1
|
Pinheiro AR, Rodrigues AR, Matos L, Costa JJ, Ricardo S, Guedes-Martins L, Almeida H, Silva E. Antioxidant treatment attenuates age-related placenta GLUT-1 and PLIN-2 downregulation. Placenta 2025; 160:60-66. [PMID: 39765049 DOI: 10.1016/j.placenta.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND AND AIM Pregnancy after the age of 35 is correlated with an increased risk of impaired placentation and the development of pregnancy-associated complications. Changes in uterine redox balance seem to play a role in these settings. In this work, we hypothesized that local redox dysregulation impacts the placenta metabolic profile. Thus, we aimed to study the expression of enzymes/transporters related to nutrient uptake during reproductive aging and the effect of antioxidant supplementation. METHODS Placenta samples were collected from pregnant women aged between 22 and 41 years, and from mice of different reproductive ages (8-12 and 38-42 weeks). A subgroup of 38-42 weeks-old mice was treated with apocynin (5 mM) in the drinking water. Real-time PCR was carried out to assess gene expression, and immunohistochemistry or western blotting to assess protein expression. RESULTS A significant age-related decrease in the expression of glucose transporter type 1 (GLUT-1) was observed in both species. Regarding lipid metabolism, there was a strong negative and significant correlation between the gene expression of fatty-acid transporter type 4 and maternal age, in the human placenta. Perilipin isoform 2 (PLIN-2) decreased significantly with maternal age, in both models. Additionally, a significant age-related decrease in the gene expression of large neutral amino acid transporter type 4 with reproductive age was observed in the mice placenta. Supplementation with apocynin attenuated the observed alterations in GLUT-1 and PLIN-2. The observed changes suggest an age-related placenta metabolic dysfunction, likely associated with oxidative stress, that may negatively impact fetal and placental development.
Collapse
Affiliation(s)
- Ana Rita Pinheiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, 4200 - 450, Porto, Portugal; Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, 4200 - 450, Porto, Portugal; Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Liliana Matos
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, 4200 - 450, Porto, Portugal; Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - José Júlio Costa
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, 4200 - 450, Porto, Portugal; Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Sara Ricardo
- Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116, Gandra, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Luís Guedes-Martins
- Centro de Medicina Fetal- Medicina Fetal Porto, Centro Materno-Infantil do Norte, Largo da Maternidade de Júlio Dinis 45, 4050-651, Porto, Portugal
| | - Henrique Almeida
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, 4200 - 450, Porto, Portugal; Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ginecologia Obstetrícia, Hospital-CUF Porto, Estrada da Circunvalação 14341, 4100-180, Porto, Portugal
| | - Elisabete Silva
- Ageing and Stress Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Faculdade de Medicina Veterinária da Universidade Lusófona e Instituto Politécnico da Lusofonia, COFAC - Cooperativa de Formação e Animação Cultural, C.R.L., Campo Grande 376, 1749-024, Lisboa, Portugal; Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| |
Collapse
|
2
|
Lapolla A, Dalfrà MG, Marelli G, Parrillo M, Sciacca L, Sculli MA, Succurro E, Torlone E, Vitacolonna E. Medical nutrition therapy in physiological pregnancy and in pregnancy complicated by obesity and/or diabetes: SID-AMD recommendations. Acta Diabetol 2025:10.1007/s00592-024-02442-7. [PMID: 39841216 DOI: 10.1007/s00592-024-02442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Proper nutrition is essential during pregnancy to ensure an adequate supply of nutrients to the foetus and adequate maternal weight gain. In pregnancy complicated by diabetes (both gestational and pre-gestational), diet in terms of both the intake and quality of carbohydrates is an essential factor in glycaemic control. Maternal BMI at conception defines the correct weight increase during gestation in order to reduce maternal-foetal complications related to hypo- or hyper-nutrition. The recommendations presented here, which are based on national and international guidelines and the most recently published data on nutrition in physiological pregnancy and pregnancy complicated by hyperglycaemia and/or obesity, are designed to help healthcare professionals prescribe suitable eating patterns to safeguard the health of the mother and the foetus.
Collapse
Affiliation(s)
| | | | - Giuseppe Marelli
- Ordine Ospedaliero San Giovanni di Dio Fatebenefratelli, Erba, CO, Italy
| | - Mario Parrillo
- UOSD Endocrinologia e Malattie del Ricambio, AO Sant'Anna e San Sebastiano, Caserta, Italy
| | - Laura Sciacca
- Dipartimento Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Maria Angela Sculli
- UOC Diabetologia e Endocrinologia, GOM Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Elena Succurro
- DPT Scienze Mediche Chirurgiche, Università Magna Grecia, Catanzaro, Italy
| | - Elisabetta Torlone
- AOS Maria della Misericordia SC Endocrinologia e Metabolismo, Università di Perugia, Perugia, Italy
| | - Ester Vitacolonna
- Dipartimento di Medicina e Scienza dell'Invecchiamento, Università di Chieti, Chieti, Italy
| |
Collapse
|
3
|
Aziz Ali S, Genkinger J, Kahe K, Valeri L, Khowaja N, Krebs NF, Kuhn L. Role of preconception nutrition supplements in maternal anemia and intrauterine growth: a systematic review and meta-analysis of randomized controlled trials. Syst Rev 2025; 14:11. [PMID: 39806515 PMCID: PMC11727609 DOI: 10.1186/s13643-024-02726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Impaired intrauterine growth, a significant global health problem, contributes to a higher burden of infant morbidity and mortality, mainly in resource-poor settings. Maternal anemia and undernutrition, two important causes of impaired intrauterine growth, are prioritized by global nutrition targets of 2030. We synthesized the evidence on the role of preconception nutrition supplements in reducing maternal anemia and improving intrauterine growth. METHODS We undertook a review of the randomized controlled trials (RCTs) assessing the effect of preconception nutrition supplements on maternal hemoglobin, an indicator to estimate maternal anemia, and markers of intrauterine growth including birth weight, length, head circumference, and small for gestational age. Additionally, we examined preterm birth as an important perinatal outcome. We searched PubMed, CINAHL, Web of Science, Cochrane Central, and Embase. We computed summary mean differences and risk ratios (RR) with 95% confidence intervals (CIs) using random-effect models. We employed I2 and Cochran's Q test statistics to assess heterogeneity. We used a revised Cochrane risk-of-bias (RoB version 2.0) and GRADE (grading of recommendations, assessment, development, and evaluation) tools to assess the risk of bias and quality of evidence of eligible RCTs, respectively. RESULTS We identified 20 eligible RCTs (n = 27,659 women). Preconception nutrition supplements (iron and folic acid, multiple micronutrients, and a lipid-based nutrient supplement) overall increased maternal hemoglobin by 0.30 g/dL ((0.03, 0.57); I2 = 79%; n=9). However, we did not find a significant effect of the supplements on birth weight (12.25 gm ((- 22.66, 47.16); I2 = 55%; n=10)), length (0.15 cm (- 0.26, 0.56); I2 = 68%; n = 5), head circumference (- 0.23 cm (- 0.88, 0.43); I2 = 84%; n=4), small for gestational age (RR 0.91 (0.80, 1.04); I2 = 31%; n=8), or preterm birth (RR 0.93 (0.69,1.25); I2 = 57%; n=12). In general, the quality of evidence was assessed as very low to moderate. CONCLUSION Preconception nutrition supplements studied to date appear to reduce maternal anemia. However, it is uncertain whether there are beneficial effects of the supplements on intrauterine growth. Low quality of evidence warrants future well-designed RCTs to produce solid scientific data, particularly of a more comprehensive package of preconception nutrition supplements that include both macro- and micronutrients. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023464966.
Collapse
Affiliation(s)
- Sumera Aziz Ali
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA.
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ka Kahe
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nayab Khowaja
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Nancy F Krebs
- Department of Paediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Louise Kuhn
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Liu S, Hua L, Mo X, Lei B, Zhang R, Zhou S, Jiang X, Fang Z, Feng B, Che L, Xu S, Lin Y, Wu D, Zhuo Y, Jin C. Comparative Impact of Alternate-Day Fasting and Time-Restricted Feeding on Placental Function and Fetal Development in Maternal Obesity. Nutrients 2024; 17:25. [PMID: 39796458 PMCID: PMC11723168 DOI: 10.3390/nu17010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored. OBJECTIVES This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD). METHODS One hundred 8-week-old female mice were assigned to one of four dietary regimens: (1) normal diet with ad libitum feeding (NA); (2) HFD with ad libitum feeding (HA); (3) HFD with ADF (HI); and (4) HFD with TRF (HT), administered both before and during pregnancy. On gestational day 18.5, serum and placental samples were collected from both mothers and fetuses to examine placental function and fetal development. RESULTS During gestation, both ADF and TRF substantially alleviated the metabolic impairments caused by an HFD in obese maternal mice. TRF mice demonstrated enhanced placental nutrient transport and fetal development, associated with reduced endoplasmic reticulum (ER) stress and inflammatory responses. In contrast, ADF markedly intensified placental stress and inflammatory responses, diminished placental nutrient transport efficiency, and consequently induced fetal growth restriction. CONCLUSIONS Both ADF and TRF during pregnancy significantly mitigated metabolic impairments in obese dams on an HFD. TRF mice demonstrated enhanced placental nutrient transport and fetal development, associated with reduced endoplasmic reticulum (ER) stress and inflammatory responses. In contrast, ADF markedly intensified placental stress and inflammatory responses, diminished placental nutrient transport efficiency, and consequently induced fetal growth restriction.
Collapse
Affiliation(s)
- Siyuan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Xi Mo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Bing Lei
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Ruihao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Shihao Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| | - Chao Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (L.H.); (X.M.); (B.L.); (R.Z.); (S.Z.); (X.J.); (Z.F.); (B.F.); (L.C.); (S.X.); (Y.L.); (D.W.); (Y.Z.)
- Key Laboratory for Animal Disease-Resistant Nutrition of Sichuan Province, The Ministry of Education of China, Chengdu 611130, China
| |
Collapse
|
5
|
Carrasco-Wong I, Sanchez JM, Gutierrez JA, Chiarello DI. Trained innate immunity as a potential link between preeclampsia and future cardiovascular disease. Front Endocrinol (Lausanne) 2024; 15:1500772. [PMID: 39741876 PMCID: PMC11685753 DOI: 10.3389/fendo.2024.1500772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18. This proinflammatory state in the mother and placenta results in the endothelial dysfunction strongly associated with cardiovascular disorders. While the immediate maternal and fetal risks of PE are well-documented, accumulating evidence indicates that PE also confers long-term cardiovascular risks to the mother, including hypertension, coronary heart disease, stroke, and heart failure. The underlying mechanisms connecting PE to these chronic cardiovascular conditions remain unclear. This article explores the potential role of trained innate immunity (TRIM) as a mechanistic link between PE and increased long-term cardiovascular risk. We propose that the persistent exposure to DAMPs during PE may epigenetically reprogram maternal innate immune cells and their progenitors, leading to TRIM. This reprogramming enhances the inflammatory response to subsequent stimuli, potentially contributing to endothelial dysfunction and chronic inflammation that predispose women to cardiovascular diseases later in life. Understanding the role of TRIM in PE could provide novel insights into the pathophysiology of PE-related cardiovascular complications and identify potential targets for therapeutic intervention. Further research is warranted to investigate the epigenetic and metabolic alterations in innate immune cells induced by PE and to determine how these changes may influence long-term maternal cardiovascular health.
Collapse
Affiliation(s)
| | | | - Jaime A. Gutierrez
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| | - Delia I. Chiarello
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia,
Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
6
|
Rabotnick MH, Haidari A, Dolinoy DC, Meijer JL, Harris SM, Burant CF, Padmanabhan V, Goodrich JM. Early pregnancy serum PFAS are associated with alterations in the maternal lipidome. ENVIRONMENTAL RESEARCH 2024; 263:120183. [PMID: 39426451 PMCID: PMC11639123 DOI: 10.1016/j.envres.2024.120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected in the blood of humans and animals worldwide. Exposure to some PFAS are associated with multiple adverse pregnancy outcomes. Existing literature has identified a strong association with PFAS exposure and metabolic dysfunction in humans, including modification of lipid metabolism. Using a subset of the Michigan Mother-Infant Pairs cohort (n = 95), this study investigated associations between first trimester plasma levels of PFAS and maternal lipids and metabolites in the first trimester (T1), at the time of delivery (T3), and in the infant cord blood (CB) using untargeted shotgun lipidomics and metabolomics. Identifying PFAS-induced alterations in the maternal lipid- or metabolome at specific timepoints may help elucidate windows of susceptibility to adverse pregnancy outcomes. Out of 9 PFAS measured, 7 were detected in at least 20% of samples and were used for further analyses. PFOS and PFHxS were measured at the highest concentrations with medians of 5.76 ng/mL and 3.33 ng/mL, respectively. PFOA, PFNA, and PFDA had lower measured values with medians of <1.2 ng/mL. PFHxS concentrations were positively associated with monounsaturated sphingomyelins (SMs) in T1 maternal plasma in adjusted models, determined by an adjusted p-value (q) < 0.1. PFHxS was positively associated with saturated and polyunsaturated SMs and inversely associated with saturated diacylglycerols in T1. Following metabolite-specific analysis, two mono-unsaturated diacylglycerols with carbon chain lengths of 32 and 35 were inversely associated with PFHxS in T1. In T3, only the association between PFHxS and SMs remained, but was attenuated. In addition, PFDA was associated with an increase in polyunsaturated plasmenyl-phosphatidylethanolamines in T3. No associations were identified between PFAS and infant cord blood lipids. Continued research into PFAS associated disruptions in lipid metabolism at sensitive stages of gestation may provide insight into the mechanisms that lead to adverse birth and pregnancy outcomes.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jennifer L Meijer
- Department of Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
8
|
Yi N, Zaugg J, Fuenzalida B, Albrecht C. Iron transfer across a functional syncytialized trophoblast monolayer. Placenta 2024:S0143-4004(24)00772-0. [PMID: 39794176 DOI: 10.1016/j.placenta.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1. the monitoring of monolayer formation and 2. the subsequent performance of an iron transfer assay. Monolayer formation on the Transwell® system is monitored by continuous measurement of transepithelial resistance (TEER) using a volt-ohm meter. In parallel, the leakage is monitored by assessing the paracellular permeability (apparent permeability coefficient, Papp) of the fluorescent dye Lucifer yellow. The subsequent iron transfer assay examines apical Transferrin-mediated iron uptake, intracellular storage, and transfer of iron to the basal compartment of the Transwell®. The treatment of BeWo cells with and without forskolin (20 μM) allows to investigate the effect of syncytium formation on iron transfer kinetics. Our results revealed that monolayer formation in BeWo cells takes approximately 5-6 days. Forskolin-treated BeWo cells transport significantly more iron to the fetal compartment indicating that syncytialization promotes iron transfer across the placental barrier. This method enables the fundamental exploration of materno-fetal iron transfer mechanisms and their regulatory processes, which directly impact fetal well-being and development during pregnancy.
Collapse
Affiliation(s)
- Nan Yi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland; Centre for Trophoblast Research & Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland.
| |
Collapse
|
9
|
Fleming JM, Rosa G, Bland V, Kauwell GPA, Malysheva OV, Wettstein A, Hausman DB, Bailey LB, Park HJ. Response of One-Carbon Biomarkers in Maternal and Cord Blood to Folic Acid Dose During Pregnancy. Nutrients 2024; 16:3703. [PMID: 39519534 PMCID: PMC11547940 DOI: 10.3390/nu16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The folate Recommended Daily Allowance (RDA) for pregnant women is 600 μg/day dietary folate equivalents, which is equivalent to approximately 400 μg folic acid. Many prenatal supplements contain much higher doses of folic acid. The body's ability to reduce synthetic folic acid to the metabolically active form may be exceeded with high levels of supplementation. The objective of this double-blinded randomized controlled intervention trial was to determine changes in unmetabolized folic acid and other biomarkers of folate and one-carbon metabolism in maternal and cord blood in response to a folic acid dose commonly found in prenatal supplements (800 μg/day) compared to the dose equivalent of the RDA (400 μg/day). METHODS Healthy pregnant women were randomized and provided supplements from their first prenatal visit (<12 weeks gestation) through delivery. Maternal blood was collected at baseline and delivery. Umbilical cord blood from the mothers was collected at delivery. RESULTS A repeated measures analysis of variance revealed that there was a significant group supplemental dose effect (p = 0.0225) on serum unmetabolized folic acid concentration in mothers but no difference in cord blood unmetabolized folic acid concentrations between groups. Mixed effects analysis found a significant overall effect of pre-pregnancy BMI (p = 0.0360) and length of previous folic acid supplementation (p = 0.0281) on serum folate concentrations. No treatment effect was seen in RBC folate concentrations. Choline concentrations were higher in cord blood from the 800 μg/day group compared to the 400 μg/day group, but there was no group effect in maternal choline concentrations. CONCLUSIONS The results indicate that folic acid dose during pregnancy affects certain folate and one-carbon biomarkers, and these effects are not consistent between maternal and cord blood. Potential long-term effects of these results on both mothers and offspring are unknown and merit further investigation.
Collapse
Affiliation(s)
- Jennifer M. Fleming
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Gisselle Rosa
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Victoria Bland
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Gail P. A. Kauwell
- Department of Health Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alleigh Wettstein
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Dorothy B. Hausman
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Lynn B. Bailey
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Pei J, Liao Y, Bai X, Li M, Wang J, Li X, Zhang H, Sui L, Kong Y. Dysregulated GLUT1 results in the pathogenesis of preeclampsia by impairing the function of trophoblast cells. Sci Rep 2024; 14:23761. [PMID: 39390043 PMCID: PMC11467397 DOI: 10.1038/s41598-024-74489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a common placental-origin complication of pregnancy and a major cause of morbidity and mortality among pregnant women and fetuses. However, its pathogenesis has not been elucidated. Effective strategies for prevention, screening, and treatment are still lacking. Studies have indicated that dysfunction of placental trophoblast cells, such as impaired syncytialization, proliferation, and epithelial-mesenchymal transition processes, plays a crucial role in the development of PE. Glucose transporter 1 (GLUT1) is a key protein regulating glucose transport in placental tissues. However, the effect of GLUT1 on the function of trophoblast cells in PE is not well understood. In this study, we found that GLUT1 expression is reduced in PE placental tissues. GLUT1 promotes the syncytialization process by increasing the glucose uptake ability of BeWo cells. Additionally, GLUT1 promotes the proliferation, migration, and invasion capabilities of HTR-8/SVneo cells by regulating MAPK and PI3K/AKT signaling pathways. Overall, these findings provide a new insight into understanding the biological functions of GLUT1, clarifying the pathogenesis of PE, and identifying diagnostic and therapeutic targets for PE.
Collapse
Affiliation(s)
- Jingyuan Pei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Yangyou Liao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Xiaoxian Bai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Xiaotong Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Hongshuo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Linlin Sui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
11
|
Cao M, Bai L, Wei H, Guo Y, Sun G, Sun H, Shi B. Dietary supplementation with pterostilbene activates the PI3K-AKT-mTOR signalling pathway to alleviate progressive oxidative stress and promote placental nutrient transport. J Anim Sci Biotechnol 2024; 15:133. [PMID: 39369257 PMCID: PMC11456245 DOI: 10.1186/s40104-024-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Progressive oxidative stress easily occurs as a result of a gradual increase in the intensity of maternal metabolism due to rapid foetal development and increased intensity of lactation. However, studies on the effects of processive oxidative stress on nutrient transport in the placenta have received little attention. The present study was conducted on sows at 85 days of gestation to study the effects of pterostilbene (PTE) on maternal oxidative stress status and placental nutrient transport. RESULTS PTE increased the antioxidant capacity and immunoglobulin content in mothers' blood and milk, reduced the level of inflammatory factors, and improved the nutrient content of milk. PTE also reduced sow backfat loss and the number of weak sons, and increased piglet weaning weight and total weaning litter weight. We subsequently found that PTE enhanced placental glucose and fatty acid transport and further affected glycolipid metabolism by increasing the expression of LAL, PYGM, and Gbe-1, which activated the PI3K phosphorylation pathway. Moreover, PTE addition altered the relative abundance of the Firmicutes, Proteobacteria, Parabacillus, and Bacteroidetes-like RF16 groups in sow faeces. PTE increased the levels of acetate, propionate, butyrate and isovalerate in the faeces. CONCLUSIONS These findings reveal that the addition of PTE during pregnancy and lactation mitigates the effects of processive oxidative stress on offspring development by altering maternal microbial and placental nutrient transport capacity.
Collapse
Affiliation(s)
- Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liyun Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoyun Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yantong Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Mashimo R, Ohban H, Kumazaki Y, Ito S, Katagiri T, Kusaba N, Kawashima C. Dairy cow parity affects relationships among nutritional parameters in the blood of dams, umbilical cords, and calves and placental development at calving. J Reprod Dev 2024; 70:264-271. [PMID: 38972735 PMCID: PMC11461519 DOI: 10.1262/jrd.2024-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Heifer growth and milk production in lactating cows may diminish the nutrient supply to the fetus. This study aimed to analyze the characteristics of the nutrient supply to the fetus in primiparous and multiparous cows. We investigated maternal, umbilical cord, and calf blood glucose and amino acid levels, as well as placental development in 28 primiparous (PP) and 30 multiparous (MP) Holstein cows. Although the total cotyledonary weight and surface area showed no significant differences, the MP group exhibited larger individual cotyledons (P < 0.01) and fewer medium-sized cotyledons (P < 0.05). Within the PP group, total cotyledonary weight and surface area positively correlated with blood glucose (r = 0.71-0.77; P < 0.01) and total essential amino acid (r = 0.55; P < 0.05) concentrations in the umbilical veins. However, no significant correlation was observed in the MP group. Blood glucose and amino acid concentrations in the umbilical vein, umbilical artery, and calf were significantly lower in the MP group (P < 0.05), although no difference was observed in the dams between the groups. In conclusion, the nutrient status of primiparous cows can alter fetal nutrient supply. Moreover, multiparous cows have larger individual cotyledons as an adaptive response to increased milk production during pregnancy. However, this adaptive response in multiparous cows did not completely restore nutrient supply to the fetus to the same extent as that in primiparous cows. Therefore, the nutritional management of multiparous cows during pregnancy must be reconsidered.
Collapse
Affiliation(s)
- Riku Mashimo
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hanon Ohban
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yuka Kumazaki
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Sayaka Ito
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Tomono Katagiri
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Nobuyuki Kusaba
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Chiho Kawashima
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
13
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
14
|
Xing X, Duan Y, Wang J, Yang Z, Man Q, Lai J. The association between macrosomia and glucose, lipids and hormones levels in maternal and cord serum: a case-control study. BMC Pregnancy Childbirth 2024; 24:599. [PMID: 39272043 PMCID: PMC11401346 DOI: 10.1186/s12884-024-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The formation of macrosomia is associated with excessive nutrition and/or unable to regulate effectively. This case-control study aims to explore the relationship between macrosomia and glucose, lipids and hormones levels in maternal and cord serum. METHODS In the case-control study, 78 pairs of mothers and newborns were recruited who received care at one hospital of Hebei, China between 2016 and 2019. According to the birth weight (BW) of newborns, participants were divided into macrosomia group (BW ≥ 4000 g, n = 39) and control group (BW between 2500 g and 3999 g, n = 39). Maternal vein blood and cord vein blood were collected and assayed. All data were compared between the two groups. Unconditional logistics regression analysis was used to test the relationship between macrosomia and glucose, lipids and hormones in maternal and cord serum. RESULTS In maternal and cord serum, the levels of leptin, leptin/adiponectin ratio (LAR), glucose and triglyceride (TG) in macrosomia group were higher than those in control group, and the levels of high-density lipoprotein cholesterol (HDL-C) were lower. The percentage of maternal glucose and lipids transfer to cord blood did not differ between the two groups. High levels of TG in maternal serum were positively correlated with macrosomia, and high levels of LAR, TG and glucose in cord serum were positively correlated with macrosomia. CONCLUSION In conclusion, the results of the current study, suggest that the nutrients and metabolism-related hormones in maternal and umbilical cord are closely related to macrosomia. During pregnancy, the nutritional status of pregnant women should be paid attention to and to obtain a good birth outcome.
Collapse
Affiliation(s)
- Xinxin Xing
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yifan Duan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jie Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhenyu Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qingqing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jianqiang Lai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
15
|
Nayyar D, Said JM, McCarthy H, Hryciw DH, O'Keefe L, McAinch AJ. Effect of a High Linoleic Acid Diet on Pregnant Women and Their Offspring. Nutrients 2024; 16:3019. [PMID: 39275331 PMCID: PMC11397513 DOI: 10.3390/nu16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Nutritional intake during pregnancy can affect gestational length, fetal development, and impact postnatal growth and health in offspring. Perturbations in maternal nutrition with either an excess or deficiency in nutrients during pregnancy may have harmful effects on the offspring's development and increase the risk of developing chronic diseases later in life. In pregnancy, nutrients transfer from the mother to the fetus via the placenta. Essential fatty acids, linoleic acid (LA) and alpha linoleic acid (ALA), can only be obtained in the diet. In Western countries, the ratio of LA and ALA in the diet has increased dramatically in recent decades. Some animal and human studies have found a correlation between maternal intake of LA and birth weight; however, the association varies. In contrast, some human studies have demonstrated inconclusive findings regarding the correlation between cord blood levels of LA and birth outcomes. In addition, high dietary LA intake in animal studies in pregnancy increased the production of inflammatory markers such as prostaglandins, leukotrienes, cytokines, and tumour necrosis factor-alpha. This review aims to highlight the effect of high dietary LA intake during pregnancy on birth outcomes, obesity, maternal inflammatory markers, and the transfer of fatty acids across the placenta.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Joanne M Said
- Department of Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, Western Health, St Albans, VIC 3021, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Helen McCarthy
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Lannie O'Keefe
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
16
|
Li J, Bi Q, Pi Y, Jiang X, Li Y, Li X. Dietary Supplementation with 25-Hydroxyvitamin D 3 on Reproductive Performance and Placental Oxidative Stress in Primiparous Sows during Mid-to-Late Gestation. Antioxidants (Basel) 2024; 13:1090. [PMID: 39334749 PMCID: PMC11428878 DOI: 10.3390/antiox13091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains largely unknown. Therefore, this study aimed to investigate the effects of supplementing 25-OH-D3 in the diet of primiparous sows on reproductive performance, antioxidant capacity, placental oxidative stress, nutrient transport, and inflammatory response during mid-to-late gestation. A total of 45 healthy Landrace × Yorkshire primiparous sows on day 60 of gestation were selected and randomly allocated to three treatment groups based on body weight and backfat thickness: the control group (corn-soybean meal basal diet), the VD3 group (basal diet + 2000 IU VD3), and the 25-OH-D3 group (basal diet + 50 μg/kg 25-OH-D3). The results demonstrated that supplementation with 25-OH-D3 in the diet enhanced sows' average litter weight and birth weight during mid-to-late gestation. Additionally, plasma malondialdehyde (MDA) concentrations in sows significantly decreased in the VD3 and 25-OH-D3 groups (p < 0.05). Furthermore, lower gene expressions of placental HO-1, GPX2, IL-8, and IL-6 were found in the VD3 or 25-OH-D3 groups (p < 0.05 or p < 0.10), while higher gene expressions of GLUT1 and SNAT2 in the placenta of sows were observed in the VD3 and 25-OH-D3 groups, respectively (p < 0.05). These findings indicate that the supplementation of VD3 and 25-OH-D3 in the diet of sows can improve their plasma oxidative stress status, enhance placental antioxidant capacity and nutrient transport, and reduce placental inflammatory responses, with more pronounced improvements in sow performance observed in sows fed diets supplemented with 25-OH-D3.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Thornburg KL, Valent AM. Maternal Malnutrition and Elevated Disease Risk in Offspring. Nutrients 2024; 16:2614. [PMID: 39203750 PMCID: PMC11357549 DOI: 10.3390/nu16162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
US populations have seen dramatic increases in the prevalence of chronic disease over the past three generations. Rapid increases in type 2 diabetes and obesity have occurred in all the states but have been particularly striking in the Deep South. These increases have contributed to decreases in life expectancy and to painful elevations in health care costs. The causes of worsening population health are complex and incompletely understood. However, there is strong evidence that vulnerability to chronic conditions is determined in early life. Most chronic diseases are developmentally driven. There are specific stressors experienced in early life that influence epigenetic and structural changes during development. These include malnutrition, severe levels of social stress, toxic chemicals, and low oxygen levels. Most US populations have experienced a decrease in the quality of the food they consume as industrial foods have replaced garden-grown foods. Thus, the consumption of too few nutrients before and during pregnancy and during lactation influences the growth of the placenta and fetal organs and their level of resilience when faced with stresses in postnatal life and particularly as adults. Animal studies have shown that the effects of poor nutrition can be passed on to future generations. The most powerful way that the current epidemics of obesity and insulin resistance can be reversed is by providing key nutrients to prospective mothers and those already pregnant.
Collapse
Affiliation(s)
- Kent L. Thornburg
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy M. Valent
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
18
|
Masserdotti A, Gasik M, Grillari-Voglauer R, Grillari J, Cargnoni A, Chiodelli P, Papait A, Magatti M, Romoli J, Ficai S, Di Pietro L, Lattanzi W, Silini AR, Parolini O. Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps. Front Cell Dev Biol 2024; 12:1411582. [PMID: 39144254 PMCID: PMC11322133 DOI: 10.3389/fcell.2024.1411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Paola Chiodelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Ficai
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
19
|
Pereira-Carvalho D, Chagas Valim AC, Borba Vieira Andrade C, Bloise E, Fontes Dias A, Muller Oliveira Nascimento V, Silva Alves RK, Dos Santos RC, Lopes Brum F, Gomes Medeiros I, Antunes Coelho SV, Barros Arruda L, Regina Todeschini A, Barbosa Dias W, Ortiga-Carvalho TM. Sex-specific effect of antenatal Zika virus infection on murine fetal growth, placental nutrient transporters, and nutrient sensor signaling pathways. FASEB J 2024; 38:e23799. [PMID: 38979938 DOI: 10.1096/fj.202301951rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.
Collapse
Affiliation(s)
- Daniela Pereira-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ariane Fontes Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rakel Kelly Silva Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronan Christian Dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Lopes Brum
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | - Luciana Barros Arruda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Allen S, Natale BV, Ejeckam AO, Lee K, Hardy DB, Natale DR. Cannabidiol Exposure During Rat Pregnancy Leads to Labyrinth-Specific Vascular Defects in the Placenta and Reduced Fetal Growth. Cannabis Cannabinoid Res 2024; 9:766-780. [PMID: 38364116 PMCID: PMC11304342 DOI: 10.1089/can.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Introduction: Cannabis use is increasing among pregnant people, and cannabidiol (CBD), a constituent of cannabis, is often perceived as "natural" and "safe" as it is non-intoxicating. In utero, cannabis exposure is associated with negative health outcomes, including fetal growth restriction (FGR). The placenta supplies oxygen and nutrients to the fetus, and alterations in placental development can lead to FGR. While there has been some investigation into the effects of Δ9-THC, there has been limited investigation into the impacts of in utero gestational CBD exposure on the placenta. Methods: This study used histological and transcriptomic analysis of embryonic day (E)19.5 rat placentas from vehicle and CBD (3 mg/kg intraperitoneal injection) exposed pregnancies (E6.5-18.5). Results: The study revealed that pups from CBD-exposed pregnancies were 10% smaller, with the placentae displaying a decreased fetal blood space perimeter-to-area ratio. The transcriptomic analysis supported compromised angiogenesis and blood vessel formation with downregulated biological processes, including tube morphogenesis, angiogenesis, blood vessel morphogenesis, blood vessel development and vasculature development. Further, the CBD-exposed placentas displayed changed expression of glucose transporters (decreased GLUT1 and GR expression and increased GLUT3 expression). Transcriptomic analysis further revealed upregulated biological processes associated with metabolism. Finally, histological and transcriptomic analysis revealed altered cell populations within the placenta, specifically to syncytiotrophoblast layer II and endothelial cells. Conclusion: Together these results suggest that the structural changes in CDB-exposed placentae, including the altered expression of nutrient transporters and the changes to the placental fetal vasculature, may underlie the reduced fetal growth.
Collapse
Affiliation(s)
- Sofia Allen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bryony V. Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, Ontario, Canada
| | - Alexis O. Ejeckam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kendrick Lee
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - David R.C. Natale
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
Yau-Qiu ZX, Galmés S, Castillo P, Picó C, Palou A, Rodríguez AM. Maternal choline supplementation mitigates premature foetal weight gain induced by an obesogenic diet, potentially linked to increased amniotic fluid leptin levels in rats. Sci Rep 2024; 14:11366. [PMID: 38762543 PMCID: PMC11102553 DOI: 10.1038/s41598-024-62229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
22
|
Jeong S, Fuwad A, Yoon S, Jeon TJ, Kim SM. A Microphysiological Model to Mimic the Placental Remodeling during Early Stage of Pregnancy under Hypoxia-Induced Trophoblast Invasion. Biomimetics (Basel) 2024; 9:289. [PMID: 38786499 PMCID: PMC11118815 DOI: 10.3390/biomimetics9050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Placental trophoblast invasion is critical for establishing the maternal-fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal-fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions.
Collapse
Affiliation(s)
- Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering (SMME), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
23
|
Galineau L, Bourdin-Pintueles A, Bodard S, Busson J, Nadal-Desbarats L, Lefèvre A, Emond P, Mavel S. Temporal metabolomics state in pregnant rat: Analysis of amniotic fluid, placenta, and maternal plasma at embryonic and fetal time points. Placenta 2024; 150:22-30. [PMID: 38581971 DOI: 10.1016/j.placenta.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.
Collapse
Affiliation(s)
- Laurent Galineau
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | | | - Sylvie Bodard
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Julie Busson
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Lydie Nadal-Desbarats
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France; PST-ASB, Université de Tours, France
| | - Antoine Lefèvre
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France; PST-ASB, Université de Tours, France
| | - Patrick Emond
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France; PST-ASB, Université de Tours, France; Service de Médecine Nucléaire In Vitro, CHRU Tours, Tours, France
| | - Sylvie Mavel
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France.
| |
Collapse
|
24
|
Stråvik M, Hartvigsson O, Noerman S, Sandin A, Wold AE, Barman M, Sandberg AS. Biomarker Candidates of Habitual Food Intake in a Swedish Cohort of Pregnant and Lactating Women and Their Infants. Metabolites 2024; 14:256. [PMID: 38786733 PMCID: PMC11123206 DOI: 10.3390/metabo14050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating food metabolites could improve dietary assessments by complementing traditional methods. Here, biomarker candidates of food intake were identified in plasma samples from pregnancy (gestational week 29, N = 579), delivery (mothers, N = 532; infants, N = 348), and four months postpartum (mothers, N = 477; breastfed infants, N = 193) and associated to food intake assessed with semi-quantitative food frequency questionnaires. Families from the Swedish birth cohort Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE) were included. Samples were analyzed using untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Both exposure and outcome were standardized, and relationships were investigated using a linear regression analysis. The intake of fruits and berries and fruit juice were both positively related to proline betaine levels during pregnancy (fruits and berries, β = 0.23, FDR < 0.001; fruit juice, β = 0.27, FDR < 0.001), at delivery (fruit juice, infants: β = 0.19, FDR = 0.028), and postpartum (fruits and berries, mothers: β = 0.27, FDR < 0.001, infants: β = 0.29, FDR < 0.001; fruit juice, mothers: β = 0.37, FDR < 0.001). Lutein levels were positively related to vegetable intake during pregnancy (β = 0.23, FDR < 0.001) and delivery (mothers: β = 0.24, FDR < 0.001; newborns: β = 0.18, FDR = 0.014) and CMPF with fatty fish intake postpartum (mothers: β = 0.20, FDR < 0.001). No clear relationships were observed with the expected food sources of the remaining metabolites (acetylcarnitine, choline, indole-3-lactic acid, pipecolic acid). Our study suggests that plasma lutein could be useful as a more general food group intake biomarker for vegetables and fruits during pregnancy and delivery. Also, our results suggest the application of proline betaine as an intake biomarker of citrus fruit during gestation and lactation.
Collapse
Affiliation(s)
- Mia Stråvik
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden (A.-S.S.)
| | - Olle Hartvigsson
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden (A.-S.S.)
| | - Stefania Noerman
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden (A.-S.S.)
| | - Anna Sandin
- Pediatrics, Department of Clinical Science, Sunderby Research Unit, Umeå University, 901 87 Umeå, Sweden
| | - Agnes E. Wold
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Malin Barman
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden (A.-S.S.)
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden (A.-S.S.)
| |
Collapse
|
25
|
Erichsen C, Heiser A, Haack N, Maclean P, Dwyer CM, McCoard S. Increasing the Understanding of Nutrient Transport Capacity of the Ovine Placentome. Animals (Basel) 2024; 14:1294. [PMID: 38731298 PMCID: PMC11083602 DOI: 10.3390/ani14091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Placental nutrient transport capacity influences fetal growth and development; however, it is affected by environmental factors, which are poorly understood. The objective of this study was to understand the impact of the ovine placentome morphological subtype, tissue type, and maternal parenteral supplementation of arginine mono-hydrochloride (Arg) on nutrient transport capacity using a gene expression approach. Placentomal tissues of types A, B, and C morphologic placentome subtypes were derived from 20 twin-bearing ewes, which were infused thrice daily with Arg (n = 9) or saline (Ctrl, n = 11) from 100 to 140 days of gestation. Samples were collected at day 140 of gestation. Expression of 31 genes involved in placental nutrient transport and function was investigated. Differential expression of specific amino acid transporter genes was found in the subtypes, suggesting a potential adaptive response to increase the transport capacity. Placentomal tissues differed in gene expression, highlighting differential transport capacity. Supplementation with Arg was associated with differential expressions of genes involved in amino acid transport and angiogenesis, suggesting a greater nutrient transport capacity. Collectively, these results indicate that the morphological subtype, tissue type, and maternal Arg supplementation can influence placental gene expression, which may be an adaptive response to alter the transport capacity to support fetal growth in sheep.
Collapse
Affiliation(s)
- Cathrine Erichsen
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Axel Heiser
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Neville Haack
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Paul Maclean
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Cathy Mary Dwyer
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Sue McCoard
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| |
Collapse
|
26
|
Sletner L, Yajnik CS, Turowski G, Michelsen TM, Sommer C, Birkeland KI, Roald B, Jenum AK. Placental weight, surface area, shape and thickness - Relations with maternal ethnicity and cardio-metabolic factors during pregnancy. Placenta 2024; 148:69-76. [PMID: 38417304 DOI: 10.1016/j.placenta.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION A better understanding of the determinants of placental growth is needed. Our primary aim was to explore associations between maternal ethnic origin and cardio-metabolic factors during pregnancy, and placental weight, surface area, shape and thickness. METHODS A multi-ethnic population-based cohort study of 474 pregnant women examined at mean 15 and 28 weeks' gestation. Placentas were inspected after birth by a placental pathologist. Outcome measures were trimmed placental weight and three uncorrelated placental components; surface area, shape (oval vs round) and thickness, created through a principal components analysis. Multivariate linear regression models were used to explore the associations with maternal factors. RESULTS Compared with ethnic European women, mothers with South- and East Asian ethnicity had placentas with lower weight (-51 g (95% CI: 75, -27) and -55 g (-95, -14) respectively), primarily due to a smaller surface area. The association between South Asian ethnicity and placental surface area was still significant after adjusting for maternal characteristics and cardio-metabolic factors. Fat mass index in early pregnancy was associated with higher placental weight and thickness. Placental surface area was positively associated with mid-gestational increases in fat mass, fasting glucose and triglycerides and with the 2-h glucose value at the 28 week oral glucose tolerance test, and inversely with a mid-gestational increase in HDL-cholesterol. DISCUSSION Mid-gestational changes in fat mass, glucose, triglycerides and cholesterol were associated with, but only partly explained ethnic differences in placental surface area, while maternal fat mass in early pregnancy was associated with placental thickness.
Collapse
Affiliation(s)
- Line Sletner
- Dept. of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway.
| | | | - Gitta Turowski
- Dept of Anatomic Pathology, Oslo University Hospital, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christine Sommer
- Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kåre I Birkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Borghild Roald
- Dept of Anatomic Pathology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Zhu X, Huang Q, Jiang L, Nguyen VT, Vu T, Devlin G, Shaima J, Wang X, Chen Y, Ma L, Xiang K, Wang E, Rong Q, Zhou Q, Kang Y, Asokan A, Feng L, Hsu SWD, Shen X, Yao J. Longitudinal intravital imaging of mouse placenta. SCIENCE ADVANCES 2024; 10:eadk1278. [PMID: 38507481 PMCID: PMC10954206 DOI: 10.1126/sciadv.adk1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Van-Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jabbar Shaima
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Yong Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lijun Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Shiao-Wen D. Hsu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
28
|
Abstract
During placentation, villous cytotrophoblast (CTB) stem cells proliferate and fuse, giving rise to the multinucleated syncytiotrophoblast (STB), which represents the terminally differentiated villous layer as well as the maternal-fetal interface. The syncytiotrophoblast is at the forefront of nutrient, gas, and waste exchange while also harboring essential endocrine functions to support pregnancy and fetal development. Considering that mitochondrial dynamics and respiration have been implicated in stem cell fate decisions of several cell types and that the placenta is a mitochondria-rich organ, we will highlight the role of mitochondria in facilitating trophoblast differentiation and maintaining trophoblast function. We discuss both the process of syncytialization and the distinct metabolic characteristics associated with CTB and STB sub-lineages prior to and during syncytialization. As mitochondrial respiration is tightly coupled to redox homeostasis, we emphasize the adaptations of mitochondrial respiration to the hypoxic placental environment. Furthermore, we highlight the critical role of mitochondria in conferring the steroidogenic potential of the STB following differentiation. Ultimately, mitochondrial function and morphological changes centrally regulate respiration and influence trophoblast fate decisions through the production of reactive oxygen species (ROS), whose levels modulate the transcriptional activation or suppression of pluripotency or commitment genes.
Collapse
Affiliation(s)
- Tina Podinić
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andie MacAndrew
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
29
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
30
|
Zaugg J, Albrecht C. Assessment of Placental Sodium-Independent Leucine Uptake and Transfer in Trophoblast Cells. Methods Mol Biol 2024; 2728:105-121. [PMID: 38019395 DOI: 10.1007/978-1-0716-3495-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The placenta maintains the balance between nutrition and growth control of the fetus through selective and regulated supply of macronutrients such as carbohydrates, proteins, lipids, and critical micronutrients. Perturbations in the balanced supply of nutrients as found in gestational diseases and altered fetal development have been associated with changes in amino acid transport proteins, such as the System L amino acid heterodimeric exchangers LAT1/SLC7A5 and LAT2/SLC7A8. Syncytiotrophoblasts (STB) form the crucial cell layer at the placental barrier coordinating the transfer of essential amino acids such as leucine from the maternal to the fetal circulation. The System L-mediated leucine transport across the placental barrier is a Na+-independent process against a counter-directed gradient, maintained by a tightly regulated interplay between accumulative transporters, exchangers, and facilitators.The two methods described here allow to standardize and characterize the uptake kinetics of leucine in conventionally cultured BeWo cells and the transfer of leucine across the placental cell barrier using a BeWo monolayer in the Transwell® system.
Collapse
Affiliation(s)
- Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Mashimo R, Kumazaki Y, Nakagami K, Kusaba N, Kawashima C. Comparison of nutrient supply from the dam to fetus and placental development in Holstein and Japanese black cows pregnant with similar or different fetus breeds. Anim Sci J 2024; 95:e13989. [PMID: 39175138 DOI: 10.1111/asj.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
A lower nutrient supply from Holstein (HOL) dams to beef fetuses than HOL fetuses has been demonstrated, but the underlying factors remain unclear. We investigated maternal, umbilical vein, and calf blood glucose and amino acid concentrations at calving, along with placental development at term, in HOL dams with similar fetuses (HOL-HOL, n = 12), F1 crosses (HOL × Japanese Black [JB]; HOL-F1, n = 4), JB fetuses (HOL-JB, n = 7), and JB dams with similar fetuses (JB-JB, n = 11). Calf birth weight, total cotyledonary weight, and surface area were greater in HOL-HOL compared to JB-JB or HOL-JB (P < 0.05), whereas those of HOL-F1 were similar. Blood amino acid concentrations in the umbilical veins and calves were similar among HOL-HOL, HOL-F1, and HOL-JB. Calf blood glucose concentrations were lower in HOL-F1 than HOL-HOL (P < 0.05), despite similar maternal blood glucose levels. HOL-JB exhibited higher maternal, umbilical vein, and calf blood glucose concentrations than JB-JB (P < 0.05). Therefore, the glucose supply to the fetus may be inhibited in HOL-F1 due to maternal-fetal breed differences. Higher maternal blood glucose concentrations in HOL-JB may result in elevated fetal glucose exposure, potentially affecting postnatal growth and metabolism.
Collapse
Affiliation(s)
- Riku Mashimo
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuka Kumazaki
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kaori Nakagami
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nobuyuki Kusaba
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chiho Kawashima
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
32
|
Ortiz M, Álvarez D, Muñoz Y, Crisosto N, Valenzuela R, Maliqueo M. Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development. Curr Med Chem 2024; 31:5046-5060. [PMID: 37415369 DOI: 10.2174/0929867331666230706161144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs). OBJECTIVE To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy. METHODS A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health. RESULTS An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system. CONCLUSION Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.
Collapse
Affiliation(s)
- Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Yasna Muñoz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Tatar M, Tüfekci KK. An investigation of the distributions of ferroptosis and necroptosis mediators in the maternal-fetal interface at different days of rat pregnancy. Anat Histol Embryol 2024; 53:e12991. [PMID: 37921037 DOI: 10.1111/ahe.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Ferroptosis and necroptosis are recognized as playing major roles in the regulation of various physiological processes. However, the physiological role of the cell death mediated by these two pathways in the developmental process has not yet been clearly established. This study investigated ferroptosis and necroptosis signalling pathways in maternal-fetal tissue in the different gestational days (GD) of rat pregnancy using immunohistochemical and western blot methods in order to fill this gap. Twenty-four female Wistar albino rats were mated and divided into three groups. Maternal-fetal tissue samples were collected on GD 5, 12 and 19 of pregnancy. Expression and total protein levels of the markers glutathione peroxidase-4, soluble transporter family 7 member 11, transferrin receptor, receptor-interacting serine/threonine-protein kinase 1, receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like protein were investigated on both the maternal and fetal surfaces of the placenta using immunohistochemical and western blot methods. The results showed varying levels of protein expression of both ferroptosis and necroptosis mediators in the GD 5, 12 and 19 of pregnancy. Immunohistochemical analyses revealed that these mediators were located on both the maternal (decidua and metrial gland) and fetal surfaces (labyrinth zone, yolk sac and basal zone) and that their expression levels changed in the different GD. The findings revealed the existence of important ferroptosis and necroptosis pathway mediators in rat maternal-fetal tissue. These results may provide a molecular framework for a better understanding of the communication between the placenta, decidua and fetus during the developmental process.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
34
|
Lizárraga D, García-Gasca T, Lund G, Ávalos-Soriano A, García-Gasca A. Global DNA methylation and miR-126-3p expression in Mexican women with gestational diabetes mellitus: a pilot study. Mol Biol Rep 2023; 51:5. [PMID: 38085382 DOI: 10.1007/s11033-023-09005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), a type of diabetes that occurs for the first time during pregnancy, may predispose the development of chronic degenerative diseases and metabolic alterations in mother and offspring. DNA methylation and microRNA (miRNA) expression are regulatory mechanisms of gene expression that may contribute to the pathogenesis of GDM. Therefore, we determined global DNA methylation and miR-126-3p expression levels in 8 and 7 Mexican women with and without GDM, respectively. METHODS AND RESULTS Global DNA methylation was assessed by measuring the percentage of 5-methylcytosine (5-mC) in placenta, umbilical cord, and plasma DNA samples, whereas miR-126-3p expression was quantified by real-time PCR using the 2-ΔCt method of the corresponding RNA samples. A significant increase in the percentage of 5-mC was detected in placenta samples from GDM patients compared to healthy women, while plasma samples showed a significant decrease. Conversely, miR-126-3p expression levels were significantly higher in plasma from the GDM group, while placenta and umbilical cord samples showed no significant differences across experimental groups. Furthermore, DNA methylation correlated significantly with glucose levels in placenta and plasma. Likewise, miR-126-3p expression correlated significantly with plasma glucose, in addition to maternal body mass index (BMI at first trimester). CONCLUSION The results indicate that GDM is associated with alterations in global DNA methylation levels and miR-126-3p expression in placenta and/or plasma, providing insights into future novel approaches to diagnose and/or prevent this pathology.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, Juriquilla, Querétaro, Querétaro, 76230, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norte Carretera Irapuato León Kilómetro 9.6, Carr Panamericana, Irapuato, Guanajuato, 36821, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology and Tissue Culture, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico.
| |
Collapse
|
35
|
Jo S, Alejandro EU. RISING STARS: Mechanistic insights into maternal-fetal cross talk and islet beta-cell development. J Endocrinol 2023; 259:e230069. [PMID: 37855321 PMCID: PMC10692651 DOI: 10.1530/joe-23-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
The metabolic health trajectory of an individual is shaped as early as prepregnancy, during pregnancy, and lactation period. Both maternal nutrition and metabolic health status are critical factors in the programming of offspring toward an increased propensity to developing type 2 diabetes in adulthood. Pancreatic beta-cells, part of the endocrine islets, which are nutrient-sensitive tissues important for glucose metabolism, are primed early in life (the first 1000 days in humans) with limited plasticity later in life. This suggests the high importance of the developmental window of programming in utero and early in life. This review will focus on how changes to the maternal milieu increase offspring's susceptibility to diabetes through changes in pancreatic beta-cell mass and function and discuss potential mechanisms by which placental-driven nutrient availability, hormones, exosomes, and immune alterations that may impact beta-cell development in utero, thereby affecting susceptibility to type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Dietrich B, Kunihs V, Lackner AI, Meinhardt G, Koo BK, Pollheimer J, Haider S, Knöfler M. NOTCH3 signalling controls human trophoblast stem cell expansion and differentiation. Development 2023; 150:dev202152. [PMID: 37905445 DOI: 10.1242/dev.202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.
Collapse
Affiliation(s)
- Bianca Dietrich
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Kunihs
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gudrun Meinhardt
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Yuseong-Gu, Daejeon 34126, Republic of Korea
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sandra Haider
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Knöfler
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
37
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
38
|
Cho S, Upadhaya SD, Seok WJ, Mun S, Lee H, van der Veen RH, Han K, Kim IH. Marine-derived Ca-Mg complex influences lipid and glucose metabolism, serum metabolites, colostrum profile, and stress hormone in sows over four-parity periods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1308-1322. [PMID: 38616871 PMCID: PMC11007293 DOI: 10.5187/jast.2023.e116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 04/16/2024]
Abstract
Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.
Collapse
Affiliation(s)
- Sungbo Cho
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Santi Devi Upadhaya
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Woo Jeong Seok
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core
Facility, Dankook University, Cheonan 31116, Korea
| | - Haeun Lee
- Department of Bioconvergence Engineering,
Dankook University, Jukjeon 16890, Korea
| | | | - Kyudong Han
- Center for Bio-Medical Engineering Core
Facility, Dankook University, Cheonan 31116, Korea
- Department of Microbiology, College of
Science and Technology, Dankook University, Cheonan 31116,
Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
39
|
Kramer AC, Jansson T, Bale TL, Powell TL. Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism. Development 2023; 150:dev202088. [PMID: 37831056 PMCID: PMC10617615 DOI: 10.1242/dev.202088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.
Collapse
Affiliation(s)
- Avery C. Kramer
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Thomas Jansson
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Tracy L. Bale
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Theresa L. Powell
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Bretón I, Ballesteros-Pomar MD, Calle-Pascual A, Alvarez-Sala LA, Rubio-Herrera MA. Micronutrients in Pregnancy after Bariatric Surgery: A Narrative Review. J Clin Med 2023; 12:5429. [PMID: 37629473 PMCID: PMC10455502 DOI: 10.3390/jcm12165429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Bariatric surgery is increasingly used in women of childbearing age due to the rising prevalence of obesity and the effectiveness and availability of this treatment. Pregnancy in women with previous bariatric surgery deserves special attention. Weight loss induced by surgery reduces the risks that obesity poses to pregnancy. But on the other hand, decreased intake and malabsorption may increase the risk of malnutrition and micronutrient deficiency and negatively affect maternal and foetal health. The aim of this narrative review is to provide an updated analysis of the impact of different bariatric surgery techniques on mineral and micronutrient nutritional status during pregnancy and the possible effect on maternal-foetal health.
Collapse
Affiliation(s)
- Irene Bretón
- Department of Endocrinology and Nutrition, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - María D. Ballesteros-Pomar
- Department of Endocrinology and Nutrition, Complejo Asistencial Universitario de León, 24008 León, Spain
| | - Alfonso Calle-Pascual
- Department of Medicine, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Luis Antonio Alvarez-Sala
- Department of Medicine, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Department of Internal Medicine, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Miguel Angel Rubio-Herrera
- Department of Medicine, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
41
|
O'Brien K, Wang Y. The Placenta: A Maternofetal Interface. Annu Rev Nutr 2023; 43:301-325. [PMID: 37603428 DOI: 10.1146/annurev-nutr-061121-085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The placenta is the gatekeeper between the mother and the fetus. Over the first trimester of pregnancy, the fetus is nourished by uterine gland secretions in a process known as histiotrophic nutrition. During the second trimester of pregnancy, placentation has evolved to the point at which nutrients are delivered to the placenta via maternal blood (hemotrophic nutrition). Over gestation, the placenta must adapt to these variable nutrient supplies, to alterations in maternal physiology and blood flow, and to dynamic changes in fetal growth rates. Numerous questions remain about the mechanisms used to transport nutrients to the fetus and the maternal and fetal determinants of this process. Growing data highlight the ability of the placenta to regulate this process. As new technologies and omics approaches are utilized to study this maternofetal interface, greater insight into this unique organ and its impact on fetal development and long-term health has been obtained.
Collapse
Affiliation(s)
- Kimberly O'Brien
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| | - Yiqin Wang
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| |
Collapse
|
42
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
43
|
Guadix P, Corrales I, Vilariño-García T, Rodríguez-Chacón C, Sánchez-Jiménez F, Jiménez-Cortegana C, Dueñas JL, Sánchez-Margalet V, Pérez-Pérez A. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin. Front Endocrinol (Lausanne) 2023; 14:1172831. [PMID: 37497352 PMCID: PMC10366688 DOI: 10.3389/fendo.2023.1172831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Isabel Corrales
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Clinical Biochemistry Service, Virgen del Rocio University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Carmen Rodríguez-Chacón
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
44
|
Joshi N, Sahay A, Mane A, Sundrani D, Randhir K, Wagh G, Thornburg K, Powell T, Yajnik C, Joshi S. Altered expression of nutrient transporters in syncytiotrophoblast membranes in preeclampsia placentae. Placenta 2023; 139:181-189. [PMID: 37421872 DOI: 10.1016/j.placenta.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Expression of nutrient transporters in the placenta affects fetal growth. This study reports the protein expression of nutrient transporters in the syncytial membranes [microvillous membrane (MVM) and basal membrane (BM)] of normotensive control and preeclampsia placentae. METHODS Placentae were collected from fourteen normotensive control women and fourteen women with preeclampsia. The syncytiotrophoblast MVM and BM membranes were isolated. The protein expression of glucose transporter (GLUT1), vitamin B12 transporter (CD320) and fatty acid transporters (FATP2, FATP4) was assessed in both the membranes. RESULTS Comparison between membranes demonstrates similar CD320 protein expression in normotensive group whereas, in preeclampsia placentae it was higher in the BM as compared to MVM (p < 0.05). FATP2&4 protein expression was higher in the BM as compared to their respective MVM fraction in both the groups (p < 0.01 for both). Comparison between groups demonstrates higher GLUT1 expression in the MVM (p < 0.05) and BM (p < 0.05) whereas lower CD320 expression in the MVM (p < 0.05) of preeclampsia placentae as compared to their respective membranes in normotensive control. Furthermore, GLUT1 protein expression was positively associated and CD320 protein expression was negatively associated with maternal body mass index (BMI) (p < 0.05 for both). No difference was observed in the FATP2&4 protein expression. However, FATP4 protein expression was negatively associated with maternal blood pressure (p < 0.05 for MVM; p = 0.060 for BM) and birth weight (p < 0.05 for both membranes). DISCUSSION The current study for the first time demonstrates differential expression of various transporters in the syncytiotrophoblast membranes of the preeclampsia placentae which may influence fetal growth.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Akriti Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Aditi Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Kent Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, United States
| | - Theresa Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
45
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
46
|
Aboragah AA, Sherlock DN, Wichasit N, Loor JJ. Abundance of proteins and genes associated with nutrient signaling, protein turnover, and transport of amino acids and glucose in fetuses from lactating Holstein cows. Res Vet Sci 2023; 161:69-76. [PMID: 37321013 DOI: 10.1016/j.rvsc.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Availability of nutrients in maternal circulation and abundance of nutrient transporters, metabolic enzymes, and nutrient-responsive proteins in fetal tissues coordinate growth. To begin characterizing these mechanisms, we evaluated the abundance of nutrient signaling genes and proteins in bovine fetal tissues. Liver, entire intestine, and semitendinosus muscle were harvested from fetuses (4 female, 2 male) collected at slaughter from 6 clinically-healthy multiparous Holstein dairy cows (167 ± 7 days in milk, 37 ± 6 kg milk/d, 100 ± 3 d gestation). Data were analyzed using PROC MIXED in SAS 9.4. Among proteins measured, abundance of the amino acid (AA) utilization and insulin signaling proteins p-AKT and p-mTOR was greater (P < 0.01) in liver and intestine. The abundance of p-EEF2 (translation elongation) and SLC2A4 (glucose uptake) was greater (P < 0.05) in liver relative to intestine and muscle suggesting this organ has a greater capacity for anabolic processes. In contrast, among mTOR signaling genes, the abundance of IRS1 was greatest (P < 0.01) in muscle and lowest in the intestine, whereas, abundance of AKT1 and mTOR was greater (P < 0.01) in intestine and muscle than liver. Abundance of the protein degradation-related genes UBA1, UBE2G1, and TRIM63 was greater (P < 0.01) in muscle than intestine and liver. Among nutrient transporters, abundance of glucose transporters SLC5A1 and SLC2A2 was greatest (P < 0.01) in the intestine than liver and muscle. Several AA transporters had greater (P < 0.01) abundance in the intestine or liver compared with muscle. Overall, these molecular analyses highlighted important biological differences on various aspects of metabolism in fetal tissues.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
47
|
Khare SP, Madhok A, Patta I, Sukla KK, Wagh VV, Kunte PS, Raut D, Bhat D, Kumaran K, Fall C, Tatu U, Chandak GR, Yajnik CS, Galande S. Differential expression of genes influencing mitotic processes in cord blood mononuclear cells after a pre-conceptional micronutrient-based randomised controlled trial: Pune Rural Intervention in Young Adolescents (PRIYA). J Dev Orig Health Dis 2023; 14:437-448. [PMID: 36632790 DOI: 10.1017/s204017442200068x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In The Pune Maternal Nutrition Study, vitamin B12 deficiency was seen in 65% of pregnant women, folate deficiency was rare. Maternal total homocysteine concentrations were inversely associated with offspring birthweight, and low vitamin B12 and high folate concentrations predicted higher offspring adiposity and insulin resistance. These findings guided a nested pre-conceptional randomised controlled trial 'Pune Rural Intervention in Young Adolescents'. The interventions included: (1) vitamin B12+multi-micronutrients as per the United Nations International Multiple Micronutrient Antenatal Preparation, and proteins (B12+MMN), (2) vitamin B12 (B12 alone), and (3) placebo. Intervention improved maternal pre-conceptional and in-pregnancy micronutrient nutrition. Gene expression analysis in cord blood mononuclear cells in 88 pregnancies revealed 75 differentially expressed genes between the B12+MMN and placebo groups. The enriched biological processes included G2/M phase transition, chromosome segregation, and nuclear division. Enriched pathways included, mitotic spindle checkpoint and DNA damage response while enriched human phenotypes were sloping forehead and decreased head circumference. Fructose-bisphosphatase 2 (FBP2) and Cell Division Cycle Associated 2 (CDCA2) genes were under-expressed in the B12 alone group. The latter, involved in chromosome segregation was under-expressed in both intervention groups. Based on the role of B-complex vitamins in the synthesis of nucleotides and S-adenosyl methionine, and the roles of vitamins A and D on gene expression, we propose that the multi-micronutrient intervention epigenetically affected cell cycle dynamics. Neonates in the B12+MMN group had the highest ponderal index. Follow-up studies will reveal if the intervention and the altered biological processes influence offspring diabesity.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Krishna K Sukla
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Vipul V Wagh
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Pooja S Kunte
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Deepa Raut
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Dattatray Bhat
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | | | - Caroline Fall
- Medical Research Council Lifecourse Epidemiology Centre, Southampton, UK
| | - Utpal Tatu
- Indian Institute of Science (IISc), Bangalore, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
48
|
Nashif SK, Mahr RM, Jena S, Jo S, Nelson AB, Sadowski D, Crawford PA, Puchalska P, Alejandro EU, Gearhart MD, Wernimont SA. Metformin impairs trophoblast metabolism and differentiation in a dose-dependent manner. Front Cell Dev Biol 2023; 11:1167097. [PMID: 37250894 PMCID: PMC10213689 DOI: 10.3389/fcell.2023.1167097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing the risk of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation. Using established cell culture models of trophoblast differentiation, oxygen consumption rates and relative metabolite abundance were determined following 200 µM (therapeutic range) and 2000 µM (supra-therapeutic range) metformin treatment using Seahorse and mass-spectrometry approaches. While no differences in oxygen consumption rates or relative metabolite abundance were detected between vehicle and 200 µM metformin-treated cells, 2000 µM metformin impaired oxidative metabolism and increased the abundance of lactate and TCA cycle intermediates, α-ketoglutarate, succinate, and malate. Examining differentiation, treatment with 2000 μM, but not 200 µM metformin, impaired HCG production and expression of multiple trophoblast differentiation markers. Overall, this work suggests that supra-therapeutic concentrations of metformin impair trophoblast metabolism and differentiation whereas metformin concentrations in the therapeutic range do not strongly impact these processes.
Collapse
Affiliation(s)
- Sereen K. Nashif
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Renee M. Mahr
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Snehalata Jena
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alisa B. Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Danielle Sadowski
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Micah D. Gearhart
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Sarah A. Wernimont
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Maxwell A, Adzibolosu N, Hu A, You Y, Stemmer PM, Ruden DM, Petriello MC, Sadagurski M, Debarba LK, Koshko L, Ramadoss J, Nguyen AT, Richards D, Liao A, Mor G, Ding J. Intrinsic sexual dimorphism in the placenta determines the differential response to benzene exposure. iScience 2023; 26:106287. [PMID: 37153445 PMCID: PMC10156617 DOI: 10.1016/j.isci.2023.106287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Maternal immune activation (MIA) by environmental challenges is linked to severe developmental complications, such as neurocognitive disorders, autism, and even fetal/maternal death. Benzene is a major toxic compound in air pollution that affects the mother as well as the fetus and has been associated with reproductive complications. Our objective was to elucidate whether benzene exposure during gestation triggers MIA and its impact on fetal development. We report that benzene exposure during pregnancy leads MIA associated with increased fetal resorptions, fetal growth, and abnormal placenta development. Furthermore, we demonstrate the existence of a sexual dimorphic response to benzene exposure in male and female placentas. The sexual dimorphic response is a consequence of inherent differences between male and female placenta. These data provide crucial information on the origins or sexual dimorphism and how exposure to environmental factors can have a differential impact on the development of male and female offspring.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Douglas M. Ruden
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lucas K. Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Jayanth Ramadoss
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | | | - Darby Richards
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
50
|
Lintao RCV, Kammala AK, Vora N, Yaklic JL, Menon R. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta 2023; 135:33-42. [PMID: 36913807 DOI: 10.1016/j.placenta.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION During pregnancy, the growth of the fetus is supported by the exchange of nutrients, waste, and other molecules between maternal and fetal circulations in the utero-placental unit. Nutrient transfer, in particular, is mediated by solute transporters such as solute carrier (SLC) and adenosine triphosphate-binding cassette (ABC) proteins. While nutrient transport has been extensively studied in the placenta, the role of human fetal membranes (FM), which was recently reported to have a role in drug transport, in nutrient uptake remains unknown. OBJECTIVES This study determined nutrient transport expression in human FM and FM cells and compared expression with placental tissues and BeWo cells. METHODS RNA sequencing (RNA-Seq) of placental and FM tissues and cells was done. Genes of major solute transporter groups, such as SLC and ABC, were identified. Proteomic analysis of cell lysates was performed via nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to confirm expression at a protein level. RESULTS We determined that FM tissues and cells derived from the fetal membrane tissues express nutrient transporter genes, and their expression is similar to that seen in the placenta or BeWo cells. In particular, transporters involved in macronutrient and micronutrient transfer were identified in both placental and FM cells. Consistent with RNA-Seq findings, carbohydrate transporters (3), vitamin transport-related proteins (8), amino acid transporters (21), fatty acid transport-related proteins (9), cholesterol transport-related proteins (6) and nucleoside transporters (3) were identified in BeWo and FM cells, with both groups sharing similar nutrient transporter expression. CONCLUSION This study determined the expression of nutrient transporters in human FMs. This knowledge is the first step in improving our understanding of nutrient uptake kinetics during pregnancy. Functional studies are required to determine the properties of nutrient transporters in human FMs.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; College of Medicine, University of the Philippines Manila, 547 Pedro Gil St., Manila, 1000, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; John Sealy School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Jerome L Yaklic
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|