1
|
Clougher SB, Niedziela D, Versura P, Mulcahy G. Best practices for the experimental design of one health studies on companion animal and owner microbiomes - From data collection to analysis. One Health 2025; 20:100977. [PMID: 39925695 PMCID: PMC11804817 DOI: 10.1016/j.onehlt.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
The relationship between owner and companion animal represents an underestimated opportunity for the studying of One Health relationships between humans, animals, and the environment they share. Microbiome exchanges between owner and pet have been documented for the gut, skin, oral, and nasal microbiomes. These studies give a unique insight into bacterial flows between humans and animals, but come with their specific challenges. This review discusses the data and sample collection challenges, as well as laboratory, bioinformatic and data analysis challenges specific to One Health studies on companion animal and owner microbiomes. We provide an overview of possible data to be collected and pitfalls to avoid during sample collection and conservation, DNA extraction, and library preparation. We present the main bioinformatics pipelines in sequencing-data microbiome analysis, as well as data analysis specific to pet-owner microbiome comparison. We review and compare three beta-diversity measures (Bray-Curtis dissimilarity, unweighted, and weighted UniFrac distances) for pet-owner distances and the tests to compare them. Finally, we propose a framework with key considerations to bear in mind when designing and carrying out owner-companion animal studies, as well as best practices to implement them. Although these studies come with additional difficulties compared to species-specific microbiome studies, they offer the opportunity to identify biomarkers, environmental triggers, and impacts of pet-owner interactions across species.
Collapse
Affiliation(s)
- Suzanne B. Clougher
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Italy
| | | | - Piera Versura
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Ireland
| |
Collapse
|
2
|
Akile C, Claas ECJ, Boers SA. Revisiting diagnostics: the reliability of culture-independent detection of microbial pathogens by DNA sequencing needs improvement. Clin Microbiol Infect 2025; 31:893-895. [PMID: 39788203 DOI: 10.1016/j.cmi.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Affiliation(s)
- Chaimae Akile
- Center of Infectious Diseases, Medical Microbiology and Infection Control, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Eric C J Claas
- Center of Infectious Diseases, Medical Microbiology and Infection Control, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Stefan A Boers
- Center of Infectious Diseases, Medical Microbiology and Infection Control, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands.
| |
Collapse
|
3
|
Kok CR, Thissen JB, Cerroni M, Tribble DR, Cancio A, Tran S, Schofield C, Colombo RE, Troth T, Joya C, Lalani T, Be NA. Field expedient stool collection methods for gut microbiome analysis in deployed military environments. mSphere 2025:e0081824. [PMID: 40372056 DOI: 10.1128/msphere.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Field expedient devices and protocols for the collection, storage, and shipment of stool samples in deployed settings are needed for the advancement of microbiome research in military health. Relevant assessments include the evaluation of microbiome signatures associated with susceptibility to travelers' diarrhea and recovery of gut function following infection. However, inherent biases in microbial measurements due to preservatives and sampling methods are unclear and should be assessed for an accurate evaluation of the microbiome. We performed shotgun metagenomic sequencing and compared the microbiome composition in paired fecal samples collected using Flinters Technology Associates (FTA) cards and OMNIgene (OG) Gut tubes, prior to and during international travel, from 49 adult participants, 39 of whom remained asymptomatic and 10 experienced travelers' diarrhea. Higher concentrations of nucleic acid and sequencing libraries were observed in OG samples. A majority of genera (82.9%) were detected with both methods, and detections of genera limited to one collection method were not highly prevalent across samples and were present in extremely low relative abundances (<0.01%). Differences in beta diversity were largely explained by inter-individuality of microbiome composition, followed by the effect of collection method and timepoint-disease states. Differential abundance analysis indicated that Corynebacterium and Blautia were consistently higher in abundance across all groups with FTA and OG collection, respectively. The observed differences in microbiome composition between methods suggest the need for consistent and standardized protocols within a study. Overall, the data presented here could help guide the future design of fecal microbiome study protocols in field and military deployment settings.IMPORTANCEThe assessment of field-deployable methods for fecal sample collection and storage is required to reliably capture samples collected in remote and austere locations. This study describes a comparative metagenomics analysis between samples collected by two different commercially available methods in a military-deployed setting. The results presented here are foundational for the future design of fecal microbiome study protocols in an operational context.
Collapse
Affiliation(s)
- Car Reen Kok
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - James B Thissen
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Michele Cerroni
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
| | | | - Sophia Tran
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Tripler Army Medical Center, Honolulu, Hawaii, USA
| | | | - Rhonda E Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Madigan Army Medical Center, Tacoma, Washington, USA
| | - Tom Troth
- United Kingdom Ministry of Defence, London, England, United Kingdom
- University of Birmingham, Birmingham, United Kingdom
| | - Christie Joya
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
| | - Tahaniyat Lalani
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, , Bethesda, Maryland, USA
- Navy Medicine Readiness and Training Command, Portsmouth, Virginia, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nicholas A Be
- Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
4
|
Brunet S, Grankvist A, Jaen-Luchoro D, Bergdahl M, Tison JL, Wester A, Elfving K, Brandenburg J, Gullsby K, Lindsten C, Arvidsson LO, Larsson H, Eilers H, Strand AS, Lannefors M, Keskitalo J, Rylander F, Welander J, Jungestrom MB, Geörg M, Kaden R, Karlsson I, Linde AM, Mernelius S, Berglind L, Feuk L, Kerje S, Karlsson L, Sjödin A, Guerra-Blomqvist L, Wallin F, Fagerström A, Vondracek M, Mölling P, Hallbäck ET. Nationwide multicentre study of Nanopore long-read sequencing for 16S rRNA-species identification. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-025-05158-w. [PMID: 40348924 DOI: 10.1007/s10096-025-05158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
PURPOSE Recent improvements in Nanopore sequencing chemistry has made it a promising platform for long-read 16S rRNA sequencing. This study evaluated its clinical utility in a nationwide collaboration coordinated by Genomic Medicine Sweden. METHODS Thirteen mock samples comprised of various bacterial strains and an External Quality Assessment (EQA) panel from QCMD (Quality Control for Molecular Diagnostics) were analysed by 20 microbiological laboratories across Sweden, using the recent v14 chemistry. Most laboratories generated full-length 16S rRNA sequencing libraries using an optimized protocol for the 16S Barcoding Kit 24, while two laboratories employed in-house PCR coupled with the Ligation Sequencing Kit. The commercial 16S bioinformatic pipeline from 1928 Diagnostics (1928-16S) was evaluated and compared with the open-sourced gms_16S pipeline that is based on the EMU classification tool (GMS-16S). RESULTS Seventeen out of 20 laboratories successfully sequenced and analysed the samples. Laboratories that used sodium acetate-containing elution buffers faced compatibility issues during library construction, resulting in reduced read count. High bacterial load samples were generally well-characterized, whereas hard-to-lyse bacteria such as Gram-positive strains were detected at lower abundance. The GMS-16S tool provided improved species-level identification compared to the 1928-16S pipeline, particularly for closely related taxa within the Streptococcus and Staphylococcus genera. CONCLUSION Nanopore sequencing demonstrated promising potential for bacterial identification in a clinical setting. The results prompt further optimization of the protocol to improve detection of a broader range of species. This multicentre study highlights the feasibility of implementing Nanopore sequencing into clinical microbiological laboratories, for improved national precision diagnostics.
Collapse
Affiliation(s)
- Sofia Brunet
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Dept of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden.
| | - Anna Grankvist
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Dept of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Daniel Jaen-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Dept of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Maria Bergdahl
- Department of Clinical Microbiology, Centrallasarettet, Växjö, Region Kronoberg County, Sweden
| | - Jean-Luc Tison
- Department of Clinical Microbiology, Centralsjukhuset i Karlstad, Karlstad, Region Värmland County, Sweden
| | - Annica Wester
- Department of Clinical Microbiology, Centralsjukhuset i Karlstad, Karlstad, Region Värmland County, Sweden
| | - Karin Elfving
- Department of Clinical Microbiology, Falu Lasarett, Region Dalarna County, Falun, Sweden
| | - Jule Brandenburg
- Department of Clinical Microbiology, Falu Lasarett, Region Dalarna County, Falun, Sweden
| | - Karolina Gullsby
- Department of Clinical Microbiology, Gävle Sjukhus, Gävle, Region Gävleborg County, Sweden
| | - Christoffer Lindsten
- Department of Clinical Microbiology, Hallands Sjukhus Halmstad, Halmstad, Region Halland County, Sweden
| | - Lars-Ola Arvidsson
- Department of Clinical Microbiology, Hallands Sjukhus Halmstad, Halmstad, Region Halland County, Sweden
| | - Helena Larsson
- Department of Clinical Microbiology, Länssjukhuset Kalmar, Kalmar, Region Kalmar County, Sweden
| | - Hinnerk Eilers
- Department of Clinical Microbiology, Norrlands Universitetssjukhus, Umeå, Region Västerbotten County, Sweden
| | - Anna Söderlund Strand
- Department of Clinical Microbiology, Skåne University Hospital, Lund, Region Skåne County, Sweden
| | - Mimi Lannefors
- Center for Molecular Diagnostics, Skåne University Hospital, Lund, Region Skåne County, Sweden
| | - Johanna Keskitalo
- Department of Clinical Microbiology, Sunderby Sjukhus, Luleå, Region Norrbotten County, Sweden
| | - Felicia Rylander
- Department of Clinical Microbiology, Sundsvalls Sjukhus, Sundsvall, Region Västernorrland County, Sweden
| | - Jenny Welander
- Department of Clinical Microbiology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Malin Bergman Jungestrom
- Department of Clinical Microbiology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Miriam Geörg
- Department of Laboratory Medicine, Västmanland Hospital, Västerås, Region Västmanland County, Sweden
| | - Rene Kaden
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, 751 85, Uppsala, Sweden
- Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Ida Karlsson
- Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Anna-Malin Linde
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sara Mernelius
- Laboratory Medicine, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Region Jönköping County, Sweden
| | - Linda Berglind
- Laboratory Medicine, Jönköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Region Jönköping County, Sweden
| | - Lars Feuk
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Susanne Kerje
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | | | | | - Lina Guerra-Blomqvist
- Department of Clinical Microbiology, Karolinska University Hospital and Karolinska Institute, Region Stockholm County, Stockholm, Sweden
| | - Frans Wallin
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anna Fagerström
- Clinical Genomics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Martin Vondracek
- Department of Clinical Microbiology, Karolinska University Hospital and Karolinska Institute, Region Stockholm County, Stockholm, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Erika Tång Hallbäck
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Dept of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| |
Collapse
|
5
|
Booth ME, Wood HM, Travis MA, Quirke P, Grabsch HI. The relationship between the gastric cancer microbiome and clinicopathological factors: a metagenomic investigation from the 100,000 genomes project and The Cancer Genome Atlas. Gastric Cancer 2025; 28:358-371. [PMID: 39961991 PMCID: PMC11993446 DOI: 10.1007/s10120-025-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Findings from previous gastric cancer microbiome studies have been conflicting, potentially due to patient and/or tumor heterogeneity. The intratumoral gastric cancer microbiome and its relationship with clinicopathological variables have not yet been characterized in detail. We hypothesized that variation in gastric cancer microbial abundance, alpha diversity, and composition is related to clinicopathological characteristics. METHODS Metagenomic analysis of 529 GC samples was performed, including whole exome sequencing data from The Cancer Genome Atlas (TCGA) and whole genome sequencing data from the 100,000 Genomes Project. Microbial abundance, alpha diversity, and composition were compared across patient age, sex, tumor location, geographic origin, pathological depth of invasion, pathological lymph node status, histological phenotype, microsatellite instability status, and TCGA molecular subtype. RESULTS Gastric cancer microbiomes resembled previous results, with Prevotella, Selenomonas, Stomatobaculum, Streptococcus, Lactobacillus, and Lachnospiraceae commonly seen across both cohorts. Within the TCGA cohort, microbial abundance and alpha diversity were greater in gastric cancers with microsatellite instability, lower pathological depth of invasion, intestinal-type histology, and those originating from Asia. Microsatellite instability status was associated with microbiome composition in both cohorts. Sex and pathological depth of invasion were associated with microbiome composition in the TCGA cohort. CONCLUSION The intratumoral gastric cancer microbiome appears to differ according to clinicopathological factors. Certain clinicopathological factors associated with favourable outcomes in gastric cancer were observed to be associated with greater microbial abundance and diversity. This highlights the need for further work to understand the underlying biological mechanisms behind the observed microbiome differences and their potential clinical and therapeutic impact.
Collapse
Affiliation(s)
- Mary E Booth
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Henry M Wood
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Phil Quirke
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK.
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Williamson EM, Hammer TJ, Hogendoorn K, Eisenhofer R. Blanking on blanks: few insect microbiota studies control for contaminants. mBio 2025; 16:e0265824. [PMID: 39998222 PMCID: PMC11980574 DOI: 10.1128/mbio.02658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Research on insect-microbe relationships is booming, with DNA sequencing being the most commonly used method to describe insect microbiota. However, sequencing is vulnerable to contamination, especially when the sample has low microbial biomass. Such low-biomass samples are common across insect taxa, developmental stages, and tissue types. Identifying putative contaminants is essential to distinguish between true microbiota and introduced contaminant DNA. It is therefore important that studies control for contamination, but how often this is done is unknown. To investigate the status quo of contamination control, we undertook a systematic literature review to quantify the prevalence of negative control usage and contamination control across the literature on insect microbiota (specifically bacterial communities) over a 10 year period. Two-thirds of the 243 insect microbiota studies evaluated had not included blanks (negative controls), and only 13.6% of the studies sequenced these blanks and controlled for contamination in their samples. Our findings highlight a major lack of contamination control in the field of insect microbiota research. This result suggests that a number of microbes reported in the literature may be contaminants as opposed to insect-associated microbiota and that more rigorous contamination control is needed to improve research reliability, validity, and reproducibility. Based on our findings, we recommend the previously developed guidelines outlined in the RIDE checklist, with the addition of one more guideline. We refer to this as the RIDES checklist, which stands for Report methodology, Include negative controls, Determine the level of contamination, Explore contamination downstream, and State the amount of off-target amplification.IMPORTANCEOur systematic review reveals a major lack of methodological rigor within the field of research on insect-associated microbiota. The small percentage of studies that control for contamination suggests that an unknown but potentially considerable number of bacteria reported in the literature could be contaminants. The implication of this finding is that true microbiota may be masked or misrepresented, especially in insects with low microbial biomass.
Collapse
Affiliation(s)
| | - Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Raphael Eisenhofer
- Centre for Evolutionary Hologenomics, Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Park DH, Tak EJ, Park OJ, Perinpanayagam H, Yoo YJ, Lee HJ, Jeong YS, Lee JY, Kim HS, Bae JW, Kum KY, Han SH. Association between root canals and gingival sulci microbiota in secondary and persistent endodontic infections. Sci Rep 2025; 15:11253. [PMID: 40175495 PMCID: PMC11965569 DOI: 10.1038/s41598-025-95522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Secondary/persistent endodontic infections (SPEIs) result from failed root canal therapy, causing persistent apical periodontitis. Current diagnostic methods for SPEIs predominantly rely on clinical and radiographic indicators, which often lack adequate sensitivity and specificity. Consequently, there is an urgent need to effectively detect SPEIs or monitor their progression. The aim of this study was to compare and characterize the microbiota of root canals and gingival sulci of teeth affected by SPEI to identify keystone pathogens as potential diagnostic biomarkers through advanced next-generation sequencing (NGS) techniques. Ninety samples from 30 affected teeth in 25 patients undergoing nonsurgical retreatment were analyzed. Bacterial DNA was extracted, the V3-V4 region of the 16S rRNA gene was amplified, and sequencing was performed (Illumina MiSeq). Amplicon sequence variants (ASVs) identified 16 phyla, 182 genera, and 390 species. Microbiota in root canals differed from gingival sulci, with Acinetobacter and Veillonella prevalent in canals, and Streptococcus and Actinomyces dominant in sulci. Certain species, including Shuttleworthella satelles, Olsenella uli, Dialister invisus, Massilia timonae, and Klebsiella pneumoniae were detected in both sites, suggesting microbial migration via anatomical structures. Detecting these potential keystone pathogens of SPEI as biomarkers in readily accessible sulcus fluid could facilitate diagnoses and monitoring of progression and/or resolution. These insights provide a foundation for more accurate and targeted diagnostic and therapeutic strategies for management of SPEIs.
Collapse
Affiliation(s)
- Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences, Department of Biology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hiran Perinpanayagam
- Division of Endodontics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Yeon-Jee Yoo
- Department of Conservative Dentistry, DRI, National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul National University School of Dentistry, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyo-Jung Lee
- Department of Conservative Dentistry, DRI, National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul National University School of Dentistry, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Seok Jeong
- Department of Life and Nanopharmaceutical Sciences, Department of Biology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences, Department of Biology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences, Department of Biology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences, Department of Biology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, DRI, National Dental Care Center for Persons with Special Needs, Seoul National University Dental Hospital, Seoul National University School of Dentistry, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Burke C, Glynn T, Jahangir C, Murphy C, Buckley N, Tangney M, Rahman A, Gallagher WM. Exploring the prognostic and predictive potential of bacterial biomarkers in non-gastrointestinal solid tumors. Expert Rev Mol Diagn 2025; 25:117-128. [PMID: 39973615 DOI: 10.1080/14737159.2025.2465743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Standard clinical parameters like tumor size, age, lymph node status, and molecular markers are used to predict progression risk and treatment response. However, exploring additional markers that reflect underlying biology could offer a more comprehensive understanding of the tumor microenvironment (TME). The TME influences tumor development, progression, disease severity, and survival, with tumor-associated bacteria posited to play significant roles. Studies on tumor-associated microbiota have focused on high bacterial-load sites such as the gut, oral cavity, and stomach, but interest is growing in non-gastrointestinal (GI) solid tumors, such as breast, lung, and pancreas. Microbe-based biomarkers, including Helicobacter pylori, human papillomavirus (HPV), and hepatitis B and C viruses, have proven valuable in predicting gastric, cervical, and renal cancers. AREAS COVERED Potential of prognostic and predictive bacterial biomarkers in non-GI solid tumors and the methodologies used. EXPERT OPINION Advances in techniques like 16S rRNA gene sequencing, qPCR, immunostaining, and in situ hybridization have enabled detailed analysis of difficult-to-culture microbes in solid tumors. However, to ensure reliable results, it is critical to standardize protocols, accurately align reads, address contamination, and maintain proper sample handling. This will pave the way for developing reliable bacterial markers that enhance prognosis, prediction, and personalized treatment planning.
Collapse
Affiliation(s)
- Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Thomas Glynn
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Chowdhury Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Mark Tangney
- Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Skidmore AM, Bradfute SB. Bacterial DNA Contamination of Commercial PCR Enzymes: Considerations for Microbiome Protocols and Analysis. Microorganisms 2025; 13:732. [PMID: 40284569 PMCID: PMC12029200 DOI: 10.3390/microorganisms13040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
The microbiome remains a top area of research, and it is now common to examine any organic and inorganic samples for bacterial colonization. However, due to the ubiquity of bacteria in the environment, separating the low-burden colonization of bacteria from the possible contamination of laboratory reagents remains problematic. When examining samples of expected low bacterial burden, it is common to first amplify any bacterial DNA present through PCR before sequencing. In this work, we examined nine different commercial PCR enzymes and their reaction components as possible sources of bacterial DNA contamination. We found contaminating bacterial DNA in seven of the nine reactions, and this DNA was shown to come from a variety of species. Importantly, we were able to perform these studies solely with endpoint PCR and Sanger sequencing, which are more accessible and affordable than high-throughput, short-read sequencing and real-time PCR. This work confirms that there needs to be an increased emphasis on including control reactions in microbiome studies so that contaminating DNA sequences can be identified and addressed, and that this can be achieved with minimal resources.
Collapse
Affiliation(s)
| | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| |
Collapse
|
10
|
Sun Y, Yu YT, Castillo XO, Anderson R, Wang M, Sun Q, Tallmadge R, Sams K, Reboul G, Zehr J, Brown J, Wang X, Marra N, Stanhope B, Grenier J, Pusterla N, Divers T, Mittel L, Goodman LB. Investigation of the Blood Microbiome in Horses With Fever of Unknown Origin. Vet Med Sci 2025; 11:e70272. [PMID: 40065594 PMCID: PMC11893731 DOI: 10.1002/vms3.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Fever of unknown origin (FUO) without a respiratory component is a frequent clinical presentation in horses. Multiple pathogens, both tick-borne and enteric, can be involved as etiologic agents. An additional potential mechanism is intestinal barrier dysfunction. OBJECTIVES This case-control study aimed to detect and associate microbial taxa in blood with disease state. STUDY DESIGN Areas known for a high prevalence of tick-borne diseases in humans were chosen to survey horses with FUO, which was defined as fever of 101.5°F or higher with no signs of respiratory illness or other recognisable diseases. Blood samples and clinical parameters were obtained from 52 FUO cases and also from matched controls from the same farms. An additional 23 febrile horses without matched controls were included. METHODS Broadly targeted polymerase chain reaction (PCR) amplification directed at conserved sequence regions of bacterial 16S rRNA, parasite 18S rRNA, coronavirus RdRp and parvovirus NS1 was performed, followed by deep sequencing. To control for contamination and identify taxa unique to the cases, metagenomic sequences from the controls were subtracted from those of the cases, and additional targeted molecular testing was performed. Sera were also tested for antibodies to equine coronavirus. RESULTS Over 60% of cases had intestinal microbial DNA circulating in the blood. Nineteen percent of cases were attributed to infection with Anaplasma phagocytophilum, of which two were subtyped as human-associated strains. A novel Erythroparvovirus was detected in two cases and two controls. Serum titres for equine coronavirus were elevated in some cases but not statistically different overall between the cases and controls. MAIN LIMITATIONS Not all pathogens are expected to circulate in blood, which was the sole focus of this study. CONCLUSIONS The presence of commensal gut microbes in blood of equine FUO cases is consistent with a compromised intestinal barrier, which is highlighted as a direction for future study.
Collapse
Affiliation(s)
- Yining Sun
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Y. Tina Yu
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | | | - Renee Anderson
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Minghui Wang
- Center for BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Qi Sun
- Center for BiotechnologyCornell UniversityIthacaNew YorkUSA
| | | | - Kelly Sams
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Guillaume Reboul
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Jordan Zehr
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Joel Brown
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Xiyu Wang
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Nicholas Marra
- Division of Science, Mathematics, and TechnologyGovernors State UniversityUniversity ParkIllinoisUSA
| | - Bryce Stanhope
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | | | - Nicola Pusterla
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Thomas Divers
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Linda Mittel
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Laura B. Goodman
- College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
11
|
Tobar Z, Lee KY, Gaa ME, Moore BP, Li X, Pitesky ME. Evaluation of 16s Long Read Metabarcoding for Characterizing the Microbiome and Salmonella Contamination of Retail Poultry Meat. J Food Prot 2025; 88:100434. [PMID: 39681310 DOI: 10.1016/j.jfp.2024.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The traditional gold standard for detection of Salmonella in meat products is bacterial culture with enrichment. While this method is highly sensitive, it is slow and provides an incomplete assessment of isolate taxonomy in positive samples. This study presents a novel PCR-based detection assay which amplifies the 16s-ITS-23s region which is an approximately 2,500 base pair region of the larger ribosomal rrn operon. Intra-assay variation was assessed by splitting each biological sample into 3 technical replicates. Limits of detection (LOD) were assessed by utilizing a serial dilution of a pure culture of Salmonella enterica subsp. enterica serovar Heidelberg spiked into either sterile 1 × PBS or 1 × PBS rinsate of a Salmonella culture-negative chicken meat sample. Results indicate the 16s metabarcoding assay evaluated here could not be reliably used for the detection of Salmonella in adulterated retail meat samples as the LOD observed, 4.70 log colony forming units (CFU)/ml, is above the expected concentration of Salmonella in retail poultry meat samples which previous studies have shown range from under 1 to 2 log CFU/ml. However, due to greater taxonomic resolution afforded by using 16s long reads, the assay allowed alpha diversity assessment of the microbiome of raw poultry meat with the ability to assign taxonomy to the species and strain level for some amplicon sequence variants (ASV). This indicates this process may have value characterizing biodiversity and pathogen contamination of poultry samples in earlier steps of the poultry meat production process where bacterial contamination concentrations are likely to be higher.
Collapse
Affiliation(s)
- Zachary Tobar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Katie Y Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Megan E Gaa
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Bryshal P Moore
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Maurice E Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
12
|
Di Gloria L, Baldi S, Curini L, Bertorello S, Nannini G, Cei F, Niccolai E, Ramazzotti M, Amedei A. Experimental tests challenge the evidence of a healthy human blood microbiome. FEBS J 2025; 292:796-808. [PMID: 39690119 PMCID: PMC11839906 DOI: 10.1111/febs.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The advent of next-generation sequencing (NGS) technologies has made it possible to investigate microbial communities in various environments, including different sites within the human body. Therefore, the previously established belief of the sterile nature of several body sites, including human blood, has now been challenged. However, metagenomics investigation of areas with an anticipated low microbial biomass may be susceptible to misinterpretation. Here, we critically evaluate the results of 16S targeted amplicon sequencing performed on total DNA collected from healthy donors' blood samples while incorporating specific negative controls aimed at addressing potential bias to supplement and strengthen the research in this area. We prepared negative controls by increasing the initial DNA quantity through sequences that can be recognized and subsequently discarded. We found that only three organisms were sporadically present among the samples, and this was mostly attributable to bacteria ubiquitously present in laboratory reagents. Despite not fully confirming or denying the existence of healthy blood microbiota, our results suggest that living bacteria, or at least their residual DNA sequences, are not a common feature of human blood in healthy people. Finally, our study poses relevant questions on the design of controls in this research area that must be considered in order to avoid misinterpreted results that appear to contaminate current high-throughput research.
Collapse
Affiliation(s)
- Leandro Di Gloria
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceItaly
| | - Simone Baldi
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Lavinia Curini
- Cardiovascular Tissue Engineering Research Unit – Centro Cardiologico MonzinoIRCCSItaly
| | - Sara Bertorello
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Giulia Nannini
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Francesco Cei
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Elena Niccolai
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceItaly
| | - Amedeo Amedei
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)FlorenceItaly
| |
Collapse
|
13
|
Williams AD, Leung VW, Tang JW, Hidekazu N, Suzuki N, Clarke AC, Pearce DA, Lam TTY. Ancient environmental microbiomes and the cryosphere. Trends Microbiol 2025; 33:233-249. [PMID: 39487079 DOI: 10.1016/j.tim.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
Collapse
Affiliation(s)
- Alexander D Williams
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Vivian W Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK; Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Nishimura Hidekazu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Andrew C Clarke
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David A Pearce
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle, NE1 8ST, UK; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Tommy Tsan-Yuk Lam
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
14
|
Capone D, Holcomb D, Lai A, Reinhard K, Brown J. Exploring the Pathogen Profiles of Ancient Feces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632942. [PMID: 39868151 PMCID: PMC11760264 DOI: 10.1101/2025.01.14.632942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Analysis of ancient desiccated feces - termed paleofeces or coprolites - can unlock insights into the lives of ancient people. We collected desiccated feces from caves in the Rio Zape Valley in Mexico (725-920 CE). First, we extracted DNA with methods previously optimized for paleofeces. Then, we applied highly sensitive modern molecular tools (i.e., PCR pre-amplification followed by multi-parallel qPCR) to assess the presence of 30 enteric pathogens. We detected ≥1 pathogen associated gene in each of the ten samples and a mean of 3.9 pathogens per sample. The targets detected included Blastocystis spp. (n=7), atypical enteropathogenic E. coli (n=7), Enterobius vermicularis (n=6), Entamoeba spp. (n=5), enterotoxigenic E. coli (n=5), Shigella spp./enteroinvasive E. coli (n=3), Giardia spp. (n=2), and E. coli O157:H7 (n=1). The protozoan pathogens we detected (i.e., Giardia spp. and Entamoeba spp.) have been previously detected in paleofeces via enzyme-linked immunoassay (ELISA), but have not via PCR. This work represents the first detection of Blastocystis spp. atypical enteropathogenic E. coli, enterotoxigenic E. coli, Shigella spp./enteroinvasive E. coli, and E. coli O157:H7 in paleofeces. These results suggest that sensitive modern molecular tools, such as PCR, can be used to evaluate ancient materials for genes of interest.
Collapse
Affiliation(s)
- Drew Capone
- Department of Environmental and Occupational Health, School of Public Health, Indiana University
| | - David Holcomb
- Departments of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | | | - Karl Reinhard
- Institute of Agriculture and Natural Resources, School of Natural Resources, University of Nebraska-Lincoln
| | - Joe Brown
- Departments of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill
| |
Collapse
|
15
|
Schwenger KJP, Copeland JK, Ghorbani Y, Chen L, Comelli EM, Guttman DS, Fischer SE, Jackson TD, Okrainec A, Allard JP. Characterization of liver, adipose, and fecal microbiome in obese patients with MASLD: links with disease severity and metabolic dysfunction parameters. MICROBIOME 2025; 13:9. [PMID: 39810228 PMCID: PMC11730849 DOI: 10.1186/s40168-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression. RESULTS Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity. Overall, in MASLD patients, we observed a generalized obesity-induced translocation of gut bacteria to hepatic and adipose tissues. We identified microbial patterns unique to more severely diseased tissues. Specifically, Enterococcus, Granulicatella, and Morganellaceae abundance is positively correlated with immune cell counts and inflammatory gene expression levels, and both genera are significantly enriched in MASH patients. Brevibacterium is enriched in adipose tissues of patients with liver fibrosis. CONCLUSION Together, these results provide further insight into the microbial factors that may be driving disease severity. Video Abstract.
Collapse
Affiliation(s)
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada
| | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
- Division of Gastroenterology, Department of Medicine, Toronto General Hospital, 585 University Avenue, 9N-973, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
16
|
Sugawara I, Kawahara Y, Takayasu L, Isshi K, Kato M, Ono S, Hara Y, Futakuchi T, Furuhashi H, Kurokawa R, Sumiyama K, Suda W. Study on the relationship between microbial composition within obstructive biliary stents and the severity of obstruction and duration of stent placement. PLoS One 2025; 20:e0317230. [PMID: 39787171 PMCID: PMC11717289 DOI: 10.1371/journal.pone.0317230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Biliary stent occlusion is due, in part, to biofilm formation by bacteria. However, previous culture-based approaches may not have revealed all microorganisms on the surface. Twenty-seven patients underwent endoscopic retrograde biliary drainage for the removal or replacement of plastic biliary stents. We analyzed occlusion severity using image-analyses of a longitudinal section of the biliary stent and evaluated the microbial profile of sludge deposition inside the stents using 16S rRNA sequencing with a MiSeq Illumina platform. We then evaluated the association of microbial profiles with the duration of stent placement and stent occlusion severity. Actinobacteria and Synergistetes were much more abundant in occluded stents compared with non-occluded stents. An abundance of Bifidobacterium spp. and OTU00006 Bifidobacterium animalis (100%) correlated with stent occlusion severity (rho, 0.62; p<0.001; and 0.42; p = 0.03, respectively), and this relationship remained after adjusting for the duration of stent placement (p = 0.03 and 0.05, respectively). The genus Bifidobacterium and Bifidobacterium animalis were associated with the degree of occlusion in plastic biliary stents.
Collapse
Affiliation(s)
- Ichiro Sugawara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Kawahara
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Lena Takayasu
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kimio Isshi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Kato
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Shingo Ono
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Hara
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshiki Futakuchi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroto Furuhashi
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Rina Kurokawa
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Sumiyama
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
17
|
Hu C, Wen Q, Lai Q, Xie Z, Zhang K, Zhou L, Qu ZB. Headpiece-assisted DNA data storage in solution and solid. Chem Commun (Camb) 2025; 61:881-884. [PMID: 39651660 DOI: 10.1039/d4cc05109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A headpiece was introduced in the construction of a DNA-based data storage platform. It was demonstrated that the involvement of the headpiece could largely improve the stability, recovery, resistance to DNA contamination, and accuracy in sequencing and data retrieval.
Collapse
Affiliation(s)
- Chunjie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Qingya Wen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Qiuyang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Ziyi Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Kaiyue Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Du Q, Liu X, Zhang R, Hu G, Liu Q, Wang R, Ma W, Hu Y, Fan Z, Li J. Placental and Fetal Microbiota in Rhesus Macaque: A Case Study Using Metagenomic Sequencing. Am J Primatol 2025; 87:e23718. [PMID: 39716039 DOI: 10.1002/ajp.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into the origins and effects of fetal microbiota on immunity development during gestation. Rhesus macaques (RMs) serve as valuable nonhuman primate models due to their similarities to humans in development, placental structure, and immune response. In this study, metagenomic analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal tissues of an unborn RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these tissues. Additionally, gut metagenomic data of adult Rhesus macaques from our previous study, along with data from a human fetus obtained from public databases, were included for comparison. We observed substantial microbial sharing between the mother and fetus, with the microbial composition of the placenta and umbilical cord more closely resembling that of the fetal organs than the maternal intestine. Notably, compared with other adult RMs, there was a clear convergence between maternal and fetal microbiota, alongside distinct differences between the microbiota of adults and the fetus, which underscores the unique microbial profiles in fetal environments. Furthermore, the fetal microbiota displayed a less developed carbohydrate metabolism capacity than adult RMs. It also shared antibiotic resistance genes with both maternal and adult RM microbiomes, indicating potential vertical transmission. Comparative analysis of the metagenomes between the RM fetus and a human fetus revealed significant differences in microbial composition and genes, yet also showed similarities in certain abundant microbiota. Collectively, our results contribute to a more comprehensive understanding of the intrauterine microbial environment in macaques.
Collapse
Affiliation(s)
- Qiao Du
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Rusong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Gang Hu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Qinghua Liu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Rui Wang
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Wen Ma
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Hu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Loutet SJT, Sanger A, Strong K, Collins RE, Mahmoudi N. Microbial communities in the Hudson Strait amidst rapid environmental change. Can J Microbiol 2025; 71:1-9. [PMID: 39847764 DOI: 10.1139/cjm-2024-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high. We found that salinity and temperature significantly affected the taxonomic composition among microbial communities across sites. We observed a higher relative abundance of specific Polaribacter sp. Amplicon sequence variants (ASVs) at more saline sites. Shannon diversity was not significantly impacted by salinity or temperature. These results contribute to our understanding of surface water microbial community composition in the Hudson Strait and shed light on how future salinity and temperature conditions may favour certain microbial populations.
Collapse
Affiliation(s)
- Samantha J T Loutet
- Department of Earth and Planetary Sciences, McGill University, 3450 University St., Montréal, QC H3A 0E8, Canada
| | - Alia Sanger
- Department of Earth and Planetary Sciences, McGill University, 3450 University St., Montréal, QC H3A 0E8, Canada
| | - Kallie Strong
- Centre for Earth Observation Science (CEOS), Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, 125 Dysart Rd., Winnipeg, MB R3T 2N2, Canada
| | - R Eric Collins
- Centre for Earth Observation Science (CEOS), Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, 125 Dysart Rd., Winnipeg, MB R3T 2N2, Canada
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, 3450 University St., Montréal, QC H3A 0E8, Canada
| |
Collapse
|
20
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
21
|
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 2024; 54:661-674. [PMID: 38992783 DOI: 10.1016/j.ijpara.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
Collapse
Affiliation(s)
- Pavel B Klimov
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
| | - Jan Hubert
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia
| | - Tomas Erban
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia
| | - M Alejandra Perotti
- University of Reading, Ecology and Evolutionary Biology Section, School of Biological Sciences, Reading RG6 6AS, United Kingdom
| | - Henk R Braig
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, J5400 DNQ, Argentina
| | - Alex Flynt
- University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS, USA
| | - Qixin He
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA.
| | - Yubao Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.Wuxi, PR Chin.
| |
Collapse
|
22
|
Chapman PA, Hudson D, Morgan XC, Beck CW. The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis. FEMS Microbiol Ecol 2024; 100:fiae131. [PMID: 39317670 PMCID: PMC11503959 DOI: 10.1093/femsec/fiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.
Collapse
Affiliation(s)
- Phoebe A Chapman
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Daniel Hudson
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| | - Caroline W Beck
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
23
|
Mancin L, Paoli A, Berry S, Gonzalez JT, Collins AJ, Lizarraga MA, Mota JF, Nicola S, Rollo I. Standardization of gut microbiome analysis in sports. Cell Rep Med 2024; 5:101759. [PMID: 39368478 PMCID: PMC11514603 DOI: 10.1016/j.xcrm.2024.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome plays a significant role in physiological functions such as nutrient processing, vitamin production, inflammatory response, and immune modulation, which, in turn, are important contributors to athlete health and performance. To date, the interpretation, discussion, and visualization of microbiome results of athletes are challenging, due to a lack of standard parameters and reference data for collection and comparison. The purpose of this perspective piece is to provide researchers with an easy-to-understand framework for the collection, analysis, and data management related to the gut microbiome with a specific focus on athletic populations. In the absence of a consensus on microbiome research in the sports field, we hope that these considerations serve as foundational "best practice." Adherence to these standard operating procedures will accelerate the path toward improving the quality of data and ultimately our understanding of the influence of the gut microbiome in sport settings.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Sara Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | - Adam J Collins
- Department for Health, University of Bath, BA2 7AY Bath, UK
| | | | - Joao Felipe Mota
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Segata Nicola
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, UK; School of Sports Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| |
Collapse
|
24
|
Angelopoulou A, Harris HMB, Warda AK, O'Shea CA, Lavelle A, Ryan CA, Dempsey E, Stanton C, Hill C, Ross RP. Somatic cell count as an indicator of subclinical mastitis and increased inflammatory response in asymptomatic lactating women. Microbiol Spectr 2024; 12:e0405123. [PMID: 39189754 PMCID: PMC11448179 DOI: 10.1128/spectrum.04051-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/02/2024] [Indexed: 08/28/2024] Open
Abstract
Subclinical mastitis is an asymptomatic inflammatory condition that can be difficult to define and diagnose. In the dairy industry, subclinical mastitis is diagnosed by milk somatic cell counts (SCCs) of ≥250,000 cells mL-1. In this pilot study, we assessed the efficacy of this index to identify human subclinical mastitis by comparing SCC levels with the inflammatory response [interleukin-8 (IL-8) levels] in 37 samples from asymptomatic and 10 clinical mastitis (CM) lactating women. The milk microbiota was determined by 16S rRNA gene sequencing. The SCC of CM samples ranged from 310,000 to 6,600,000 cells mL-1. However, 14 of 37 (37.8%) asymptomatic samples had high SCC (250,000-460,000 cells mL-1), indicating subclinical mastitis. SCC levels significantly (P < 0.001) and positively correlated with milk IL-8 levels reflecting the escalating inflammatory response across subclinical and clinical mastitis samples. Samples with an SCC of ≥250,000 cells mL-1 showed significant increases in IL-8 responses when compared with milk samples from healthy women. The milk microbiome of CM samples was dominated by streptococcal and staphylococcal species (89.9% combined median relative abundance). In contrast, the combined median streptococcal/staphylococcal relative levels were 75.4% and 66.3% in milks from asymptomatic (subclinical mastitis) and healthy groups, respectively. The Streptococcus genus was increased in samples with an SCC of ≥250,000, although this should be interpreted with caution. Thus, the index of ≥250,000 somatic cells mL-1 could be a reliable indicator of subclinical mastitis in humans and should aid future studies investigating the impact of subclinical mastitis on maternal health, breastfeeding behaviors, infant health, and development. IMPORTANCE This pilot study suggests that SCC at a level of (greater than or equal to) 250,000 cells mL-1, as used in the dairy industry, is a suitable index to identify asymptomatic subclinical mastitis in lactating women since it reflects a significant increase in the inflammatory response compared to milk samples from healthy women. Using this index should aid studies into the short- and long-term consequences of subclinical mastitis for mother and infant.
Collapse
Affiliation(s)
- Angeliki Angelopoulou
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Hugh M B Harris
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alicja K Warda
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carol-Anne O'Shea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - C Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Leclaire S, Bandekar M, Rowe M, Ritari J, Jokiniemi A, Partanen J, Allinen P, Kuusipalo L, Kekäläinen J. Female reproductive tract microbiota varies with MHC profile. Proc Biol Sci 2024; 291:20241334. [PMID: 39471862 PMCID: PMC11521592 DOI: 10.1098/rspb.2024.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Numerous studies have shown that a healthy reproductive tract microbiota is crucial for successful reproduction and that its composition is influenced by various environmental and host factors. However, it is not known whether the reproductive microbiota is also shaped by the major histocompatibility complex (MHC), a family of genes essential to differentiate 'self' from 'non-self' peptides to initiate an adaptive immune response. We tested the association between the follicular fluid microbiome and MHC genes in 27 women. Women with higher MHC diversity had a higher microbiome diversity, characterized by bacteria commonly associated with vaginal dysbiosis. Women with similar MHC genes were also similar in their microbiome composition, indicating that MHC composition may be a key factor in determining the bacterial assemblage in the reproductive tract. Finally, the composition of the follicular fluid microbiome was similar to the vaginal microbiome, suggesting that numerous bacteria of the vagina are true inhabitants of the follicular fluid or that vaginal microbiota contaminated the follicular fluid microbiota during transvaginal collection. Collectively, our results demonstrate the importance of host genetic factors in shaping women's reproductive microbiota and they open the door for further research on the role of microbiota in mediating MHC-related variation in reproductive success.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5300, Université Toulouse, CNRS, IRD, Toulouse INP, 118 rte de Narbonne, Toulouse31062, France
| | - Mandar Bandekar
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen6700 AB, The Netherlands
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, Helsinki00290, Finland
| | - Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, Helsinki00290, Finland
| | - Pia Allinen
- Ovumia Kuopio, Ajurinkatu 16, Kuopio70110, Finland
| | - Liisa Kuusipalo
- North Karelia Central Hospital, Tikkamäentie 16, Joensuu80210, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| |
Collapse
|
26
|
Bozzi D, Neuenschwander S, Cruz Dávalos DI, Sousa da Mota B, Schroeder H, Moreno-Mayar JV, Allentoft ME, Malaspinas AS. Towards predicting the geographical origin of ancient samples with metagenomic data. Sci Rep 2024; 14:21794. [PMID: 39294129 PMCID: PMC11411106 DOI: 10.1038/s41598-023-40246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2024] Open
Abstract
Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Diana Ivette Cruz Dávalos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
27
|
Stuij TM, Cleary DFR, Rocha RJM, Polonia ARM, Machado E Silva DA, Frommlet JC, Louvado A, Huang YM, De Voogd NJ, Gomes NCM. Development and validation of an experimental life support system to study coral reef microbial communities. Sci Rep 2024; 14:21260. [PMID: 39261551 PMCID: PMC11391067 DOI: 10.1038/s41598-024-69514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.
Collapse
Affiliation(s)
- T M Stuij
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A R M Polonia
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - D A Machado E Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - J C Frommlet
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A Louvado
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Y M Huang
- National Penghu University of Science and Technology, Magong, Taiwan
| | - N J De Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Aizpurua O, Dunn RR, Hansen LH, Gilbert MTP, Alberdi A. Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. Crit Rev Biotechnol 2024; 44:1164-1182. [PMID: 37731336 DOI: 10.1080/07388551.2023.2254933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 09/22/2023]
Abstract
Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Lee JJ, Kim JK, Oh B, Hong SK, Kim BS. Influence of diabetes on microbiome in prostate tissues of patients with prostate cancer. Front Oncol 2024; 14:1445375. [PMID: 39220653 PMCID: PMC11365045 DOI: 10.3389/fonc.2024.1445375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Although microbiota in prostatic tissues of patients with prostate cancer have been studied, results of different studies have been inconsistent. Different ethnicity of study subjects, different study designs, and potential contaminations during sample collection and experiments might have influenced microbiome results of prostatic tissues. In this study, we analyzed microbiota and their potential functions in benign and malignant tissues of prostate cancer considering possible contaminants and host variables. Materials and methods A total of 118 tissue samples (59 benign tissues and 59 malignant tissues) obtained by robot-assisted laparoscopic radical prostatectomy were analyzed and 64 negative controls (from sampling to sequencing processes) were included to reduce potential contaminants. Results Alteration of the microbiome in prostate tissues was detected only in patients with diabetes. Furthermore, the influence of diabetes on microbiome was significant in malignant tissues. The microbiome in malignant tissues of patients with diabetes was influenced by pathologic stages. The relative abundance of Cutibacterium was reduced in the high pathologic group compared to that in the intermediate group. This reduction was related to microbial pathways increased in the high pathologic group. Conclusion Results of this study indicate that diabetes can influence the progression of prostate cancer with microbiome alteration in prostate tissues. Although further studies are necessary to confirm findings of this study, this study can help us understand tissue microbiome in prostate cancer and improve clinical therapy strategies.
Collapse
Affiliation(s)
- Jin-Jae Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Jung Kwon Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bumjo Oh
- Deparment of Family Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
30
|
Geyer JK, Grunberg RL, Wang J, Mitchell CE. Leaf age structures phyllosphere microbial communities in the field and greenhouse. Front Microbiol 2024; 15:1429166. [PMID: 39206365 PMCID: PMC11349622 DOI: 10.3389/fmicb.2024.1429166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The structure of the leaf microbiome can alter host fitness and change in response to abiotic and biotic factors, like seasonality, climate, and leaf age. However, relatively few studies consider the influence of host age on microbial communities at a time scale of a few days, a short time scale relevant to microbes. To understand how host age modulates changes in the fungal and bacterial leaf microbiome on a short time scale, we ran independent field and greenhouse-based studies and characterized phyllosphere communities using next-generation sequencing approaches. Our field study characterized changes in the fungal and bacterial phyllosphere by examining leaves of different relative ages across individuals, whereas the greenhouse study examined changes in the fungal microbiome by absolute leaf age across individuals. Together, these results indicate that fungal communities are susceptible to change as a leaf ages as evidenced by shifts in the diversity of fungal taxa both in the field and the greenhouse. Similarly, there were increases in the diversity of fungal taxa by leaf age in the greenhouse. In bacterial communities in the field, we observed changes in the diversity, composition, and relative abundance of common taxa. These findings build upon previous literature characterizing host-associated communities at longer time scales and provide a foundation for targeted work examining how specific microbial taxa might interact with each other, such as fine-scale interactions between pathogenic and non-pathogenic species.
Collapse
Affiliation(s)
- Julie K. Geyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita L. Grunberg
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Wilson Center for Science and Justice at Duke Law, Durham, NC, United States
| | - Jeremy Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Ribère M, Lemieux-Labonté V, Pincez T, Azria E, Lapointe FJ. Duration of rupture of membranes and microbiome transmission to the newborn: A prospective study. BJOG 2024; 131:1249-1258. [PMID: 38311451 DOI: 10.1111/1471-0528.17774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE To assess whether labour variables (i.e. individuals characteristics, labour characteristics and medical interventions) impact maternal and newborn microbiomes. DESIGN Prospective monocentric study. SETTING Saint-Joseph Hospital tertiary maternity unit, in Paris, France. POPULATION All consecutive primiparous women with a physiological pregnancy and term labour from 15 April to 1 June 2017. METHODS 16S ribosomal RNA gene sequencing of the maternal vaginal, newborn skin and newborn oral microbiomes from 58 mother-baby dyads. MAIN OUTCOME MEASURES Analysis of the effects of 19 labour variables on the composition and diversity of these microbiomes. RESULTS The 19 labour variables explained a significant part of the variability in the vaginal, newborn oral and skin microbiomes (44%-67%). Strikingly, duration of rupture of membranes was the single factor that explained the greatest variability (adjusted R2: 7.7%-8.4%, p ≤ 0.002) and conditioned, by itself, the compositions of the three microbiomes under study. Long duration of rupture of membranes was specifically associated with a lower relative abundance of the Lactobacillus genus (1.7-fold to 68-fold reduction, p < 0.0001) as well as an increase in microbiome diversity, including genera implicated in nosocomial infections. The effects of duration of rupture of membranes were also present in newborns delivered by non-elective caesarean section. CONCLUSIONS Maternal and newborn microbiomes were greatly affected by labour variables. Duration of rupture of membranes, even in non-elective caesarean sections, should be considered in epidemiological and microbiological studies, as well as in vaginal seeding practices.
Collapse
Affiliation(s)
- Maïté Ribère
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | - Thomas Pincez
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Elie Azria
- Maternité Notre Dame de Bon Secours, Groupe Hospitalier Paris Saint-Joseph, Université Paris Cité, Paris, France
- UMR1153 - Obstetrical, Perinatal and Pediatric Epidemiology (EPOPé Research Team), FHU Prema, Université Paris Cité - INSERM, Paris, France
| | | |
Collapse
|
32
|
McPherson A, Tranter B, Phipps A, Laven R, House J, Zadoks RN, Rowe S. Etiology and epidemiology of digital dermatitis in Australian dairy herds. J Dairy Sci 2024; 107:5924-5941. [PMID: 38331178 DOI: 10.3168/jds.2023-24258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Bovine digital dermatitis (BDD) is an important cause of lameness in dairy cows worldwide. However, very little is known about this disease in Australian herds, which are predominantly managed on pasture. The primary objectives of this cross-sectional study were to describe the presence and prevalence of BDD in Australian dairy herds and to characterize the microbiota of healthy skin and M4 lesions of BDD-affected, pasture-managed cows. Cows from 71 dairy herds were examined at milking time to identify the presence of BDD lesions. True prevalence was estimated using Bayesian methods with informative priors for sensitivity and specificity. Biopsy samples (n = 60) were collected from cows with and without BDD lesions in 7 pasture-based herds. The microbiota in the superficial and deep strata of each tissue biopsy were characterized via sequencing of the V3-V4 region of the bacterial ribosomal RNA gene. Lesions were detected in 1,817 (11.5%) of 15,813 cows and in 68 of 71 (95.8%) herds. The median herd-level apparent and true prevalences of BDD were 8.5% and 18.1%, respectively, but prevalences varied considerably between farms. On farms with BDD, M4 lesions accounted for 70% to 100% of all lesions (interquartile range = 95.1%-100%, median = 100%); M2 lesions (i.e., large ulcerative lesions) were observed at low prevalence (<2.2%) in the few herds (7/71, 9.9%) where they were found. There was a significant difference in the composition of the microbiota between healthy skin and M4 lesions but not between superficial and deep tissue layers. Several gut- and effluent-associated bacterial taxa, including Lentimicrobium and Porphyromonas, which have previously been associated with BDD, were abundant in BDD lesions but not in control biopsies. Our study supports the idea that such taxa are involved in, although possibly not essential to, lesion development and persistence in pasture-managed cows in Australia. Our results also suggest that Dichelobacter may contribute to the disease process. We conclude that BDD is likely to occur in most Australian dairy farms, but that further studies are needed to identify its effect on cow welfare and productivity. Further investigation of the etiology of BDD in Australian dairy herds is also necessary to inform prevention and control strategies.
Collapse
Affiliation(s)
- Andrew McPherson
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - Bill Tranter
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4810, Australia; Tableland Veterinary Service, Malanda, Queensland, 4885, Australia
| | - Ash Phipps
- Rochester Veterinary Practice, Rochester, Victoria, 3561, Australia
| | - Richard Laven
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4474, New Zealand
| | - John House
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - Sam Rowe
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia.
| |
Collapse
|
33
|
Sokou R, Moschari E, Palioura AE, Palioura AP, Mpakosi A, Adamakidou T, Vlachou E, Theodoraki M, Iacovidou N, Tsartsalis AN. The Impact of Gestational Diabetes Mellitus (GDM) on the Development and Composition of the Neonatal Gut Microbiota: A Systematic Review. Microorganisms 2024; 12:1564. [PMID: 39203408 PMCID: PMC11356352 DOI: 10.3390/microorganisms12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an important health issue, as it is connected with adverse effects to the mother as well as the fetus. A factor of essence for the pathology of this disorder is the gut microbiota, which seems to have an impact on the development and course of GDM. The role of the gut microbiota on maternal reproductive health and all the changes that happen during pregnancy as well as during the neonatal period is of high interest. The correct establishment and maturation of the gut microbiota is of high importance for the development of basic biological systems. The aim of this study is to provide a systematic review of the literature on the effect of GDM on the gut microbiota of neonates, as well as possible links to morbidity and mortality of neonates born to mothers with GDM. Systematic research took place in databases including PubMed and Scopus until June 2024. Data that involved demographics, methodology, and changes to the microbiota were derived and divided based on patients with exposure to or with GDM. The research conducted on online databases revealed 316 studies, of which only 16 met all the criteria and were included in this review. Research from the studies showed great heterogeneity and varying findings at the level of changes in α and β diversity and enrichment or depletion in phylum, gene, species, and operational taxonomic units in the neonatal gut microbiota of infants born to mothers with GDM. The ways in which the microbiota of neonates and infants are altered due to GDM remain largely unclear and require further investigation. Future studies are needed to explore and clarify these mechanisms.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Eirini Moschari
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Aikaterini-Pothiti Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Theodoula Adamakidou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| |
Collapse
|
34
|
Ockert LE, McLennan EA, Fox S, Belov K, Hogg CJ. Characterising the Tasmanian devil (Sarcophilus harrisii) pouch microbiome in lactating and non-lactating females. Sci Rep 2024; 14:15188. [PMID: 38956276 PMCID: PMC11220038 DOI: 10.1038/s41598-024-66097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Wildlife harbour a diverse range of microorganisms that affect their health and development. Marsupials are born immunologically naïve and physiologically underdeveloped, with primary development occurring inside a pouch. Secretion of immunological compounds and antimicrobial peptides in the epithelial lining of the female's pouch, pouch young skin, and through the milk, are thought to boost the neonate's immune system and potentially alter the pouch skin microbiome. Here, using 16S rRNA amplicon sequencing, we characterised the Tasmanian devil pouch skin microbiome from 25 lactating and 30 non-lactating wild females to describe and compare across these reproductive stages. We found that the lactating pouch skin microbiome had significantly lower amplicon sequence variant richness and diversity than non-lactating pouches, however there was no overall dissimilarity in community structure between lactating and non-lactating pouches. The top five phyla were found to be consistent between both reproductive stages, with over 85% of the microbiome being comprised of Firmicutes, Proteobacteria, Fusobacteriota, Actinobacteriota, and Bacteroidota. The most abundant taxa remained consistent across all taxonomic ranks between lactating and non-lactating pouch types. This suggests that any potential immunological compounds or antimicrobial peptide secretions did not significantly influence the main community members. Of the more than 16,000 total identified amplicon sequence variants, 25 were recognised as differentially abundant between lactating and non-lactating pouches. It is proposed that the secretion of antimicrobial peptides in the pouch act to modulate these microbial communities. This study identifies candidate bacterial clades on which to test the activity of Tasmanian devil antimicrobial peptides and their role in pouch young protection, which in turn may lead to future therapeutic development for human diseases.
Collapse
Affiliation(s)
- Lucy E Ockert
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, TAS, 7001, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH, 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
- San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA, 92112, USA.
| |
Collapse
|
35
|
Li H, Li J, Hu J, Chen J, Zhou W. High-performing cross-dataset machine learning reveals robust microbiota alteration in secondary apical periodontitis. Front Cell Infect Microbiol 2024; 14:1393108. [PMID: 38975327 PMCID: PMC11224960 DOI: 10.3389/fcimb.2024.1393108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Multiple research groups have consistently underscored the intricate interplay between the microbiome and apical periodontitis. However, the presence of variability in experimental design and quantitative assessment have added a layer of complexity, making it challenging to comprehensively assess the relationship. Through an unbiased methodological refinement analysis, we re-analyzed 4 microbiota studies including 120 apical samples from infected teeth (with/without root canal treatment), healthy teeth, using meta-analysis and machine learning. With high-performing machine-learning models, we discover disease signatures of related species and enriched metabolic pathways, expanded understanding of apical periodontitis with potential therapeutic implications. Our approach employs uniform computational tools across datasets to leverage statistical power and define a reproducible signal potentially linked to the development of secondary apical periodontitis (SAP).
Collapse
Affiliation(s)
- Hao Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiehang Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiani Hu
- Research and Development Department, Beijing Xunzhu Biotechnology Co. Ltd., Beijing, China
- School of Chemistry Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jionglin Chen
- Research and Development Department, Beijing Xunzhu Biotechnology Co. Ltd., Beijing, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
36
|
An R, Ni Z, Xie E, Rey FE, Kendziorski C, Thibeault SL. Single-cell view into the role of microbiota shaping host immunity in the larynx. iScience 2024; 27:110156. [PMID: 38974468 PMCID: PMC11225822 DOI: 10.1016/j.isci.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| | - Zijian Ni
- Department of Statistics, College of Letters and Sciences , UW-Madison, Madison, WI, USA
| | - Elliott Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, UW-Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
37
|
Dean CJ, Deng Y, Wehri TC, Pena-Mosca F, Ray T, Crooker BA, Godden SM, Caixeta LS, Noyes NR. The impact of kit, environment, and sampling contamination on the observed microbiome of bovine milk. mSystems 2024; 9:e0115823. [PMID: 38785438 PMCID: PMC11237780 DOI: 10.1128/msystems.01158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In low-microbial biomass samples such as bovine milk, contaminants can outnumber endogenous bacteria. Because of this, milk microbiome research suffers from a critical knowledge gap, namely, does non-mastitis bovine milk contain a native microbiome? In this study, we sampled external and internal mammary epithelia and stripped and cisternal milk and used numerous negative controls, including air and sampling controls and extraction and library preparation blanks, to identify the potential sources of contamination. Two algorithms were used to mathematically remove contaminants and track the potential movement of microbes among samples. Results suggest that the majority (i.e., >75%) of sequence data generated from bovine milk and mammary epithelium samples represents contaminating DNA. Contaminants in milk samples were primarily sourced from DNA extraction kits and the internal and external skin of the teat, while teat canal and apex samples were mainly contaminated during the sampling process. After decontamination, the milk microbiome displayed a more dispersed, less diverse, and compositionally distinct bacterial profile compared with epithelial samples. Similar microbial compositions were observed between cisternal and stripped milk samples, as well as between teat apex and canal samples. Staphylococcus and Acinetobacter were the predominant genera detected in milk sample sequences, and bacterial culture showed growth of Staphylococcus and Corynebacterium spp. in 50% (7/14) of stripped milk samples and growth of Staphylococcus spp. in 7% (1/14) of cisternal milk samples. Our study suggests that microbiome data generated from milk samples obtained from clinically healthy bovine udders may be heavily biased by contaminants that enter the sample during sample collection and processing workflows.IMPORTANCEObtaining a non-contaminated sample of bovine milk is challenging due to the nature of the sampling environment and the route by which milk is typically extracted from the mammary gland. Furthermore, the very low bacterial biomass of bovine milk exacerbates the impacts of contaminant sequences in downstream analyses, which can lead to severe biases. Our finding showed that bovine milk contains very low bacterial biomass and each contamination event (including sampling procedure and DNA extraction process) introduces bacteria and/or DNA fragments that easily outnumber the native bacterial cells. This finding has important implications for our ability to draw robust conclusions from milk microbiome data, especially if the data have not been subjected to rigorous decontamination procedures. Based on these findings, we strongly urge researchers to include numerous negative controls into their sampling and sample processing workflows and to utilize several complementary methods for identifying potential contaminants within the resulting sequence data. These measures will improve the accuracy, reliability, reproducibility, and interpretability of milk microbiome data and research.
Collapse
Affiliation(s)
- C. J. Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Y. Deng
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. C. Wehri
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - F. Pena-Mosca
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. Ray
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - B. A. Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - S. M. Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - L. S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
38
|
Riedinger MA, Mesbah R, Koenders M, Henderickx JGE, Smits WK, El Filali E, Geleijnse JM, van der Wee NJA, de Leeuw M, Giltay EJ. A healthy dietary pattern is associated with microbiota diversity in recently diagnosed bipolar patients: The Bipolar Netherlands Cohort (BINCO) study. J Affect Disord 2024; 355:157-166. [PMID: 38527529 DOI: 10.1016/j.jad.2024.03.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Diet largely impacts the gut microbiota, and may affect mental and somatic health via the gut-brain axis. As such, the relationship between diet and the microbiota in Bipolar Disorder (BD) could be of importance, but has not been studied before. The aim was therefore to assess whether dietary quality is associated with the gut microbiota diversity in patients with recently diagnosed BD, and whether changes occur in dietary quality and microbiota diversity during their first year of treatment. METHODS Seventy recently (<1 year) diagnosed patients with BD were included in the "Bipolar Netherlands Cohort" (BINCO), and a total of 45 participants were assessed after one year. A 203-item Food Frequency Questionnaire (FFQ) data yielded the Dutch Healthy index (DHD-15), and the microbiota composition and diversity of fecal samples were characterized by 16S rRNA gene amplicon sequencing at baseline and 1-year follow-up. Associations and changes over time were analyzed using multivariate regression analyses and t-tests for paired samples. RESULTS Included patients had a mean age of 34.9 years (SD ± 11.2), and 58.6 % was female. Alpha diversity (Shannon diversity index), richness (Chao1 index) and evenness (Pielou's Evenness Index) were positively associated with the DHD-15 total score, after adjustment for sex, age and educational level (beta = 0.55; P < 0.001, beta = 0.39; P = 0.024, beta = 0.54; P = 0.001 respectively). The positive correlations were largely driven by the combined positive effect of fish, beans, fruits and nuts, and inverse correlations with alcohol and processed meats. No significant changes were found in DHD-15 total score, nor in microbiota diversity, richness and evenness indexes during one year follow-up and regular treatment. CONCLUSION A healthy and varied diet is associated with the diversity of the microbiota in BD patients. Its potential consequences for maintaining mood stability and overall health should be studied further.
Collapse
Affiliation(s)
- M A Riedinger
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Psychiatric Institute, GGZ Rivierduinen, Outpatient Clinic for Mental Disability and Psychiatry, Leiden, the Netherlands.
| | - R Mesbah
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Psychiatric Institute, Outpatient Clinic for Bipolar Disorders PsyQ, Rotterdam, the Netherlands
| | - M Koenders
- Faculty of Social Sciences, Leiden University, Institute of Psychology, Leiden, the Netherlands
| | - J G E Henderickx
- Center for Microbiome Analyses and Therapeutics (CMAT), Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands; Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands
| | - W K Smits
- Center for Microbiome Analyses and Therapeutics (CMAT), Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands; Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands
| | - E El Filali
- Department of Mood disorders, PsyQ, Parnassia Group, The Hague, the Netherlands
| | - J M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - N J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - M de Leeuw
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Psychiatric Institute, GGZ Rivierduinen, Bipolar Disorder Outpatient Clinic, Leiden, the Netherlands
| | - E J Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Health Campus The Hague, Department of Public Health & Primary Care, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
39
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
40
|
Wainaina M, Lindahl JF, Mayer-Scholl A, Ufermann CM, Domelevo Entfellner JB, Roesler U, Roesel K, Grace D, Bett B, Al Dahouk S. Molecular and serological diagnosis of multiple bacterial zoonoses in febrile outpatients in Garissa County, north-eastern Kenya. Sci Rep 2024; 14:12263. [PMID: 38806576 PMCID: PMC11133362 DOI: 10.1038/s41598-024-62714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial zoonoses are diseases caused by bacterial pathogens that can be naturally transmitted between humans and vertebrate animals. They are important causes of non-malarial fevers in Kenya, yet their epidemiology remains unclear. We investigated brucellosis, Q-fever and leptospirosis in the venous blood of 216 malaria-negative febrile patients recruited in two health centres (98 from Ijara and 118 from Sangailu health centres) in Garissa County in north-eastern Kenya. We determined exposure to the three zoonoses using serological (Rose Bengal test for Brucella spp., ELISA for C. burnetti and microscopic agglutination test for Leptospira spp.) and real-time PCR testing and identified risk factors for exposure. We also used non-targeted metagenomic sequencing on nine selected patients to assess the presence of other possible bacterial causes of non-malarial fevers. Considerable PCR positivity was found for Brucella (19.4%, 95% confidence intervals [CI] 14.2-25.5) and Leptospira spp. (1.7%, 95% CI 0.4-4.9), and high endpoint titres were observed against leptospiral serovar Grippotyphosa from the serological testing. Patients aged 5-17 years old had 4.02 (95% CI 1.18-13.70, p-value = 0.03) and 2.42 (95% CI 1.09-5.34, p-value = 0.03) times higher odds of infection with Brucella spp. and Coxiella burnetii than those of ages 35-80. Additionally, patients who sourced water from dams/springs, and other sources (protected wells, boreholes, bottled water, and water pans) had 2.39 (95% CI 1.22-4.68, p-value = 0.01) and 2.24 (1.15-4.35, p-value = 0.02) times higher odds of exposure to C. burnetii than those who used unprotected wells. Streptococcus and Moraxella spp. were determined using metagenomic sequencing. Brucellosis, leptospirosis, Streptococcus and Moraxella infections are potentially important causes of non-malarial fevers in Garissa. This knowledge can guide routine diagnosis, thus helping lower the disease burden and ensure better health outcomes, especially in younger populations.
Collapse
Affiliation(s)
- Martin Wainaina
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya.
- Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany.
| | - Johanna F Lindahl
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Uppsala, Sweden
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
| | - Christoph-Martin Ufermann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
| | | | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163, Berlin, Germany
| | - Kristina Roesel
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Delia Grace
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, ME130NQ, UK
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277, Berlin, Germany
- Department of Internal Medicine III, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department 1 - Infectious Diseases, Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
41
|
Lorenzini L, Zanella L, Sannia M, Baldassarro VA, Moretti M, Cescatti M, Quadalti C, Baldi S, Bartolucci G, Di Gloria L, Ramazzotti M, Clavenzani P, Costanzini A, De Giorgio R, Amedei A, Calzà L, Giardino L. Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer's-like clinical phenotype. Alzheimers Res Ther 2024; 16:116. [PMID: 38773640 PMCID: PMC11110243 DOI: 10.1186/s13195-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.
Collapse
Affiliation(s)
- Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Lorenzo Zanella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | | | - Marzia Moretti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Tolara di Sopra 41/E, Bologna, 40064, Ozzano Emilia, Italy.
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Zhong L, Yan Y, Chen L, Sun N, Li H, Wang Y, Liu H, Jia Y, Lu Y, Liu X, Zhang Y, Guo H, Wang X. Nanopore-based metagenomics analysis reveals microbial presence in amniotic fluid: A prospective study. Heliyon 2024; 10:e28163. [PMID: 38545162 PMCID: PMC10966708 DOI: 10.1016/j.heliyon.2024.e28163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Background Current research on amniotic fluid (AF) microbiota yields contradictory data, necessitating an accurate, comprehensive, and scientifically rigorous evaluation. Objective This study aimed to characterise the microbial features of AF and explore the correlation between microbial information and clinical parameters. Methods 76 AF samples were collected in this prospective cohort study. Fourteen samples were utilised to establish the nanopore metagenomic sequencing methodology, whereas the remaining 62 samples underwent a final statistical analysis along with clinical information. Negative controls included the operating room environment (OE), surgical instruments (SI), and laboratory experimental processes (EP) to elucidate the background contamination at each step. Simultaneously, levels of five cytokines (IL-1β, IL-6, IL-8, TNF-α, MMP-8) in AF were assessed. Results Among the 62 AF samples, microbial analysis identified seven without microbes and 55 with low microbial diversity and abundance. No significant clinical differences were observed between AF samples with and without microbes. The correlation between microbes and clinical parameters in AF with normal chromosomal structure revealed noteworthy findings. In particular, the third trimester exhibited richer microbial diversity. Pseudomonas demonstrated higher detection rates and relative abundance in the second trimester and Preterm Birth (PTB) groups. S. yanoikuyae in the PTB group exhibited elevated detection frequencies and relative abundance. Notably, Pseudomonas negatively correlated with activated partial thromboplastin time (APTT) (r = -0.329, P = 0.016), while Staphylococcus showed positive correlations with APTT (r = 0.395, P = 0.003). Furthermore, Staphylococcus negatively correlated with birth weight (r = -0.297, P = 0.034). Conclusion Most AF samples exhibited low microbial diversity and abundance. Certain microbes in AF may correlate with clinical parameters such as gestational age and PTB. However, these associations require further investigation. It is essential to expand the sample size and undertake more comprehensive research to elucidate the clinical implications of microbial presence in AF.
Collapse
Affiliation(s)
- Lihang Zhong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yunjun Yan
- Jinan Dian Medical Laboratory CO., LTD, Shandong, China
| | - Long Chen
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Na Sun
- Jinan Dian Medical Laboratory CO., LTD, Shandong, China
| | - Hongyan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yuli Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Huijun Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Yifang Jia
- Prenatal Diagnosis Center of Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
- Clinical Laboratory Department of Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Yurong Lu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| | - Xuling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, China
| | - Yu Zhang
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Huimin Guo
- Zhejiang Digena Diagnosis Technology CO., LTD, Zhejiang, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, China
| |
Collapse
|
43
|
Fu Y, Gu J, Chen LJ, Xiong M, Zhao J, Xiao X, Zhou J, Li Z, Li Y. A prospective study of nanopore-targeted sequencing in the diagnosis of central nervous system infections. Microbiol Spectr 2024; 12:e0331723. [PMID: 38294222 PMCID: PMC10913467 DOI: 10.1128/spectrum.03317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Central nervous system (CNS) infections are a leading cause of death in patients. Nanopore-targeted sequencing (NTS) has begun to be used for pathogenic microbial detection. This study aims to evaluate the ability of NTS in the detection of pathogens in cerebrospinal fluid (CSF) through a prospective study. Fifty CSF specimens collected from 50 patients with suspected CNS infections went through three methods including NTS, metagenomic next-generation sequencing (mNGS), and microbial culture in parallel. When there was an inconsistency between NTS results and the results of the mNGS, the 16S rDNA gene was amplified followed by Sanger sequencing to further verify pathogens detected by NTS. Among 50 CSF specimens, 76% were NTS-positive, which is lower than mNGS (94.0%), yet higher than microbial culture (16.0%). The overall validation rate, diagnostic accordance rate (DAR), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of NTS were 86.7%, 50.0%, 71.0%, 15.8%, 57.9%, and 25.0%, respectively. In the CSF total nucleated cell (TNC) number ≤10 cells/µL, DAR, specificity, and PPV were 20%, 11.1%, and 11.1%, whereas in that with CSF TNC number >10 cells/µL, DAR, sensitivity, specificity, PPV, and NPV were 57.5%, 70.0%, 20.0%, 72.4%, and 18.2%, respectively. Although NTS has a higher microbial detection rate than microbial culture, it should combine CSF TNC result to evaluate the value of NTS for the diagnosis of CNS infections. IMPORTANCE This study aims to prospectively evaluate the ability of nanopore-targeted sequencing (NTS) in the detection of pathogens in cerebrospinal fluid (CSF). It was the first time combining mNGS and microbial culture to verify the NTS-positive results also using 16S rDNA amplification with Sanger sequencing. Although microbial culture was thought to be the gold standard for pathogens detection and diagnosis of infectious diseases, this study suggested that microbial culture of CSF is not the most appropriate way for diagnosing central nervous system (CNS) infection. NTS should be recommended to be used in CSF for diagnosing CNS infection. When evaluating the value of NTS for diagnosis of CNS infections, the results of CSF TNC should be combined, and NTS-positive result is observed to be more reliable in patients with CSF TNC level >10 cells/μL.
Collapse
Affiliation(s)
- Yu Fu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jihong Gu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang-Jun Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyuan Xiong
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Zhao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Xiao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
44
|
Carnes MU, Siddiqui NY, Karstens L, Gantz MG, Dinwiddie DL, Sung VW, Bradley M, Brubaker L, Ferrando CA, Mazloomdoost D, Richter HE, Rogers RG, Smith AL, Komesu YM. Urinary microbiome community types associated with urinary incontinence severity in women. Am J Obstet Gynecol 2024; 230:344.e1-344.e20. [PMID: 38937257 PMCID: PMC11211640 DOI: 10.1016/j.ajog.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
BACKGROUND Urinary microbiome (urobiome) studies have previously reported on specific taxa and community differences in women with mixed urinary incontinence compared with controls. Therefore, a hypothesis was made that higher urinary and vaginal microbiome diversity would be associated with increased urinary incontinence severity. OBJECTIVE This study aimed to test whether specific urinary or vaginal microbiome community types are associated with urinary incontinence severity in a population of women with mixed urinary incontinence. STUDY DESIGN This planned secondary, cross-sectional analysis evaluated associations between the urinary and vaginal microbiomes and urinary incontinence severity in a subset of Effects of Surgical Treatment Enhanced With Exercise for Mixed Urinary Incontinence trial participants with urinary incontinence. Incontinence severity was measured using bladder diaries and Urinary Distress Inventory questionnaires collected at baseline. Catheterized urine samples and vaginal swabs were concurrently collected before treatment at baseline to assess the urinary and vaginal microbiomes. Of note, 16S rRNA V4 to V6 variable regions were sequenced, characterizing bacterial taxa to the genus level using the DADA2 pipeline and SILVA database. Using Dirichlet multinomial mixtures methods, samples were clustered into community types based on core taxa. Associations between community types and severity measures (Urinary Distress Inventory total scores, Urinary Distress Inventory subscale scores, and the number of urinary incontinence episodes [total, urgency, and stress] from the bladder diary) were evaluated using linear regression models adjusted for age and body mass index. In addition, alpha diversity measures for richness (total taxa numbers) and evenness (proportional distribution of taxa abundance) were analyzed for associations with urinary incontinence episodes and community type. RESULTS Overall, 6 urinary microbiome community types were identified, characterized by varying levels of common genera (Lactobacillus, Gardnerella, Prevotella, Tepidimonas, Acidovorax, Escherichia, and others). The analysis of urinary incontinence severity in 126 participants with mixed urinary incontinence identified a Lactobacillus-dominated reference group with the highest abundance of Lactobacillus (mean relative abundance of 76%). A community characterized by fewer Lactobacilli (mean relative abundance of 19%) and greater alpha diversity was associated with higher total urinary incontinence episodes (2.67 daily leaks; 95% confidence interval, 0.76-4.59; P=.007) and urgency urinary incontinence episodes (1.75 daily leaks; 95% confidence interval, 0.24-3.27; P=.02) than the reference group. No significant association was observed between community type and stress urinary incontinence episodes or Urogenital Distress Inventory total or subscores. The composition of vaginal community types and urinary community types were similar but composed of slightly different bacterial taxa. Vaginal community types were not associated with urinary incontinence severity, as measured by bladder diary or Urogenital Distress Inventory total and subscale scores. Alpha diversity indicated that greater sample richness was associated with more incontinence episodes (observed genera P=.01) in urine. Measures of evenness (Shannon and Pielou) were not associated with incontinence severity in the urinary or vaginal microbiomes. CONCLUSION In the urobiome of women with mixed urinary incontinence, a community type with fewer Lactobacilli and more diverse bacteria was associated with more severe urinary incontinence episodes (total and urgency) compared with a community type with high predominance of a single genus, Lactobacillus. Whether mixed urinary incontinence severity is due to lesser predominance of Lactobacillus, greater presence of other non-Lactobacillus genera, or the complement of bacteria consisting of urobiome community types remains to be determined.
Collapse
Affiliation(s)
- Megan U Carnes
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC.
| | - Nazema Y Siddiqui
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - Lisa Karstens
- Division of Bioinformatics and Computational Biomedicine; Division of Urogynecology, Oregon Health & Science University, Portland, OR
| | - Marie G Gantz
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Darrell L Dinwiddie
- Division of Genetics, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Vivian W Sung
- Division of Urogynecology, Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Megan Bradley
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Linda Brubaker
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA
| | - Cecile A Ferrando
- Center for Urogynecology and Pelvic Reconstructive Surgery, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Donna Mazloomdoost
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Holly E Richter
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca G Rogers
- Division of Urology, Department of Obstetrics and Gynecology, Albany Medical Center, Albany, NY
| | - Ariana L Smith
- Division of Urology, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yuko M Komesu
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences and Services Building, Albuquerque, NM
| |
Collapse
|
45
|
Balboni A, Franzo G, Bano L, Urbani L, Segatore S, Rizzardi A, Cordioli B, Cornaggia M, Terrusi A, Vasylyeva K, Dondi F, Battilani M. No viable bacterial communities reside in the urinary bladder of cats with feline idiopathic cystitis. Res Vet Sci 2024; 168:105137. [PMID: 38181480 DOI: 10.1016/j.rvsc.2024.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Urinary microbial diversities have been reported in humans according to sex, age and clinical status, including painful bladder syndrome/interstitial cystitis (PBS/IC). To date, the role of the urinary microbiome in the pathogenesis of PBS/IC is debated. Feline idiopathic cystitis (FIC) is a chronic lower urinary tract disorder affecting cats with similarities to PBS/IC in women and represents an important problem in veterinary medicine as its aetiology is currently unknown. In this study, the presence of a bacterial community residing in the urinary bladder of cats with a diagnosis of FIC was investigated. Nineteen cats with clinical signs and history of FIC and without growing bacteria in standard urine culture were included and urine collected with ultrasound-guided cystocentesis. Bacterial community was investigated using a culture-dependent approach consisted of expanded quantitative urine culture techniques and a culture-independent approach consisted of 16S rRNA NGS. Several methodological practices were adopted to both avoid and detect any contamination or bias introduced by means of urine collection and processing which could be relevant due to the low microbial biomass environment of the bladder and urinary tract, including negative controls analysis. All the cats included showed no growing bacteria in the urine analysed. Although few reads were originated using 16S rRNA NGS, a comparable pattern was observed between urine samples and negative controls, and no taxa were confidently classified as non-contaminant. The results obtained suggest the absence of viable bacteria and of bacterial DNA of urinary origin in the urinary bladder of cats with FIC.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Luca Bano
- Diagnostic and Microbiology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicolo Mazzini 4, 31020, Villorba, Treviso, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Sofia Segatore
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessia Rizzardi
- Diagnostic and Microbiology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicolo Mazzini 4, 31020, Villorba, Treviso, Italy
| | - Benedetta Cordioli
- Diagnostic and Microbiology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicolo Mazzini 4, 31020, Villorba, Treviso, Italy
| | - Matteo Cornaggia
- Diagnostic and Microbiology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicolo Mazzini 4, 31020, Villorba, Treviso, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Kateryna Vasylyeva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
46
|
Rokhsartalab Azar P, Karimi S, Haghtalab A, Taram S, Hejazi M, Sadeghpour S, Pashaei MR, Ghasemnejad-Berenji H, Taheri-Anganeh M. The role of the endometrial microbiome in embryo implantation and recurrent implantation failure. J Reprod Immunol 2024; 162:104192. [PMID: 38215650 DOI: 10.1016/j.jri.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.
Collapse
Affiliation(s)
| | - Sarmad Karimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Haghtalab
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saman Taram
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Milad Hejazi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
47
|
Sweeney CJ, Kaushik R, Bottoms M. Considerations for the inclusion of metabarcoding data in the plant protection product risk assessment of the soil microbiome. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:337-358. [PMID: 37452668 DOI: 10.1002/ieam.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
There is increasing interest in further developing the plant protection product (PPP) environmental risk assessment, particularly within the European Union, to include the assessment of soil microbial community composition, as measured by metabarcoding approaches. However, to date, there has been little discussion as to how this could be implemented in a standardized, reliable, and robust manner suitable for regulatory decision-making. Introduction of metabarcoding-based assessments of the soil microbiome into the PPP risk assessment would represent a significant increase in the degree of complexity of the data that needs to be processed and analyzed in comparison to the existing risk assessment on in-soil organisms. The bioinformatics procedures to process DNA sequences into community compositional data sets currently lack standardization, while little information exists on how these data should be used to generate regulatory endpoints and the ways in which these endpoints should be interpreted. Through a thorough and critical review, we explore these challenges. We conclude that currently, we do not have a sufficient degree of standardization or understanding of the required bioinformatics and data analysis procedures to consider their use in an environmental risk assessment context. However, we highlight critical knowledge gaps and the further research required to understand whether metabarcoding-based assessments of the soil microbiome can be utilized in a statistically and ecologically relevant manner within a PPP risk assessment. Only once these challenges are addressed can we consider if and how we should use metabarcoding as a tool for regulatory decision-making to assess and monitor ecotoxicological effects on soil microorganisms within an environmental risk assessment of PPPs. Integr Environ Assess Manag 2024;20:337-358. © 2023 SETAC.
Collapse
Affiliation(s)
- Christopher J Sweeney
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Rishabh Kaushik
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| |
Collapse
|
48
|
Stuij TM, Cleary DFR, Rocha RJM, Polónia ARM, Silva DAM, Louvado A, de Voogd NJ, Gomes NCM. Impacts of humic substances, elevated temperature, and UVB radiation on bacterial communities of the marine sponge Chondrilla sp. FEMS Microbiol Ecol 2024; 100:fiae022. [PMID: 38366951 PMCID: PMC10939426 DOI: 10.1093/femsec/fiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.
Collapse
Affiliation(s)
- Tamara M Stuij
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Davide A M Silva
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Antonio Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
49
|
Yang CJ, Song JS, Yoo JJ, Park KW, Yun J, Kim SG, Kim YS. 16S rRNA Next-Generation Sequencing May Not Be Useful for Examining Suspected Cases of Spontaneous Bacterial Peritonitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:289. [PMID: 38399576 PMCID: PMC10890036 DOI: 10.3390/medicina60020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Ascites, often associated with liver cirrhosis, poses diagnostic challenges, particularly in detecting bacterial infections. Traditional methods have limitations, prompting the exploration of advanced techniques such as 16S rDNA next-generation sequencing (NGS) for improved diagnostics in such low-biomass fluids. The aim of this study was to investigate whether the NGS method enhances detection sensitivity compared to a conventional ascites culture. Additionally, we aimed to explore the presence of a microbiome in the abdominal cavity and determine whether it has a sterile condition. Materials and Methods: Ten patients with clinically suspected spontaneous bacterial peritonitis (SBP) were included in this study. A traditional ascites culture was performed, and all ascites samples were subjected to 16S ribosomal RNA gene amplification and sequencing. 16S rRNA gene sequencing results were interpreted by comparing them to positive and negative controls for each sample. Results: Differential centrifugation was applied to all ascites samples, resulting in very small or no bacterial pellets being harvested. The examination of the 16S amplicon sequencing libraries indicated that the target amplicon products were either minimally visible or exhibited lower intensity than their corresponding negative controls. Contaminants present in the reagents were also identified in the ascites samples. Sequence analysis of the 16S rRNA gene of all samples showed microbial compositions that were akin to those found in the negative controls, without any bacteria isolated that were unique to the samples. Conclusions: The peritoneal cavity and ascites exhibit low bacterial biomass even in the presence of SBP, resulting in a very low positivity rate in 16S rRNA gene sequencing. Hence, the 16S RNA sequencing method does little to enhance the rate of positive samples compared to traditional culture methods, including in SBP cases.
Collapse
Affiliation(s)
- Chan Jin Yang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Ju Sun Song
- GC Genome, Department of Laboratory Medicine, Green Cross Laboratories, Youngin 16924, Republic of Korea;
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Keun Woo Park
- Preclinical Stroke Modeling Laboratory Weill Cornell Medicine, Burke Medical Research Institute, White Plains, NY 10605, USA;
| | - Jina Yun
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| |
Collapse
|
50
|
Mercado-Evans V, Mejia ME, Zulk JJ, Ottinger S, Hameed ZA, Serchejian C, Marunde MG, Robertson CM, Ballard MB, Ruano SH, Korotkova N, Flores AR, Pennington KA, Patras KA. Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota. Nat Commun 2024; 15:1035. [PMID: 38310089 PMCID: PMC10838280 DOI: 10.1038/s41467-024-45336-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zainab A Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Madelynn G Marunde
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clare M Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Simone H Ruano
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, UTHealth Houston, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Kathleen A Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|