1
|
Wang S, Zhao Q, Li G, Wang M, Liu H, Yu X, Chen J, Li P, Dong L, Zhou G, Cui Y, Wang M, Liu L, Wang A. The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112959. [PMID: 34808511 DOI: 10.1016/j.ecoenv.2021.112959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Disruption of cholinergic neurotransmission can affect cognition, but little is known about whether low-to-moderate fluoride exposure affects cholinergic system and its effect on the prevalence of dental fluorosis (DF) and intelligence quotient (IQ). A cross-sectional study was conducted to explore the associations of moderate fluoride exposure and cholinergic system in relation to children's DF and IQ. We recruited 709 resident children in Tianjin, China. Ion selective electrode method was used to detect fluoride concentrations in water and urine. Cholinergic system was assessed by the detection of choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and acetylcholine (ACh) levels in serum. Compared with children in the first quartile, those in fourth quartile the risk of either developing DF or IQ < 120 increased by 19% and 20% for water and urinary fluoride. The risk of having both increased by 58% and 62% in third and fourth quartile for water fluoride, 52% and 65% for urinary fluoride. Water fluoride concentrations were positively associated with AChE and negatively associated with ChAT and ACh, trends were same for urinary fluoride except for ACh. The risk of either developing DF or having non-high intelligence rose by 22% (95%CI: 1.07%, 1.38%) for the fourth quartile than those in the first quartile of AChE, for having the both, the risk was 1.27 (95%CI: 1.07, 1.50), 1.37 (95%CI: 1.17, 1.62) and 1.44 (95%CI: 1.23, 1.68) in second, third and fourth quartiles. The mediation proportion by AChE between water fluoride and either developing DF or IQ < 120 was 15.7%. For both to exist, the proportion was 6.7% and 7.2% for water and urinary fluoride. Our findings suggest low-to-moderate fluoride exposure was associated with dysfunction of cholinergic system for children. AChE may partly mediate the prevalence of DF and lower probability of having superior and above intelligence.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Gaochun Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengwei Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Xingchen Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jingwen Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pei Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Mengru Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Silva MH. Effects of low‐dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and
Caenorhabditis elegans. Birth Defects Res 2020; 112:445-479. [DOI: 10.1002/bdr2.1661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in regulatory toxicology and risk assessment
| |
Collapse
|
3
|
Mardani M, Tiraihi T, Bathaie SZ, Mirnajafi-Zadeh J. Comparison of the proteome patterns of adipose-derived stem cells with those treated with selegiline using a two dimensional gel electrophoresis analysis. Biotech Histochem 2019; 95:176-185. [PMID: 31589072 DOI: 10.1080/10520295.2019.1656345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adipose derived stem cells (ADSCs) are multipotent and can transdifferentiate into neural stem cells. We investigated the transdifferentiation of ADSCs to neural phenotype (NP) cells using selegiline and two-dimensional electrophoresis (2-DE). The perinephric and inguinal fat of rats was collected and used to isolate ADSCs that were characterized by immunophenotyping using flow cytometry. The ADSCs were differentiated into osteogenic and lipogenic cells. The NP cells were generated using 10-9 mM selegiline and characterized by immunocytochemical staining of nestin and neurofilament 68 (NF-68), and by qRT-PCR of nestin, neurod1 and NF68. Total protein of ADSCs and NP cells was extracted and their proteome patterns were examined using 2-DE. ADSCs carried CD73, CD44 and CD90 cell markers, but not CD34. ADSCs were differentiated into osteocyte and adipocyte lineages. The differentiated NP cells expressed nestin, neuro d1 and NF-68. The proteome pattern of ADSCs was compared with that of NP cells and eight spots showed more than a two fold increase in protein expression. The molecular weights and isoelectric points of these highly expressed proteins were estimated using Melanie software. We compared these results with those of the mouse proteomic database using the protein isoelectric point database, and the functions of the eight proteins in differentiation of NP cells were predicted using the UniProt database. The probable identities of the proteins that showed higher expression in NP cells included cholinesterase, GFRa2, protein kinase C (PKC-eta) and RING finger protein 121. The sequences of the proteins identified from mouse database were aligned by comparing them with similar proteins in rat database using the Basic Local Alignment Search Tool (BLAST). The E values of all aligned proteins were zero, which indicates consistency of the matched protein. These proteins participate in differentiation of the neuron and their overexpression causes ADSCs transdifferentiation into NP cells.
Collapse
Affiliation(s)
- M Mardani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - T Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Z Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - J Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Assis CRD, Linhares AG, Cabrera MP, Oliveira VM, Silva KCC, Marcuschi M, Maciel Carvalho EVM, Bezerra RS, Carvalho LB. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18364-18376. [PMID: 29797194 DOI: 10.1007/s11356-018-2303-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.
Collapse
Affiliation(s)
- Caio R D Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - Amanda G Linhares
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Mariana P Cabrera
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vagne M Oliveira
- Laboratório de Tecnologia de Produtos Bioativos, Departamento de Morfologia e Fisiologia Animal, DMFA, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Kaline C C Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Universidade Estadual da Bahia, Paulo Afonso, Bahia, Brazil
| | - Marina Marcuschi
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Elba V M Maciel Carvalho
- Laboratório de Glicoproteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ranilson S Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Luiz B Carvalho
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
5
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
6
|
Dong H, Lu G, Yan Z, Liu J, Yang H, Nkoom M. Bioconcentration and effects of hexabromocyclododecane exposure in crucian carp (Carassius auratus). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:313-324. [PMID: 29404869 DOI: 10.1007/s10646-018-1896-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
As a cycloaliphatic brominated flame retardant, hexabromocyclododecane (HBCD) has been widely used in building thermal insulation and fireproof materials. However, there is little information on the bioconcentration as well as effects with respect to HBCD exposure in the aquatic environment. To investigate the bioconcentration of HBCD in tissues (muscle and liver) and its biochemical and behavioural effects, juvenile crucian carp (Carassius auratus) were exposed to different concentrations of technical HBCD (nominal concentrations, 2, 20, 200 μg/L) for 7 days, using a flow-through exposure system. HBCD was found to concentrate in the liver and muscle with a terminal concentration of 0.60 ± 0.22 μg/g lw (lipid weight) and 0.18 ± 0.02 μg/g lw, respectively, at an environmentally-relevant concentration (2 μg/L). The total thyroxine and total triiodothyronine in the fish plasma were lowered as a result of exposure to the HBCD. Acetylcholinesterase activity in the brain was increased, while swimming activity was inhibited and shoaling inclination was enhanced after exposure to 200 μg/L HBCD. Feeding rate was suppressed in the 20 and 200 μg/L treatment groups. In summary, HBCD concentrations 10-100× higher than the current environmentally-relevant exposures induced adverse effects in the fish species tested in this study. These results suggest that increasing environmental concentrations and/or species with higher sensitivity than carp might be adversely affected by HBCD.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, 860000, Linzhi, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| |
Collapse
|
7
|
Guo-Ross SX, Meek EC, Chambers JE, Carr RL. Effects of Chlorpyrifos or Methyl Parathion on Regional Cholinesterase Activity and Muscarinic Receptor Subtype Binding in Juvenile Rat Brain. JOURNAL OF TOXICOLOGY AND PHARMACOLOGY 2017; 1:018. [PMID: 30035273 PMCID: PMC6052801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of developmental exposure to two organophosphorus (OP) insecticides, chlorpyrifos (CPF) and methyl parathion (MPS), on cholinesterase (ChE) activity and muscarinic acetylcholine receptor (mAChR) binding were investigated in preweanling rat brain. Animals were orally gavaged daily with low, medium, and high dosages of the insecticides using an incremental dosing regimen from postnatal day 1 (PND1) to PND20. On PND12, PND17 and PND20, the cerebral cortex, corpus striatum, hippocampus, and medulla-pons were collected for determination of ChE activity, total mAChR density, and the density of the individual mAChR subtypes. ChE activity was inhibited by the medium and high dosages of CPF and MPS at equal levels in all four brain regions at all three ages examined. Exposure to both compounds decreased the levels of the M1, M2/M4, and M3 subtypes and the total mAChR level in all brain regions, but the effects varied by dosage group and brain region. On PND12, only the high dosages induced receptor changes while on PND17 and PND20, greater effects became evident. In general, the effects on the M1 subtype and total receptor levels appeared to be greater in the cerebral cortex and hippocampus than in the corpus striatum and medulla-pons. This did not appear to be the case for the M2/M4 and M3 subtypes effects. The differences between CPF and MPS were minimal even though in some cases, CPF exerted statistically greater effects than MPS did. In general, repeated exposure to organophosphorus insecticides can alter the levels of the various mAChR subtypes in various brain regions which could induce perturbation in cholinergic neurochemistry during the maturation of the brain regions.
Collapse
|
8
|
Koenig JA, Dao TL, Kan RK, Shih TM. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation. Ann N Y Acad Sci 2016; 1374:68-77. [PMID: 27123828 DOI: 10.1111/nyas.13051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
The current research progression efforts for investigating novel treatments for exposure to organophosphorus (OP) compounds that inhibit acetylcholinesterase (AChE), including pesticides and chemical warfare nerve agents (CWNAs), rely solely on in vitro cell assays and in vivo rodent models. The zebrafish (Danio rerio) is a popular, well-established vertebrate model in biomedical research that offers high-throughput capabilities and genetic manipulation not readily available with rodents. A number of research studies have investigated the effects of subacute developmental exposure to OP pesticides in zebrafish, observing detrimental effects on gross morphology, neuronal development, and behavior. Few studies, however, have utilized this model to evaluate treatments, such as oxime reactivators, anticholinergics, or anticonvulsants, following acute exposure. Preliminary work has investigated the effects of CWNA exposure. The results clearly demonstrated relative toxicity and oxime efficacy similar to that reported for the rodent model. This review surveys the current literature utilizing zebrafish as a model for OP exposure and highlights its potential use as a high-throughput system for evaluating AChE reactivator antidotal treatments to acute pesticide and CWNA exposure.
Collapse
Affiliation(s)
- Jeffrey A Koenig
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Thuy L Dao
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Robert K Kan
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Tsung-Ming Shih
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| |
Collapse
|
9
|
Krishna G. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicol Teratol 2015; 49:49-58. [PMID: 25801384 DOI: 10.1016/j.ntt.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against mitochondrial dysfunction induced by ACR in both milieus. Although the precise mechanism/s by which IN supplements during pregnancy attenuate ACR induced neurotoxic impact merits further investigations, we hypothesize that it may mediate through enhanced enteric microbiota and abrogation of oxidative stress. Further, our study provides an experimental approach to explore the neuroprotective role of prebiotic oligosaccharides during pregnancy in reducing the adverse impact of developmental neurotoxicants.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
10
|
Sotomayor V, Chiriotto TS, Pechen AM, Venturino A. Biochemical biomarkers of sublethal effects in Rhinella arenarum late gastrula exposed to the organophosphate chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 119:48-53. [PMID: 25868816 DOI: 10.1016/j.pestbp.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
We determined the biochemical and molecular effects of the organophosphate insecticide chlorpyrifos (CPF) in the late gastrula embryonic stage of the South American toad Rhinella arenarum continuously exposed from fertilization (24 h). Our objective was to evaluate these responses as potential biomarkers at low, sublethal levels of the toxicant. We first established the EC50 for embryo arrest in 21.3 mg/L, with a LOEC of 16 mg/L. At 4 mg/L CPF, some embryos were unable to complete the dorsal lip of the blastopore and the yolk plug became blur, probably because of abnormal cell migration. Acetylcholinesterase activity, the specific biomarker for organophosphates, was unaffected by any of the tested concentrations of CPF (2-14 mg/L). In turn, 2 mg/L CPF increased the reduced glutathione levels and inhibited glutathione-S-transferase activity, suggesting an oxidative stress and antioxidant response. Catalase was induced by CPF exposure at higher concentrations (8 and 14 mg/L). We also studied transcription factor c-Fos as a signaling event related to development in early embryogenesis. Analysis of nuclear c-Fos protein showed two bands, both enhanced in embryos exposed to 2 and 8 mg/L CPF. While nuclear Erk protein was practically unaffected, Mek protein levels were induced by the OP. Transcription factor c-Fos may be then linking oxidative stress with developmental alterations observed due to CPF exposure. These molecular and biochemical responses observed in R. arenarum gastrula at sublethal CPF exposures may replace non-responsive AChE as very early biomarkers in toad gastrula.
Collapse
Affiliation(s)
- Verónica Sotomayor
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de CienciasMédicas, Universidad Nacional del Comahue, Toschi y Arrayanes, 8324, Cipolletti, Río Negro, Argentina
| | - Tai S Chiriotto
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Ana M Pechen
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Andrés Venturino
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de CienciasAgrarias, Universidad Nacional del Comahue, Ruta 151 Km 12.5, 8303, CincoSaltos, Río Negro, Argentina.
| |
Collapse
|
11
|
de Assis CRD, Linhares AG, Oliveira VM, França RCP, Santos JF, Marcuschi M, Carvalho EVMM, Bezerra RS, Carvalho LB. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1659-1668. [PMID: 24980148 DOI: 10.1007/s10695-014-9956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Brain cholinesterases from four fish (Arapaima gigas, Colossoma macropomum, Rachycentron canadum and Oreochromis niloticus) were characterized using specific substrates and selective inhibitors. Parameters of catalytic efficiency such as activation energy (AE), k(cat) and k(cat)/k(m) as well as rate enhancements produced by these enzymes were estimated by a method using crude extracts described here. Despite the BChE-like activity, specific substrate kinetic analysis pointed to the existence of only acetylcholinesterase (AChE) in brain of the species studied. Selective inhibition suggests that C. macropomum brain AChE presents atypical activity regarding its behavior in the presence of selective inhibitors. AE data showed that the enzymes increased the rate of reactions up to 10(12) in relation to the uncatalyzed reactions. Zymograms showed the presence of AChE isoforms with molecular weights ranging from 202 to 299 kDa. Values of k(cat) and k(cat)/k(m) were similar to those found in the literature.
Collapse
Affiliation(s)
- Caio Rodrigo Dias de Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Campus Universitário, Recife, PE, 50670-901, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The assessment of cholinesterase from the liver of Puntius javanicus as detection of metal ions. ScientificWorldJournal 2014; 2014:571094. [PMID: 25401148 PMCID: PMC4225846 DOI: 10.1155/2014/571094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and −25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
Collapse
|
13
|
Shen JN, Wang DS, Wang R. The protection of acetylcholinesterase inhibitor on β-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:900-13. [PMID: 23119107 PMCID: PMC3484487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA's effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes.
Collapse
Affiliation(s)
- Jiao-Ning Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and TechnologyShanghai 200237, China
| | - Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of WisconsinMadison, Wisconsin, USA
| | - Rui Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and TechnologyShanghai 200237, China
| |
Collapse
|
14
|
Nurulain SM, Shafiullah M. TERATOGENICITY AND EMBRYOTOXICITY OF ORGANOPHOSPHORUS COMPOUNDS IN ANIMAL MODELS - A SHORT REVIEW. ACTA ACUST UNITED AC 2012. [DOI: 10.31482/mmsl.2012.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Li AA, Lowe KA, McIntosh LJ, Mink PJ. Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:109-184. [PMID: 22401178 PMCID: PMC3386549 DOI: 10.1080/10937404.2012.645142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Developmental neurobehavioral outcomes attributed to exposure to chlorpyrifos (CPF) obtained from epidemiologic and animal studies published before June 2010 were reviewed for risk assessment purposes. For epidemiological studies, this review considered (1) overall strength of study design, (2) specificity of CPF exposure biomarkers, (3) potential for bias, and (4) Hill guidelines for causal inference. In the case of animal studies, this review focused on evaluating the consistency of outcomes for developmental neurobehavioral endpoints from in vivo mammalian studies that exposed dams and/or offspring to CPF prior to weaning. Developmental neuropharmacologic and neuropathologic outcomes were also evaluated. Experimental design and methods were examined as part of the weight of evidence. There was insufficient evidence that human developmental exposures to CPF produce adverse neurobehavioral effects in infants and children across different cohort studies that may be relevant to CPF exposure. In animals, few behavioral parameters were affected following gestational exposures to 1 mg/kg-d but were not consistently reported by different laboratories. For postnatal exposures, behavioral effects found in more than one study at 1 mg/kg-d were decreased errors on a radial arm maze in female rats and increased errors in males dosed subcutaneously from postnatal day (PND) 1 to 4. A similar finding was seen in rats exposed orally from PND 1 to 21 with incremental dose levels of 1, 2, and 4 mg/kg-d, but not in rats dosed with constant dose level of 1 mg/kg-d. Neurodevelopmental behavioral, pharmacological, and morphologic effects occurred at doses that produced significant brain or red blood cell acetylcholinesterase inhibition in dams or offspring.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences Group, Menlo Park, California, USA.
| | | | | | | |
Collapse
|
16
|
García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease: Cross-Talk with P-tau and β-Amyloid. Front Mol Neurosci 2011; 4:22. [PMID: 21949503 PMCID: PMC3171929 DOI: 10.3389/fnmol.2011.00022] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/24/2011] [Indexed: 11/29/2022] Open
Abstract
A common feature in the Alzheimer’s disease (AD) brain is the presence of acetylcholinesterase (AChE) which is commonly associated with β-amyloid plaques and neurofibrillary tangles (NFT). Although our understanding of the relationship between AChE and the pathological features of AD is incomplete, increasing evidence suggests that both β-amyloid protein (Aβ) and abnormally hyperphosphorylated tau (P-tau) can influence AChE expression. We also review recent findings which suggest the possible role of AChE in the development of a vicious cycle of Aβ and P-tau dysregulation and discuss the limited and temporary effect of therapeutic intervention with AChE inhibitors.
Collapse
|
17
|
Adler M, Sweeney RE, Hamilton TA, Lockridge O, Duysen EG, Purcell AL, Deshpande SS. Role of acetylcholinesterase on the structure and function of cholinergic synapses: insights gained from studies on knockout mice. Cell Mol Neurobiol 2011; 31:909-20. [PMID: 21538119 PMCID: PMC11498572 DOI: 10.1007/s10571-011-9690-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Electrophysiological and ultrastructural studies were performed on phrenic nerve-hemidiaphragm preparations isolated from wild-type and acetylcholinesterase (AChE) knockout (KO) mice to determine the compensatory mechanisms manifested by the neuromuscular junction to excess acetylcholine (ACh). The diaphragm was selected since it is the primary muscle of respiration, and it must adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were recorded by conventional electrophysiological techniques from phrenic nerve-hemidiaphragm preparations isolated from 1.5- to 2-month-old wild-type (AChE(+/+)) or AChE KO (AChE(-/-)) mice. These recordings were chosen to provide a comprehensive assessment of functional alterations of the diaphragm muscle resulting from the absence of AChE. Tension measurements from AChE(-/-) mice revealed that the amplitude of twitch tensions was potentiated, but tetanic tensions underwent a use-dependent decline at frequencies below 70 Hz and above 100 Hz. MEPPs recorded from hemidiaphragms of AChE(-/-) mice showed a reduction in frequency and a prolongation in decay (37%) but no change in amplitude compared to values observed in age-matched wild-type littermates. In contrast, MEPPs recorded from hemidiaphragms of wild-type mice that were exposed for 30 min to the selective AChE inhibitor 5-bis(4-allyldimethyl-ammoniumphenyl)pentane-3-one (BW284C51) exhibited a pronounced increase in amplitude (42%) and a more marked prolongation in decay (76%). The difference between MEPP amplitudes and decays in AChE(-/-) hemidiaphragms and in wild-type hemidiaphragms treated with BW284C51 represents effective adaptation by the former to a high ACh environment. Electron microscopic examination revealed that diaphragm muscles of AChE(-/-) mice had smaller nerve terminals and diminished pre- and post-synaptic surface contacts relative to neuromuscular junctions of AChE(+/+) mice. The morphological changes are suggested to account, in part, for the ability of muscle from AChE(-/-) mice to function in the complete absence of AChE.
Collapse
Affiliation(s)
- Michael Adler
- Neurobehavioral Toxicology Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang D, Lauridsen H, Buels K, Chi LH, La Du J, Bruun DA, Olson JR, Tanguay RL, Lein PJ. Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicol Sci 2011; 121:146-59. [PMID: 21346248 DOI: 10.1093/toxsci/kfr028] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03 μM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1 μM CPFO versus 1.0 μM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1 μM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity.
Collapse
Affiliation(s)
- Dongren Yang
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gui CZ, Ran LY, Li JP, Guan ZZ. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. Neurotoxicol Teratol 2010; 32:536-41. [PMID: 20381606 DOI: 10.1016/j.ntt.2010.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha3, alpha4 and alpha7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha3 and alpha4 nAChRs were decreased, whereas the alpha7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.
Collapse
Affiliation(s)
- Chuan-Zhi Gui
- Department of Pathology in Guiyang Medical College, Guiyang, P.R. China
| | | | | | | |
Collapse
|
20
|
Moreira EG, Yu X, Robinson JF, Griffith W, Hong SW, Beyer RP, Bammler TK, Faustman EM. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol 2010; 245:310-25. [PMID: 20350560 DOI: 10.1016/j.taap.2010.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022]
Abstract
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles across doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Estefania G Moreira
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rajesh RV, Layer PG, Boopathy R. High aryl acylamidase activity associated with cobra venom acetylcholinesterase: Biological significance. Biochimie 2009; 91:1450-6. [DOI: 10.1016/j.biochi.2009.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
|
22
|
Slotkin TA, Ryde IT, Wrench N, Card JA, Seidler FJ. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions. Neurotoxicol Teratol 2009; 31:183-6. [PMID: 19452616 DOI: 10.1016/j.ntt.2008.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is postulated to play a nonenzymatic role in the development of neuritic projections. We gave the specific neurotoxin, 6-OHDA to rats on postnatal day (PN) 1, a treatment that destroys noradrenergic nerve terminals in the forebrain while producing reactive sprouting in the brainstem. AChE showed profound decreases in the forebrain that persisted in males over the entire phase of major synaptogenesis, from PN4 through PN21; in the brainstem, AChE was increased. Parallel examinations of choline acetyltransferase, an enzymatic marker for cholinergic nerve terminals, showed a different pattern of 6-OHDA-induced alterations, with initial decreases in both forebrain and brainstem in males and regression toward normal by PN21; females were far less affected. The sex differences are in accord with the greater plasticity of the female brain and its more rapid recovery from neurotoxic injury; our findings indicate that these differences are present well before puberty. These results support the view that AChE is involved in neurite formation, unrelated to its enzymatic role in cholinergic neurotransmission. Further, the results for choline acetyltransferase indicate that early depletion of norepinephrine compromises development of acetylcholine systems, consistent with a trophic role for this neurotransmitter.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | | | | | | | | |
Collapse
|
23
|
Rajesh RV, Chitra L, Layer PG, Boopathy R. The aryl acylamidase activity is much more sensitive to Alzheimer drugs than the esterase activity of acetylcholinesterase in chicken embryonic brain. Biochimie 2009; 91:1087-94. [PMID: 19607873 DOI: 10.1016/j.biochi.2009.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/06/2009] [Indexed: 11/27/2022]
Abstract
The appearance of cholinergic trait often precedes synaptogenesis, indicating the involvement of cholinesterase proteins in nervous system development, particularly so acetylcholinesterase (AChE). In addition to AChE's acclaimed esterase activity, its lesser known non-cholinergic functions have gained much attention, because of AChE protein expression in areas other than cholinergic innervations; one such function could be exerted by its associated aryl acylamidase (AAA) activity. In this study, an attempt has been made in profiling esterase and AAA activities of AChE at different developmental stages of the chick embryo, e.g. at embryonic day 6 (E6), E9, E12, E15 and E18. AAA activity showed a correlated expression with esterase activity at all stages, but the relative ratios of AAA to esterase activity were higher at younger stages. The inhibition of AAA activity was shown to be more sensitive towards Huperzine, Donepezil whereas inhibition of esterase activity was sensitive to Tacrine and DFP. Remarkably, the major Alzheimer drugs- Huperzine and Donepezil, much more strongly inhibited AAA activity of AChE at younger developmental stages whose IC50 values are 0.01 muM and 0.1 muM respectively. In the case of BW284c51, inhibition was more pronounced at older stages and IC50 value was 0.1 muM. Since in Alzheimer's disease (AD), embryonic forms of AChE have been reported to reappear, a possible role of AAA activity in the pathogenesis of AD should be considered.
Collapse
Affiliation(s)
- Ramanna V Rajesh
- Animal Genomics and Bioinformatics Division, Department of Livestock Biotechnology & Environment, National institute of Animal science, Suwon 441-706, South Korea
| | | | | | | |
Collapse
|
24
|
Johnson FO, Chambers JE, Nail CA, Givaruangsawat S, Carr RL. Developmental chlorpyrifos and methyl parathion exposure alters radial-arm maze performance in juvenile and adult rats. Toxicol Sci 2009; 109:132-42. [PMID: 19293373 DOI: 10.1093/toxsci/kfp053] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the use of organophosphate (OP) insecticides has been restricted, sufficient exposure can occur to induce detrimental neurobehavioral effects. In this study, we measured physical and reflex development and spatial learning and memory in rats repeatedly exposed to incremental doses of chlorpyrifos (CPS) and methyl parathion (MPS) from postnatal day (PND) 1 to PND21. Other than decreased body weight in the higher dosage groups, no effects on physical or reflex development were observed. Significant hippocampal cholinesterase inhibition was induced in all treatment groups for up to 19 days following exposure. Beginning on PND36, working and reference memory was tested using a 12-arm radial maze, with subject animals trained and tested 4 days a week for 4 weeks. In males, working memory was decreased with the medium and high dosage of MPS but only the high dosage of CPS; while in females, no deficits were observed. For reference memory, errors were significantly increased in males exposed to the high dosage of CPS and all dosages of MPS. In females, enhanced performance was observed within the medium and high dosages of CPS but not with MPS. These data show that repeated developmental exposure to OP insecticides can induce sex-selective alterations and long-lasting changes in spatial learning and memory formation when measured using a radial arm maze and that MPS and CPS induce different neurobehavioral outcomes.
Collapse
Affiliation(s)
- Frank O Johnson
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | | | | | |
Collapse
|
25
|
Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM. Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids. Neurotoxicol Teratol 2008; 30:503-9. [PMID: 18565728 PMCID: PMC2579926 DOI: 10.1016/j.ntt.2008.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/28/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Amyloid precursor protein (APP) is overexpressed in the developing brain and portions of its extracellular domain, especially amino acid residues 96-110, play an important role in neurite outgrowth and neural cell differentiation. In the current study, we evaluated the developmental abnormalities caused by administration of exogenous APP(96-110) in sea urchin embryos and larvae, which, like the developing mammalian brain, utilize acetylcholine and other neurotransmitters as morphogens; effects were compared to those of beta-amyloid 1-42 (Abeta42), the neurotoxic APP fragment contained within neurodegenerative plaques in Alzheimer's Disease. Although both peptides elicited dysmorphogenesis, Abeta42 was far more potent; in addition, whereas Abeta42 produced abnormalities at developmental stages ranging from early cleavage divisions to the late pluteus, APP(96-110) effects were restricted to the intermediate, mid-blastula stage. For both agents, anomalies were prevented or reduced by addition of lipid-permeable analogs of acetylcholine, serotonin or cannabinoids; physostigmine, a carbamate-derived cholinesterase inhibitor, was also effective. In contrast, agents that act on NMDA receptors (memantine) or alpha-adrenergic receptors (nicergoline), and that are therapeutic in Alzheimer's Disease, were themselves embryotoxic, as was tacrine, a cholinesterase inhibitor from a different chemical class than physostigmine. Protection was also provided by agents acting downstream from receptor-mediated events: increasing cyclic AMP with caffeine or isobutylmethylxanthine, or administering the antioxidant, a-tocopherol, were all partially effective. Our findings reinforce a role for APP in development and point to specific interactions with neurotransmitter systems that act as morphogens in developing sea urchins as well as in the mammalian brain.
Collapse
Affiliation(s)
- Gennady A Buznikov
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710-3813, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Carr RL, Nail CA. Effect of different administration paradigms on cholinesterase inhibition following repeated chlorpyrifos exposure in late preweanling rats. Toxicol Sci 2008; 106:186-92. [PMID: 18703558 DOI: 10.1093/toxsci/kfn164] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
27
|
Sachana M, Flaskos J, Sidiropoulou E, Yavari CA, Hargreaves AJ. Inhibition of extension outgrowth in differentiating rat C6 glioma cells by chlorpyrifos and chlorpyrifos oxon: effects on microtubule proteins. Toxicol In Vitro 2008; 22:1387-91. [PMID: 18417317 DOI: 10.1016/j.tiv.2008.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/19/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
Abstract
The aim of this work was to assess the toxic effects of the phosphorothionate insecticide chlorpyrifos (CPF) and its major in vivo metabolite chlorpyrifos oxon (CPO) on differentiating rat C6 glioma cells. At sublethal concentrations (1-10 microM), both compounds were able to inhibit the development of extensions from C6 cells induced to differentiate by sodium butyrate. Western blot analysis of C6 cell lysates revealed that 4 h exposure to CPF was associated with decreased levels of the cytoskeletal protein MAP1B compared to controls, whereas the levels of the cytoskeletal proteins tubulin and MAP2c were not significantly affected. Western blot analysis of extracts of cells treated with CPO showed a significant, concentration-dependent decrease in the levels of tubulin after 24 h. MAP-1B levels were also significantly decreased. The above changes were not temporally related to acetylcholinesterase (AChE) inhibition. These results suggest that both CPF and CPO can exert toxic effects directly on glial cell differentiation and that the latter compound has a potent effect on the microtubule network.
Collapse
Affiliation(s)
- M Sachana
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
28
|
Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol Appl Pharmacol 2007; 228:32-41. [PMID: 18076960 DOI: 10.1016/j.taap.2007.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/26/2007] [Accepted: 11/07/2007] [Indexed: 01/08/2023]
Abstract
A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/-) versus wild type (AChE +/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.
Collapse
Affiliation(s)
- Dongren Yang
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
29
|
Carcoba LM, Santiago M, Moss DE, Cabeza R. In utero methanesulfonyl fluoride differentially affects learning and maze performance in the absence of long-lasting cholinergic changes in the adult rat. Pharmacol Biochem Behav 2007; 88:374-84. [PMID: 17920111 DOI: 10.1016/j.pbb.2007.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 08/31/2007] [Accepted: 09/11/2007] [Indexed: 11/17/2022]
Abstract
There is increasing evidence that acetylcholinesterase (AChE) may have various specific developmental roles in brain development. Nevertheless, specific effects of AChE inhibition during early brain development have not been adequately described. Therefore, methanesulfonyl fluoride (MSF), an irreversible AChE inhibitor that shows high selectivity for the CNS was used to produce AChE inhibition in utero to study subsequent adult behaviors, sleep, and cholinergic markers. Rats exposed to MSF in utero showed a deficit in spatial learning tasks using appetitive motivation but, surprisingly, they performed equally well or better than controls when aversive motivation was used. One hypothesis was that MSF treatment in utero affected the response to stress. Tests of anxiety however showed no differences in basal levels of anxiety. Studies of sleep behavior, however, indicated a higher level of REM sleep which is only seen during the light phase of male rats exposed to MSF in utero as compared to controls. No differences in cholinergic markers in the brains of adults were found except that females exposed to MSF in utero had a higher level of ChAT activity in the synaptosomal fraction of the hippocampus. Even so, whether cholinergic alterations accompany the in utero MSF exposure remains to be determined. The failure to find widespread changes in cholinergic markers in the adult brains suggests changes in behaviors should be further investigated by testing the participation of postsynaptic mechanisms, measuring of cholinergic markers during earlier development periods and the possible participation of other neurotransmitter systems to clearly reveal the role of the cholinergic system following in utero MSF exposure.
Collapse
Affiliation(s)
- Luis M Carcoba
- University of Texas at El Paso, Department of Biology, 500 West University Avenue, El Paso, Texas 79968, USA.
| | | | | | | |
Collapse
|
30
|
Hanganu IL, Staiger JF, Ben-Ari Y, Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J Neurosci 2007; 27:5694-705. [PMID: 17522314 PMCID: PMC6672769 DOI: 10.1523/jneurosci.5233-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is known to shape the adult neocortical activity related to behavioral states and processing of sensory information. However, the impact of cholinergic input on the neonatal neuronal activity remains widely unknown. Early during development, the principal activity pattern in the primary visual (V1) cortex is the intermittent self-organized spindle burst oscillation that can be driven by the retinal waves. Here, we assessed the relationship between this early activity pattern and the cholinergic drive by either blocking or augmenting the cholinergic input and investigating the resultant effects on the activity of the rat visual cortex during the first postnatal week in vivo. Blockade of the muscarinic receptors by intracerebroventricular, intracortical, or supracortical atropine application decreased the occurrence of V1 spindle bursts by 50%, both the retina-independent and the optic nerve-mediated spindle bursts being affected. In contrast, blockade of acetylcholine esterase with physostigmine augmented the occurrence, amplitude, and duration of V1 spindle bursts. Whereas direct stimulation of the cholinergic basal forebrain nuclei increased the occurrence probability of V1 spindle bursts, their chronic immunotoxic lesion using 192 IgG-saporin decreased the occurrence of neonatal V1 oscillatory activity by 87%. Thus, the cholinergic input facilitates the neonatal V1 spindle bursts and may prime the developing cortex to operate specifically on relevant early (retinal waves) and later (visual input) stimuli.
Collapse
Affiliation(s)
- Ileana L Hanganu
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U29, 13273 Marseille, France.
| | | | | | | |
Collapse
|
31
|
Slotkin TA, Seidler FJ, Fumagalli F. Exposure to organophosphates reduces the expression of neurotrophic factors in neonatal rat brain regions: similarities and differences in the effects of chlorpyrifos and diazinon on the fibroblast growth factor superfamily. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:909-16. [PMID: 17589599 PMCID: PMC1892141 DOI: 10.1289/ehp.9901] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/27/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. OBJECTIVES We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1-4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. METHODS Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. RESULTS Chlorpyrifos and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgf22. However, they differed in that the effects on fgf2 and fgfr4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. CONCLUSIONS The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoxicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
32
|
Boopathy R, Rajesh RV, Darvesh S, Layer PG. Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity. Clin Chim Acta 2007; 380:151-6. [PMID: 17379201 DOI: 10.1016/j.cca.2007.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/16/2007] [Accepted: 02/02/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although aspartate aminotransferase (AST) and gamma-glutamyltransferase (gamma GT) enzymes are widely used as markers for liver disorders, the ubiquitous enzyme butyrylcholinesterase (BChE), synthesized in liver is also used as marker in the assessment of liver pathophysiology. This BChE enzyme in addition to its esterase activity has yet another enzymatic function designated as aryl acylamidase (AAA) activity. It is determined in in vitro based on the hydrolysis of the synthetic substrate o-nitroacetanilide. In the present study, human serum cholinesterase (BChE) activity was studied with respect to its AAA activity on the BChE protein (AAA(BChE)) in patients with liver disorders. AST and gamma GT values were taken into account in this study as known markers for liver disorders. METHODS Blood samples were grouped into 3 based on esterase activity associated with BChE protein. They are normal, low, and very low BChE activity but with markedly increased AST and gamma GT levels. These samples were tested for their respective AAA function. Association of AAA with BChE from samples was proved using BChE monoclonal antibody precipitation experiment. RESULTS The absolute levels of AAA were increased as BChE activity decreased while deviating from normal samples and such deviation was directly proportional to the severity of the liver disorder. Differences between these groups became prominent after determining the ratios of AAA(BChE) to BChE activities. Samples showing very high AAA(BChE) to BChE ratio were also showing high to very high gamma GT values. CONCLUSIONS These findings establish AAA(BChE) as an independently regulated enzymatic activity on BChE especially in liver disorders. Moreover, since neither the low esterase activity of BChE by itself nor increased levels of AST/gamma GT are sufficient pathological indicators, this pilot study merits replication with large sample numbers.
Collapse
Affiliation(s)
- Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | | | | | | |
Collapse
|
33
|
Abou-Donia MB, Khan WA, Dechkovskaia AM, Goldstein LB, Bullman SL, Abdel-Rahman A. In utero exposure to nicotine and chlorpyrifos alone, and in combination produces persistent sensorimotor deficits and Purkinje neuron loss in the cerebellum of adult offspring rats. Arch Toxicol 2006; 80:620-31. [PMID: 16482470 DOI: 10.1007/s00204-006-0077-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
This study was carried out to investigate the effect of in utero exposure to the cholinotoxicants, nicotine and chlorpyrifos, alone or in combination on neurobehavioral alterations and neuronal morphology latter in adult age. In the present study, 90 days old (corresponding to a human adult age) male and female offspring rats were evaluated for neurobehavioral, and neuropathological alterations following maternal, gestational exposure to nicotine and chlorpyrifos (O,O-diethyl-O-3,5,6-trichloro-2-pyridinyl phosphorothioate), alone and in combination. Female Sprague-Dawley rats (300-350 g) with timed-pregnancy were treated with nicotine (3.3 mg/kg/day, in bacteriostatic water via s.c. implantation of mini osmotic pump), chlorpyrifos (1.0 mg/kg, daily, dermal, in 75% ethanol, 1.0 ml/kg) or a combination of both chemicals, on gestational days (GD) 4-20. Control animals received bacteriostatic water via s.c. implantation of mini osmotic pump and dermal application of 70% ethanol. The offspring at postnatal day (PND) 90 were evaluated for neurobehavioral performance, changes in the activity of plasma butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), and neuropathological alterations in the brain. Neurobehavioral evaluations included beam-walk score, beam-walk time, incline plane performance and forepaw grip time. Male and female offspring from mothers treated with nicotine and CPF, alone or in combination showed impairments in the performance of neurobehavioral tests, indicating sensorimotor deficits. Female offspring from mothers treated with a combination of nicotine and chlorpyrifos showed significant increase in plasma BChE activity. Brain regional AChE activity showed differential increases in male and female offspring. Brainstem and cerebellum of female offspring from mothers treated with nicotine or chlorpyrifos, alone or in combination showed increased AChE activity, whereas brainstem of male offspring from mothers treated with nicotine alone or a combination of nicotine and chlorpyrifos showed increase in AChE activity. Also, male offspring exposed in utero to nicotine exhibited increased AChE activity. Histopathological evaluations using cresyl violet staining showed a decrease in surviving Purkinje neurons in the cerebellum in offspring of all treatments groups. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer (GCL) of cerebellum following all exposures. These results indicate that in utero exposure to nicotine and chlorpyrifos, alone and in combination produced significant sensorimotor deficits in male and female offspring, differential increase in brain AChE activity, a decrease in the surviving neurons and an increased expression of GFAP in cerebellum in adult offspring rats at a corresponding human adult age. Collectively, this study demonstrates that maternal exposure to environmental neurotoxic chemicals, i.e., nicotine and chlorpyrifos leads to developmental abnormalities in the offspring that persist latter into adulthood.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Wheelock CE, Eder KJ, Werner I, Huang H, Jones PD, Brammell BF, Elskus AA, Hammock BD. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 74:172-92. [PMID: 16011852 PMCID: PMC1444896 DOI: 10.1016/j.aquatox.2005.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 05/09/2005] [Accepted: 05/11/2005] [Indexed: 05/02/2023]
Abstract
Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 microg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 microg/l), but not a low dose (1.2 microg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were approximately 30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish.
Collapse
Affiliation(s)
- Craig E Wheelock
- Department of Entomology and Cancer Research Center, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Olivera-Bravo S, Ivorra I, Morales A. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Br J Pharmacol 2005; 144:88-97. [PMID: 15644872 PMCID: PMC1575971 DOI: 10.1038/sj.bjp.0705965] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique.BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM-100 microM) and Ach were co-applied, Ach-evoked currents (I(Ach)) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC(50), 0.2-0.5 muM for 0.1-1000 microM Ach). Cch-elicited currents showed a similar inhibition by BW284c51.I(Ach) blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced I(Ach) desensitisation.BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC(50) value. The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects. Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms. Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/chemistry
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Carbachol/pharmacology
- Cell Membrane/chemistry
- Cholinergic Agents/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electric Conductivity
- Female
- Inhibitory Concentration 50
- Kinetics
- Membrane Proteins/metabolism
- Microinjections
- Molecular Structure
- Neurotransmitter Agents/pharmacology
- Nicotinic Antagonists/pharmacology
- Oocytes/drug effects
- Patch-Clamp Techniques
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/physiology
- Tacrine/pharmacology
- Torpedo
- Xenopus
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Departamento de Fisiología, Genética y Microbiología, División de Fisiología, Universidad de Alicante, Campus San Vicente, Aptdo. 99, Alicante E-03080, Spain
| | - Isabel Ivorra
- Departamento de Fisiología, Genética y Microbiología, División de Fisiología, Universidad de Alicante, Campus San Vicente, Aptdo. 99, Alicante E-03080, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, División de Fisiología, Universidad de Alicante, Campus San Vicente, Aptdo. 99, Alicante E-03080, Spain
- Author for correspondence:
| |
Collapse
|
36
|
Brimijoin S. Can cholinesterase inhibitors affect neural development? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:429-432. [PMID: 21783508 DOI: 10.1016/j.etap.2004.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accumulating evidence supports the view that acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can influence the proliferation and differentiation of nerve cells. AChE in particular has been found to promote neurite outgrowth in a variety of model systems, possibly by serving as an adhesion molecule. Thus one might suspect that cholinesterase inhibitors would disturb neuronal development, with long-term implications for structure and function in the central and peripheral nervous systems. The actual picture is more complex because AChE's effects on neurite outgrowth may reflect protein-protein interactions that are not directly related to catalytic function but are nonetheless influenced by ligands with special structural features. The putative structural interactions have not yet been rigorously defined, but they are likely to involve enzyme regions at or near the peripheral anionic site. In addition to such effects, some organophosphorus anticholinesterases have been reported to act by still other mechanisms to depress macromolecule synthesis and cell survival in the developing brain. Taken together, this emerging information highlights the potential importance of anticholinesterase agents in developmental neurotoxicology.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55905, USA
| |
Collapse
|
37
|
Singh M, Rishi S. Plasma acetylcholinesterase as a biomarker of triazophos neurotoxicity in young and adult rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:471-476. [PMID: 21783514 DOI: 10.1016/j.etap.2004.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The organophosphate pesticides exhibit their action by inhibiting acetylcholinesterase (AChE) enzyme in central and peripheral nervous system. They are known to affect the young animals to a greater extent, as their developing brain is more susceptible to their toxic effects. Besides inactivating acetylcholine at synaptic terminals AChE also plays an important role in neuronal growth and differentiation. A reduction in AChE activity in plasma has no known physiological function in causing brain or tissue damage, but if a good correlation between brain and plasma AChE inhibition exists, then circulating plasma AChE can be used as a reliable marker for detection of cholinesterase inhibitors. Therefore, the present investigation was designed to differentiate age and gender related neurotoxicity of an organophosphate pesticide-triazophos and to explore whether plasma AChE can serve as a biomarker of its neurotoxicity in young, i.e. post natal days 20 (PND 20) and adult rats i.e. post natal days 90 (PND 90) after single intraperitoneal administration in different doses.
Collapse
Affiliation(s)
- Manjeet Singh
- Department of Veterinary Pharmacology and Toxicology, CCS Haryana Agricultural University, Hisar, India
| | | |
Collapse
|
38
|
Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 2004; 198:132-51. [PMID: 15236950 DOI: 10.1016/j.taap.2003.06.001] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 06/09/2003] [Indexed: 12/22/2022]
Abstract
Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Zbarsky V, Thomas J, Greenfield S. Bioactivity of a peptide derived from acetylcholinesterase: involvement of an ivermectin-sensitive site on the alpha 7 nicotinic receptor. Neurobiol Dis 2004; 16:283-9. [PMID: 15207285 DOI: 10.1016/j.nbd.2004.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 02/10/2004] [Accepted: 02/20/2004] [Indexed: 11/19/2022] Open
Abstract
A peptide fragment of 14 amino acids, derived from the C-terminus of acetylcholinesterase (AChE), might underlie the now well-established noncholinergic effects of the enzyme. This peptide is bioactive in a variety of systems including acute (brain slices) and chronic (organotypic culture) preparations of hippocampus, a pivotal area in Alzheimer's disease (AD); invariably, the action of the peptide is mediated specifically via an as yet unknown receptor. In this study, the allosteric alpha 7 agent, ivermectin (IVM), had a modest inhibitory effect, whilst that of the peptide was significantly more marked. However, ivermectin rendered ineffective the toxicity of high doses of the peptide, that is, when the two were co-applied, only the smaller effects of ivermectin were seen. Ivermectin, therefore, is presumably acting at a site that is identical to, or at least strongly interactive with, the normal binding site for AChE-peptide. This observation could have important implications for eventual therapeutic targeting of the action of AChE-peptide, in neurodegeneration.
Collapse
Affiliation(s)
- Virginia Zbarsky
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | | | | |
Collapse
|
40
|
Colman JR, Ramsdell JS. The type B brevetoxin (PbTx-3) adversely affects development, cardiovascular function, and survival in Medaka (Oryzias latipes) embryos. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1920-1925. [PMID: 14644667 PMCID: PMC1241767 DOI: 10.1289/ehp.6386] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brevetoxins are produced by the red tide dinoflagellate Karenia brevis. The toxins are lipophilic polyether toxins that elicit a myriad of effects depending on the route of exposure and the target organism. Brevetoxins are therefore broadly toxic to marine and estuarine animals. By mimicking the maternal route of exposure to the oocytes in finfish, we characterized the adverse effects of the type B brevetoxin brevetoxin-3 (PbTx-3) on embryonic fish development and survival. The Japanese rice fish, medaka (Oryzias latipes), was used as the experimental model in which individual eggs were exposed via microinjection to various known concentrations of PbTx-3 dissolved in an oil vehicle. Embryos injected with doses exceeding 1.0 ng/egg displayed tachycardia, hyperkinetic twitches in the form of sustained convulsions, spinal curvature, clumping of the erythrocytes, and decreased hatching success. Furthermore, fish dosed with toxin were often unable to hatch in the classic tail-first fashion and emerged head first, which resulted in partial hatches and death. We determined that the LD(50) (dose that is lethal to 50% of the fish) for an injected dose of PbTx-3 is 4.0 ng/egg. The results of this study complement previous studies of the developmental toxicity of the type A brevetoxin brevetoxin-1 (PbTx-1), by illustrating in vivo the differing affinities of the two congeners for cardiac sodium channels. Consequently, we observed differing cardiovascular responses in the embryos, wherein embryos exposed to PbTx-3 exhibited persistent tachycardia, whereas embryos exposed to PbTx-1 displayed bradycardia, the onset of which was delayed.
Collapse
Affiliation(s)
- Jamie R Colman
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, National Ocean Service, Charleston, South Carolina 29412, USA
| | | |
Collapse
|
41
|
Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellström-Lindahl E. Higher expression of alpha7 nicotinic acetylcholine receptors in human fetal compared to adult brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:151-60. [PMID: 12711366 DOI: 10.1016/s0165-3806(03)00063-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal nicotinic acetylcholine receptors are thought to be involved in regulation of several processes during neurogenesis of the brain. In this study the expression of the alpha7 nicotinic acetylcholine receptor subtype was investigated in human fetal (9-11 weeks of gestation), middle-aged (28-51 years) and aged (68-94 years) medulla oblongata, pons, frontal cortex, and cerebellum. The specific binding of the alpha7 receptor antagonist [(125)I]alpha-bungarotoxin was significantly higher in fetal than in both middle-aged and aged medulla oblongata and aged pons. No significant decrease in [(125)I]alpha-bungarotoxin binding sites was observed from fetal to adult cortex and cerebellum. The alpha7 mRNA expression was significantly higher in all fetal brain regions investigated, except for aged cortex, than in corresponding middle-aged and aged tissue. The high expression of alpha7 nicotinic acetylcholine receptors in fetal compared to adult brain supports the view that these receptors play an important role during brain development.
Collapse
Affiliation(s)
- Lena Falk
- Neurotec Department, Division of Molecular Neuropharmacology, Huddinge University Hospital, S-141 86, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, Hoepner LA, Garfinkel R, Hazi Y, Reyes A, Ramirez J, Cosme Y, Perera FP. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:749-56. [PMID: 12727605 PMCID: PMC1241486 DOI: 10.1289/ehp.5768] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy.
Collapse
Affiliation(s)
- Robin M Whyatt
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Galloway T, Handy R. Immunotoxicity of organophosphorous pesticides. ECOTOXICOLOGY (LONDON, ENGLAND) 2003; 12:345-363. [PMID: 12739880 DOI: 10.1023/a:1022579416322] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study reviews the toxic effects of organophosphate (OP) pesticides on the immune systems and immune functions of invertebrates, fish, and higher vertebrate wildlife. The fundamental features and mechanisms of OP-induced immunotoxicity are illustrated with reference to parathion, chlorpyrifos, malathion, and diazinon. Immunotoxicity may be direct via inhibition of serine hydrolases or esterases in components of the immune system, through oxidative damage to immune organs, or by modulation of signal transduction pathways controlling immune functions. Indirect effects include modulation by the nervous system, or chronic effects of altered metabolism/nutrition on immune organs. Immunotoxicities are varied and include pathology of immune organs, and decreased humoral and/or cell mediated immunity. Altered non-specific immunity, decreased host resistance, hypersensitivity and autoimmunity are also features of immunotoxicity; although not all of these have been conclusively demonstrated in terms of pollutant exposure and immunotoxic effects in wildlife within individual experiments. Immunotoxicological biomarkers and biological monitoring tools are urgently needed to assess the extent of immunotoxicity in wildlife. Selection of universal biomarkers is hampered by the physiological diversity of immune systems in animals. However, by drawing on evidence from human epidemiology and tiered approaches in mammalian immunotoxicity evaluation, a selection of generic biomarkers of immunotoxicity in animals is suggested. Priorities for future research are also identified.
Collapse
Affiliation(s)
- Tamara Galloway
- Plymouth Environmental Research Centre, Department of Biological Sciences, University of Plymouth, Plymouth UK.
| | | |
Collapse
|
44
|
Whyatt RM, Camann DE, Kinney PL, Reyes A, Ramirez J, Dietrich J, Diaz D, Holmes D, Perera FP. Residential pesticide use during pregnancy among a cohort of urban minority women. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110:507-14. [PMID: 12003754 PMCID: PMC1240839 DOI: 10.1289/ehp.02110507] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Residential pesticide use is widespread in the United States. However, data are limited specific to use among minority populations. Nor are data available on the extent of pesticide exposure resulting from residential use during pregnancy. We have gathered questionnaire data on pesticide use in the home during pregnancy from 316 African-American and Dominican women residing in northern Manhattan and the South Bronx. Additionally, 72 women underwent personal air monitoring for 48 hr during their third trimester of pregnancy to determine exposure levels to 21 pesticides (19 insecticides and 2 fungicides). Of the women questioned, 266 of 314 (85%) reported that pest control measures were used in the home during pregnancy; 111 of 314 (35%) reported that their homes were sprayed by an exterminator, and of those, 45% said the spraying was done more than once per month. Most (>or= 90%) of the pesticide was used for cockroach control. Use of pest control measures increased significantly with the level of housing disrepair reported. Of the women monitored, all (100%) had detectable levels of three insecticides: the organophosphates diazinon (range, 2.0-6,010 ng/m3) and chlorpyrifos (range, 0.7-193 ng/m3) and the carbamate propoxur (range, 3.8-1,380 ng/m3), as well as the fungicide o-phenylphenol (range, 5.7-743 ng/m3). We also frequently detected the following four insecticides (47-83% of samples) but at lower concentrations: the pyrethroid trans-permethrin, piperonyl butoxide (an indicator of exposure to pyrethrins), and the organochlorines 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane and chlordane. Thirty percent of the women had detectable levels of all eight pesticides. Exposures were generally higher among African Americans than among Dominicans. We detected other pesticides in
Collapse
Affiliation(s)
- Robin M Whyatt
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Masson P, Schopfer LM, Bartels CF, Froment MT, Ribes F, Nachon F, Lockridge O. Substrate activation in acetylcholinesterase induced by low pH or mutation in the pi-cation subsite. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:313-24. [PMID: 11904227 DOI: 10.1016/s0167-4838(01)00323-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Unité d'Enzymologie, La Tronche Cédex, france.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The toxicological database for chlorpyrifos indicates that humans are not more sensitive than laboratory animals to the toxic effects. Although an oral dose of 1 mg/kg-day resulted in measurable levels of chlorpyrifos in the blood, daily dosing at this level from 9 days to 2 years did not affect brain acetylcholinesterase activity (AChE) in laboratory animals. Developmental toxicity did not occur at doses below maternal toxicity. Most nonoccupational illnesses resulting from entry into areas treated with chlorpyrifos likely stem from odor, rather than the ability of the organophosphate to inhibit AChE. Based on biological monitoring studies, chronic aggregate nonoccupational exposures to chlorpyrifos ranged from 0.0002 mg/kg-day (adults) to 0.0005 mg/kg-day (infants and small children)-1 order of magnitude less than exposures estimated by standard procedures. Other biological monitoring data indicated that cumulative exposure to all organophosphate pesticides ranged from 0.0003 mg/kg-day (adults) to 0.003 mg/kg-day (children). Considering all these factors, the risks of aggregate, nonoccupational exposure to chlorpyrifos have been overstated by more than a 1000-fold.
Collapse
Affiliation(s)
- R C Cochran
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, California 95812, USA.
| |
Collapse
|
47
|
García-Ayllón MS, Sáez-Valero J, Muñoz-Delgado E, Vidal CJ. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma. Neuroscience 2002; 107:199-208. [PMID: 11731094 DOI: 10.1016/s0306-4522(01)00355-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain and non-brain tumors contain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) transcripts and enzyme activity. AChE and BuChE occur in tissues as a set of molecular components, whose distribution in a cyst fluid from a human astrocytoma we investigated. The fluid displayed high BuChE and low AChE activities. Three types of cholinesterase (ChE) tetramers were identified in the fluid by means of sedimentation analyses and assays with specific inhibitors, and their sedimentation coefficients were 11.7S (ChE-I), 11.1S (ChE-II), and 10.5S (ChE-III). ChE-I was unretained, ChE-II was weakly retained and ChE-III was adsorbed to edrophonium-agarose, confirming the AChE nature of the latter. ChE-I and ChE-II tetramers contained BuChE subunits as shown by their binding with an antiserum against BuChE. The ChE activity of the immunocomplexes made with ChE-II and anti-BuChE antibodies decreased with the AChE inhibitor BW284c51, revealing that ChE-II was made of AChE and BuChE subunits, in contrast to ChE-I, which only contained BuChE subunits. The binding of an anti-AChE antibody (AE1) to ChE-II and ChE-III, but not to ChE-I, demonstrated the hybrid composition of ChE-II. A substantial fraction of the AChE tetramers and dimers of astrocytomas and oligodendrogliomas bound both to anti-AChE and anti-BuChE antibodies, which revealed a mixed composition of AChE and BuChE subunits in them. The AChE components of brain, meningiomas and neurinomas were only recognized by AE1. In conclusion, our results demonstrate that aberrant ChE oligomers consisting of AChE and BuChE subunits are generated in astrocytomatous cyst and gliomas but not in brain, meningiomas or neurinomas.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
48
|
Dam K, Seidler FJ, Slotkin TA. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 121:179-87. [PMID: 10876030 DOI: 10.1016/s0165-3806(00)00044-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The widespread use of chlorpyrifos has raised concern about the potential consequences of fetal and childhood exposure. Previous studies have shown that apparently subtoxic doses of chlorpyrifos are nevertheless capable of affecting brain development by inhibiting mitosis, eliciting apoptosis, and altering neuronal activity and reactivity. To determine whether these biochemical changes elicit behavioral abnormalities, we evaluated coordination skills and open field behaviors in developing rats. Administration of 1 mg/kg s.c. of chlorpyrifos on postnatal (PN) days 1-4 elicited deficits in reflex righting on PN3-4 and in geotaxic responses on PN5-8, an effect that was specific to females. However, the ontogeny of more complex behaviors indicated a subsequent selectivity toward males. In the periweaning period, open-field locomotor activity and rearing were markedly reduced in male rats that had been exposed to chlorpyrifos on PN1-4, whereas no effect was detected in females. The gender-selective behavioral effects were associated with greater sensitivity of males to inhibition of cholinesterase in the first few hours after chlorpyrifos treatment. In contrast to the effects seen after administration on PN1-4, shifting the period of chlorpyrifos exposure to PN11-14 had a much less notable effect, even when higher doses were used: no decreases in locomotor activity and overall increases in rearing and grooming that were not significantly gender-selective. Administration on PN11-14 did not produce differential effects on cholinesterase in males and females. These studies indicate that chlorpyrifos given during a critical neonatal period, even at levels below the threshold for overt toxicity, can elicit both immediate and delayed gender-selective behavioral abnormalities. The ultimate evaluation of the developmental neurotoxicity of chlorpyrifos will thus require long-term assessments of neurobehavioral consequences of exposure during discrete developmental periods.
Collapse
Affiliation(s)
- K Dam
- Box 3813 DUMC, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
49
|
Hayes GM, Fox RM, Cuzner ML, Griffin GE. Human rotation-mediated fetal mixed brain cell aggregate culture: characterization and N-methyl-D-aspartate toxicity. Neurosci Lett 2000; 287:146-50. [PMID: 10854733 DOI: 10.1016/s0304-3940(00)01147-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One difficulty in generating in vitro models of neuropathogenesis lies in maintaining stable proportions of primary neurons within a mixed brain cell population. Rotation-mediated fetal brain aggregate culture has been modified to permit growth of human primary fetal brain cells containing 50 to 60% neurons. After 12 weeks cholinesterase, neuron specific enolase and microtubule-associated protein-2 were demonstrable by biochemical assay and immunocytochemical labelling of cryostat sections of human fetal brain aggregates. Upon exposure to the glutamate agonist; N-methyl-D-aspartate for 7 days at 35 days in vitro neuron specific enolase and cholinesterase decreased to 60 to 70% of untreated levels. Glial fibrillary acidic protein did not change significantly but swollen astrocytes were seen in labelled sections of treated aggregates. This method is useful to study human neurotoxicity and degeneration in mixed glial culture without astrocyte overgrowth.
Collapse
Affiliation(s)
- G M Hayes
- Department of Infectious Diseases, St George's Hospital Medical School, London, UK.
| | | | | | | |
Collapse
|
50
|
Monnet-Tschudi F, Zurich MG, Schilter B, Costa LG, Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol 2000; 165:175-83. [PMID: 10873710 DOI: 10.1006/taap.2000.8934] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Collapse
|