteins potentially involved in interactions with the clam host. Furthermore, a 15 K oligonucleotide array was constructed and used to investigate the effect of temperature on QPX fitness and virulence factors. Results identified a set of QPX molecular chaperones that could explain its adaptation to cold temperatures. Finally, several virulence-related factors were up-regulated at low temperature providing molecular targets for further investigations of increased QPX pathogenicity in cold water conditions. CONCLUSIONS This is one of the first studies to characterize the transcriptome of a parasitic labyrinthulid, offering new insights into the molecular bases of the pathogenicity of members of this group. Results from the oligoarray study demonstrated the ability of QPX to cope with a wide range of environmental temperatures, including those considered to be suboptimal for clam immunity (low temperature) providing a mechanistic scenario for disease distribution in the field and for high disease prevalence and intensity at low temperature. These results will serve as basis for studies aimed at a better characterization of specific putative virulence factors.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- UPMC Université Paris 6, UMR 7144, Equipe Génétique et Adaptation en Milieu Extrême, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Mickael Perrigault
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
18
|
Amoebicidal Activity of Essential Oil of Dysphania ambrosioides (L.) Mosyakin & Clemants in an Amoebic Liver Abscess Hamster Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:930208. [PMID: 24757495 PMCID: PMC3976796 DOI: 10.1155/2014/930208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/17/2022]
Abstract
Amebiasis is a parasitic disease that extends worldwide and is a public health problem in developing countries. Metronidazole is the drug recommended in the treatment of amebiasis, but its contralateral effects and lack of continuity of treatment induce low efficiency, coupled with the appearance of resistant amoebic strains. Therefore, the search of new compounds with amoebicidal activity is urgent and important. In this study, we evaluated the in vitro and in vivo antiamoebic activity of the essential oil Dysphania ambrosioides (L.) Mosyakin & Clemants. It exhibited an IC50 = 0.7 mg/mL against trophozoites. The oral administration of essential oil (8 mg/kg and 80 mg/kg) to hamster infected with Entamoeba histolytica reverted the infection. Ascaridole was identified as the main component of essential oil of D. ambrosioides. The identification of amoebicidal activity of Ascaridole gives support to the traditional use. Further studies with Ascaridole will be carried out to understand the mechanism involved.
Collapse
|
19
|
Oliveira FMS, Horta BC, Prata LO, Santiago AF, Alves AC, Faria AMC, Gomes MA, Caliari MV. Susceptibility to Entamoeba histolytica intestinal infection is related to reduction in natural killer T-lymphocytes in C57BL/6 mice. Infect Dis Rep 2012; 4:e27. [PMID: 24470941 PMCID: PMC3892629 DOI: 10.4081/idr.2012.e27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica is a protozoan that causes amoebiasis. Recent studies demonstrated that natural killer T lymphocytes (NKT) are critical for preventing the development of amoebic liver abscess. In spite of that, there are only a handful of studies in the area. Herein, we explored the role of NKT cells in E. histolytica infection using C57BL/6 wild-type and CD1−/− mice. Animals were inoculated with E. histolytica and sacrificed 48 hours later to collect caecum samples that were used for quantitative analyses of lesions, trophozoites, NK1.1+ T lymphocytes and expression of the mucus protein MUC-2 by immunohistochemistry technique. Quantitative analyses confirmed that the frequency of NK1.1+ T cells was significantly lower in samples from C57BL/6 CD1−/− mice as compared to their wild type (WT) counterparts. The extension of necrotic mucosa was larger and the number of trophozoites higher in Entamoeba (Eh)-infected CD1−/− mice when compared with Eh-infected WT mice. In mice from both groups, non-infected (CTRL) and Eh-infected CD1−/−, there was a reduction in the thickness of the caecal mucosa and in the MUC-2-stained area in comparison with CTRL- and Eh-WT mice. Our results showed that NKT lymphocytes contribute to resistance against Entamoeba histolytica infection and to the control of inflammation in the colitis induced by infection. The presence of a normal epithelial layer containing appropriate levels of mucus had also a protective role against infection.
Collapse
Affiliation(s)
| | | | - Luana O Prata
- Programa de Pós-Graduação em Patologia; ; Departamento de Patologia Geral
| | | | | | | | - Maria A Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | |
Collapse
|
20
|
Lee YA, Kim KA, Shin MH. Calpain mediates degradation of cytoskeletal proteins during Jurkat T-cell death induced by Entamoeba histolytica. Parasite Immunol 2011; 33:349-56. [PMID: 21426360 DOI: 10.1111/j.1365-3024.2011.01290.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Entamoeba histolytica is known to induce host cell death via activation of calpain and caspases. In this study, we investigated the specific proteases involved in the degradation of cytoskeletal proteins during Jurkat T-cell death induced by E. histolytica. Amoebic trophozoites induced marked degradation of paxillin, Cas, vimentin, vinculin and talin, as well as α- or β-spectrin, in Jurkat T cells. The cleavage effects of E. histolytica were strongly retarded by pretreatment with a calpain inhibitor, but not with a pan-caspase inhibitor. In addition, calpain knockdown with siRNA in Jurkat T cells effectively inhibited E. histolytica-induced PARP, paxillin, α-spectrin, β-spectrin and talin degradation, as compared to scrambled siRNA. These results suggest that calpain plays a crucial role in the cleavage of cytoskeletal proteins during cell death induced by E. histolytica.
Collapse
Affiliation(s)
- Y A Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
21
|
Kissoon-Singh V, Mortimer L, Chadee K. Entamoeba histolytica Cathepsin-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:62-83. [DOI: 10.1007/978-1-4419-8414-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
|
23
|
Prevalence of Staphylococcus aureus and intestinal parasites among food handlers in Sanliurfa, Southeastern Anatolia. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2010; 15:518-23. [PMID: 19823157 DOI: 10.1097/phh.0b013e3181aa2814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Food-borne diseases represent a persistent global health burden, and food handlers play a major role in their transmission. Staphylococcus aureus carriage and intestinal parasitism are important risk factors for the contamination of food and water. This study was undertaken to determine the prevalence of Staphylococcus aureus and intestinal parasites among food handlers working in Sanliurfa, Southeastern Anatolia. METHODS In this cross-sectional study, 299 food handlers selected randomly were enrolled. Nasal swabs, throat cultures, and stool samples were examined. RESULTS The mean age of participants was 26.7 (+/-9.6) years. Only 33.6 percent of food handlers had education beyond the elementary school level. Within this group, 50.8 percent had never previously received a carrier examination and only 31.4 percent received regular examinations. We found that 52.2 percent of food handlers carried intestinal parasites including Giardia intestinalis (26.8%), Ascaris lumbricoides (10.7%), Tenya saginata (10.0%), and Staphylococcus aureus (23.1%). None of the food handlers was positive for Salmonella sp and Shigella sp. CONCLUSIONS These findings necessitate improvements in regional carrier detection, infection control, and food hygiene. Subsequent to this study, researchers from the Department of Public Health, Harran University, instituted a series of interventions aimed at improving infection control. These included establishment of an evidence-based carrier control system, training of municipal food controllers and health professionals, creation of electronic outbreak records and follow-up procedures, and development of a source eradication system for Sanliurfa's primary healthcare center staff.
Collapse
|
24
|
Campos-Rodríguez R, Jarillo-Luna RA, Larsen BA, Rivera-Aguilar V, Ventura-Juárez J. Invasive amebiasis: a microcirculatory disorder? Med Hypotheses 2009; 73:687-97. [PMID: 19540678 DOI: 10.1016/j.mehy.2009.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 12/11/2022]
Abstract
The two current models of invasive amebiasis both hold that direct contact of toxic molecules and amebas with tissue produces the necrotic areas characteristic of this disorder. Whereas one model characterizes these toxic molecules as amebic products (e.g., lectins, amebapores, cysteine proteinases and other proteolytic enzymes), the other describes them as products of the inflammatory response (e.g., cytokines, nitric oxide, reactive oxygen intermediates and cytotoxic granules). Both these models can account for necrotic areas with many amebas present and with acute inflammation, but not those with few or no amebas present or with scarce inflammation. A new model poses that an inadequate immune response leads to a continuous and prolonged activation of endothelial cells (ECs) by amebas, amebic molecules and cytokines, which triggers the mechanisms leading to necrosis. Other toxic molecules later contribute to EC activation: nitric oxide, reactive oxygen intermediates, the activated complement and proteases. Hyperactivated endothelial cells continuously express adhesion molecules (e.g., ICAM-1 and E-selectin), pro-coagulant molecules (e.g., tissue factor, von Willebrand factor, and the plasminogen activator inhibitor), resulting in ever greater inflammation and thrombosis, which eventually reduces or blocks blood flow in some vessels and starves certain tissue areas of an adequate oxygen and nutrient supply. When necrotic areas first develop, they are surrounded by inflammatory cells due to the acute inflammation at this stage. However, these cells are starved of oxygen and essential nutrients by the same microcirculatory dysfunction. The increasing concentration of nitric oxide during amebiasis eventually has an anti-inflammatory and vasodilating effect, creating a new mechanism for the microcirculatory dysfunction. This local microcirculatory dysfunction can explain necrotic areas in the presence of many, few, or no amebas, with abundant or scarce inflammation.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguez
- Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340 DF, Mexico.
| | | | | | | | | |
Collapse
|
25
|
Ramos-Martínez E, Olivos-García A, Saavedra E, Nequiz M, Sánchez EC, Tello E, El-Hafidi M, Saralegui A, Pineda E, Delgado J, Montfort I, Pérez-Tamayo R. Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 2008; 39:693-702. [PMID: 19073188 DOI: 10.1016/j.ijpara.2008.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/25/2022]
Abstract
Entamoeba histolytica virulence has been attributed to several amoebic molecules such as adhesins, amoebapores and cysteine proteinases, but supporting evidence is either partial or indirect. In this work we compared several in vitro and in vivo features of both virulent E. histolytica (vEh) and non-virulent E. histolytica (nvEh) axenic HM-1 IMSS strains, such as complement resistance, proteinase activity, haemolytic, phagocytic and cytotoxic capacities, survival in mice caecum, and susceptibility to O(2). The only difference observed was a higher in vitro susceptibility of nvEh to O(2). The molecular mechanism of that difference was analyzed in both groups of amoebae after high O(2) exposure. vEh O(2) resistance correlated with: (i) higher O(2) reduction (O(2)(-) and H(2)O(2) production); (ii) increased H(2)O(2) resistance and thiol peroxidase activity, and (iii) reversible pyruvate: ferredoxin oxidoreductase (PFOR) inhibition. Despite the high level of carbonylated proteins in nvEh after O(2) exposure, membrane oxidation by reactive oxygen species was not observed. These results suggest that the virulent phenotype of E. histolytica is related to the greater ability to reduce O(2) and H(2)O(2) as well as PFOR reactivation, whereas nvEh undergoes irreversible PFOR inhibition resulting in metabolic failure and amoebic death.
Collapse
Affiliation(s)
- Espiridión Ramos-Martínez
- Departamento de Medicina Experimental Facultad de Medicina, Dr. Balmis 148 Colonia Doctores, Universidad Nacional Autónoma de México, 06720 México DF, CP 04510, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Trophozoites of Entamoeba histolytica express a CD59-like molecule in human colon. Parasitol Res 2008; 104:821-6. [DOI: 10.1007/s00436-008-1262-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
27
|
Nyarango RM, Aloo PA, Kabiru EW, Nyanchongi BO. The risk of pathogenic intestinal parasite infections in Kisii Municipality, Kenya. BMC Public Health 2008; 8:237. [PMID: 18620608 PMCID: PMC2478685 DOI: 10.1186/1471-2458-8-237] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intestinal parasitic infections are among the most common infections worldwide. Various epidemiological studies indicate that the prevalence of intestinal parasites is high especially in developing countries, although in many of these, the environmental risk factors have not been clearly elucidated. The objective of this study was to determine the risk of pathogenic intestinal parasites infections in Kisii Municipality. METHODS Random sampling was used in the selection of the study samples. Stool parasitological profiles of food handlers were done by direct smear and formalin-ethyl acetate sedimentation method. Both vegetable and meat samples were examined for the presence of intestinal parasites. The storage and meat handling practices of the various butcheries were observed. RESULTS Types of samples examined for occurrence of intestinal parasites includes, a total of 84 vegetable, 440 meat and 168 stool samples. Fifty five (65.5%) vegetable, 334 (75.9%) meat and 69 (41.1%) of the stool samples were found positive for intestinal parasites indicating a high overall risk (66.18%) for intestinal parasite infections. Of the parasites detected, the most common parasites infesting the foodstuffs and infecting the food handlers were Ascaris lumbricoides and Entamoeba histolytica. Parasites were significantly less likely to be present on meat that was refrigerated during display than meat that was displayed at ambient temperature. CONCLUSION There is a high risk of infection with intestinal parasites in the sampled Municipal markets. About half of the food handlers surveyed (41.1 %) at the Municipal Hospital had one or more parasitic infections. Furthermore, meat (65.5%) and vegetables (75.9%) sold at the Municipal market were found to be contaminated with parasites hence the inhabitants requires a need for education on food safety, good distribution practices and improvement on sanitary conditions.
Collapse
Affiliation(s)
- Robert M Nyarango
- Department of Health Sciences, Gusii Institute of Science and Technology, P.O. Box 222-40200 Kisii, Kenya.
| | | | | | | |
Collapse
|
28
|
Garcia-Nieto RM, Rico-Mata R, Arias-Negrete S, Avila EE. Degradation of human secretory IgA1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity. Parasitol Int 2008; 57:417-23. [PMID: 18571975 DOI: 10.1016/j.parint.2008.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/09/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
The protozoan Entamoeba histolytica is the etiological agent of amebiasis, an infection with high prevalence worldwide. The host-ameba relationship outcome depends on parasite and host factors, and among these is secretory IgA. These antibodies reduce mucosal colonization by pathogens and neutralize a variety of toxins and enzymes. The functionality of secretory IgA depends on its integrity. Some bacteria produce IgA proteases that cleave mainly the IgA1 subclass; live E. histolytica trophozoites, and other ameba fractions are also able to degrade human IgA. The aim of this study was to determine if serum and secretory IgA, its subclasses and secretory component, are degraded by cysteine proteases, which are present and active on the surface of glutaraldehyde-fixed amebas. It was observed that secretory IgA1, IgA2, free and IgA-bound secretory component were degraded by E. histolytica surface-associated cysteine proteinases. Secretory IgA2, although it was degraded, conserved its ability to agglutinate live amebas better than IgA1. Therefore, while specificity of known ameba cysteine proteases is cathepsin B-like and is different from bacterial IgA proteases, IgA2 was functionally more resistant than IgA1 to ameba surface-associated cysteine protease degradation, similar to the greater resistance of IgA2 to bacterial IgA-specific proteases.
Collapse
Affiliation(s)
- Rosa Maria Garcia-Nieto
- Instituto de Investigacion en Biologia Experimental, Facultad de Quimica, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | | | |
Collapse
|
29
|
Ventura-Juárez J, Barba-Gallardo LF, Muñoz-Fernández L, Martínez-Medina L, Márquez-Díaz F, Sosa-Díaz SJ, Gerardo-Rodríguez M, González-Romo R, Campos-Rodríguez R. Immunohistochemical characterization of human fulminant amoebic colitis. Parasite Immunol 2007; 29:201-9. [PMID: 17371457 DOI: 10.1111/j.1365-3024.2007.00934.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cases of fulminant amoebic colitis we have determined the interactions between Entamoeba histolytica trophozoites and immune cells in order to better understand the pathophysiology of amoebic colitis. Eleven specimens of amoebic colitis and five specimens of colon without amoebic lesions were studied. Trophozoites and immune cells were located by topographic stains, histochemistry and immunohistochemistry. Trophozoites were seen in both damaged and undamaged areas of the colonic mucosa. Specimens of fulminant amoebic colitis showed: (a) an increase in IgA+, IgG+ B cells and neutrophils; (b) a reduction in IgM+ B cells, CD8+ T cells, macrophages, eosinophils and mast cells; and (c) no change in the number of NK and CD4+ T cells. The cellular infiltrate in amoebic colitis may represent the combined effects of amoebic monocyte locomotion inhibitory factor and switching of IgM+ B cells to IgG+ and IgA+ plasma cells, induced by amoebic antigens. Tissue damage in the absence of trophozoites may result from ischaemia or host immune responses.
Collapse
Affiliation(s)
- J Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
George S, Oh Y, Lindblom S, Vilain S, Rosa AJM, Francis DH, Brözel VS, Kaushik RS. Lectin binding profile of the small intestine of five-week-old pigs in response to the use of chlortetracycline as a growth promotant and under gnotobiotic conditions. J Anim Sci 2007; 85:1640-50. [PMID: 17400973 DOI: 10.2527/jas.2006-662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antibiotics have traditionally been used for growth promotion in the pork industry; however, their use in animal feed has recently been limited because of human health concerns. The intestinal microbiota plays an important role in mediating many physiological functions such as digestion and animal growth. It was hypothesized that use of antibiotics as growth promotants and subsequent variations in intestinal microbiota induce significant changes in the intestinal glycoconjugate composition, which ultimately affects animal growth and disease susceptibility. The aim of this study was to characterize the lectin binding profiles of the ileum of weanling pigs in response to the absence of intestinal microbiota and to the use of the antibiotic chlortetracycline as growth promotant. Eighteen half-sib piglets obtained by cesarean section were divided into 3 treatment groups (n = 6) and maintained as control, antibiotic-fed, and gnotobiotic piglets until 5 wk of age. The glycoconjugate composition of the ileal tissues was examined by lectin histochemistry. Lycopersicon esculentum lectin, Jacalin, Pisum sativum agglutinin, Lens culinaris agglutinin (LCA), and Sambucus nigra lectin showed significant differences (P < 0.05) in binding intensities on the dome and villous epithelium between the treatment groups. Griffonia simplicifolia lectin I, Glycine maxi agglutinin, and Arachis hypogea agglutinin exhibited differences (P < 0.05) between treatment groups in lectin binding on goblet cells. Triticum vulgaris agglutinin, Pisum sativum agglutinin, and LCA showed significant differences (P < 0.05) in binding intensities on dome, corona, and follicular regions of the ileum among treatment groups of animals. Overall, ileal tissues from gnotobiotic piglets expressed significantly weaker (P < 0.05) lectin binding for many lectins compared with control and antibiotic groups. This suggests that the intestinal microbiota plays an important role in the expression of sugar moieties in the intestine. Lectins LCA, Phaseolus vulgaris Leucoagglutinin, and Maackia amurensis lectin II showed significant differences (P < 0.05) in lectin bindings between control and antibiotic-fed piglets. This indicates that chlortetracycline as a growth promotant induces biologically relevant changes in the lectin binding profile of the ileum. These findings will help in further understanding the role of the gut microbiota and the mechanisms of action of antibiotics as growth promotants in pigs.
Collapse
Affiliation(s)
- S George
- Department of Biology and Microbiology, Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Davis PH, Schulze J, Stanley SL. Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. Mol Biochem Parasitol 2006; 151:118-28. [PMID: 17141337 DOI: 10.1016/j.molbiopara.2006.10.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 11/23/2022]
Abstract
The availability of Rahman, and the virulent HM-1:IMSS strain of E. histolytica, provides a powerful tool for identifying virulence factors of E. histolytica. Here we report an attempt to identify potential virulence factors of E. histolytica by comparing the transcriptome of E. histolytica HM-1:IMSS and E. histolytica Rahman. With phenotypically defined strains, we compared the transcriptome of Rahman and HM-1:IMSS using a custom 70mer oligonucleotide based microarray that has essentially full representation of the E. histolytica HM-1:IMSS genome. We find extensive differences between the two strains, including distinct patterns of gene expression of cysteine proteinases, AIG family members, and lectin light chains.
Collapse
Affiliation(s)
- Paul H Davis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
32
|
Debnath A, Akbar MA, Mazumder A, Kumar S, Das P. Entamoeba histolytica: Characterization of human collagen type I and Ca2+ activated differentially expressed genes. Exp Parasitol 2005; 110:214-9. [PMID: 15955315 DOI: 10.1016/j.exppara.2005.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
Earlier it was demonstrated that the Entamoeba histolytica trophozoites, when incubated with human collagen and Ca2+, expressed and released the collagenolytic activity [Munoz, M.L., Calderon, J., Rojkind, M., 1982. The collagenase of Entamoeba histolytica. Journal of Experimental Medicine 155, 42-51], a virulence factor involved in the pathogenesis of amoebiasis. In this study, attempts have been made to identify and characterize the gene(s) that are upregulated by the human collagen type I and Ca2+ interaction. A comparative evaluation of gene expression pattern of the parasite before and after treatment with human collagen type I was done using the differential display reverse transcription-PCR technique. The cDNA fragments that were overexpressed in collagen treated trophozoites compared to collagen untreated trophozoites were characterized. Northern blot hybridization and RT-PCR amplification using gene-specific primers validated the differential expression. Sequence analyses and database searches revealed homology with known virulence factor genes of E. histolytica such as amoebapore C and cysteine proteinase 5, along with stress-induced protein HSP70, and ribosomal protein L27a (known to be involved in protein synthesis). The study provides the experimental evidence that interaction of E. histolytica with human collagen type I and Ca2+ triggers the transcriptional activation of at least two important genes responsible for pathogenesis of amoebiasis.
Collapse
Affiliation(s)
- Anjan Debnath
- Department of Microbiology, National Institute of Cholera and Enteric Diseases, ICMR, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
33
|
Sim S, Yong TS, Park SJ, Im KI, Kong Y, Ryu JS, Min DY, Shin MH. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. THE JOURNAL OF IMMUNOLOGY 2005; 174:4279-88. [PMID: 15778391 DOI: 10.4049/jimmunol.174.7.4279] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extracellular tissue penetrating protozoan parasite Entamoeba histolytica has been known to induce host cell apoptosis. However, the intracellular signaling mechanism used by the parasite to trigger apoptosis is poorly understood. In this study, we investigated the roles of reactive oxygen species (ROS), and of MAPKs in the Entamoeba-induced apoptosis of human neutrophils. The neutrophils incubated with live trophozoites of E. histolytica revealed a marked increase of receptor shedding of CD16 as well as phosphatidylserine (PS) externalization on the cell surface. The Entamoeba-induced apoptosis was effectively blocked by pretreatment of cells with diphenyleneiodonium chloride (DPI), a flavoprotein inhibitor of NADPH oxidase. A large amount of intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI strongly inhibited the Entamoeba-induced ROS generation. However, a mitochondrial inhibitor rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E. histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1 inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis. Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not phosphorylation of p38 MAPK. These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis.
Collapse
Affiliation(s)
- Seobo Sim
- Department of Parasitology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Campos-Rodríguezp R, Jarillo-Luna A. The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity. Parasite Immunol 2005; 27:1-8. [PMID: 15813717 DOI: 10.1111/j.1365-3024.2005.00743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The host and parasite factors that influence susceptibility to Entamoeba histolytica infection and disease are not well understood. Entamoeba histolytica pathogenicity has been considered by focusing principally on parasite rather than host factors. Thus, research has concentrated on explaining the molecular differences between pathogenic E. histolytica and non-pathogenic E. dispar. However, the amoeba molecules considered most important for host tissue destruction (amoebapore, galactose/N-acetyl galactosamine inhibitable lectin, and cysteine proteinases) are present in both pathogenic E. histolytica and non-pathogenic E. dispar. In addition, the genetic differences in pathogenicity among E. histolytica isolates are unlikely to completely explain the different outcomes of infection. Considering that the principal difference between pathogenic and non-pathogenic amoebas lies in their surface coats, we propose that pathogenicity of the amoebas is related to the composition and properties of the surface coat components (or pathogen-associated molecular patterns, PAMPs), and the ability of innate immune response to recognize these components and eliminate the parasite. According to this hypothesis, a key feature that may distinguish pathogenic (E. histolytica) from non-pathogenic (E. dispar) strains is whether or not they can overcome innate immune defences. A corollary of this hypothesis is that in susceptible individuals the PAMPs are either not recognized or they are recognized by a set of Toll-like receptors (TLRs) that leads to an inflammatory response. In both cases, the result is tissue damage. On the contrary, in resistant individuals the innate/inflammatory response, induced through the activation of a different set of TLRs, eliminates the parasite.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguezp
- Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF.
| | | |
Collapse
|
35
|
Elnekave K, Siman-Tov R, Ankri S. Consumption of L-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibits amoebicidal activity and nitric oxide production by activated macrophages. Parasite Immunol 2003; 25:597-608. [PMID: 15053781 DOI: 10.1111/j.0141-9838.2004.00669.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study we discuss the cloning and expression of Entamoeba histolytica arginase (EhArg), an enzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. L-norvaline, a competitive inhibitor of E. histolytica L-arginase, inhibits the growth of the parasite, which suggests that the catabolism of L-arginine mediated by EhArg is essential. Nitric oxide (NO) is an antimicrobial agent that inhibits some key enzymes in the metabolism of Entamoeba histolytica. NO is synthesized by activated macrophages from L-arginine, the substrate of NO synthase (NOS-II). We show that E. histolytica inhibits NO mediated amoebicidal activity of activated macrophages by consuming L-arginine present in the medium.
Collapse
Affiliation(s)
- Keren Elnekave
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
36
|
Haghighi A, Kobayashi S, Takeuchi T, Thammapalerd N, Nozaki T. Geographic diversity among genotypes of Entamoeba histolytica field isolates. J Clin Microbiol 2003; 41:3748-56. [PMID: 12904386 PMCID: PMC179867 DOI: 10.1128/jcm.41.8.3748-3756.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been known that only 5 to 10% of those infected with Entamoeba histolytica develop symptomatic disease. However, the parasite and the host factors that determine the onset of disease remain undetermined. Molecular typing by using polymorphic genetic loci has been proven to aid in the close examination of the population structure of E. histolytica field isolates in nature. In the present study, we analyzed the genetic polymorphisms of two noncoding loci (locus 1-2 and locus 5-6) and two protein-coding loci (chitinase and serine-rich E. histolytica protein [SREHP]) among 79 isolates obtained from different geographic regions, mainly Japan, Thailand, and Bangladesh. When the genotypes of the four loci were combined for all isolates that we have analyzed so far (overlapping isolates from mass infection events were excluded), a total of 53 different genotypes were observed among 63 isolates. The most remarkable and extensive variations among the four loci was found in the SREHP locus; i.e., 34 different genotypes were observed among 52 isolates. These results demonstrate that E. histolytica has an extremely complex genetic structure independent of geographic location. Our results also show that, despite the proposed transmission of other sexually transmitted diseases, including human immunodeficiency virus infection, from Thailand to Japan, the spectra of the genotypes of the E. histolytica isolates from these two countries are distinct, suggesting that the major E. histolytica strains prevalent in Japan at present were likely introduced from countries other than Thailand. Although the genetic polymorphism of the SREHP locus was previously suggested to be closely associated with the clinical presentation, e.g., colitis or dysentery and liver abscess, no association between the clinical presentation and the SREHP genotype at either the nucleotide or the predicted amino acid level was demonstrated.
Collapse
Affiliation(s)
- Ali Haghighi
- Department of Parasitology, National Institute of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Japan
| | | | | | | | | |
Collapse
|
37
|
Olivos-García A, González-Canto A, López-Vancell R, García de León MDC, Tello E, Nequiz-Avendaño M, Montfort I, Pérez-Tamayo R. Amebic cysteine proteinase 2 (EhCP2) plays either a minor or no role in tissue damage in acute experimental amebic liver abscess in hamsters. Parasitol Res 2003; 90:212-20. [PMID: 12783310 DOI: 10.1007/s00436-002-0763-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2002] [Accepted: 09/05/2002] [Indexed: 10/24/2022]
Abstract
Amebic cysteine protease 2 (EhCP2) was purified from ethyl ether extracts of axenically grown trophozoites of Entamoeba histolytica strain HM1-IMSS. The purification procedure involved molecular filtration and electroelution. Sequence analysis of the purified product revealed EhCP2 and ubiquitin(s). Electrophoretic migration patterns, isoelectric point determination and Western blot studies failed to reveal other EhCP molecules. Polyclonal antibodies against the purified EhCP2 prepared in rabbits either stabilized or enhanced the enzyme activity in a dose-response manner. Purified EhCP2 was enclosed within inert resin microspheres (22-44 microm in diameter) and injected into the portal vein of normal hamsters. In the liver, the microspheres caused mild acute inflammation and occasional minimal necrosis of short duration. Sections of the liver were immunohistochemically stained with the anti-EhCP2 antibody and the microspheres were positive for only a very short period (1 h) after injection. Sections of experimental acute (1 day, 5 days) amebic liver abscess produced in hamsters were also stained with the anti-EhCP2 antibody; and amebas were intensely positive but no staining was observed at any time in the surrounding necrotic structures. It is suggested that EhCP2 plays either a minor or no role in the causation of tissue damage in experimental acute liver amebiasis.
Collapse
Affiliation(s)
- Alfonso Olivos-García
- Department of Experimental Medicine, National University of México Medical School, Ciudad Universitaria, Apartado Postal 70641, 04510 México, Districto Federal, México
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Delgado-Corona P, Martínez-Cadena G, Alvarez AH, Torres-Calzada HE, Avila EE. An extracellular monoADP-ribosyl transferase activity in Entamoeba histolytica trophozoites. J Eukaryot Microbiol 2002; 49:454-9. [PMID: 12503680 DOI: 10.1111/j.1550-7408.2002.tb00228.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the important role of monoADP-ribosyl transferases in physiological and pathological events, we investigated whether the protozoan parasite Entamoeba histolytica had monoADP-ribosyl transferase activity. Reactions were initiated using ameba-free medium as the source of both enzyme and ADP-ribosylation substrate(s) and [32P]NAD+ as source of ADP-ribose. Proteins were analyzed by electrophoresis, and [32P]-labeled proteins were detected by autoradiography. Using the crude extracellular medium, a major labeled product of Mr 37.000 was observed. The yield of this product was reduced markedly using medium from Brefeldin A-treated trophozoites, indicating that the extracellular monoADP-ribosyl transferase and/or its substrate depended on vesicular transport. The labeling of the 37-kDa substrate was dependent on reaction time, temperature, pH, and the ratio of unlabeled NAD+ to [32P]NAD+. After two purification steps, several new substrates were observed, perhaps due to their enrichment. The reaction measured ADP-ribosylation since [14C-carbonyl]NAD+ was not incorporated into ameba substrates and a 75-fold molar excess of ADP-ribose caused no detectable inhibition of the monoADP-ribosyl transferase reaction. On the basis of sensitivity to NH2OH, the extracellular monoADP-ribosyl transferase of E. histolytica may be an arginine-specific enzyme. These results demonstrate the existence in E. histolytica of at least one extracellular monoADP-ribosyl transferase, whose localization depends upon a secretion process.
Collapse
Affiliation(s)
- Patricia Delgado-Corona
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, P O Box 187, Guanajuato, Gto., México CP36000
| | | | | | | | | |
Collapse
|
39
|
Yan L, Stanley SL. Blockade of caspases inhibits amebic liver abscess formation in a mouse model of disease. Infect Immun 2001; 69:7911-4. [PMID: 11705976 PMCID: PMC98890 DOI: 10.1128/iai.69.12.7911-7914.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We looked at the effect of inhibiting caspases on amebic liver abscess in the mouse model of infection. A dose of the pan-caspase inhibitor benzyloxycarbonyl-V-A-D-O-methyl fluoromethyl ketone (Z-VAD-FMK; R & D Systems) given to SCID mice 2 h prior to direct hepatic inoculation with Entamoeba histolytica trophozoites, and 12 h after amebic inoculation, reduced the mean liver abscess size by 70% at 24 h compared to a control group. These data indicate that apoptosis plays a significant but not an exclusive role in amebic liver abscess formation in the mouse model.
Collapse
Affiliation(s)
- L Yan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|