1
|
Barton RD, Tregoning JS, Wang Z, Gonçalves-Carneiro D, Patel R, McKay PF, Shattock RJ. A sort and sequence approach to dissect heterogeneity of response to a self-amplifying RNA vector in a novel human muscle cell line. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102400. [PMID: 39759876 PMCID: PMC11700297 DOI: 10.1016/j.omtn.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Self-amplifying RNA (saRNA) is an extremely promising platform because it can produce more protein for less RNA. We used a sort and sequence approach to identify host cell factors associated with transgene expression from saRNA; the hypothesis was that cells with different expression levels would have different transcriptomes. We tested this in CDK4/hTERT immortalized human muscle cells transfected with Venezuelan equine encephalitis virus (VEEV)-derived saRNA encoding GFP. Cells with the highest expression levels had very high levels of transgene mRNA (5%-10% total reads); the cells sorted with low and negative levels of GFP protein also had detectable levels of both VEEV and GFP RNA. To understand host responses, we performed RNA sequencing. Differentially expressed gene (DEG) patterns varied with GFP expression; GFP high cells had many more DEGs, which were associated with protein synthesis and cell metabolism. Comparing profiles by an unsupervised approach revealed that negative cells expressed higher levels of cell-intrinsic immunity genes such as IFIT1, MX1, TLR3, and MyD88. To explore the role of interferon, cells were treated with the Jak inhibitor ruxolitinib. This reduced the number of DEGs, but differences between cells sorted by expression level remained. These studies demonstrate the complex interplay of factors, some immune related, affecting saRNA transgenes.
Collapse
Affiliation(s)
- Rachel D. Barton
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Radhika Patel
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
2
|
Lin MH, Maniam P, Li D, Tang B, Bishop CR, Suhrbier A, Earl LW, Tayyar Y, McMillan NA, Li L, Harrich D. Harnessing defective interfering particles and lipid nanoparticles for effective delivery of an anti-dengue virus RNA therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102424. [PMID: 39817192 PMCID: PMC11733052 DOI: 10.1016/j.omtn.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA. Both DIPs and DI290-loaded LNPs (LNP-290) effectively suppressed DENV infection in human primary monocyte-derived macrophages (MDMs), THP-1 macrophages, and fibroblasts-natural DENV targets. Inhibiting interferon (IFN) signaling with a Janus kinase 1/2 inhibitor or an IFN-α/β receptor 1 (IFNAR1)-binding antibody blocked DIP and LNP-290 antiviral activity. LNP-290 demonstrated a greater than log10 inhibition of DENV viral loads in IFNAR-deficient (Ifnar -/- ) and IFN regulatory factor (IRF) 3 and 7 double knockout (Irf3/7 -/- ) mice. Pathway analysis of RNA sequencing data from LNP-treated C57BL/6J mice, Ifnar -/- mice, and human MDMs treated with LNPs or DENV DIPs indicated DI290 treatment enhanced IFN responses, suggesting IFN-λ and IFN-γ provided antiviral activity when IFN-α/β responses were diminished. While viral interference by DI290 is possible, results did not support RNA replication competition as an inhibition mechanism. These findings suggest that DI290 may be a promising DENV therapeutic by activating the innate immune system.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pramila Maniam
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Dongsheng Li
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Bing Tang
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Cameron R. Bishop
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Andreas Suhrbier
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| | - Lucy Wales- Earl
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yaman Tayyar
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Prorenata Biotech, Molendinar, QLD 4214, Australia
| | - Nigel A.J. McMillan
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD 4072, Australia
| | - David Harrich
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Cyr Y, Gourvest M, Ciabattoni GO, Zhang T, Newman AA, Zahr T, Delbare S, Schlamp F, Dittmann M, Moore KJ, van Solingen C. lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages. Life Sci Alliance 2025; 8:e202403021. [PMID: 39773901 PMCID: PMC11707381 DOI: 10.26508/lsa.202403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
Collapse
Affiliation(s)
- Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Tracy Zhang
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexandra Ac Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Tarik Zahr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sofie Delbare
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Kathryn J Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Rahlf CR, Tarakanova VL. Role of Interferon Regulatory Factor 1 in acute and chronic virus infections. Virology 2025; 603:110386. [PMID: 39754861 PMCID: PMC11788042 DOI: 10.1016/j.virol.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host. Taking advantage of mouse models of global or cell type-specific IRF-1 deficiency, recent studies demonstrate intriguing virus- and cell type-specific functions of IRF-1 during in vivo infection, underlining the complexity of this ancient transcription factor. Here, we review the role of IRF-1 during acute and chronic viral infections of an intact host, with particular focus on relating observations found in mouse models to those observed in a recent study of pediatric patients with IRF-1 insufficiency. By appreciating the complexity of IRF-1 in the immune response, we highlight several virus- and cell type-specific functions of IRF-1 in contributing to host antiviral immunity.
Collapse
Affiliation(s)
- Cade R Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Rundberg Nilsson AJ, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress responsiveness to support hematopoietic stem cell maintenance. SCIENCE ADVANCES 2023; 9:eadg5391. [PMID: 37889967 PMCID: PMC10610924 DOI: 10.1126/sciadv.adg5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation. Our findings demonstrate that the loss of IRF1 from mouse HSCs significantly impairs self-renewal, increases stress-induced proliferation, and confers resistance to apoptosis. In addition, given the frequent abnormal expression of IRF1 in leukemia, we explored the potential of IRF1 expression level as a stratification marker for human acute myeloid leukemia. We show that IRF1-based stratification identifies distinct cancer-related signatures in patient subgroups. These findings establish IRF1 as a pivotal HSC controller and provide previously unknown insights into HSC regulation, with potential implications to IRF1 functions in the context of leukemia.
Collapse
Affiliation(s)
- Alexandra J. S. Rundberg Nilsson
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jörg Cammenga
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
9
|
Friedel CC. Computational Integration of HSV-1 Multi-omics Data. Methods Mol Biol 2022; 2610:31-48. [PMID: 36534279 DOI: 10.1007/978-1-0716-2895-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functional genomics techniques based on next-generation sequencing provide new avenues for studying host responses to viral infections at multiple levels, including transcriptional and translational processes and chromatin organization. This chapter provides an overview on the computational integration of multiple types of "omics" data on lytic herpes simplex virus 1 (HSV-1) infection. It summarizes methods developed and applied in two publications that combined 4sU-seq for studying de novo transcription, ribosome profiling for investigating active translation, RNA-seq of subcellular RNA fractions for determining subcellular location of transcripts, and ATAC-seq for profiling chromatin accessibility genome-wide. These studies revealed an unprecedented disruption of transcription termination in HSV-1 infection resulting in widespread read-through transcription beyond poly(A) sites for most but not all host genes. This impacts chromatin architecture by increasing chromatin accessibility selectively in downstream regions of affected genes. In this way, computational integration of multi-omics data identified novel and unsuspected mechanisms at play in lytic HSV-1 infection.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
10
|
Zhou S, Lu C, Liu G, Hu Q, Yang J. IRF1 expression might be a biomarker of CD8+ T cell infiltration in cutaneous melanoma. Expert Rev Clin Immunol 2022; 18:1319-1327. [PMID: 36300336 DOI: 10.1080/1744666x.2022.2141228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aimed to explore the expression profile of interferon regulatory factor (IRF) genes in skin cutaneous melanoma (SKCM), their association with CD8 + T cell infiltration, and the potential regulatory network in melanoma and non-melanoma cells. METHODS Bioinformatic analysis was conducted using the SKCM subset of The Cancer Genome Atlas (TCGA) Pan-Cancer, Genotype-Tissue Expression Project (GTEx), and single-cell RNA-seq data from the Human Protein Atlas and Jerby-Arnon et al. 2018's dataset. RESULTS IRF1 expression is robustly associated with moderate to strong CD8 + T cell infiltration in the tumor microenvironment. It is ubiquitously expressed in tumor and non-tumor cells in melanoma. Melanoma tumor cells and macrophages had 16/36 and 9/27 cell-specific IRF1-correlated genes, respectively. The methylation of four CpG sites (cg00255919, cg21138405, cg15375424, and cg27587780) within the IRF1 gene locus showed moderate to strong negative correlations with IRF1 expression. CONCLUSION IRF1 expression might serve as a biomarker indicating CD8 + T cell infiltration in skin melanoma. It might exert different regulatory effects in melanoma and non-melanoma cells in the tumor microenvironment. Cg00255919, cg21138405, cg15375424, and cg27587780 are four critical CpG sites that might modulate the transcription of IRF1.
Collapse
Affiliation(s)
- Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunli Lu
- Department of Dermatology, the Second People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Gan Liu
- Department of Cosmetic Dermatology, the First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Qinsheng Hu
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Alomari N, Totonchy J. Host-Level Susceptibility and IRF1 Expression Influence the Ability of IFN-γ to Inhibit KSHV Infection in B Lymphocytes. Viruses 2022; 14:2295. [PMID: 36298850 PMCID: PMC9607942 DOI: 10.3390/v14102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with vascular endothelial cell tumor, Kaposi's sarcoma (KS) and lymphoproliferative disorder, multicentric Castleman's disease (MCD), primary effusion lymphoma (PEL) and KSHV inflammatory cytokine syndrome (KICS). Dysregulation of proinflammatory cytokines is found in most KSHV associated diseases. However, little is known about the role of host microenvironment in the regulation of KSHV establishment in B cells. In the present study, we demonstrated that IFN-γ has a strong inhibitory effect on KSHV infection but only in a subset of tonsil-derived lymphocyte samples that are intrinsically more susceptible to infection, contain higher proportions of naïve B cells, and display increased levels of IRF1 and STAT1-pY701. The effect of IFN-γ in responsive samples was associated with increased frequencies of germinal center B cells (GCB) and decreased infection of plasma cells, suggesting that IFN-γ-mediated modulation of viral dynamics in GC can inhibit the establishment of KSHV infection.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
13
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev 2022; 64:1-6. [PMID: 35090813 DOI: 10.1016/j.cytogfr.2022.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Klein RS. Encephalitic Arboviruses of Africa: Emergence, Clinical Presentation and Neuropathogenesis. Front Immunol 2022; 12:769942. [PMID: 35003087 PMCID: PMC8733932 DOI: 10.3389/fimmu.2021.769942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many mosquito-borne viruses (arboviruses) are endemic in Africa, contributing to systemic and neurological infections in various geographical locations on the continent. While most arboviral infections do not lead to neuroinvasive diseases of the central nervous system, neurologic diseases caused by arboviruses include flaccid paralysis, meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and post-infectious autoimmune or memory disorders. Here we review endemic members of the Flaviviridae and Togaviridae families that cause neurologic infections, their neuropathogenesis and host neuroimmunological responses in Africa. We also discuss the potential for neuroimmune responses to aide in the development of new diagnostics and therapeutics, and current knowledge gaps to be addressed by arbovirus research.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Neuroscience, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Shiftless inhibits flavivirus replication in vitro and is neuroprotective in a mouse model of Zika virus pathogenesis. Proc Natl Acad Sci U S A 2021; 118:2111266118. [PMID: 34873063 DOI: 10.1073/pnas.2111266118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl -/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.
Collapse
|
18
|
Kaur H, Sarma P, Bhattacharyya A, Sharma S, Chhimpa N, Prajapat M, Prakash A, Kumar S, Singh A, Singh R, Avti P, Thota P, Medhi B. Efficacy and safety of dihydroorotate dehydrogenase (DHODH) inhibitors "leflunomide" and "teriflunomide" in Covid-19: A narrative review. Eur J Pharmacol 2021; 906:174233. [PMID: 34111397 PMCID: PMC8180448 DOI: 10.1016/j.ejphar.2021.174233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/12/2023]
Abstract
Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 μmol/L) and teriflunomide (EC50 26 μmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Rahul Singh
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Prasad Thota
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
19
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
20
|
Loevenich S, Spahn AS, Rian K, Boyartchuk V, Anthonsen MW. Human Metapneumovirus Induces IRF1 via TANK-Binding Kinase 1 and Type I IFN. Front Immunol 2021; 12:563336. [PMID: 34248923 PMCID: PMC8264192 DOI: 10.3389/fimmu.2021.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
The innate immune and host-protective responses to viruses, such as the airway pathogen human metapneumovirus (HMPV), depend on interferons (IFNs) that is induced through TANK-binding kinase 1 (TBK1) and IFN regulatory factors (IRFs). The transcription factor IRF1 is important for host resistance against several viruses and has a key role in induction of IFN-λ at mucosal surfaces. In most cell types IRF1 is expressed at very low levels, but its mRNA is rapidly induced when the demand for IRF1 activity arises. Despite general recognition of the importance of IRF1 to antiviral responses, the molecular mechanisms by which IRF1 is regulated during viral infections are not well understood. Here we identify the serine/threonine kinase TBK1 and IFN-β as critical regulators of IRF1 mRNA and protein levels in human monocyte-derived macrophages. We find that inhibition of TBK1 activity either by the semi-selective TBK1/IKKε inhibitor BX795 or by siRNA-mediated knockdown abrogates HMPV-induced expression of IRF1. Moreover, we show that canonical NF-κB signaling is involved in IRF1 induction and that the TBK1/IKKε inhibitor BX795, but not siTBK1 treatment, impairs HMPV-induced phosphorylation of the NF-κB subunit p65. At later time-points of the infection, IRF1 expression depended heavily on IFN-β-mediated signaling via the IFNAR-STAT1 pathway. Hence, our results suggest that TBK1 activation and TBK1/IKKε-mediated phosphorylation of the NF-κB subunit p65 control transcription of IRF1. Our study identifies a novel mechanism for IRF1 induction in response to viral infection of human macrophages that could be relevant not only to defense against HMPV, but also to other viral, bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Simon Loevenich
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alix S Spahn
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristin Rian
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Victor Boyartchuk
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St Olav Hospital HF, Trondheim, Norway.,Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Marit Walbye Anthonsen
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
21
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
22
|
Li W, Ling L, Wang Z, Liang Y, Huang W, Nie P, Huang B. Functional domains and amino acid residues of Japanese eel IRF1, AjIRF1, regulate its nuclear import and IFN/Mx promoter activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103923. [PMID: 33186561 DOI: 10.1016/j.dci.2020.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are a family of transcriptional factors capable of regulating the expression of distinct subsets of interferon (IFN)-stimulated genes by binding to their promoters. IRF1 was the first member identified for its ability to regulate the IFNβ gene and has now been revealed to exhibit remarkable functional diversity in the regulation of different cellular responses. In the present study, the IRF1 gene was identified and characterized in Japanese eel, Anguilla japonica (AjIRF1). The open reading frame of AjIRF1 was 804 bp in length, encoding a protein of 267 amino acids (aa) that encompasses a conserved N-terminal DNA binding domain (DBD). Sequence alignment shows the presence of six highly conserved tryptophan (W) residues in the DBD of IRF1, IRF2 and IRF11, while other IRF members have only five tryptophans. Expression analysis showed that AjIRF1 was significantly upregulated in all tested organs/tissues in response to Poly I:C stimulation or Edwardsiella tarda infection. Furthermore, the functional activity of AjIRF1 was confirmed in driving the transcription of AjIFN promoters, which depends on the highly conserved residues within DBD. Subcellular distribution analysis revealed that AjIRF1 was localized exclusively in the nucleus, which is cooperatively regulated by a bipartite NLS embedded within the DBD and a monopartite NLS located immediately downstream of the DBD. Taken together, this study presents the expression profile of AjIRF1 and defines the functional motifs required for its nuclear import and its role in activating IFN promoters, thus providing helpful information for further research on the regulatory mechanisms of teleost IRF1.
Collapse
Affiliation(s)
- Wenxing Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ling
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhixuan Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ying Liang
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China, Xiamen, 361021, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China, Xiamen, 361021, China
| | - Pin Nie
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China, Xiamen, 361021, China.
| |
Collapse
|
23
|
Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 2020; 21:137-150. [PMID: 32782357 PMCID: PMC7418297 DOI: 10.1038/s41577-020-0391-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.
Collapse
|
24
|
Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nat Commun 2020; 11:2953. [PMID: 32528005 PMCID: PMC7289892 DOI: 10.1038/s41467-020-16768-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
The West Africa Ebola outbreak was the largest outbreak ever recorded, with over 28,000 reported infections; this devastating epidemic emphasized the need to understand the mechanisms to counteract virus infection. Here, we screen a library of nearly 400 interferon-stimulated genes (ISGs) against a biologically contained Ebola virus and identify several ISGs not previously known to affect Ebola virus infection. Overexpression of the top ten ISGs attenuates virus titers by up to 1000-fold. Mechanistic studies demonstrate that three ISGs interfere with virus entry, six affect viral transcription/replication, and two inhibit virion formation and budding. A comprehensive study of one ISG (CCDC92) that shows anti-Ebola activity in our screen reveals that CCDC92 can inhibit viral transcription and the formation of complete virions via an interaction with the viral protein NP. Our findings provide insights into Ebola virus infection that could be exploited for the development of therapeutics against this virus. Here, Kuroda et al. screen a library of nearly 400 interferon-stimulated genes (ISGs) and identify several ISGs that inhibit Ebola virus entry, viral transcription/replication, or virion formation. The study provides insights into interactions between Ebola and the host cells.
Collapse
|
25
|
Cheng Y, Wang D, Jiang J, Huang W, Li D, Luo J, Gu W, Mo W, Wang C, Li Y, Gu S, Xu Y. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression. Prostate 2020; 80:640-652. [PMID: 32282098 DOI: 10.1002/pros.23976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Androgen receptor (AR) is crucial for prostate cancer (PCa) initiation and malignant progression. Only half of androgen-responsive genes have been identified as having androgen-responsive elements, suggesting that AR regulates downstream genes through other transcriptional factors. However, whether and how AR regulates the progression via regulating these androgen-responsive genes remains unclear. METHODS Androgen-responsive and activity-changed (AC) transcriptional factors (TFs) were identified based on the time-course gene-expression array and gene promoter regions analysis. The intersection of androgen-responsive and AC TFs was selected the core TFs, which were used to construct the core transcriptional regulatory network. GO enrichment analysis, cell proliferation assays, glycolysis experiments, and reverse transcription polymerase chain reaction analysis were used to analyze and validate the functions of the network. As one of the core TFs, the function and mechanism of IRF1 have been further explored. RESULTS We devised a new integrated approach to select core TFs and construct core transcriptional regulatory network in PCa. The 24 core TFs and core transcriptional regulatory network participate in regulating PCa cell proliferation, RNA splicing, and cancer metabolism. Further validations showed that AR signaling could promote glycolysis via inducing glycolytic enzymes in PCa cells. IRF1, a novel target of AR, served as a tumor suppressor by inhibiting PCa proliferation, cell cycle, and glycolysis. CONCLUSIONS It is the first time to demonstrate the regulating role of the AR-mediated transcriptional regulatory network in a series of important biological processes in PCa cells. IRF1, an AR-regulated TF, acts as tumor suppressor in this core transcriptional regulatory network, which highlights the therapeutic potential of targeting this regulatory network for PCa.
Collapse
Affiliation(s)
- Yihang Cheng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Shanghai, China
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Ferrer MF, Thomas P, López Ortiz AO, Errasti AE, Charo N, Romanowski V, Gorgojo J, Rodriguez ME, Carrera Silva EA, Gómez RM. Junin Virus Triggers Macrophage Activation and Modulates Polarization According to Viral Strain Pathogenicity. Front Immunol 2019; 10:2499. [PMID: 31695702 PMCID: PMC6817498 DOI: 10.3389/fimmu.2019.02499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023] Open
Abstract
The New World arenavirus Junin (JUNV) is the etiological agent of Argentine hemorrhagic fever (AHF). Previous studies of human macrophage infection by the Old-World arenaviruses Mopeia and Lassa showed that while the non-pathogenic Mopeia virus replicates and activates human macrophages, the pathogenic Lassa virus replicates but fails to activate human macrophages. Less is known in regard to the impact of New World arenavirus infection on the human macrophage immune response. Macrophage activation is critical for controlling infections but could also be usurped favoring immune evasion. Therefore, it is crucial to understand how the JUNV infection modulates macrophage plasticity to clarify its role in AHF pathogenesis. With this aim in mind, we compared infection with the attenuated Candid 1 (C#1) or the pathogenic P strains of the JUNV virus in human macrophage cultures. The results showed that both JUNV strains similarly replicated and induced morphological changes as early as 1 day post-infection. However, both strains differentially induced the expression of CD71, the receptor for cell entry, the activation and maturation molecules CD80, CD86, and HLA-DR and selectively modulated cytokine production. Higher levels of TNF-α, IL-10, and IL-12 were detected with C#1 strain, while the P strain induced only higher levels of IL-6. We also found that C#1 strain infection skewed macrophage polarization to M1, whereas the P strain shifted the response to an M2 phenotype. Interestingly, the MERTK receptor, that negatively regulates the immune response, was down-regulated by C#1 strain and up-regulated by P strain infection. Similarly, the target genes of MERTK activation, the cytokine suppressors SOCS1 and SOCS3, were also increased after P strain infection, in addition to IRF-1, that regulates type I IFN levels, which were higher with C#1 compared with P strain infection. Together, this differential activation/polarization pattern of macrophages elicited by P strain suggests a more evasive immune response and may have important implications in the pathogenesis of AHF and underpinning the development of new potential therapeutic strategies.
Collapse
Affiliation(s)
- María F Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Thomas
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Aída O López Ortiz
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina.,Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Andrea E Errasti
- Facultad de Medicina, Instituto de Farmacologia, University of Buenos Aries, Buenos Aires, Argentina
| | - Nancy Charo
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Victor Romanowski
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina.,Global Viral Network, Baltimore, MD, United States
| | - Juan Gorgojo
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - María E Rodriguez
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Eugenio A Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ricardo M Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina.,Global Viral Network, Baltimore, MD, United States
| |
Collapse
|
28
|
Scalf CS, Chariker JH, Rouchka EC, Ashley NT. Transcriptomic analysis of immune response to bacterial lipopolysaccharide in zebra finch (Taeniopygia guttata). BMC Genomics 2019; 20:647. [PMID: 31412766 PMCID: PMC6693190 DOI: 10.1186/s12864-019-6016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the convergence of rapid technological advances in genomics and the maturing field of ecoimmunology, our understanding of the genes that regulate immunity in wild populations is still nascent. Previous work to assess immune function has relied upon relatively crude measures of immunocompetence. However, with next-generation RNA-sequencing, it is now possible to create a profile of gene expression in response to an immune challenge. In this study, captive zebra finch (Taeniopygia guttata; adult males) were challenged with bacterial lipopolysaccharide (LPS) or vehicle to stimulate the innate immune system. 2 hours after injection, birds were euthanized and hypothalami, spleen, and red blood cells (RBCs) were collected. Taking advantage of the fully sequenced genome of zebra finch, total RNA was isolated, sequenced, and partially annotated in these tissue/cells. RESULTS In hypothalamus, there were 707 significantly upregulated transcripts, as well as 564 and 144 in the spleen and RBCs, respectively, relative to controls. Also, 155 transcripts in the hypothalamus, 606 in the spleen, and 61 in the RBCs were significantly downregulated. More specifically, a number of immunity-related transcripts (e.g., IL-1β, RSAD2, SOCS3) were upregulated among tissues/cells. Additionally, transcripts involved in metabolic processes (APOD, LRAT, RBP4) were downregulated. CONCLUSIONS These results suggest a potential trade-off in expression of genes that regulate immunity and metabolism in birds challenged with LPS. This finding is consistent with a hypothermic response to LPS treatment in small birds. Unlike mammals, birds have nucleated RBCs, and these results support a novel transcriptomic response of avian RBCs to immune challenge.
Collapse
Affiliation(s)
- Cassandra S Scalf
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101-1800, USA
| | - Julia H Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101-1800, USA.
| |
Collapse
|
29
|
Interferon gamma inhibits transmissible gastroenteritis virus infection mediated by an IRF1 signaling pathway. Arch Virol 2019; 164:2659-2669. [PMID: 31385116 PMCID: PMC7086799 DOI: 10.1007/s00705-019-04362-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023]
Abstract
Interferon gamma (IFN-γ) is best known for its ability to regulate host immune responses; however, its direct antiviral activity is less well studied. Transmissible gastroenteritis virus (TGEV) is an economically important swine enteric coronavirus and causes acute diarrhea in piglets. At present, little is known about the function of IFN-γ in the control of TGEV infection. In this study, we demonstrated that IFN-γ inhibited TGEV infection directly in ST cells and intestine epithelial IPEC-J2 cells and that the anti-TGEV activity of IFN-γ was independent of IFN-α/β. Moreover, IFN-γ suppressed TGEV infection in ST cells more efficiently than did IFN-α, and the combination of IFN-γ and IFN-α displayed a synergistic effect against TGEV. Mechanistically, using overexpression and functional knockdown experiments, we demonstrated that porcine interferon regulatory factor 1 (poIRF1) elicited by IFN-γ primarily mediated IFN-γ signaling cascades and the inhibition of TGEV infection by IFN-γ. Importantly, we found that TGEV elevated the expression of poIRF1 and IFN-γ in infected small intestines and peripheral blood mononuclear cells. Thus, IFN-γ plays a crucial role in curtailing enteric coronavirus infection and may serve as an effective prophylactic and/or therapeutic agent against TGEV infection.
Collapse
|
30
|
Nair S, Kim DS, Perricone J, Kundaje A. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Bioinformatics 2019; 35:i108-i116. [PMID: 31510655 PMCID: PMC6612838 DOI: 10.1093/bioinformatics/btz352] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MOTIVATION Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. RESULTS We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/kundajelab/ChromDragoNN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Daniel S Kim
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Jacob Perricone
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Huang Z, Zak J, Pratumchai I, Shaabani N, Vartabedian VF, Nguyen N, Wu T, Xiao C, Teijaro JR. IL-27 promotes the expansion of self-renewing CD8 + T cells in persistent viral infection. J Exp Med 2019; 216:1791-1808. [PMID: 31164392 PMCID: PMC6683984 DOI: 10.1084/jem.20190173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
CXCR5+ TCF1+ CD8+ T cells sustain responses during persistent viral infection and mediate the proliferative burst following anti-PD1 treatment. Huang et al. show that IL-27 supports rapid division of these cells by competing with type 1 interferon for STAT1, driving IRF1 expression and preventing cell death. Chronic infection and cancer are associated with suppressed T cell responses in the presence of cognate antigen. Recent work identified memory-like CXCR5+ TCF1+ CD8+ T cells that sustain T cell responses during persistent infection and proliferate upon anti-PD1 treatment. Approaches to expand these cells are sought. We show that blockade of interferon type 1 (IFN-I) receptor leads to CXCR5+ CD8+ T cell expansion in an IL-27– and STAT1-dependent manner. IFNAR1 blockade promoted accelerated cell division and retention of TCF1 in virus-specific CD8+ T cells. We found that CD8+ T cell–intrinsic IL-27 signaling safeguards the ability of TCF1hi cells to maintain proliferation and avoid terminal differentiation or programmed cell death. Mechanistically, IL-27 endowed rapidly dividing cells with IRF1, a transcription factor that was required for sustained division in a cell-intrinsic manner. These findings reveal that IL-27 opposes IFN-I to uncouple effector differentiation from cell division and suggest that IL-27 signaling could be exploited to augment self-renewing T cells in chronic infections and cancer.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Namir Shaabani
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
32
|
Hassert M, Brien JD, Pinto AK. Mouse Models of Heterologous Flavivirus Immunity: A Role for Cross-Reactive T Cells. Front Immunol 2019; 10:1045. [PMID: 31143185 PMCID: PMC6520664 DOI: 10.3389/fimmu.2019.01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Most of the world is at risk of being infected with a flavivirus such as dengue virus, West Nile virus, yellow fever virus, Japanese encephalitis virus, tick-borne encephalitis virus, and Zika virus, significantly impacting millions of lives. Importantly, many of these genetically similar viruses co-circulate within the same geographic regions, making it likely for individuals living in areas of high flavivirus endemicity to be infected with multiple flaviviruses during their lifetime. Following a flavivirus infection, a robust virus-specific T cell response is generated and the memory recall of this response has been demonstrated to provide long-lasting immunity, protecting against reinfection with the same pathogen. However, multiple studies have shown that this flavivirus specific T cell response can be cross-reactive and active during heterologous flavivirus infection, leading to the question: How does immunity to one flavivirus shape immunity to the next, and how does this impact disease? It has been proposed that in some cases unfavorable disease outcomes may be caused by lower avidity cross-reactive memory T cells generated during a primary flavivirus infection that preferentially expand during a secondary heterologous infection and function sub optimally against the new pathogen. While in other cases, these cross-reactive cells still have the potential to facilitate cross-protection. In this review, we focus on cross-reactive T cell responses to flaviviruses and the concepts and consequences of T cell cross-reactivity, with particular emphasis linking data generated using murine models to our new understanding of disease outcomes following heterologous flavivirus infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
33
|
Stoltz KP, Jondle CN, Pulakanti K, Sylvester PA, Urrutia R, Rao S, Tarakanova VL. Tumor suppressor Interferon Regulatory Factor 1 selectively blocks expression of endogenous retrovirus. Virology 2019; 526:52-60. [PMID: 30342302 PMCID: PMC6875439 DOI: 10.1016/j.virol.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023]
Abstract
Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.
Collapse
Affiliation(s)
- K P Stoltz
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - C N Jondle
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - K Pulakanti
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States
| | - P A Sylvester
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - R Urrutia
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - S Rao
- Blood Research Institute, BloodCenter of Wisconsin, a Part of Versiti, 8727 West Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - V L Tarakanova
- Microbiology and Immunology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, United States; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.
| |
Collapse
|
34
|
Vig PJS, Lu D, Paul AM, Kuwar R, Lopez M, Stokic DS, Leis AA, Garrett MR, Bai F. Differential Expression of Genes Related to Innate Immune Responses in Ex Vivo Spinal Cord and Cerebellar Slice Cultures Infected with West Nile Virus. Brain Sci 2018; 9:brainsci9010001. [PMID: 30586874 PMCID: PMC6356470 DOI: 10.3390/brainsci9010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) infection results in a spectrum of neurological symptoms, ranging from a benign fever to severe WNV neuroinvasive disease with high mortality. Many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. While neurons are a main target of WNV, other cell types, especially astrocytes, play an important role in promoting WNV-mediated central nervous system (CNS) damage. Conversely, it has been shown that cultured primary astrocytes secrete high levels of interferons (IFNs) immediately after WNV exposure to protect neighboring astrocytes, as well as neurons. However, how intrinsic responses to WNV in specific cell types and different regions of the brain modify immune protection is not fully understood. Here, we used a mouse ex vivo spinal cord slice culture (SCSC) and cerebellar slice culture (CSC) models to determine the innate immune responses specific to the CNS during WNV infection. Slices were prepared from the spinal cord and cerebellar tissue of 7–9-day-old mouse pups. Four-day-old SCSC or CSC were infected with 1 × 103 or 1 × 105 PFU of WNV, respectively. After 12 h exposure to WNV and 3 days post-infection in normal growth media, the pooled slice cultures were processed for total RNA extraction and for gene expression patterns using mouse Affymetrix arrays. The expression patterns of a number of genes were significantly altered between the mock- and WNV-treated groups, both in the CSCs and SCSCs. However, distinct differences were observed when CSC data were compared with SCSC. CSCs showed robust induction of interferons (IFNs), IFN-stimulated genes (ISGs), and regulatory factors. Some of the antiviral genes related to IFN were upregulated more than 25-fold in CSCs as compared to mock or SCSC. Though SCSCs had twice the number of dysregulated genes, as compared CSCs, they exhibited a much subdued IFN response. In addition, SCSCs showed astrogliosis and upregulation of astrocytic marker genes. In sum, our results suggest that early anti-inflammatory response to WNV infection in CSCs may be due to large population of distinct astrocytic cell types, and lack of those specialized astrocytes in SCSC may make spinal cord cells more susceptible to WNV damage. Further, the understanding of early intrinsic immune response events in WNV-infected ex vivo culture models could help develop potential therapies against WNV.
Collapse
Affiliation(s)
- Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Deyin Lu
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Amber M Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Ram Kuwar
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Maria Lopez
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Dobrivoje S Stokic
- Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| | - Michael R Garrett
- Experimental Therapeutics and Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Fengwei Bai
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
35
|
Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018; 29:384-407. [PMID: 30167843 PMCID: PMC7614898 DOI: 10.1007/s00335-018-9775-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging pathogens responsible for widespread infections with consequences ranging from asymptomatic seroconversion to severe clinical diseases and congenital developmental deficits. This variability is due to multiple factors including host genetic determinants, the role of which has been investigated in mouse models and human genetic studies. In this review, we provide an overview of the host genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses infections in mice and humans.
Collapse
Affiliation(s)
- Caroline Manet
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Claude Roth
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Tineke Cantaert
- Immunology Group, Institut Pasteur du Cambodge, International Network of Pasteur Institutes, Phnom Penh, 12201, Cambodia
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France.
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
36
|
Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, Day J, Greenbaum J, Glass CK, Diamond MS, Shresta S. An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses. Cell Rep 2018; 21:1600-1612. [PMID: 29117564 DOI: 10.1016/j.celrep.2017.10.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023] Open
Abstract
Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1-/-) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3-/-Irf5-/-Irf7-/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Emily M Plummer
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Edward A Vizcarra
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Nicholas Sheets
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Yunichel Joo
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - William Tang
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Jeremy Day
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Jay Greenbaum
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology and Immunology, and Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sujan Shresta
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| |
Collapse
|
37
|
Effects of prenatal exposure to triclosan on the liver transcriptome in chicken embryos. Toxicol Appl Pharmacol 2018; 347:23-32. [DOI: 10.1016/j.taap.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
38
|
Hennig T, Michalski M, Rutkowski AJ, Djakovic L, Whisnant AW, Friedl MS, Jha BA, Baptista MAP, L'Hernault A, Erhard F, Dölken L, Friedel CC. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog 2018; 14:e1006954. [PMID: 29579120 PMCID: PMC5886697 DOI: 10.1371/journal.ppat.1006954] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
Lytic herpes simplex virus 1 (HSV-1) infection triggers disruption of transcription termination (DoTT) of most cellular genes, resulting in extensive intergenic transcription. Similarly, cellular stress responses lead to gene-specific transcription downstream of genes (DoG). In this study, we performed a detailed comparison of DoTT/DoG transcription between HSV-1 infection, salt and heat stress in primary human fibroblasts using 4sU-seq and ATAC-seq. Although DoTT at late times of HSV-1 infection was substantially more prominent than DoG transcription in salt and heat stress, poly(A) read-through due to DoTT/DoG transcription and affected genes were significantly correlated between all three conditions, in particular at earlier times of infection. We speculate that HSV-1 either directly usurps a cellular stress response or disrupts the transcription termination machinery in other ways but with similar consequences. In contrast to previous reports, we found that inhibition of Ca2+ signaling by BAPTA-AM did not specifically inhibit DoG transcription but globally impaired transcription. Most importantly, HSV-1-induced DoTT, but not stress-induced DoG transcription, was accompanied by a strong increase in open chromatin downstream of the affected poly(A) sites. In its extent and kinetics, downstream open chromatin essentially matched the poly(A) read-through transcription. We show that this does not cause but rather requires DoTT as well as high levels of transcription into the genomic regions downstream of genes. This raises intriguing new questions regarding the role of histone repositioning in the wake of RNA Polymerase II passage downstream of impaired poly(A) site recognition. Recently, we reported that productive herpes simplex virus 1 (HSV-1) infection leads to disruption of transcription termination (DoTT) of most but not all cellular genes. This results in extensive transcription beyond poly(A) sites and into downstream genes. Subsequently, cellular stress responses were found to trigger transcription downstream of genes (DoG) for >10% of protein-coding genes. Here, we directly compared the two phenomena in HSV-1 infection, salt and heat stress and observed significant overlaps between the affected genes. We speculate that HSV-1 either directly usurps a cellular stress response or disrupts the transcription termination machinery in other ways with similar consequences. In addition, we show that inhibition of calcium signaling does not specifically inhibit stress-induced DoG transcription but globally impairs RNA polymerase I, II and III transcription. Finally, HSV-1-induced DoTT, but not stress-induced DoG transcription, was accompanied by a strong increase in chromatin accessibility downstream of affected poly(A) sites. In its kinetics and extent, this essentially matched poly(A) read-through transcription but does not cause but rather requires DoTT. We hypothesize that this results from impaired histone repositioning when RNA Polymerase II enters downstream intergenic regions of genes affected by DoTT.
Collapse
Affiliation(s)
- Thomas Hennig
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Andrzej J Rutkowski
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lara Djakovic
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Adam W Whisnant
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Marie-Sophie Friedl
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Bhaskar Anand Jha
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Marisa A P Baptista
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Anne L'Hernault
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Florian Erhard
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institut für Virologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
39
|
Dobson CC, Naing T, Beug ST, Faye MD, Chabot J, St-Jean M, Walker DE, LaCasse EC, Stojdl DF, Korneluk RG, Holcik M. Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget 2018; 8:3495-3508. [PMID: 27966453 PMCID: PMC5356898 DOI: 10.18632/oncotarget.13849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a neoplasm characterized by undifferentiated myoblasts, is the most common soft tissue tumour in children. Therapeutic resistance is common in RMS and is often caused by acquired defects in the cellular apoptotic program. Smac mimetic compounds (SMCs) are a novel class of inhibitor of apoptosis (IAP) antagonists that are currently under clinical development as cancer therapeutics. We previously reported that cIAP1 is overexpressed in human primary RMS tumours and in patient-derived RMS cell lines where it drives resistance to apoptosis. In this study, we investigated whether inflammatory cytokine production triggered by activators of innate immunity synergizes with LCL161 to induce bystander killing of RMS cells in vitro and in vivo. Indeed, we show that innate immune stimuli (oncolytic virus (VSVΔ51-GFP), interferon γ (IFNγ), and tumour necrosis factor-like weak inducer of apoptosis (TWEAK)) combine with SMCs in vitro to reduce cell viability in the Kym-1 RMS cancer cell line. Other human RMS cell lines (RH36, RH41, RD, RH18, RH28, and RH30) and the murine RMS cell line 76-9 are resistant to treatment with LCL161 alone or in combination with immune stimulants in in vitro cell viability assays. In contrast, we report that the combination of LCL161 and VSVΔ51-GFP reduces tumour volume and prolongs survival in a 76-9 syngeneic murine model. Our results support further exploration of the combined use of IAP antagonists and innate immune stimuli as a therapeutic approach for RMS cancers.
Collapse
Affiliation(s)
- Christine C Dobson
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thet Naing
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Shawn T Beug
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Mame D Faye
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Janelle Chabot
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Martin St-Jean
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Danielle E Walker
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Eric C LaCasse
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - David F Stojdl
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robert G Korneluk
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Martin Holcik
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Gun SY, Claser C, Teo TH, Howland SW, Poh CM, Chye RRY, Ng LFP, Rénia L. Interferon regulatory factor 1 is essential for pathogenic CD8+ T cell migration and retention in the brain during experimental cerebral malaria. Cell Microbiol 2018; 20:e12819. [PMID: 29281764 DOI: 10.1111/cmi.12819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/15/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Abstract
Host immune response has a key role in controlling the progression of malaria infection. In the well-established murine model of experimental cerebral malaria (ECM) with Plasmodium berghei ANKA infection, proinflammatory Th1 and CD8+ T cell response are essential for disease development. Interferon regulatory factor 1 (IRF1) is a transcription factor that promotes Th1 responses, and its absence was previously shown to protect from ECM death. Yet the exact mechanism of protection remains unknown. Here we demonstrated that IRF1-deficient mice (IRF1 knockout) were protected from ECM death despite displaying early neurological signs. Resistance to ECM death was a result of reduced parasite sequestration and pathogenic CD8+ T cells in the brain. Further analysis revealed that IRF1 deficiency suppress interferon-γ production and delayed CD8+ T cell proliferation. CXCR3 expression was found to be decreased in pathogenic CD8+ T cells, which limited their migration to the brain. In addition, reduced expression of adhesion molecules by brain endothelial cells hampered leucocyte retention in the brain. Taken together, these factors limited sequestration of pathogenic CD8+ T cells and consequently its ability to induce extensive damage to the blood-brain barrier.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Teck Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rebecca Ren Ying Chye
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Science, National University of Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
41
|
Abstract
Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| |
Collapse
|
42
|
Kuriakose T, Zheng M, Neale G, Kanneganti TD. IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1489-1495. [PMID: 29321274 DOI: 10.4049/jimmunol.1701538] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms, including the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin domain containing 3 (NLRP3) inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. In this study, we demonstrate the role of IFN regulatory factor (IRF)1 in promoting NLRP3 inflammasome activation and cell death during IAV infection. Both inflammasome-dependent responses and induction of apoptosis and necroptosis are reduced in cells lacking IRF1 infected with IAV. The observed reduction in inflammasome activation and cell death in IRF1-deficient cells during IAV infection correlates with reduced levels of Z-DNA binding protein 1 (ZBP1), a key molecule mediating IAV-induced inflammatory and cell death responses. We further demonstrate IRF1 as a transcriptional regulator of ZBP1. Overall, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
43
|
Li XQ, Li XN, Liang JJ, Cai XB, Tao Q, Li YX, Qin Q, Xu SP, Luo TR. IRF1 up-regulates isg15 gene expression in dsRNA stimulation or CSFV infection by targeting nucleotides -487 to -325 in the 5' flanking region. Mol Immunol 2018; 94:153-165. [PMID: 29324236 DOI: 10.1016/j.molimm.2017.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is heavily involved in immune response elicitation. As an important member of interferon regulatory factor (IRF) family, IRF1 can activate the expression of multiple genes, including the human optineurin gene (Sudhakar et al., 2013). In this study, a sequence in the promoter region of the optineurin gene was compared to the 5' flanking region of the porcine isg15 gene. Porcine IRF1 also possesses antiviral activity against several swine viruses (Li et al., 2015), but the mechanism is not well understood. Herein, we report that porcine IRF1 and ISG15 were up-regulated in porcine kidney (PK-15) cells following stimulation with double-stranded RNA (dsRNA) or classical swine fever virus (CSFV) infection. We also found that siRNA-mediated knockdown of IRF1 expression resulted in lower ISG15 expression in response to polyinosinic:polycytidylic acid [poly(I:C)] or CSFV infection. The overexpression of IRF1 resulted in ISG15 up-regulation. IRF1 was shown to translocate to the nucleus in response to dsRNA stimulation. To further identify the functional domain of the isg15 gene that promotes IRF1 transcriptional activity, firefly luciferase and ISG15 reporter systems were constructed. The results of the firefly luciferase and ISG15 reporter assay suggested that IRF1 mediates the up-regulation of ISG15. Nucleotides -487 to -325, located in the 5' flanking region of the isg15 gene, constituted the promoter region of IRF1. ChIP assay indicated that IRF1 protein was able to interact with the DNA in the 5'fr of isg15 gene in cells. As an innate immune response protein with broad-spectrum antiviral activity, the up-regulation of ISG15 mediated by IRF1 in porcine cells is reported for the first time. These results warrant further investigation into the antiviral activity of porcine IRF1 against reported swine viruses.
Collapse
Affiliation(s)
- Xiao-Quan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiao Ning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Jing-Jing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Xin-Bin Cai
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Qian Tao
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu-Xiao Li
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Qing Qin
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Su-Ping Xu
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
44
|
Qian W, Wei X, Li Y, Guo K, Zou Z, Zhou H, Jin M. Duck interferon regulatory factor 1 acts as a positive regulator in duck innate antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:1-13. [PMID: 28890139 DOI: 10.1016/j.dci.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
In mammals, IFN regulatory factor (IRF) 1 can activates cellular genes and promotes viral resistance against some DNA and RNA viruses. Most IRFs have been identified as critical regulators in the IFN responses in both mammals and fish. In ducks, however, the functional role of IRF1 remains unknown. Here, we identified duck IRF1 (duIRF1) is essential to counteract viral invasion. duIRF1 is most abundant in duck spleen, and virus infection or poly(I:C) stimulation significantly induced duIRF1 expression in vivo and in vitro. Overexpression of duRF1 induces the expression of type I IFN-β, type III IFN-λ, and interferon stimulated genes (ISGs) in duck embryo fibroblasts (DEFs), initiating cells resistant to avian viruses infection. More importantly, we found duIRF1 interacts with duck myeloid differentiation factor 88 (duMyD88) to activate duck IFN-β, different from IRF3 and IRF7, which involve in IFN expression through the retinoic acid-inducible gene I (RIG-I)-like receptor pathway in mammals. Together, these results indicate that duIRF1 effectively inhibits viral replication through the induction of IFN and antiviral ISGs. This will help with understanding the role of duIRF1 mediated antiviral responses by innate immune mechanisms.
Collapse
Affiliation(s)
- Wei Qian
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Wei
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, China
| | - Yongtao Li
- College of Animal Husbandry & Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
45
|
Interferon Regulatory Factor 1 Protects against Chikungunya Virus-Induced Immunopathology by Restricting Infection in Muscle Cells. J Virol 2017; 91:JVI.01419-17. [PMID: 28835505 DOI: 10.1128/jvi.01419-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 01/14/2023] Open
Abstract
The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-α/β) (type I), IFN-γ (type II), and IFN-λ (type III). The transcription factor interferon regulatory factor 1 (IRF-1) has a demonstrated role in shaping innate and adaptive antiviral immunity by inducing the expression of IFN-stimulated genes (ISGs) and mediating signals downstream of IFN-γ. Although ectopic expression experiments have suggested an inhibitory function of IRF-1 against infection of alphaviruses in cell culture, its role in vivo remains unknown. Here, we infected Irf1 -/- mice with two distantly related arthritogenic alphaviruses, chikungunya virus (CHIKV) and Ross River virus (RRV), and assessed the early antiviral functions of IRF-1 prior to induction of adaptive B and T cell responses. IRF-1 expression limited CHIKV-induced foot swelling in joint-associated tissues and prevented dissemination of CHIKV and RRV at early time points. Virological and histological analyses revealed greater infection of muscle tissues in Irf1 -/- mice than in wild-type mice. The antiviral actions of IRF-1 appeared to be independent of the induction of type I IFN or the effects of type II and III IFNs but were associated with altered local proinflammatory cytokine and chemokine responses and differential infiltration of myeloid cell subsets. Collectively, our in vivo experiments suggest that IRF-1 restricts CHIKV and RRV infection in stromal cells, especially muscle cells, and that this controls local inflammation and joint-associated swelling.IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates the expression of a broad range of antiviral host defense genes. In this study, using Irf1 -/- mice, we investigated the role of IRF-1 in modulating pathogenesis of two related arthritogenic alphaviruses, chikungunya virus and Ross River virus. Our studies show that IRF-1 controlled alphavirus replication and swelling in joint-associated tissues within days of infection. Detailed histopathological and virological analyses revealed that IRF-1 preferentially restricted CHIKV infection in cells of nonhematopoietic lineage, including muscle cells. The antiviral actions of IRF-1 resulted in decreased local inflammatory responses in joint-associated tissues, which prevented immunopathology.
Collapse
|
46
|
Izuogu AO, McNally KL, Harris SE, Youseff BH, Presloid JB, Burlak C, Munshi-South J, Best SM, Taylor RT. Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS One 2017; 12:e0179781. [PMID: 28650973 PMCID: PMC5484488 DOI: 10.1371/journal.pone.0179781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1-30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Host Specificity/genetics
- Host Specificity/immunology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Type I/antagonists & inhibitors
- Interferon Type I/immunology
- Mice
- Peromyscus/genetics
- Peromyscus/immunology
- Peromyscus/virology
- RNA, Small Interfering/genetics
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Nonstructural Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Adaeze O. Izuogu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Kristin L. McNally
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - Stephen E. Harris
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Brian H. Youseff
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - John B. Presloid
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Christopher Burlak
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - R. Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| |
Collapse
|
47
|
Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10:eaaf5185. [PMID: 28196914 DOI: 10.1126/scisignal.aaf5185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Effective recognition of viral components and the subsequent stimulation of the production of type I interferons (IFNs) is crucial for the induction of host antiviral immunity. The failure of the host to efficiently produce type I IFNs in response to infection by the Japanese encephalitis virus (JEV) is linked with an increased probability for the disease to become lethal. JEV is a neurotropic virus of the Flaviviridae family that causes encephalitis in humans. JEV infection is regulated by several host factors, including microRNAs, which are conserved noncoding RNAs that participate in various physiological and pathological processes. We showed that the JEV-induced expression of miR-301a led to inhibition of the production of type I IFN by reducing the abundances of the transcription factor IFN regulatory factor 1 (IRF1) and the signaling protein suppressor of cytokine signaling 5 (SOCS5). Mechanistically, induction of miR-301a expression during JEV infection required the transcription factor nuclear factor κB. In mouse neurons, neutralization of miR-301a restored the host innate immune response by enabling IFN-β production, thereby restricting viral propagation. Inhibition of miR-301a in mouse brain rescued the production of IRF1 and SOCS5, increased the generation of IFN-β, and reduced the extent of JEV replication, thus improving mouse survival. Thus, our study suggests that the JEV-induced expression of miR-301a assists viral pathogenesis by suppressing IFN production, which might be targeted by antiviral therapies.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
48
|
Interferon Regulatory Factor 1 and Type I Interferon Cooperate To Control Acute Gammaherpesvirus Infection. J Virol 2016; 91:JVI.01444-16. [PMID: 27795415 DOI: 10.1128/jvi.01444-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection in >95% of adults worldwide and are associated with a variety of malignancies. Coevolution of gammaherpesviruses with their hosts has resulted in an intricate relationship between the virus and the host immune system, and perturbation of the virus-host balance results in pathology. Interferon regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. Here, we show that type I interferon (IFN) and IRF-1 cooperate to control acute gammaherpesvirus infection. Specifically, we demonstrate that a combination of IRF-1 and type I IFN signaling ensures host survival during acute gammaherpesvirus infection and supports IFN gamma-mediated suppression of viral replication. Thus, our studies reveal an intriguing cross talk between IRF-1 and type I and II IFNs in the induction of the antiviral state during acute gammaherpesvirus infection. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of adults, and this long-term infection is associated with virus-driven development of a range of malignancies. In contrast, a brief period of active gammaherpesvirus replication during acute infection of a naive host is subclinical in most individuals. Here, we discovered that a combination of type I interferon (IFN) signaling and interferon regulatory factor 1 (IRF-1) expression is required to ensure survival of a gammaherpesvirus-infected host past the first 8 days of infection. Specifically, both type I IFN receptor and IRF-1 expression potentiated antiviral effects of type II IFN to restrict gammaherpesvirus replication in vivo, in the lungs, and in vitro, in primary macrophage cultures.
Collapse
|
49
|
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2016; 91:JVI.01529-16. [PMID: 27795421 PMCID: PMC5165211 DOI: 10.1128/jvi.01529-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.
Collapse
|
50
|
He B, Xing S, Chen C, Gao P, Teng L, Shan Q, Gullicksrud JA, Martin MD, Yu S, Harty JT, Badovinac VP, Tan K, Xue HH. CD8 + T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections. Immunity 2016; 45:1341-1354. [PMID: 27986453 DOI: 10.1016/j.immuni.2016.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Abstract
Differentiation of effector and memory CD8+ T cells is accompanied by extensive changes in the transcriptome and histone modifications at gene promoters; however, the enhancer repertoire and associated gene regulatory networks are poorly defined. Using histone mark chromatin immunoprecipitation coupled with deep sequencing, we mapped the enhancer and super-enhancer landscapes in antigen-specific naive, differentiated effector, and central memory CD8+ T cells during LCMV infection. Epigenomics-based annotation revealed a highly dynamic repertoire of enhancers, which were inherited, de novo activated, decommissioned and re-activated during CD8+ T cell responses. We employed a computational algorithm to pair enhancers with target gene promoters. On average, each enhancer targeted three promoters and each promoter was regulated by two enhancers. By identifying enriched transcription factor motifs in enhancers, we defined transcriptional regulatory circuitry at each CD8+ T cell response stage. These multi-dimensional datasets provide a blueprint for delineating molecular mechanisms underlying functional differentiation of CD8+ T cells.
Collapse
Affiliation(s)
- Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Changya Chen
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Li Teng
- Illumina Inc., San Diego, CA 92122, USA
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jodi A Gullicksrud
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew D Martin
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China 100193
| | - John T Harty
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|