1
|
P C. Understanding EBV infection and EBV-associated lymphomas in children. Virology 2025; 608:110544. [PMID: 40267593 DOI: 10.1016/j.virol.2025.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/13/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
The Epstein-Barr virus (EBV) infects over 90 % of the human population, often behaving as a harmless passenger in most hosts. However, since 1997, it has been classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) due to its causal association with several malignancies. Most studies on EBV primary infection and EBV-associated lymphomas have been performed in adults from developed countries. The complex interplay between age of acquisition and symptomatic versus asymptomatic infection is related to the subsequent risk of EBV-associated cancers or autoimmune diseases. This review discusses some characteristics of EBV infection and EBV-associated lymphomas in children from low- and middle-income regions, with a focus on the local immune response.
Collapse
Affiliation(s)
- Chabay P
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutierrez Children's Hospital, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Rueger S, Gruener E, Wang D, Abdool FS, Ober V, Vallée T, Stirner R, Conca R, Andrä I, Rogers L, Zahn R, Gersbacher E, Eger J, Pauli R, Postel N, Spinner CD, Vehreschild JJ, Stecher M, Nitschko H, Eberle J, Bogner JR, Seybold U, Draenert R, Leslie A, Kløverpris HN, Geldmacher C, Muenchhoff M, Held K, Roider J. Early treatment and PD1 inhibition enhance HIV-specific functionality of follicular CD8+ T cells. JCI Insight 2025; 10:e180309. [PMID: 40197363 PMCID: PMC11981630 DOI: 10.1172/jci.insight.180309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025] Open
Abstract
People living with HIV treated during acute infection are the group for whom achieving functional cure appears most viable. Follicular CD8+ T cells could contribute to HIV reservoir clearance by accessing B cell follicles through CXCR5 expression. This study examines peripheral follicular CD8+ T cells using flow cytometry, transcriptome analyses, and functional assays in people treated during acute (n = 37) and chronic (n = 18) infection, as well as in individuals naturally controlling HIV (n = 20) and living without HIV (n = 10). Our results reveal that early, as opposed to late, treatment initiation preserves antiviral effector functions of follicular CD8+ T cells, which are further enhanced by PD1 inhibition. We also identify a correlation between follicular CD8+ T cells and intact proviral HIV DNA levels in acute, but not chronic, infection. Longitudinal transcriptomic analysis of peripheral effector cells after 48 weeks of suppressive therapy indicated traits of recent antigen exposure, suggesting potential recirculation into lymphoid tissue. These findings underscore the pivotal role of follicular CD8+ T cells in anti-HIV responses and support investigating targeted cure strategies, such as anti-PD1 therapy, especially in individuals initiating treatment during acute infection.
Collapse
Affiliation(s)
- Susanne Rueger
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Eva Gruener
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Danni Wang
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Faiaz Shaik Abdool
- Africa Health Research Institute (AHRI), and
- Department of Laboratory Medicine and Medical Science, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Veronica Ober
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Theresa Vallée
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, and
| | - Renate Stirner
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Immanuel Andrä
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Lisa Rogers
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Zahn
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Joanna Eger
- Zentrum fuer Innere Medizin und Infektiologie, Munich, Germany
| | | | - Nils Postel
- prinzmed, Practice for Infectiology, Munich, Germany
| | - Christoph D. Spinner
- TUM School of Medicine and Health, Department of Clinical Medicine – Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, Munich, Germany
| | - Jörg J. Vehreschild
- Medical Department 2, Hematology/Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Melanie Stecher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Hans Nitschko
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, and
| | - Josef Eberle
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, and
| | - Johannes R. Bogner
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Ulrich Seybold
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rika Draenert
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Antibiotic Stewardship Team, LMU University Hospital, LMU Munich, Munich, Germany
| | - Al Leslie
- Africa Health Research Institute (AHRI), and
- Department of Infection and Immunity, University College London (UCL), London, United Kingdom
| | - Henrik N. Kløverpris
- Africa Health Research Institute (AHRI), and
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christof Geldmacher
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Maximilian Muenchhoff
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, and
| | - Kathrin Held
- German Centre for Infection Research (DZIF), partner site Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Centre for Environmental Health (HMGU), Neuherberg, Germany
| | - Julia Roider
- Department of Infectious Diseases, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Germany
| |
Collapse
|
3
|
George AF, Neidleman J, Luo X, Frouard J, Elphick N, Yin K, Young KC, Ma T, Andrew AK, Ezeonwumelu IJ, Pedersen JG, Chaillon A, Porrachia M, Woodworth B, Jakobsen MR, Thomas R, Smith DM, Gianella S, Roan NR. Anatomical, subset, and HIV-dependent expression of viral sensors and restriction factors. Cell Rep 2025; 44:115202. [PMID: 39798087 PMCID: PMC11829653 DOI: 10.1016/j.celrep.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
We developed viral sensor and restriction factor-cytometry by time of flight (VISOR-CyTOF), which profiles 19 viral sensors and restriction factors (VISORs) simultaneously in single cells, and applied it to 41 postmortem tissues from people with HIV. Mucosal myeloid cells are well equipped with SAMHD1 and sensors of viral capsid and DNA while CD4+ T cells are not. In lymph node CD4+ Tfh, VISOR expression patterns reflect those favoring integration but blocking HIV gene expression, thus favoring viral latency. We also identify small subsets of bone marrow-, lung-, and gut-associated CD4+ T and myeloid cells expressing high levels of restriction factors targeting most stages of the HIV replication cycle. In vitro, HIV preferentially fuses to CD4+ T cells with a permissive VISOR profile, but early induction of select VISORs by T1IFN prevents productive HIV infection. Our findings document the diverse patterns of VISOR profiles across tissues and cellular subsets and define their association with susceptibility to HIV.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Kailin Yin
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Kyrlia C Young
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Tongcui Ma
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Alicer K Andrew
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Ifeanyi J Ezeonwumelu
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Magali Porrachia
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Brendon Woodworth
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | | | | | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
4
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Wu Z, Ren M, Tan M, Yang B, Chen S, Yang F, Yuan G, Tan J. Identification and Validation of T Cell-Related Hub Biomarkers for Early Diagnosis of Diabetic Kidney Disease Using Single-Cell and Bulk Dataset Analysis. Crit Rev Eukaryot Gene Expr 2025; 35:65-84. [PMID: 40228227 DOI: 10.1615/critreveukaryotgeneexpr.2025056960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Diabetic kidney disease (DKD) is the most common complication of diabetes and a leading cause of chronic kidney disease that frequently leads to end-stage renal disease (ESRD). The pathogenesis of DKD is complex and is not fully understood. This study was designed to identify key targets for DKD diagnosis and explore the underlying molecular mechanisms. METHODS DKD-specific clusters were selected from single-cell datasets. Gene modules were identified using hairpin-dynamic weighted gene co-expression network analysis (hdWGCNA). Multiple machine learning algorithms were applied to model and screen hub genes from two bulk datasets. Rat model of DKD was built using optical microscopes to observe the histopathological changes in the kidney by HE, PAS, and Masson staining. The expression of RASGRP3, PDE3B, and CD247 in DKD-Rat was verified by RT-PCR, and the expression of RASGRP3, PDE3B, and CD247 in the serum samples of DKD patients was verified by ELISA. The results of sex and age, RASGRP3, PDE3B, CD247 were calculated by multivariate logistic regression analysis. RESULTS Three hub genes were obtained through screening single-cell and two bulk datasets. In-depth exploration of the potential molecular mechanisms of the hub genes was conducted using gene set variation analysis (GSVA), immune infiltration analysis, and single-cell correlation analysis. Receiver operating characteristic (ROC) curve confirmed a high diagnostic value of the hub biomarkers, and a high-efficiency diagnostic model was constructed and mutually validated in the two datasets. We found that damaged tubular number and interstitial fibrotic percentage were significantly increased in DKD rat. As shown by HE, PAS and Masson staining, the mRNA levels of PDE3B and CD247 were markedly upregulated in DKD rat compared with those in the control group. Lower expression levels of RASGRP3 mRNA were manifested in DKD. The levels of RASGRP3, PDE3B, CD247 in DKD patients by ELISA were statistically significant (p < 0.05). PDE3B and CD247 had an AUC value greater than 0.9,RASGRP3 had an AUC value greater than 0.7. CONCLUSION This study identified 3 T cell-related hub biomarkers, providing references for the early diagnosis of DKD and changes in T cells during DKD progression.
Collapse
Affiliation(s)
| | - Meifang Ren
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Miao Tan
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, 050011, China
| | - Bing Yang
- Graduate School, Hebei University of Chinese Medicine, 050091, China
| | - Suzhi Chen
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Fengwen Yang
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Guodong Yuan
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Jinchuan Tan
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| |
Collapse
|
6
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Kirchmeier D, Deng Y, Rieble L, Böni M, Läderach F, Schuhmachers P, Valencia-Camargo AD, Murer A, Caduff N, Chatterjee B, Chijioke O, Zens K, Münz C. Epstein-Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 2024; 9:e173489. [PMID: 39264727 PMCID: PMC11530129 DOI: 10.1172/jci.insight.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
EBV contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers, it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as granzyme B, CD107a, and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection, although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily, systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.
Collapse
Affiliation(s)
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | | | | | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, and
| |
Collapse
|
8
|
Rha MS, Kim G, Lee S, Kim J, Jeong Y, Jung CM, Noh HE, Noh JY, Kim YM, Cho HJ, Kim CH, Shin EC. SARS-CoV-2 spike-specific nasal-resident CD49a +CD8 + memory T cells exert immediate effector functions with enhanced IFN-γ production. Nat Commun 2024; 15:8355. [PMID: 39333516 PMCID: PMC11436836 DOI: 10.1038/s41467-024-52689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Virus-specific nasal resident T cells are important for protection against subsequent infection with a similar virus. Here we examine the phenotypes and functions of SARS-CoV-2-specific T cells in the nasal mucosa of vaccinated individuals with breakthrough infection (BTI) or without infection. Nasal tissues are obtained from participants during sinus surgery. Analysis of activation-induced markers implicates that a considerable proportion of spike (S)-reactive nasal CD8+ T cells express CD103, a tissue-resident marker. MHC-I multimer staining is performed to analyze the ex vivo phenotype and function of SARS-CoV-2 S-specific CD8+ T cells. We detect multimer+CD8+ T cells with tissue-resident phenotypes in nasal tissue samples from vaccinees without infection as well as vaccinees with BTI. Multimer+CD8+ T cells remain present in nasal tissues over one year after the last exposure to S antigen, although the frequency decreases. Upon direct ex vivo stimulation with epitope peptides, nasal multimer+CD8+ T cells-particularly the CD49a+ subset-exhibit immediate effector functions, including IFN-γ production. CITE-seq analysis of S-reactive AIM+CD8+ T cells confirms the enhanced effector function of the CD49a+ subset. These findings indicate that among individuals previously exposed to S antigen by vaccination or BTI, S-specific nasal-resident CD49a+CD8+ memory T cells can rapidly respond to SARS-CoV-2 during infection or reinfection.
Collapse
Affiliation(s)
- Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Gyeongyeob Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sol Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Min Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Reschke R, Deitert B, Enk AH, Hassel JC. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin? Front Immunol 2024; 15:1385781. [PMID: 38562921 PMCID: PMC10982392 DOI: 10.3389/fimmu.2024.1385781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, TRM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced TRM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Benjamin Deitert
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alex H. Enk
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| |
Collapse
|
10
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
11
|
Sun WZ, Lin HW, Chen WY, Chien CL, Lai YL, Chen J, Chen YL, Cheng WF. Dual inhibition of BTLA and PD-1 can enhance therapeutic efficacy of paclitaxel on intraperitoneally disseminated tumors. J Immunother Cancer 2023; 11:e006694. [PMID: 37463789 PMCID: PMC10357656 DOI: 10.1136/jitc-2023-006694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Expression of immune checkpoints in the tumor microenvironment is one mechanism underlying paclitaxel (PTX) chemoresistance. This study aimed to investigate whether the addition of checkpoint blockade to PTX can improve the therapeutic efficacy against apparently disseminated intraperitoneal tumors. METHODS We analyzed the in vivo expression of various immune checkpoints in CD3+CD8+ cytotoxic T cells from tumor-bearing mice treated with or without PTX and validated the tumor-killing activities of selected checkpoint-expressing T-cell subpopulations ex vivo. The regulation of selected checkpoints was investigated in vitro. The therapeutic effects of inhibition of a targeted checkpoint pathway with antibodies added to PTX therapy were examined. RESULTS CD3+CD8+ T cells expressed with herpes virus entry mediator (HVEM), programmed cell death 1 (PD-1), and T-cell immunoglobulin domain and mucin domain 3 (TIM-3) in tumor-bearing hosts treated with PTX had effective tumoricidal activities. In addition to PTX and cytokines, B and T lymphocyte attenuator (BTLA) or homologous to lymphotoxin, exhibits inducible expression and competes with herpes simplex virus (HSV) glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT) interacting with HVEM can regulate the expression of PD-1 on CD3+CD8+ T cells. Interleukin (IL)-15 increased the percentage of HVEMhighgranzyme B (GZMB)+ cells among CD3+CD8+ T cells, which was suppressed by the BTLA/HVEM signal. LIGHT induced the percentage of HVEM+GZMB+ cells but not HVEMhighGZMB+ cells among CD3+CD8+ T cells. Expression of IL-15, BTLA, or LIGHT was detected in CD19+ B cells and regulated by damage-associated molecular patterns/Toll-like receptor interactions. In the tumor-bearing hosts treated with PTX, certain proportions of BTLA+ B or PD-1+ T lymphocytes were still noted. When dual inhibition of BTLA and PD-1 was added to PTX, the antitumor effects on intraperitoneally disseminated tumors can be significantly improved. CONCLUSIONS Dual blockade of BTLA on B cells and PD-1 on cytotoxic T cells may have clinical potential for enhancing the efficacy of PTX in the treatment of tumors with intraperitoneal spread, including epithelial ovarian carcinomas.
Collapse
Affiliation(s)
- Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Lin
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Chen
- Graduate Institute of Oncology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Lai
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin‑Chu, Taiwan
| | - Jung Chen
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Yun-Lin Branch, Yun‑Lin county, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology,College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Collins DR, Hitschfel J, Urbach JM, Mylvaganam GH, Ly NL, Arshad U, Racenet ZJ, Yanez AG, Diefenbach TJ, Walker BD. Cytolytic CD8 + T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci Immunol 2023; 8:eade5872. [PMID: 37205767 DOI: 10.1126/sciimmunol.ade5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julia Hitschfel
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Umar Arshad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Adrienne G Yanez
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Serafini B, Rosicarelli B, Veroni C, Aloisi F. Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein-Barr virus infected B cells. J Neuroimmunol 2023; 376:578036. [PMID: 36753806 DOI: 10.1016/j.jneuroim.2023.578036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Presence of EBV infected B cells and EBV-specific CD8 T cells in the multiple sclerosis (MS) brain suggests a role for virus-driven immunopathology in brain inflammation. Tissue-resident memory (Trm) T cells differentiating in MS lesions could provide local protection against EBV reactivation. Using immunohistochemical techniques to analyse canonical tissue residency markers in postmortem brains from control and MS cases, we report that CD103 and/or CD69 are mainly expressed in a subset of CD8+ T cells that intermingle with and contact EBV infected B cells in the infiltrated MS white matter and meninges, including B-cell follicles. Some Trm-like cells were found to express granzyme B and PD-1, mainly in white matter lesions. In the MS brain, Trm cells could fail to constrain EBV infection while contributing to sustain inflammation.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
14
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Ma C, Zhang N. Lymphoid tissue residency: A key to understand Tcf-1 +PD-1 + T cells. Front Immunol 2022; 13:1074698. [PMID: 36569850 PMCID: PMC9767944 DOI: 10.3389/fimmu.2022.1074698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During chronic antigen exposure, a subset of exhausted CD8+ T cells differentiate into stem cell-like or progenitor-like T cells expressing both transcription factor Tcf-1 (T cell factor-1) and co-inhibitory receptor PD-1. These Tcf-1+ stem-like or progenitor exhausted T cells represent the key target for immunotherapies. Deeper understanding of the biology of Tcf-1+PD-1+ CD8+ T cells will lead to rational design of future immunotherapies. Here, we summarize recent findings about the migratory and resident behavior of Tcf-1+ T cells. Specifically, we will focus on TGF-β-dependent lymphoid tissue residency program of Tcf-1+ T cells, which may represent a key to understanding the differentiation and maintenance of Tcf-1+ stem-like CD8+ T cells during persistent antigen stimulation.
Collapse
Affiliation(s)
- Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
16
|
von Hoesslin M, Kuhlmann M, de Almeida GP, Kanev K, Wurmser C, Gerullis AK, Roelli P, Berner J, Zehn D. Secondary infections rejuvenate the intestinal CD103
+
tissue-resident memory T cell pool. Sci Immunol 2022; 7:eabp9553. [DOI: 10.1126/sciimmunol.abp9553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resident T lymphocytes (T
RM
) protect tissues during pathogen reexposure. Although T
RM
phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103
+
T cells (a marker of T
RM
cells) and the other to specifically deplete CD103
−
T cells. Using these models, we observed that intestinal CD103
+
T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103
+
T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103
+
resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103
+
T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103
−
precursors. Moreover, in contrast to CD103
-
cells, which require antigen plus inflammation for their activation, CD103
+
T
RM
became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103
+
resident memory T cells lack secondary expansion potential and require CD103
−
precursors for their long-term maintenance.
Collapse
Affiliation(s)
- Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Pereira de Almeida
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ann-Katrin Gerullis
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Jacqueline Berner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
18
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
19
|
Gondhowiardjo SA, Adham M, Rachmadi L, Atmakusuma TD, Tobing DL, Auzan M, Hariyanto AD, Sulaeman D, Permata TBM, Handoko. Immune cells markers within local tumor microenvironment are associated with EBV oncoprotein in nasopharyngeal cancer. BMC Cancer 2022; 22:887. [PMID: 35963999 PMCID: PMC9375267 DOI: 10.1186/s12885-022-09948-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction EBV infection in nasopharyngeal cancer ensued in latent infection mode. In this latent infection various EBV oncoproteins such as EBNA1 and LMP1 was expressed. EBV oncoproteins could theoretically recruit immune cells, which might help to control cancer. Therefore, this study was aimed to elucidate the association with EBV oncoproteins (EBNA1 and LMP1), immune markers (CD4, CD8, and FOXP3) from nasopharyngeal cancer microenvironment with tumor progression. Method Nasopharyngeal biopsy was obtained from patients suspected to have nasopharyngeal cancer. Those samples with microscopically confirmed nasopharyngeal cancer were tested for EBNA1, LMP1, CD4, CD8, and FOXP3 concentration with ELISA, then verified with IHC. Each patient tumor volume was assessed for primary nasopharyngeal tumor volume (GTVp) and neck nodal metastases tumor volume (GTVn). Correlation test with Spearman correlation and scatterplot were carried out. Result Total 23 samples with nasopharyngeal cancer were analyzed. There was moderate correlation (ρ = 0.45; p value = 0.032) between LMP1 and GTVp. There was strong correlation (ρ = 0.81; p value < 0.001) between CD8 and GTVp. There was also moderate correlation (ρ = 0.6; p value = 0.002) between FOXP3 and GTVp. The CD8 concentration has moderate correlation with both EBNA1 (ρ = 0.46; p value = 0.026) and LMP1 (ρ = 0.47; p value = 0.023). While FOXP3 has moderate correlation with only LMP1 (ρ = 0.58; p value = 0.004). No correlation was found between all the markers tested here with GTVn. Discussion We found larger primary nasopharyngeal tumor was associated with higher CD8 marker. This was thought due to the presence of abundance CD8 T cells in the nasopharynx, but those abundance CD8 T cells were suspected to be dysfunctional. The nasopharyngeal cancer was also known to upregulate chemokines that could recruit T regulatory FOXP3 cells. Furthermore, T regulatory FOXP3 cells differentiation was induced through several pathways which was triggered by EBNA1. The correlation found in this study could guide further study to understand nasopharyngeal carcinogenesis and the relationship with our immune system.
Collapse
Affiliation(s)
- Soehartati A Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Marlinda Adham
- Department of ENT, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Tubagus Djumhana Atmakusuma
- Department of Medical Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Demak Lumban Tobing
- Department of Clinical Pathology, Dharmais National Cancer Hospital, Jakarta - Indonesia, Jl. Letjen S. Parman No. 84-86, Jakarta, Indonesia, 11420
| | - Mahesa Auzan
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Agustinus Darmadi Hariyanto
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Dede Sulaeman
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Handoko
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430.
| |
Collapse
|
20
|
Attrill GH, Lee H, Tasker AT, Adegoke NA, Ferguson AL, da Silva IP, Saw RPM, Thompson JF, Palendira U, Long GV, Ferguson PM, Scolyer RA, Wilmott JS. Detailed spatial immunophenotyping of primary melanomas reveals immune cell subpopulations associated with patient outcome. Front Immunol 2022; 13:979993. [PMID: 36003398 PMCID: PMC9393646 DOI: 10.3389/fimmu.2022.979993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
While the tumor immune microenvironment (TIME) of metastatic melanoma has been well characterized, the primary melanoma TIME is comparatively poorly understood. Additionally, although the association of tumor-infiltrating lymphocytes with primary melanoma patient outcome has been known for decades, it is not considered in the current AJCC melanoma staging system. Detailed immune phenotyping of advanced melanoma has revealed multiple immune biomarkers, including the presence of CD8+ T-cells, for predicting response to immunotherapies. However, in primary melanomas, immune biomarkers are lacking and CD8+ T-cells have yet to be extensively characterized. As recent studies combining immune features and clinicopathologic characteristics have created more accurate predictive models, this study sought to characterize the TIME of primary melanomas and identify predictors of patient outcome. We first phenotyped CD8+ T cells in fresh stage II primary melanomas using flow cytometry (n = 6), identifying a CD39+ tumor-resident CD8+ T-cell subset enriched for PD-1 expression. We then performed Opal multiplex immunohistochemistry and quantitative pathology-based immune profiling of CD8+ T-cell subsets, along with B cells, NK cells, Langerhans cells and Class I MHC expression in stage II primary melanoma specimens from patients with long-term follow-up (n = 66), comparing patients based on their recurrence status at 5 years after primary diagnosis. A CD39+CD103+PD-1- CD8+ T-cell population (P2) comprised a significantly higher proportion of intratumoral and stromal CD8+ T-cells in patients with recurrence-free survival (RFS) ≥5 years vs those with RFS <5 years (p = 0.013). Similarly, intratumoral B cells (p = 0.044) and a significantly higher B cell density at the tumor/stromal interface were associated with RFS. Both P2 and B cells localized in significantly closer proximity to melanoma cells in patients who remained recurrence-free (P2 p = 0.0139, B cell p = 0.0049). Our results highlight how characterizing the TIME in primary melanomas may provide new insights into how the complex interplay of the immune system and tumor can modify the disease outcomes. Furthermore, in the context of current clinical trials of adjuvant anti-PD-1 therapies in high-risk stage II primary melanoma, assessment of B cells and P2 could identify patients at risk of recurrence and aid in long-term treatment decisions at the point of primary melanoma diagnosis.
Collapse
Affiliation(s)
- Grace H. Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Annie T. Tasker
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nurudeen A. Adegoke
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Angela L. Ferguson
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
- Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter M. Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: James S. Wilmott,
| |
Collapse
|
21
|
Mvaya L, Khaba T, Lakudzala AE, Nkosi T, Jambo N, Kadwala I, Kankwatira A, Patel PD, Gordon MA, Nyirenda TS, Jambo KC, Ndhlovu ZM. Differential localization and limited cytotoxic potential of duodenal CD8+ T cells. JCI Insight 2022; 7:154195. [PMID: 35132966 PMCID: PMC8855799 DOI: 10.1172/jci.insight.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The duodenum is a major site of HIV persistence during suppressive antiretroviral therapy despite harboring abundant tissue-resident memory (Trm) CD8+ T cells. The role of duodenal Trm CD8+ T cells in viral control is still not well defined. We examined the spatial localization, phenotype, and function of CD8+ T cells in the human duodenal tissue from people living with HIV (PLHIV) and healthy controls. We found that Trm (CD69+CD103hi) cells were the predominant CD8+ T cell population in the duodenum. Immunofluorescence imaging of the duodenal tissue revealed that CD103+CD8+ T cells were localized in the intraepithelial region, while CD103–CD8+ T cells and CD4+ T cells were mostly localized in the lamina propria (LP). Furthermore, HIV-specific CD8+ T cells were enriched in the CD69+CD103–/lo population. However, the duodenal HIV-specific CD8+ Trm cells rarely expressed canonical molecules for potent cytolytic function (perforin and granzyme B) but were more polyfunctional than those from peripheral blood. Taken together, our results show that duodenal CD8+ Trm cells possess limited perforin-mediated cytolytic potential and are spatially separated from HIV-susceptible LP CD4+ T cells. This could contribute to HIV persistence in the duodenum and provides critical information for the design of cure therapies.
Collapse
Affiliation(s)
- Leonard Mvaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Agness E Lakudzala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Ndaru Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Innocent Kadwala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Priyanka D Patel
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tonney S Nyirenda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Zaza M Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Wang Y, Wang L, Fu C, Wang X, Zuo S, Shu C, Shan Y, He J, Zhou Q, Li W, Yang YG, Hu Z, Hua S. Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:420-428. [PMID: 34903640 DOI: 10.4049/jimmunol.2100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
There are urgent needs for humanized mouse models of viral respiratory diseases to study immunopathogenesis and therapeutic interventions. Although human immune system (HIS) mice permit analysis in real time of human immune responses in vivo, evolutionary divergences preclude their usefulness for the respiratory viruses that do not infect mouse lungs. In this study, we sought to use HIS mice with human lung (HL) tissue xenografts (HISL mice) to address this issue. The grafted HL tissue maintained histologically normal structure, and populated with human tissue-resident immune cells, including CD11c+ dendritic cells and CD4+ and CD8+ tissue-resident memory T cells. HISL mice showed a marked expansion of tissue-resident memory T cells and generation of viral Ag-specific T cells in the HL xenografts, and production of antiviral IgM and IgG Abs upon immunization of the HL xenograft by H1N1 influenza viruses. RNA-seq analysis on H1N1-infected and control HL xenografts identified a total of 5089 differentially expressed genes with enrichments for genes involved in respiratory diseases, viral infections, and associated immune responses. Furthermore, prophylactic viral exposures resulted in protection against subsequent lethal challenge by intranasal viral inoculation. This study supports the usefulness of this preclinical model in exploring the immunopathology and therapies of respiratory viral diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Lei Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Xue Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Siyao Zuo
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Yong-Guang Yang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Shucheng Hua
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
| |
Collapse
|
23
|
Lange J, Rivera-Ballesteros O, Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol 2022; 15:389-397. [PMID: 34743182 PMCID: PMC8571012 DOI: 10.1038/s41385-021-00467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.
Collapse
Affiliation(s)
- Joshua Lange
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
Niessl J, Sekine T, Lange J, Konya V, Forkel M, Maric J, Rao A, Mazzurana L, Kokkinou E, Weigel W, Llewellyn-Lacey S, Hodcroft EB, Karlsson AC, Fehrm J, Sundman J, Price DA, Mjösberg J, Friberg D, Buggert M. Identification of resident memory CD8 + T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci Immunol 2021; 6:eabk0894. [PMID: 34519539 PMCID: PMC10763663 DOI: 10.1126/sciimmunol.abk0894] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2–reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2–specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2–specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2–specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2–specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus–specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Julia Niessl
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua Lange
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Konya
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Forkel
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jovana Maric
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Luca Mazzurana
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Emma B. Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- ISPM, University of Bern, Bern, Switzerland
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Fehrm
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Joar Sundman
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Jenny Mjösberg
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Marcus Buggert
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Park SL, Mackay LK. Decoding Tissue-Residency: Programming and Potential of Frontline Memory T Cells. Cold Spring Harb Perspect Biol 2021; 13:a037960. [PMID: 33753406 PMCID: PMC8485744 DOI: 10.1101/cshperspect.a037960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Memory T-cell responses are partitioned between the blood, secondary lymphoid organs, and nonlymphoid tissues. Tissue-resident memory T (Trm) cells are a population of immune cells that remain permanently in tissues without recirculating in blood. These nonrecirculating cells serve as a principal node in the anamnestic response to invading pathogens and developing malignancies. Here, we contemplate how T-cell tissue residency is defined and shapes protective immunity in the steady state and in the context of disease. We review the properties and heterogeneity of Trm cells, highlight the critical roles these cells play in maintaining tissue homeostasis and eliciting immune pathology, and explore how they might be exploited to treat disease.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Laura K Mackay
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
27
|
Wu B, Zhang G, Guo Z, Wang G, Xu X, Li JL, Whitmire JK, Zheng J, Wan YY. The SKI proto-oncogene restrains the resident CD103 +CD8 + T cell response in viral clearance. Cell Mol Immunol 2021; 18:2410-2421. [PMID: 32612153 PMCID: PMC8484360 DOI: 10.1038/s41423-020-0495-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Acute viral infection causes illness and death. In addition, an infection often results in increased susceptibility to a secondary infection, but the mechanisms behind this susceptibility are poorly understood. Since its initial identification as a marker for resident memory CD8+ T cells in barrier tissues, the function and regulation of CD103 integrin (encoded by ITGAE gene) have been extensively investigated. Nonetheless, the function and regulation of the resident CD103+CD8+ T cell response to acute viral infection remain unclear. Although TGFβ signaling is essential for CD103 expression, the precise molecular mechanism behind this regulation is elusive. Here, we reveal a TGFβ-SKI-Smad4 pathway that critically and specifically directs resident CD103+CD8+ T cell generation for protective immunity against primary and secondary viral infection. We found that resident CD103+CD8+ T cells are abundant in both lymphoid and nonlymphoid tissues from uninfected mice. CD103 acts as a costimulation signal to produce an optimal antigenic CD8+ T cell response to acute viral infection. There is a reduction in resident CD103+CD8+ T cells following primary infection that results in increased susceptibility of the host to secondary infection. Intriguingly, CD103 expression inversely and specifically correlates with SKI proto-oncogene (SKI) expression but not R-Smad2/3 activation. Ectopic expression of SKI restricts CD103 expression in CD8+ T cells in vitro and in vivo to hamper viral clearance. Mechanistically, SKI is recruited to the Itgae loci to directly suppress CD103 transcription by regulating histone acetylation in a Smad4-dependent manner. Our study therefore reveals that resident CD103+CD8+ T cells dictate protective immunity during primary and secondary infection. Interfering with SKI function may amplify the resident CD103+CD8+ T cell response to promote protective immunity.
Collapse
Affiliation(s)
- Bing Wu
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ge Zhang
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.411971.b0000 0000 9558 1426Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044 China
| | - Zengli Guo
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Gang Wang
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002 China
| | - Xiaojiang Xu
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Chapel Hill, NC 27709 USA
| | - Jian-liang Li
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Chapel Hill, NC 27709 USA
| | - Jason K. Whitmire
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002 China
| | - Yisong Y. Wan
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
28
|
Hewavisenti R, Ferguson A, Wang K, Jones D, Gebhardt T, Edwards J, Zhang M, Britton W, Yang J, Hong A, Palendira U. CD103+ tumor-resident CD8+ T cell numbers underlie improved patient survival in oropharyngeal squamous cell carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000452. [PMID: 32527931 PMCID: PMC7292045 DOI: 10.1136/jitc-2019-000452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human Papillomavirus (HPV) associated oropharyngeal squamous cell carcinoma (OPSCC) is one of the fastest growing cancers in the Western world. When compared to OPSCCs induced by smoking or alcohol, patients with HPV+ OPSCC, have better survival and the mechanisms remain unclear. METHODS The Cancer Genome Atlas (TCGA) database was examined for genes associated with tissue-resident CD8+ T cells. Multiplex immunohistochemistry (IHC) staining was performed on tumor specimen taken from 35 HPV+ and 27 HPV- OPSCC patients. RESULTS TCGA database revealed that the expression of genes encoding CD103 and CD69 were significantly higher in HPV+ head and neck SCCs (HNSCC) than in HPV- HNSCC. Higher expression levels of these two genes were also associated with better overall survival. IHC staining showed that the proportion of CD103+ tumor-resident CD8+ T cells were significantly higher in HPV+ OPSCCs when compared to HPV- OPSCC. This higher level was also associated with both lower risk of loco-regional failure, and better overall survival. Importantly, patients with HPV- OPSCC who had comparable levels of CD103+ tumor-resident CD8+ T cells to those with HPV+ OPSCC demonstrated similar survival as those with HPV+OPSCC. CONCLUSION Our results show that CD103+ tumor-resident CD8+ T cells are critical for protective immunity in both types of OPSCCs. Our data further suggest that the enhanced local protective immunity provided by tumor-resident T cell responses is the underlying factor driving favorable clinical outcomes in HPV+ OPSCCs over HPV- OPSCCs.
Collapse
Affiliation(s)
| | - Angela Ferguson
- Centenary Institute, Newtown, New South Wales, Australia.,Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Wang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Deanna Jones
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Gebhardt
- Department of Immunology and Microbiology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jarem Edwards
- Centenary Institute, Newtown, New South Wales, Australia
| | - Mei Zhang
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | | | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Hong
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia .,Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia .,Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Byrne CM, Johnston C, Orem J, Okuku F, Huang ML, Rahman H, Wald A, Corey L, Schiffer JT, Casper C, Coombs D, Gantt S. Examining the dynamics of Epstein-Barr virus shedding in the tonsils and the impact of HIV-1 coinfection on daily saliva viral loads. PLoS Comput Biol 2021; 17:e1009072. [PMID: 34153032 PMCID: PMC8248743 DOI: 10.1371/journal.pcbi.1009072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is transmitted by saliva and is a major cause of cancer, particularly in people living with HIV/AIDS. Here, we describe the frequency and quantity of EBV detection in the saliva of Ugandan adults with and without HIV-1 infection and use these data to develop a novel mathematical model of EBV infection in the tonsils. Eligible cohort participants were not taking antiviral medications, and those with HIV-1 infection had a CD4 count >200 cells/mm3. Over a 4-week period, participants provided daily oral swabs that we analysed for the presence and quantity of EBV. Compared with HIV-1 uninfected participants, HIV-1 coinfected participants had an increased risk of EBV detection in their saliva (IRR = 1.27, 95% CI = 1.10-1.47) and higher viral loads in positive samples. We used these data to develop a stochastic, mechanistic mathematical model that describes the dynamics of EBV, infected cells, and immune response within the tonsillar epithelium to analyse potential factors that may cause EBV infection to be more severe in HIV-1 coinfected participants. The model, fit using Approximate Bayesian Computation, showed high fidelity to daily oral shedding data and matched key summary statistics. When evaluating how model parameters differed among participants with and without HIV-1 coinfection, results suggest HIV-1 coinfected individuals have higher rates of B cell reactivation, which can seed new infection in the tonsils and lower rates of an EBV-specific immune response. Subsequently, both these traits may explain higher and more frequent EBV detection in the saliva of HIV-1 coinfected individuals.
Collapse
Affiliation(s)
- Catherine M. Byrne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jackson Orem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Uganda Cancer Institute, Kampala, Uganda
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Habibur Rahman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Joshua T. Schiffer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Corey Casper
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Daniel Coombs
- Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
30
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Toh JWT, Ferguson AL, Spring KJ, Mahajan H, Palendira U. Cytotoxic CD8+ T cells and tissue resident memory cells in colorectal cancer based on microsatellite instability and BRAF status. World J Clin Oncol 2021; 12:238-248. [PMID: 33959477 PMCID: PMC8085513 DOI: 10.5306/wjco.v12.i4.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies in non-colorectal malignancy have associated T resident memory (TRM) cells with improved patient survival. It is unknown if TRM plays a role in colorectal cancer (CRC).
AIM To examine the potential role of TRM cells in providing immunogenicity in CRC stratified by microsatellite instability (MSI) and BRAF status.
METHODS Patients with known MSI and BRAF mutation status were eligible for inclusion in this study. CRC tumour sections stained with haematoxylin and eosin were microscopically reviewed and the images scanned prior to assessment for location of invading edge and core of tumour. Sequential sections were prepared for quantitative multiplex immunohistochemistry (IHC) staining. Opal Multiplex IHC staining was performed with appropriate positive and negative controls and imaged using a standard fluorescent microscope fitted with a spectral scanning camera (Mantra) in conjunction with Mantra snap software. Images were unmixed and annotated in inForm 2.2.0. Statistical analysis was performed using Graphpad Prism Version 7 and Stata Version 15.
RESULTS Seventy-two patients with known MSI and BRAF status were included in the study. All patients were assessed for MSI by IHC and high resolution capillary electrophoresis testing and 44 of these patients successfully underwent quantitative multiplex IHC staining. Overall, there was a statistically significant increase in CD8+ TRM cells in the MSI (BRAF mutant and wild type) group over the microsatellite stable (MSS) group. There was a statistically significant difference in CD8+ TRM between high level MSI (MSI-H):BRAF mutant [22.57, 95% confidence interval (CI): 14.31-30.84] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0076 andMSI-H:BRAF wild type [16.18 (95%CI: 10.44-21.93)] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0279. There was no statistically significant difference in CD8 T cells (both CD8+CD103- and CD8+CD103+TRM) between MSI-H: BRAF mutant and wild type CRC.
CONCLUSION This study has shown that CD8+ TRM are found in greater abundance in MSI-H CRC, both BRAF mutant and MSI-H:BRAF wild type, when compared with their MSS counterpart. CD8+ TRM may play a role in the immunogenicity in MSI-H CRC (BRAF mutant and BRAF wild type). Further studies should focus on the potential immunogenic qualities of TRM cells and investigate potential immunotherapeutic approaches to improve treatment and survival associated with CRC.
Collapse
Affiliation(s)
- James Wei Tatt Toh
- Division of Surgery and Anaesthesia, Department of Colorectal Surgery, Westmead Hospital, Westmead Clinical School, The University of Sydney, Ingham Institute for Applied Medical Research, Westmead 2145, NSW, Australia
| | - Angela L Ferguson
- Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, Human Viral & Cancer Immunology, Centenary Institute, Charles Perkin Centre, The University of Sydney, Sydney 2000, NSW, Australia
| | - Kevin J Spring
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool Clinical School, University of Western Sydney, South Western Clinical School UNSW, Liverpool 2170, NSW, Australia
| | - Hema Mahajan
- Department of Anatomical Pathology, ICPMR, Westmead Hospital, Westmead 2145, NSW, Australia
| | - Umaimainthan Palendira
- Department of Immunology and Infectious Diseases, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2000, NSW, Australia
| |
Collapse
|
32
|
Puksuriwong S, Ahmed MS, Sharma R, Krishnan M, Leong S, Lambe T, McNamara PS, Gilbert SC, Zhang Q. Modified Vaccinia Ankara-Vectored Vaccine Expressing Nucleoprotein and Matrix Protein 1 (M1) Activates Mucosal M1-Specific T-Cell Immunity and Tissue-Resident Memory T Cells in Human Nasopharynx-Associated Lymphoid Tissue. J Infect Dis 2021; 222:807-819. [PMID: 31740938 PMCID: PMC7399703 DOI: 10.1093/infdis/jiz593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence supports a critical role of CD8+ T-cell immunity against influenza. Activation of mucosal CD8+ T cells, particularly tissue-resident memory T (TRM) cells recognizing conserved epitopes would mediate rapid and broad protection. Matrix protein 1 (M1) is a well-conserved internal protein. Methods We studied the capacity of modified vaccinia Ankara (MVA)–vectored vaccine expressing nucleoprotein (NP) and M1 (MVA-NP+M1) to activate M1-specific CD8+ T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue from children and adults. Results After MVA-NP+M1 stimulation, M1 was abundantly expressed in adenotonsillar epithelial cells and B cells. MVA-NP+M1 activated a marked interferon γ–secreting T-cell response to M1 peptides. Using tetramer staining, we showed the vaccine activated a marked increase in M158–66 peptide-specific CD8+ T cells in tonsillar mononuclear cells of HLA-matched individuals. We also demonstrated MVA-NP+M1 activated a substantial increase in TRM cells exhibiting effector memory T-cell phenotype. On recall antigen recognition, M1-specific T cells rapidly undergo cytotoxic degranulation, release granzyme B and proinflammatory cytokines, leading to target cell killing. Conclusions MVA-NP+M1 elicits a substantial M1-specific T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue, demonstrating its strong capacity to expand memory T-cell pool exhibiting effector memory T-cell phenotype, therefore offering great potential for rapid and broad protection against influenza reinfection.
Collapse
Affiliation(s)
- Suttida Puksuriwong
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad S Ahmed
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ravi Sharma
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Madhan Krishnan
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sam Leong
- ENT Departments, Aintree University Hospital, Liverpool, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul S McNamara
- Institute of Child Health, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Qibo Zhang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Stolley JM, Johnston TS, Soerens AG, Beura LK, Rosato PC, Joag V, Wijeyesinghe SP, Langlois RA, Osum KC, Mitchell JS, Masopust D. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. J Exp Med 2021; 217:151876. [PMID: 32568362 PMCID: PMC7398169 DOI: 10.1084/jem.20192197] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023] Open
Abstract
Numerous observations indicate that resident memory T cells (TRM) undergo unusually rapid attrition within the lung. Here we demonstrate that contraction of lung CD8+ T cell responses after influenza infection is contemporized with egress of CD69+/CD103+ CD8+ T cells to the draining mediastinal LN via the lymphatic vessels, which we term retrograde migration. Cells within the draining LN retained canonical markers of lung TRM, including CD103 and CD69, lacked Ly6C expression (also a feature of lung TRM), maintained granzyme B expression, and did not equilibrate among immunized parabiotic mice. Investigations of bystander infection or removal of the TCR from established memory cells revealed that the induction of the TRM phenotype was dependent on antigen recognition; however, maintenance was independent. Thus, local lung infection induces CD8+ T cells with a TRM phenotype that nevertheless undergo retrograde migration, yet remain durably committed to the residency program within the draining LN, where they provide longer-lived regional memory while chronicling previous upstream antigen experiences.
Collapse
Affiliation(s)
- J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Timothy S Johnston
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN.,Department of Microbiology and Immunology, Brown University, Providence, RI
| | - Pamela C Rosato
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Kevin C Osum
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN.,Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
34
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
35
|
The importance of advanced cytometry in defining new immune cell types and functions relevant for the immunopathogenesis of HIV infection. AIDS 2020; 34:2169-2185. [PMID: 32910071 DOI: 10.1097/qad.0000000000002675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: In the last years, novel, exciting immunological findings of interest for HIV research and treatment were identified thanks to different cytometric approaches. The analysis of the phenotypes and functionality of cells belonging to the immune system could clarify their role in the immunopathogenesis of HIV infection, and to elaborate key concepts, relevant in the treatment of this disease. Important discoveries have been made concerning cells that are important for protective immunity like lymphocytes that display polyfunctionality, resident memory T cells, innate lymphoid cells, to mention a few. The complex phenotype of myeloid-derived suppressor cells has been investigated, and relevant changes have been reported during chronic and primary HIV infection, in correlation with changes in CD4 T-cell number, T-cell activation, and with advanced disease stage. The search for markers of HIV persistence present in latently infected cells, namely those molecules that are important for a functional or sterilizing cure, evidenced the role of follicular helper T cells, and opened a discussion on the meaning and use of different surface molecules not only in identifying such cells, but also in designing new strategies. Finally, advanced technologies based upon the simultaneous detection of HIV-RNA and proteins at the single cell level, as well as those based upon spectral cytometry or mass cytometry are now finding new actors and depicting a new scenario in the immunopathogenesis of the infection, that will allow to better design innovative therapies based upon novel drugs and vaccines.
Collapse
|
36
|
Resident Memory T Cells and Their Role within the Liver. Int J Mol Sci 2020; 21:ijms21228565. [PMID: 33202970 PMCID: PMC7696659 DOI: 10.3390/ijms21228565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Immunological memory is fundamental to maintain immunity against re-invading pathogens. It is the basis for prolonged protection induced by vaccines and can be mediated by humoral or cellular responses-the latter largely mediated by T cells. Memory T cells belong to different subsets with specialized functions and distributions within the body. They can be broadly separated into circulating memory cells, which pace the entire body through the lymphatics and blood, and tissue-resident memory T (TRM) cells, which are constrained to peripheral tissues. Retained in the tissues where they form, TRM cells provide a frontline defense against reinfection. Here, we review this population of cells with specific attention to the liver, where TRM cells have been found to protect against infections, in particular those by Plasmodium species that cause malaria.
Collapse
|
37
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
38
|
Resident Memory T Cells and Their Effect on Cancer. Vaccines (Basel) 2020; 8:vaccines8040562. [PMID: 33019493 PMCID: PMC7711795 DOI: 10.3390/vaccines8040562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resident memory T (TRM) cells are a unique subset of CD8+ T cells that are present within certain tissues and do not recirculate through the blood. Long term memory establishment and maintenance are dependent on tissue population of memory T cells. They are characterized by dual CD69/CD103 positivity, and play a role in both response to viral infection and local cancer immunosurveillance. Human TRM cells demonstrate the increased expression of adhesion molecules to facilitate tissue retention, have reduced proliferation and produce both regulatory and immune responsive cytokines. TRM cell phenotype is often characterized by a distinct expression profile driven by Runx3, Blimp1, and Hobit transcription factors. The accumulation of TRM cells in tumors is associated with increased survival and response to immunotherapies, including anti-PD-1 and anti-CTLA-4. In this review, we explore potential mechanisms of TRM cell transformation and maintenance, as well as potential applications for the use of TRM cells in both the development of supportive therapies and establishing more accurate prognoses.
Collapse
|
39
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
40
|
Perez MD, Seu L, Lowman KE, Moylan DC, Tidwell C, Samuel S, Duverger A, Wagner FH, Carlin E, Sharma V, Pope B, Raman C, Erdmann N, Locke J, Hu H, Sabbaj S, Kutsch O. The tetraspanin CD151 marks a unique population of activated human T cells. Sci Rep 2020; 10:15748. [PMID: 32978478 PMCID: PMC7519159 DOI: 10.1038/s41598-020-72719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Tetraspanins are a family of proteins with an array of functions that are well studied in cancer biology, but their importance in immunology is underappreciated. Here we establish the tetraspanin CD151 as a unique marker of T-cell activation and, in extension, an indicator of elevated, systemic T-cell activity. Baseline CD151 expression found on a subset of T-cells was indicative of increased activation of the MAPK pathway. Following TCR/CD3 activation, CD151 expression was upregulated on the overall T-cell population, a quintessential feature of an activation marker. CD151+ T-cell frequencies in the spleen, an organ with increased immune activity, were twice as high as in paired peripheral blood samples. This CD151+ T-cell frequency increase was not paralleled by an increase of CD25 or CD38, demonstrating that CD151 expression is regulated independently of other T-cell activation markers. CD151+ T-cells were also more likely to express preformed granzyme B, suggesting that CD151+ T cells are pro-inflammatory. To this end, HIV-1 patients on antiretroviral therapy who are reported to exhibit chronically elevated levels of immune activity, had significantly higher CD4+CD151+ T-cell frequencies than healthy controls, raising the possibility that proinflammatory CD151+ T cells could contribute to the premature immunological aging phenotype observed in these patients.
Collapse
Affiliation(s)
- Mildred D Perez
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lillian Seu
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelsey E Lowman
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Moylan
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher Tidwell
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shekwonya Samuel
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexandra Duverger
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic H Wagner
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Carlin
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishal Sharma
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon Pope
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jayme Locke
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Hu
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steffanie Sabbaj
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olaf Kutsch
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Prakash S, Roy S, Srivastava R, Coulon PG, Dhanushkodi NR, Vahed H, Jankeel A, Geertsema R, Amezquita C, Nguyen L, Messaoudi I, Burkhardt AM, BenMohamed L. Unique molecular signatures of antiviral memory CD8 + T cells associated with asymptomatic recurrent ocular herpes. Sci Rep 2020; 10:13843. [PMID: 32796943 PMCID: PMC7427992 DOI: 10.1038/s41598-020-70673-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The nature of antiviral CD8+ T cells associated with protective and pathogenic herpes simplex virus type 1 (HSV-1) infections remains unclear. We compared the transcriptome, phenotype, and function of memory CD8+ T cells, sharing the same HSV-1 epitope-specificities, from infected HLA-A*0201 positive symptomatic (SYMP) vs. asymptomatic (ASYMP) individuals and HLA-A*0201 transgenic rabbits. Compared to higher frequencies of multifunctional effector memory CD8+ TEM cells in ASYMP individuals, the SYMP individuals presented dysfunctional CD8+ TEM cells, expressing major exhaustion pathways. Compared to protected ASYMP HLA transgenic rabbits, the trigeminal ganglia of non-protected SYMP HLA transgenic rabbits had higher frequencies of dysfunctional tissue-resident CD8+ TRM cells. Moreover, blockade of T cell exhaustion pathways restored the function of CD8+ T cells, reduced virus reactivation, and diminished recurrent disease in HLA transgenic rabbits. These findings reveal unique molecular signatures of protective CD8+ T cells and pave the way for T-cell-based immunotherapy to combat recurrent ocular herpes.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Roger Geertsema
- University Laboratory Animal Resources, University of California Irvine, Irvine, CA, 92697, USA
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Amanda M Burkhardt
- Vaccine Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, CA, 92617, USA
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Hewitt Hall, Room 2032; 843 Health Sciences Rd, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Vaccine Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, CA, 92617, USA.
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
42
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Szabo PA, Miron M, Farber DL. Location, location, location: Tissue resident memory T cells in mice and humans. Sci Immunol 2020; 4:4/34/eaas9673. [PMID: 30952804 DOI: 10.1126/sciimmunol.aas9673] [Citation(s) in RCA: 442] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022]
Abstract
The discovery of T cells resident in diverse tissues has altered our understanding of adaptive immunity to encompass site-specific responses mediated by tissue-adapted memory T cells throughout the body. Here, we discuss the key phenotypic, transcriptional, and functional features of these tissue-resident memory T cells (TRM) as established in mouse models of infection and translated to humans by novel tissue sampling approaches. Integration of findings from mouse and human studies may hold the key to unlocking the potential of TRM for promoting tissue immunity and preventing infection.
Collapse
Affiliation(s)
- Peter A Szabo
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.,Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
44
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
45
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
46
|
Vistarop A, Jimenez O, Cohen M, De Matteo E, Preciado MV, Chabay P. Differences in Epstein-Barr Virus Characteristics and Viral-Related Microenvironment Could Be Responsible for Lymphomagenesis in Children. Pathogens 2020; 9:pathogens9010068. [PMID: 31963774 PMCID: PMC7169465 DOI: 10.3390/pathogens9010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/19/2023] Open
Abstract
In Argentina, Epstein-Barr virus (EBV) presence is associated with Hodgkin lymphoma (HL) in patients younger than 10 years, suggesting a relationship between low age of EBV infection and HL. Given that HL is derived from germinal centers (GC), our aim was to compare EBV protein expression and microenvironment markers between pediatric HL patients and EBV+GC in children. Methods: EBV presence and immune cell markers were assessed by in situ hybridization and immunohistochemistry (IHC). Results: Viral latency II pattern was proved in all HL patients and in 81.8% of EBV+ tonsillar GCs. LMP1 and LMP2 co-expression were proved in 45.7% HL cases, but only in 7.7% EBV+ GC in pediatric tonsils. An increase in CD4+, IL10, and CD68+ cells was observed in EBV+ GC. In pediatric HL patients, only the mean of IL10+ cells was statistically higher in EBV+ HL. Conclusions: Our findings point us out to suggest that LMP1 expression may be sufficient to drive neoplastic transformation, that an immune regulatory milieu counteracts cytotoxic environment in EBV-associated Hodgkin lymphoma, and that CD4+ and CD68+ cells may be recruited to act in a local collaborative way to restrict, at least in part, viral-mediated lymphomagenesis in tonsillar GC.
Collapse
Affiliation(s)
- Aldana Vistarop
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.V.); (O.J.); (M.C.); (M.V.P.)
| | - Oscar Jimenez
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.V.); (O.J.); (M.C.); (M.V.P.)
| | - Melina Cohen
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.V.); (O.J.); (M.C.); (M.V.P.)
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina;
| | - Maria Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.V.); (O.J.); (M.C.); (M.V.P.)
| | - Paola Chabay
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA. Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.V.); (O.J.); (M.C.); (M.V.P.)
- Correspondence:
| |
Collapse
|
47
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
48
|
Nguyen S, Deleage C, Darko S, Ransier A, Truong DP, Agarwal D, Japp AS, Wu VH, Kuri-Cervantes L, Abdel-Mohsen M, Del Rio Estrada PM, Ablanedo-Terrazas Y, Gostick E, Hoxie JA, Zhang NR, Naji A, Reyes-Terán G, Estes JD, Price DA, Douek DC, Deeks SG, Buggert M, Betts MR. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8 + T cells. Sci Transl Med 2019; 11:eaax4077. [PMID: 31852798 PMCID: PMC7265335 DOI: 10.1126/scitranslmed.aax4077] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The functional properties of circulating CD8+ T cells have been associated with immune control of HIV. However, viral replication occurs predominantly in secondary lymphoid tissues, such as lymph nodes (LNs). We used an integrated single-cell approach to characterize effective HIV-specific CD8+ T cell responses in the LNs of elite controllers (ECs), defined as individuals who suppress viral replication in the absence of antiretroviral therapy (ART). Higher frequencies of total memory and follicle-homing HIV-specific CD8+ T cells were detected in the LNs of ECs compared with the LNs of chronic progressors (CPs) who were not receiving ART. Moreover, HIV-specific CD8+ T cells potently suppressed viral replication without demonstrable cytolytic activity in the LNs of ECs, which harbored substantially lower amounts of CD4+ T cell-associated HIV DNA and RNA compared with the LNs of CPs. Single-cell RNA sequencing analyses further revealed a distinct transcriptional signature among HIV-specific CD8+ T cells from the LNs of ECs, typified by the down-regulation of inhibitory receptors and cytolytic molecules and the up-regulation of multiple cytokines, predicted secreted factors, and components of the protein translation machinery. Collectively, these results provide a mechanistic framework to expedite the identification of novel antiviral factors, highlighting a potential role for the localized deployment of noncytolytic functions as a determinant of immune efficacy against HIV.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duc P Truong
- Department of Mathematics, Southern Methodist University, Dallas, TX 75205, USA
| | - Divyansh Agarwal
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Perla M Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James A Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Marcus Buggert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Prasad S, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Recall Responses from Brain-Resident Memory CD8 + T Cells (bT RM) Induce Reactive Gliosis. iScience 2019; 20:512-526. [PMID: 31655062 PMCID: PMC6807101 DOI: 10.1016/j.isci.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist even during effective combination antiretroviral therapy (cART). Although the cause of HAND is unknown, studies link chronic immune activation, neuroinflammation, and cerebrospinal fluid viral escape to disease progression. In this study, we tested the hypothesis that specific, recall immune responses from brain-resident memory T cells (bTRM) could activate glia and induce neurotoxic mediators. To address this question, we developed a heterologous prime-central nervous system (CNS) boost strategy in mice. We observed that the murine brain became populated with long-lived CD8+ bTRM, some being specific for an immunodominant Gag epitope. Recall stimulation using HIV-1 AI9 peptide administered in vivo resulted in microglia displaying elevated levels of major histocompatibility complex class II and programmed death-ligand 1, and demonstrating tissue-wide reactive gliosis. Immunostaining further confirmed this glial activation. Taken together, these results indicate that specific, adaptive recall responses from bTRM can induce reactive gliosis and production of neurotoxic mediators. Heterologous prime-CNS boost induced HIV-1-specific bTRM, which persisted long term Recall responses from HIV-specific bTRM induced tissue-wide reactive gliosis bTRM induced-reactive gliosis likely has cumulative neurotoxic consequences
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-107 Microbiology Research Facility, 689 23(rd) Avenue S.E., Minneapolis, MN 55455, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-107 Microbiology Research Facility, 689 23(rd) Avenue S.E., Minneapolis, MN 55455, USA
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-107 Microbiology Research Facility, 689 23(rd) Avenue S.E., Minneapolis, MN 55455, USA
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-107 Microbiology Research Facility, 689 23(rd) Avenue S.E., Minneapolis, MN 55455, USA
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-107 Microbiology Research Facility, 689 23(rd) Avenue S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks From an Old Dog. Front Immunol 2019; 10:2193. [PMID: 31620125 PMCID: PMC6759930 DOI: 10.3389/fimmu.2019.02193] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infects most people and establishes life-long infection controlled by the host's immune system. The genetic stability of the virus, deep understanding of the viral antigens and immune epitopes recognized by the host's T-cell system and the fact that recent infection can be identified by the development of symptomatic infectious mononucleosis makes EBV a powerful system in which to study human immunology. The association between EBV and multiple cancers also means that the lessons learned have strong translational potential. Increasing evidence of a role for resident memory T-cells and non-conventional γδ T-cells in controlling EBV infection suggests new opportunities for research and means the virus will continue to provide exciting new insights into human biology and immunology into the future.
Collapse
Affiliation(s)
- Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|