1
|
Mercedes Bigi M, Imperiale B, Soria M, López B, Bigi F, de la Barrera S. Total free lipids from MDR strain of Mycobacterium tuberculosis "M" reduce T cell activation and CTL activity in healthy individuals. Mol Immunol 2025; 183:182-193. [PMID: 40382835 DOI: 10.1016/j.molimm.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/02/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Increasing evidence highlights the role of cell wall components in the effectiveness of different Mycobacterium tuberculosis (Mtb) strains in modulating host immune response. We previously demonstrated that the outbreak multidrug-resistant strain M displays a distinctive lipid profile in its cell envelope compared to the closely related sporadic strain 410. Both strains markedly differ in their ability to induce fully functional CD8+ T cells because of low CD69 signaling and impaired CD4+ T cell help. In this study, we evaluated the impact of extractable lipids (LP) from M (LP-M) and 410 (LP-410) on the activation and functionality of T cells from healthy individuals. PBMCs were cultured alone or with Mtb in the presence or absence of LP-M, LP-410, or LP from CD1551 mutants in polymorphic genes between M and 410. Then, surface CD69 and intracytoplasmic IL-2 (after 3 days of culture), as well as surface CD107 expression (after 6 days of culture) were determined in T cells by flow cytometry. In contrast to LP-410, LP-M induced low expression of CD69 and IL-2 in CD4+/CD8+ cells and of CD107 in CD8+ cells. Besides, LP from Mtb strains mutated in Rv1861c and Rv3787c genes inhibited H37Rv-induced T cell response without causing cell death. Thus, our results suggest that LP-M likely through mutations in Rv1861 and Rv3787c, inhibits the activation and functionality of T cells from PPD+ healthy human donors and might partially contribute to the development of immune evasion mechanisms in the M strain.
Collapse
Affiliation(s)
- María Mercedes Bigi
- Biomedical Research Institute (UBA-CONICET), School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina.
| | - Belén Imperiale
- Laboratory of Immunology of Physiology of Inflammatory Processes, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina.
| | - Marcelo Soria
- School of Agronomy, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Facultad de Agronomía, Buenos Aires, Argentina.
| | - Beatriz López
- Laboratory of Mycobacteria, National Institute of Infectious Diseases, ANLIS ''Dr. Carlos G. Malbrán'', Buenos Aires, Argentina.
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology, (INTA)/IABIMO-CONICET, Buenos Aires, Argentina.
| | - Silvia de la Barrera
- Laboratory of Immunology of Physiology of Inflammatory Processes, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
3
|
Gompou A, Perrea DN, Karatzas T, Kastania A, Dimaki A, Xydias EM, Boletis I, Kostakis A. Evaluating Interleukin-2 and Its Receptors As Indicators of Acute Renal Graft Rejection. Cureus 2024; 16:e73185. [PMID: 39650936 PMCID: PMC11624487 DOI: 10.7759/cureus.73185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Interleukin-2 (IL-2) is a cytokine that exerts its actions via binding to a variety of interleukin-2 receptors (IL-2R), thereby stimulating T-cell response. Acute renal graft rejection (AR) is known to be mediated by CD8+ T-cells, through the IL-2 pathway. The aim of this study was to determine whether IL-2 and IL-2R could work as prognostic biomarkers of AR. Methods IL-2, IL-2R and Cystatin-C levels were measured in the serum of 50 patients who underwent a kidney transplant, once pre-operatively and at four different time points post-operatively (second, sixth, 14th day and third month). Of the total number of patients, ultimately 10 (20%) had an episode of AR. Results No statistically significant difference in IL-2 levels was found between those who experienced AR and those who did not, at any of the studied time points. On the other hand, measurement of IL-2R levels on the sixth and 14th day post-operatively showed that people with AR had a statistically significant increase in its value compared to patients who did not have an AR episode (p=0.027 and p=0.019, respectively). In addition, comparing the values of IL-2R with that of Cystatin-C in different time periods, it was found that there is a significant positive linear correlation on the second and sixth postoperative day between the values of the associated parameters (r=0.280, p=0.049 and r=0.372, p=0.008 respectively). Conclusion The measurement of IL-2R from the sixth to 14th postoperative day could be used as a reliable prognostic biomarker of AR, however additional studies and standardised diagnostic thresholds are required before the routine clinical application is feasible.
Collapse
Affiliation(s)
- Athina Gompou
- Department of Nephrology and Renal Dialysis, IASO Thessaly, Larissa, GRC
- Department of Nephrology, Transplantation Unit, Laiko General Hospital of Athens, Athens, GRC
| | - Despoina N Perrea
- Department of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Theodore Karatzas
- Department of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
- Department of Propaedeutic Surgery, Laiko General Hospital of Athens, Athens, GRC
| | - Anastasia Kastania
- Department of Informatics, School of Information Sciences and Technology, Athens University of Economics and Business, Athens, GRC
| | - Aikaterini Dimaki
- Department of Nephrology and Renal Dialysis, IASO Thessaly, Larissa, GRC
| | - Emmanouil M Xydias
- Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Ioannis Boletis
- Department of Nephrology, Transplantation Unit, Laiko General Hospital of Athens, Athens, GRC
| | - Alkiviadis Kostakis
- Department of Biostatistics, Biomedical Research Foundation Academy of Athens, Athens, GRC
| |
Collapse
|
4
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
5
|
Thompson R, Cao X. Reassessing granzyme B: unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front Immunol 2024; 15:1392535. [PMID: 38846935 PMCID: PMC11153694 DOI: 10.3389/fimmu.2024.1392535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.
Collapse
Affiliation(s)
- Raylynn Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
7
|
Pretorius A, Nefefe T, Thema N, Liebenberg J, Steyn H, van Kleef M. Screening for immune biomarkers associated with infection or protection against Ehrlichia ruminantium by RNA-sequencing analysis. Microb Pathog 2024; 189:106588. [PMID: 38369169 DOI: 10.1016/j.micpath.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.
Collapse
Affiliation(s)
- A Pretorius
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - T Nefefe
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - N Thema
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - J Liebenberg
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - H Steyn
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - M van Kleef
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
8
|
Orcutt-Jahns B, Emmel PC, Snyder EM, Taylor SD, Meyer AS. Multivalent, asymmetric IL-2-Fc fusions show enhanced selectivity for regulatory T cells. Sci Signal 2023; 16:eadg0699. [PMID: 37847758 PMCID: PMC10658882 DOI: 10.1126/scisignal.adg0699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
The cytokine interleukin-2 (IL-2) has the potential to treat autoimmune disease but is limited by its modest specificity toward immunosuppressive regulatory T (Treg) cells. IL-2 receptors consist of combinations of α, β, and γ chains of variable affinity and cell specificity. Engineering IL-2 to treat autoimmunity has primarily focused on retaining binding to the relatively Treg-selective, high-affinity receptor while reducing binding to the less selective, low-affinity receptor. However, we found that refining the designs to focus on targeting the high-affinity receptor through avidity effects is key to optimizing Treg selectivity. We profiled the dynamics and dose dependency of signaling responses in primary human immune cells induced by engineered fusions composed of either wild-type IL-2 or mutant forms with altered affinity, valency, and fusion to the antibody Fc region for stability. Treg selectivity and signaling response variations were explained by a model of multivalent binding and dimer-enhanced avidity-a combined measure of the strength, number, and conformation of interaction sites-from which we designed tetravalent IL-2-Fc fusions that had greater Treg selectivity in culture than do current designs. Biasing avidity toward IL2Rα with an asymmetrical multivalent design consisting of one α/β chain-binding and one α chain-binding mutant further enhanced Treg selectivity. Comparative analysis revealed that IL2Rα was the optimal cell surface target for Treg selectivity, indicating that avidity for IL2Rα may be the optimal route to producing IL-2 variants that selectively target Tregs.
Collapse
Affiliation(s)
- Brian Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter C. Emmel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eli M. Snyder
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott D. Taylor
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Matthe DM, Dinkel M, Schmid B, Vogler T, Neurath MF, Poeck H, Neufert C, Büttner-Herold M, Hildner K. Novel T cell/organoid culture system allows ex vivo modeling of intestinal graft-versus-host disease. Front Immunol 2023; 14:1253514. [PMID: 37705975 PMCID: PMC10495981 DOI: 10.3389/fimmu.2023.1253514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Acute graft-versus-host disease (GvHD) remains the biggest clinical challenge and prognosis-determining complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor T cells are acceptedly key mediators of alloreactivity against host tissues and here especially the gut. In support of previous studies, we found that the intestinal intra-epithelial lymphocyte (IEL) compartment was dynamically regulated in the course of MHC class I full mismatch allo-HSCT. However, while intestinal epithelial cell (IEC) damage endangers the integrity of the intestinal barrier and is a core signature of intestinal GvHD, the question whether and to what degree IELs are contributing to IEC dysregulation is poorly understood. To study lymphoepithelial interaction, we employed a novel ex vivo T cell/organoid co-culture model system. Here, allogeneic intra-epithelial T cells were superior in inducing IEC death compared to syngeneic IEL and allogeneic non-IEL T cells. The ability to induce IEC death was predominately confined to TCRβ+ T cells and was executed in a largely IFNγ-dependent manner. Alloreactivity required a diverse T cell receptor (TCR) repertoire since IELs genetically modified to express a TCR restricted to a single, non-endogenous antigen failed to mediate IEC pathology. Interestingly, minor histocompatibility antigen (miHA) mismatch was sufficient to elicit IEL-driven IEC damage. Finally, advanced live cell imaging analyses uncovered that alloreactive IELs patrolled smaller areas within intestinal organoids compared to syngeneic controls, indicating their unique migratory properties within allogeneic IECs. Together, we provide here experimental evidence for the utility of a co-culture system to model the cellular and molecular characteristics of the crosstalk between IELs and IEC in an allogeneic setting ex vivo. In the light of the emerging concept of dysregulated immune-epithelial homeostasis as a core aspect of intestinal GvHD, this approach represents a novel experimental system to e.g. screen therapeutic strategies for their potential to normalize T cell/IEC- interaction. Hence, analyses in pre-clinical in vivo allo-HSCT model systems may be restricted to hereby positively selected, promising approaches.
Collapse
Affiliation(s)
- Diana M. Matthe
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Martin Dinkel
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Boodhoo N, Behboudi S. Marek's disease virus-specific T cells proliferate, express antiviral cytokines but have impaired degranulation response. Front Immunol 2022; 13:973762. [PMID: 36189228 PMCID: PMC9521602 DOI: 10.3389/fimmu.2022.973762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The major histocompatibility complex (MHC) haplotype is one of the major determinants of genetic resistance and susceptibility of chickens to Marek's disease (MD) which is caused by an oncogenic herpesvirus; Marek's disease virus (MDV). To determine differential functional abilities of T cells associated with resistance and susceptibility to MD, we identified immunodominant CD4+TCRvβ1 T cell epitopes within the pp38 antigen of MDV in B19 and B21 MHC haplotype chickens using an ex vivo ELISPOT assay for chicken IFN-gamma. These novel pp38 peptides were used to characterize differential functional abilities of T cells as associated with resistance and susceptibility to MD. The results demonstrated an upregulation of cytokines (IL-2, IL-4, IL-10) and lymphocyte lysis-related genes (perforin and granzyme B) in an antigen specific manner using RT-PCR. In the MD-resistant chickens (B21 MHC haplotype), antigen-specific and non-specific response was highly skewed towards Th2 response as defined by higher levels of IL-4 expression as well as lymphocyte lysis-related genes compared to that in the MD-susceptible chicken line (B19 MHC haplotype). Using CD107a degranulation assay, the results showed that MDV infection impairs cytotoxic function of T cells regardless of their genetic background. Taken together, the data demonstrate an association between type of T cell response to pp38 and resistance to the disease and will shed light on our understanding of immune response to this oncogenic herpesvirus and failure to induce sterile immunity.
Collapse
|
11
|
Prybutok AN, Yu JS, Leonard JN, Bagheri N. Mapping CAR T-Cell Design Space Using Agent-Based Models. Front Mol Biosci 2022; 9:849363. [PMID: 35903149 PMCID: PMC9315201 DOI: 10.3389/fmolb.2022.849363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy shows promise for treating liquid cancers and increasingly for solid tumors as well. While potential design strategies exist to address translational challenges, including the lack of unique tumor antigens and the presence of an immunosuppressive tumor microenvironment, testing all possible design choices in vitro and in vivo is prohibitively expensive, time consuming, and laborious. To address this gap, we extended the modeling framework ARCADE (Agent-based Representation of Cells And Dynamic Environments) to include CAR T-cell agents (CAR T-cell ARCADE, or CARCADE). We conducted in silico experiments to investigate how clinically relevant design choices and inherent tumor features—CAR T-cell dose, CD4+:CD8+ CAR T-cell ratio, CAR-antigen affinity, cancer and healthy cell antigen expression—individually and collectively impact treatment outcomes. Our analysis revealed that tuning CAR affinity modulates IL-2 production by balancing CAR T-cell proliferation and effector function. It also identified a novel multi-feature tuned treatment strategy for balancing selectivity and efficacy and provided insights into how spatial effects can impact relative treatment performance in different contexts. CARCADE facilitates deeper biological understanding of treatment design and could ultimately enable identification of promising treatment strategies to accelerate solid tumor CAR T-cell design-build-test cycles.
Collapse
Affiliation(s)
- Alexis N. Prybutok
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Jessica S. Yu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
- *Correspondence: Neda Bagheri, ; Joshua N. Leonard,
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biology, University of Washington, Seattle, WA, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- *Correspondence: Neda Bagheri, ; Joshua N. Leonard,
| |
Collapse
|
12
|
Xu W, Wu L, Xu M, Luo J, Chen G. Ethanol Exposure Up-Regulates PD-L1/PD-1 Immune Checkpoint Pathway and Promotes Mammary Tumor Development. Front Oncol 2022; 12:874156. [PMID: 35756611 PMCID: PMC9213659 DOI: 10.3389/fonc.2022.874156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption in women enhances breast cancer incidence and ethanol is the main causal factor. Compromised host immunity through immunosuppression facilitates the development of many types of cancer, including breast cancer. Immune cells in breast tissues, particularly tumor-infiltrating CD8 cytotoxic T cells, play a critical role in the host anti-tumor immunity against breast tumorigenesis. These cytotoxic T cells are the major immune cells to carry out anti-tumor immunity through their cytotoxic effector function, which can be regulated by immune checkpoint pathways. The PD-1/PD-L1 pathway (the interaction between programmed death-1, PD-1, and its ligand, programmed death-ligand 1, PD-L1) is the best characterized one. However, the effects of ethanol exposure on T cell anti-tumor immunity and how that may contribute to ethanol-enhanced mammary tumorigenicity remain unknown. FVB.Cg-Tg(Wnt1)1Hev/J transgenic mice develop spontaneous mammary tumors starting around the age of 2-3 months and have been a widely-used mouse model for breast cancer research. Using this mouse model, the current study determined the effects of ethanol on the PD-L1/PD-1 pathway and how that may contribute to mammary tumorigenesis. The results indicated that ethanol exposure enhanced mammary tumor formation accompanied with an up-regulation of PD-1/PD-L1 pathway (increased PD-L1 levels in tumor tissue cells and the amount of PD-1-expressing tumor-infiltrating CD8 T cells) and inhibited T cell anti-tumor function, while inhibition of PD-1/PD-L1 restored T cell anti-tumor effector function and mitigated ethanol-enhanced tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Linqing Wu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mei Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Gang Chen
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
13
|
Lv M, Qiu X, Wang J, Wang Y, Liu Q, Zhou H, Zhang A, Wang X. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils. FISH & SHELLFISH IMMUNOLOGY 2022; 124:472-479. [PMID: 35483596 DOI: 10.1016/j.fsi.2022.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Granzyme (Gzm) B and perforin, both as cytotoxic proteins, can collaborate to induce the death of target cells as well as the microbes. They were originally discovered in cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and confer the cytotoxic activities of these cells. In the present study, the coding sequences of a granzyme b-like (gcgzmbl) and a perforin-like (gcprfl) genes were cloned from grass carp (Ctenopharyngodon idellus) and their specific antibodies were subsequently prepared and validated. The mRNA and protein expression of these two cytotoxic proteins in grass carp peripheral blood neutrophils was demonstrated by quantitative PCR (qPCR) and immunofluorescence staining, respectively. In the same cell model, expression of gcGzmbl and gcPrfl was stimulated by grass carp interleukin (Il)-2 in a dose- and time-dependent manners and Erk, NF-κB and Stat5 pathways were found to be involved in the regulation of Il-2 on the genes' expression. Additionally, glycolysis was proved to play a role in the stimulation of Il-2 on gcGzmbl and gcPrfl expression in peripheral blood neutrophils. As combating the invading microorganisms is one of the main functions of neutrophils, the roles of gcGzmbl and gcPrfl in the anti-bacterial activities of grass carp peripheral blood neutrophils were explored. Results showed that immunoneutralization of gcGzmbl or gcPrfl significantly attenuated the antimicrobial abilities of the neutrophils enhanced by Il-2. These findings shed a light on the expression, regulation and functions of granzyme B- and perforin-like proteins in fish peripheral blood neutrophils and enrich the understanding of Il-2 function in fish innate immunity.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jiankang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qingqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
14
|
Kim DH, Kim HY, Lee WW. Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8 + T Cells, Resulting in Enhanced IL-1β Dependent Effector Function. Immune Netw 2021; 21:e33. [PMID: 34796037 PMCID: PMC8568912 DOI: 10.4110/in.2021.21.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
15
|
Wang Z, Zhou G, Risu N, Fu J, Zou Y, Tang J, Li L, Liu H, Liu Q, Zhu X. Lenalidomide Enhances CAR-T Cell Activity Against Solid Tumor Cells. Cell Transplant 2021; 29:963689720920825. [PMID: 32967454 PMCID: PMC7784582 DOI: 10.1177/0963689720920825] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy still faces many challenges in the treatment of solid tumors, one of which is T-cell dysfunction or exhaustion. Immunomodulator lenalidomide may improve CAR T-cell function. In this study, the effects of lenalidomide on CAR T-cell functions (cytotoxicity, cytokine secretion, and cell proliferation) were investigated. Two different CAR T cells (CD133-specific CAR and HER2-specific CAR) were prepared, and the corresponding target cells including human glioma cell line U251 CD133-OE that overexpress CD133 and human breast cancer cell line MDA-MB-453 were used for functional assay. We found that lenalidomide promoted the killing of U251 CD133-OE by CD133-CAR T cells, the cytokine secretion, and the proliferation of CD133-CAR T cells. Lenalidomide also enhanced the cytotoxicity against MDA-MB-453 and the cytokine secretion of HER2-CAR T cells but did not affect their proliferation significantly. Furthermore, lenalidomide may regulate the function of CAR T cells by inducing the degradation of transcription factors Ikaros and Aiolos.
Collapse
Affiliation(s)
- Zhixiong Wang
- School of Medical Instrument and Food Engineering, 47863University of Shanghai for Science and Technology, China.,Ma'anshan University, China.,Division of Health Science, Graduate School of Medicine, 13013Osaka University, Japan
| | - Guomin Zhou
- School of Medical Instrument and Food Engineering, 47863University of Shanghai for Science and Technology, China
| | - Na Risu
- Division of Health Science, Graduate School of Medicine, 13013Osaka University, Japan
| | - Jiayu Fu
- Division of Health Science, Graduate School of Medicine, 13013Osaka University, Japan
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), 387433ShanghaiTech University, China
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), 387433ShanghaiTech University, China
| | - Long Li
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), 387433ShanghaiTech University, China
| | - Hui Liu
- School of Medical Instrument and Food Engineering, 47863University of Shanghai for Science and Technology, China
| | - Qian Liu
- School of Medical Instrument and Food Engineering, 47863University of Shanghai for Science and Technology, China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), 387433ShanghaiTech University, China
| |
Collapse
|
16
|
Xu W, Cui J, Wu L, He C, Chen G. The role of PD-1/PD-L1 checkpoint in arsenic lung tumorigenesis. Toxicol Appl Pharmacol 2021; 426:115633. [PMID: 34166680 DOI: 10.1016/j.taap.2021.115633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
Chronic exposure to environmental arsenic promotes lung cancer. Emerging evidence indicates that compromised host immunity, particularly T cell anti-tumor immunity, may play a critical role in cancer development. However, there is a knowledge gap in terms of the effects of arsenic exposure on T cell anti-tumor immunity and how that may contribute to arsenic lung carcinogenicity. Immunosuppression has been known as a risk factor for many types of cancer, including lung cancer. The development of cancer indicates the success of immunosuppression and escape of cancer cells from host anti-tumor immunity in which T cells are the major component. The anti-tumor immunity is mainly executed by CD8 cytotoxic T cells through their anti-tumor effector function, which can be regulated by immune checkpoint pathways. Some inhibitory receptors on the T cell membrane and their ligands form these pathways, among which programmed death-1 (PD-1), a T cell inhibitory receptor, and its ligand, programmed death-ligand 1 (PD-L1), are best characterized. A/J mice are naturally sensitive to pulmonary carcinogens, prone to develop spontaneous lung tumors later in life and have been frequently used as an animal model for lung tumorigenesis research. Chronic arsenic administration through drinking water has been shown to enhance tumor formation in the lungs of A/J mice. In the current study, using this mouse model we want to determine whether PD-1/PD-L1 plays a role in arsenic-enhanced lung tumorigenesis. The results showed that prolonged arsenic exposure up-regulated PD-1/PD-L1, increased regulatory T cells (Tregs), decreased CD8/Treg ratio, inhibited T cell antitumor function in the lungs and enhanced lung tumor formation, while inhibition of PD-1/PD-L1 restored CD8/Treg ratio and T cell anti-tumor effector function, and mitigated arsenic-enhanced lung tumorigenesis. In addition, inhibition of PD-1/PD-L1 could be a potential preventive strategy to mitigate the tumorigenic action of chronic arsenic exposure.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neurology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiajun Cui
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Linqing Wu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, FuZhou, Fujian 350003, China
| | - Caigu He
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Histology and Embryology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 361000, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
Imanishi T, Unno M, Kobayashi W, Yoneda N, Akira S, Saito T. mTORC1 Signaling Controls TLR2-Mediated T-Cell Activation by Inducing TIRAP Expression. Cell Rep 2021; 32:107911. [PMID: 32698010 DOI: 10.1016/j.celrep.2020.107911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Effector, but not naïve, T cells are activated by toll-like receptor-2 (TLR2) stimulation, leading to cytokine production and proliferation. We found that the differential response is attributable to the lack of expression of the adaptor protein TIRAP in naive T cells. TIRAP expression is induced upon T-cell receptor (TCR) stimulation and sustained by strong interleukin-2 (IL-2) signals. Expression of TIRAP requires TCR- and IL-2-induced mTORC1 activation. TLR2 stimulation induced the activation of nuclear factor κB (NF-κB) and ERK, leading to much higher production of interferon-γ (IFN-γ) by T helper 1 (Th1) cells cultured in a high concentration of IL-2 than by those cultured in a low concentration of IL-2. In contrast, TLR2 stimulation induces mTORC1 activation through TIRAP, which is essential for TLR2-mediated IFN-γ production. These data demonstrate that the mTORC1 signal confers the response to TLR2 signaling by inducing TIRAP expression and that the TIRAP-mTORC1 axis is critical for TLR2-mediated IFN-γ production by effector T cells.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.
| | - Midori Unno
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Wakana Kobayashi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Natsumi Yoneda
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Laboratory for Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
De Bruyn Carlier T, Badloe FMS, Ring J, Gutermuth J, Kortekaas Krohn I. Autoreactive T cells and their role in atopic dermatitis. J Autoimmun 2021; 120:102634. [PMID: 33892348 DOI: 10.1016/j.jaut.2021.102634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is an itchy, non-contagious relapsing and chronic inflammatory skin disease that usually develops in early childhood. This pathology is associated with food allergy, allergic asthma, allergic rhinitis and anaphylaxis which may persist in adulthood. The underlying mechanisms of AD (endotypes) are just beginning to be discovered and show a complex interaction of various pathways including skin barrier function and immune deviation. Immune reactions to self-proteins (autoantigens) of the skin have been identified in patients with inflammatory skin diseases, such as chronic spontaneous urticaria, connective tissue disease, pemphigus vulgaris and bullous pemphigoid. IgE antibodies and T cells directed against epitopes of the skin were observed in adult patients with severe and chronic AD as well. This was associated with disease severity and suggests a progression from allergic inflammation to severe autoimmune processes against the skin. IgE-mediated autoimmunity and self-reactive T cells might accelerate the ongoing skin inflammation or might contribute to the relapsing course of the disease. However, to date, the exact mechanisms of IgE-mediated autoimmunity and self-reactive T cells in the pathophysiology of AD are still unclear. The aim of this review is to evaluate the development of (autoreactive) T cells and their response to (auto)antigens, as well as the role of the peripheral tolerance in autoimmunity in the pathophysiology of AD, including the unmet needs and gaps.
Collapse
Affiliation(s)
- Tina De Bruyn Carlier
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Fariza Mishaal Saiema Badloe
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Johannes Ring
- Department of Dermatology and Allergology Biederstein, Technical University Munich, München, Germany.
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Laarbeeklaan 103, 1090, Brussels, Belgium; Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| |
Collapse
|
19
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Pan B, Shang L, Liu C, Gao J, Zhang F, Xu M, Li L, Sun Z, Li Z, Xu K. PD-1 antibody and ruxolitinib enhances graft-versus-lymphoma effect without increasing acute graft-versus-host disease in mice. Am J Transplant 2021; 21:503-514. [PMID: 32805756 DOI: 10.1111/ajt.16275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023]
Abstract
Boosting T cell immune response posttransplant with checkpoint inhibitors increases graft-versus-lymphoma (GVL) effects at the cost of increasing acute graft-versus-host disease (aGVHD). A combined targeted therapy is needed to decrease checkpoint inhibitors-induced aGVHD without impairing GVL. We studied whether this competition could be avoided by giving concurrent anti-PD-1 antibody and ruxolitinib in allotransplant mouse models in which recipients were challenged with A20 or EL4 lymphoma cells. Given alone the PD-1 antibody increased GVL but did not improve survival of recipients challenged with A20 cells because of increased deaths from aGVHD. Adding ruxolitinib decreased levels of effector T cells and related cytokines. Tbx21- T cells had higher PD-1 levels compared with Tbx21+ T cells. Ruxolitinib increased PD-1 levels on donor T cells by suppressing Tbx21 expression. Ruxolitinib increased apoptosis of T cells which was reversed by the PD-1 antibody. PD-1 antibody preserved expression of granzyme B and cytotoxicity of T cells which were decreased by ruxolitinib. The net result of combined therapy was increased GVL, no increase in aGVHD and increased survival. The combined therapy improved survival of recipients challenged by A20 cells which expressed high level of PD-L1, but not EL4 cells which do not express PD-L1.
Collapse
Affiliation(s)
- Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Cong Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jun Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zengtian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Cheng CC, Lin HC, Chiang YW, Chang J, Sie ZL, Yang BL, Lim KH, Peng CL, Ho AS, Chang YF. Nicotine exhausts CD8 + T cells against tumor cells through increasing miR-629-5p to repress IL2RB-mediated granzyme B expression. Cancer Immunol Immunother 2020; 70:1351-1364. [PMID: 33146402 DOI: 10.1007/s00262-020-02770-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
The mechanism exhausting CD8+ T cells is not completely clear against tumors. Literature has demonstrated that cigarette smoking disables the immunological activity, so we propose nicotine is able to exhaust CD8+ T cells. The CD8+ T cells from healthy volunteers with and without cigarette smoking and the capacity of CD8+ T cells against tumor cells were investigated. RNAseq was used to investigate the gene profiling expression in CD8+ T cells. Meanwhile, small RNAseq was also used to search novel microRNAs involved in the exhaustion of CD8+ T cells. The effect of nicotine exhausting CD8+ T cells was investigated in vitro and in the humanized tumor xenografts in vivo. We found that CD8+ T cells were able to reduce cell viability in lung cancer HCC827 and A549 cells, that secreted granzyme B, but CD8+ T cells from the healthy cigarette smokers lost anti-HCC827 effect. Moreover, nicotine suppressed the anti-HCC827 effect of CD8+ T cells. RNAseq revealed lower levels of IL2RB and GZMB in the exhausted CD8+ T cells. We identified that miR-629-5p was increased by nicotine, that targeted IL2RB. Transfection of miR-629-5p mimic reduced IL2RB and GZMB levels. We further validated that nicotine reduced granzyme B levels using a nuclear imaging technique, and demonstrated that nicotine exhausted peripheral blood mononuclear cells against HCC827 growth in the humanized tumor xenografts. This study demonstrated that nicotine exhausted CD8+ T cells against HCC827 cells through increasing miR-629-5p to suppress IL2RB.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taiwan
| | - Hsin-Chi Lin
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taiwan
| | - Bi-Ling Yang
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan.
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan. .,Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
22
|
The C-type Lectin Receptor CLEC12A Recognizes Plasmodial Hemozoin and Contributes to Cerebral Malaria Development. Cell Rep 2020; 28:30-38.e5. [PMID: 31269448 PMCID: PMC6616648 DOI: 10.1016/j.celrep.2019.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023] Open
Abstract
Malaria represents a major cause of death from infectious disease. Hemozoin is a Plasmodium-derived product that contributes to progression of cerebral malaria. However, there is a gap of knowledge regarding how hemozoin is recognized by innate immunity. Myeloid C-type lectin receptors (CLRs) encompass a family of carbohydrate-binding receptors that act as pattern recognition receptors in innate immunity. In the present study, we identify the CLR CLEC12A as a receptor for hemozoin. Dendritic cell-T cell co-culture assays indicate that the CLEC12A/hemozoin interaction enhances CD8+ T cell cross-priming. Using the Plasmodium berghei Antwerpen-Kasapa (ANKA) mouse model of experimental cerebral malaria (ECM), we find that CLEC12A deficiency protects mice from ECM, illustrated by reduced ECM incidence and ameliorated clinical symptoms. In conclusion, we identify CLEC12A as an innate sensor of plasmodial hemozoin. CLEC12A recognizes plasmodial hemozoin The CLEC12A/hemozoin interaction enhances CD8+ T cell cross-priming in vitro CLEC12A−/− mice are protected from experimental cerebral malaria
Collapse
|
23
|
Iwaszkiewicz-Grzes D, Gliwinski M, Eugster A, Piotrowska M, Dahl A, Marek-Trzonkowska N, Trzonkowski P. Antigen-reactive regulatory T cells can be expanded in vitro with monocytes and anti-CD28 and anti-CD154 antibodies. Cytotherapy 2020; 22:629-641. [PMID: 32778404 DOI: 10.1016/j.jcyt.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND In recent years, therapies with CD4+CD25highFoxP3+ regulatory T cells (Tregs) have been successfully tested in many clinical trials. The important issue regarding the use of this treatment in autoimmune conditions remains the specificity toward particular antigen, as because of epitope spread, there are usually multiple causative autoantigens to be regulated in such conditions. METHODS Here we show a method of generation of Tregs enriched with antigen-reactive clones that potentially covers the majority of such autoantigens. In our research, Tregs were expanded with anti-CD28 and anti-CD154 antibodies and autologous monocytes and loaded with a model peptide, such as whole insulin or insulin β chain peptide 9-23. The cells were then sorted into cells recognizing the presented antigen. The reactivity was verified with functional assays in which Tregs suppressed proliferation or interferon gamma production of autologous effector T cells (polyclonal and antigen-specific) used as responders challenged with the model peptide. Finally, we analyzed clonotype distribution and TRAV gene usage in the specific Tregs. RESULTS Altogether, the applied technique had a good yield and allowed us to obtain a Treg product enriched with a specific subset, as confirmed in the functional tests. The product consisted of many clones; nevertheless, the content of these clones was different from that found in polyclonal or unspecific Tregs. CONCLUSIONS The presented technique might be used to generate populations of Tregs enriched with cells reactive to any given peptide, which can be used as a cellular therapy medicinal product in antigen-targeted therapies.
Collapse
Affiliation(s)
- Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| | - Mateusz Gliwinski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Anne Eugster
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden and the Cluster of Excellence, Dresden, Germany
| | | | - Andreas Dahl
- Technische Universität Dresden, DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Dresden, Germany
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland; International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| |
Collapse
|
24
|
Novais FO, Nguyen BT, Scott P. Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. J Invest Dermatol 2020; 141:575-585. [PMID: 32738245 DOI: 10.1016/j.jid.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
In cutaneous leishmaniasis, the immune response is not only protective but also mediates immunopathology. We previously found that cytolytic CD8 T cells promote inflammatory responses that are difficult to treat with conventional therapies that target the parasite. Therefore, we hypothesized that inhibiting CD8 T-cell cytotoxicity would reduce disease severity in patients. IL-15 is a potential target for such a treatment because it is highly expressed in human patients with cutaneous leishmaniasis lesions and promotes granzyme B‒dependent CD8 T-cell cytotoxicity. Here we tested whether tofacitinib, which inhibits IL-15 signaling by blocking Jak3, might decrease CD8-dependent pathology. We found that tofacitinib reduced the expression of granzyme B by CD8 T cells in vitro and in vivo systemic and topical treatment, with tofacitinib protecting mice from developing severe cutaneous leishmaniasis lesions. Importantly, tofacitinib treatment did not alter T helper type 1 responses or parasite control. Collectively, our results suggest that host-directed therapies do not need to be limited to autoimmune disorders and that topical tofacitinib application should be considered a strategy for the treatment of cutaneous leishmaniasis disease in combination with antiparasitic drugs.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Current address: Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Ba T Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Wang Z, Liu Q, Risu N, Fu J, Zou Y, Tang J, Li L, Liu H, Zhou G, Zhu X. Galunisertib enhances chimeric antigen receptor-modified T cell function. Eur J Histochem 2020; 64. [PMID: 32705856 PMCID: PMC7388644 DOI: 10.4081/ejh.2020.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy still faces the challenge of immunosuppression when treating solid tumors. TGF-β is one of the critical factors in the tumor microenvironment to help tumors escape surveillance by the immune system. Here we tried using the combination of a small molecule inhibitor of TGF-β receptor I, Galunisertib, and CAR T cells to explore whether Galunisertib could enhance CAR T cell function against solid tumor cells. In vitro experiments showed Galunisertib could significantly enhance the specific cytotoxicity of both CD133- and HER2-specific CAR T cells. However, Galunisertib had no direct killing effect on target cells. Galunisertib significantly increased the cytokine secretion of CAR T cells and T cells that do not express CAR (Nontransfected T cells). Galunisertib did not affect the proliferation of T cells, the antigen expression on target cells and CD69 on CAR T cells. We found that TGF-β was secreted by T cells themselves upon activation, and Galunisertib could reduce TGF-β signaling in CAR T cells. Our findings can provide the basis for further preclinical and clinical studies of the combination of Galunisertib and CAR T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Zhixiong Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai.
| | - Qian Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai.
| | - Na Risu
- Division of Health Science, Graduate School of Medicine, Osaka University, Osaka.
| | - Jiayu Fu
- Division of Health Science, Graduate School of Medicine, Osaka University, Osaka.
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai.
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai.
| | - Long Li
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai.
| | - Hui Liu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai.
| | - Guomin Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai.
| | | |
Collapse
|
26
|
Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells. Proc Natl Acad Sci U S A 2020; 117:12961-12968. [PMID: 32444487 DOI: 10.1073/pnas.1914667117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.
Collapse
|
27
|
Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, Akarca AU, Marzolini MAV, Solomon I, Vargas FA, Pule M, Ono M, Seddon B, Kassiotis G, Ariyan CE, Korn T, Marafioti T, Lord GM, Stauss H, Jenner RG, Peggs KS, Quezada SA. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4 + T Cells. Immunity 2020; 52:151-166.e6. [PMID: 31924474 PMCID: PMC7369640 DOI: 10.1016/j.immuni.2019.12.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/30/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Maria Vila de Mucha
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Katharina Bergerhoff
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Alastair Hotblack
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Dafne Franz Demane
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ehsan Ghorani
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Maria A V Marzolini
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Isabelle Solomon
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Frederick Arce Vargas
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Martin Pule
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Masahiro Ono
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London SW7 2BB, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charlotte E Ariyan
- Memorial Sloan Kettering Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Hans Stauss
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - Richard G Jenner
- Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| | - Sergio A Quezada
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
28
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
29
|
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20:E4413. [PMID: 31500315 PMCID: PMC6769504 DOI: 10.3390/ijms20184413] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
A hallmark of cancer is the ability of tumor cells to avoid immune destruction. Activated immune cells in tumor microenvironment (TME) secrete proinflammatory cytokines and chemokines which foster the proliferation of tumor cells. Specific antigens expressed by cancer cells are recognized by the main actors of immune response that are involved in their elimination (immunosurveillance). By the recruitment of immunosuppressive cells, decreasing the tumor immunogenicity, or through other immunosuppressive mechanisms, tumors can impair the host immune cells within the TME and escape their surveillance. Within the TME, cells of the innate (e.g., macrophages, mast cells, neutrophils) and the adaptive (e.g., lymphocytes) immune responses are interconnected with epithelial cancer cells, fibroblasts, and endothelial cells via cytokines, chemokines, and adipocytokines. The molecular pattern of cytokines and chemokines has a key role and could explain the involvement of the immune system in tumor initiation and progression. Thyroid cancer-related inflammation is an important target for diagnostic procedures and novel therapeutic strategies. Anticancer immunotherapy, especially immune checkpoint inhibitors, unleashes the immune system and activates cytotoxic lymphocytes to kill cancer cells. A better knowledge of the molecular and immunological characteristics of TME will allow novel and more effective immunotherapeutic strategies in advanced thyroid cancer.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| |
Collapse
|
30
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
31
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO, Arhontoulis DC, Bartee E, Li Z, Rubinstein MP, Paulos CM. Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Front Immunol 2019; 10:263. [PMID: 30842774 PMCID: PMC6391336 DOI: 10.3389/fimmu.2019.00263] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols. Current protocols traditionally expand T lymphocytes isolated from patient tumors or from peripheral blood to large magnitudes in the presence of high dose IL-2 prior to infusion. Unfortunately, this expansion protocol differentiates T cells to a full effector or terminal phenotype in vitro, consequently reducing their long-term survival and antitumor effectiveness in vivo. Post-infusion, T cells face further obstacles limiting their persistence and function within the suppressive tumor microenvironment. Therapeutic manipulation of T cells with common γ chain cytokines, which are critical growth factors for T cells, may be the key to bypass such immunological hurdles. Herein, we discuss the primary functions of the common γ chain cytokines impacting T cell survival and memory and then elaborate on how these distinct cytokines have been used to augment T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Dimitrios C Arhontoulis
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Ajith A, Portik-Dobos V, Nguyen-Lefebvre AT, Callaway C, Horuzsko DD, Kapoor R, Zayas C, Maenaka K, Mulloy LL, Horuzsko A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival. FASEB J 2019; 33:5220-5236. [PMID: 30620626 DOI: 10.1096/fj.201802017r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human leukocyte antigen G (HLA-G), a nonclassic HLA class Ib molecule involved in the maintenance of maternal tolerance to semiallogeneic fetal tissues during pregnancy, has emerged as a potential therapeutic target to control allograft rejection. We demonstrate here that the level of soluble HLA-G dimer was higher in a group of 90 patients with a functioning renal allograft compared with 40 patients who rejected (RJ) their transplants. The HLA-G dimer level was not affected by demographic status. One of the potential mechanisms in tissue-organ allograft rejection involves the induction of granzymes and perforin, which are the main effector molecules expressed by CD8+ cytotoxic T lymphocytes and function to destroy allogeneic transplants. Using genomics and molecular and cellular analyses of cells from T-cell-mediated RJ and nonrejected kidney transplant patients, cells from leukocyte Ig-like receptor B1 (LILRB1) transgenic mice, humanized mice, and genetically engineered HLA-G dimer, we demonstrated a novel mechanism by which HLA-G dimer inhibits activation and cytotoxic capabilities of human CD8+ T cells. This mechanism implicated the down-regulation of Granzyme B expression and the essential involvement of LILRB1. Thus, HLA-G dimer has the potential to be a specific and effective therapy for prevention of allograft rejection and prolongation of graft survival.-Ajith, A., Portik-Dobos, V., Nguyen-Lefebvre, A. T., Callaway, C., Horuzsko, D. D., Kapoor, R., Zayas, C., Maenaka, K., Mulloy, L. L., Horuzsko, A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vera Portik-Dobos
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anh Thu Nguyen-Lefebvre
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Christine Callaway
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Carlos Zayas
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
34
|
Seidel JA, Vukmanovic‐Stejic M, Muller‐Durovic B, Patel N, Fuentes‐Duculan J, Henson SM, Krueger JG, Rustin MHA, Nestle FO, Lacy KE, Akbar AN. Skin resident memory CD8 + T cells are phenotypically and functionally distinct from circulating populations and lack immediate cytotoxic function. Clin Exp Immunol 2018; 194:79-92. [PMID: 30030847 PMCID: PMC6156810 DOI: 10.1111/cei.13189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
The in-depth understanding of skin resident memory CD8+ T lymphocytes (TRM ) may help to uncover strategies for their manipulation during disease. We investigated isolated TRM from healthy human skin, which expressed the residence marker CD69, and compared them to circulating CD8+ T cell populations from the same donors. There were significantly increased proportions of CD8+ CD45RA- CD27- T cells in the skin that expressed low levels of killer cell lectin-like receptor G1 (KLRG1), CD57, perforin and granzyme B. The CD8+ TRM in skin were therefore phenotypically distinct from circulating CD8+ CD45RA- CD27- T cells that expressed high levels of all these molecules. Nevertheless, the activation of CD8+ TRM with T cell receptor (TCR)/CD28 or interleukin (IL)-2 or IL-15 in vitro induced the expression of granzyme B. Blocking signalling through the inhibitory receptor programmed cell death 1 (PD)-1 further boosted granzyme B expression. A unique feature of some CD8+ TRM cells was their ability to secrete high levels of tumour necrosis factor (TNF)-α and IL-2, a cytokine combination that was not seen frequently in circulating CD8+ T cells. The cutaneous CD8+ TRM are therefore diverse, and appear to be phenotypically and functionally distinct from circulating cells. Indeed, the surface receptors used to distinguish differentiation stages of blood T cells cannot be applied to T cells in the skin. Furthermore, the function of cutaneous TRM appears to be stringently controlled by environmental signals in situ.
Collapse
Affiliation(s)
- J. A. Seidel
- Division of Infection and ImmunityUniversity College LondonUK
| | | | - B. Muller‐Durovic
- Division of Infection and ImmunityUniversity College LondonUK
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - N. Patel
- Division of Infection and ImmunityUniversity College LondonUK
| | - J. Fuentes‐Duculan
- Laboratory for Investigative DermatologyThe Rockefeller UniversityNew YorkUSA
| | - S. M. Henson
- Division of Infection and ImmunityUniversity College LondonUK
- Present address:
William Harvey Research Institute Queen Mary University of LondonCharterhouse SquareLondon EC1M 6BQ
| | - J. G. Krueger
- Laboratory for Investigative DermatologyThe Rockefeller UniversityNew YorkUSA
| | | | - F. O. Nestle
- NIHR Biomedical Research Centre, Cutaneous Medicine and ImmunotherapySt John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, Guy’s Hospital, King’s College LondonLondonUK
| | - K. E. Lacy
- NIHR Biomedical Research Centre, Cutaneous Medicine and ImmunotherapySt John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, Guy’s Hospital, King’s College LondonLondonUK
| | - A. N. Akbar
- Division of Infection and ImmunityUniversity College LondonUK
| |
Collapse
|
35
|
Inhibiting IL-2 signaling and the regulatory T-cell pathway using computationally designed peptides. Invest New Drugs 2018; 37:9-16. [PMID: 29696509 DOI: 10.1007/s10637-018-0606-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Background Increased serum levels of soluble interleukin-2 (IL-2) receptor alpha (sIL-2Rα) are an indicator of poor prognosis in patients with B-cell non-Hodgkin lymphoma (NHL). By binding to IL-2, sIL-2Rα upregulates Foxp3 expression and induces the development of regulatory T (Treg) cells. Methods To inhibit the binding of IL-2 to sIL-2Rα with the goal of suppressing the induction of Foxp3 and decreasing Treg cell numbers, we developed peptides by structure-based computational design to disrupt the interaction between IL-2 and sIL-2Rα. Each peptide was screened using an enzyme-linked immunosorbent assay (ELISA), and 10 of 22 peptides showed variable capacity to inhibit IL-2/sIL-2Rα binding. Results We identified a lead candidate peptide, CMD178, which consistently reduced the expression of Foxp3 and STAT5 induced by IL-2/sIL-2Rα signaling. Furthermore, production of cytokines (IL-2/interferon gamma [IFN-γ]) and granules (perforin/granzyme B) was preserved in CD8+ T cells co-cultured with IL-2-stimulated CD4+ T cells that had been pretreated with CMD178 compared to CD8+ cells co-cultured with untreated IL-2-stimulated CD4+ T cells where it was inhibited. Conclusions We conclude that structure-based peptide design can be used to identify novel peptide inhibitors that block IL-2/sIL-2Rα signaling and inhibit Treg cell development. We anticipate that these peptides will have therapeutic potential in B-cell NHL and other malignancies.
Collapse
|
36
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
37
|
Dixit A, Balakrishnan B, Karande AA. Immunomodulatory activity of glycodelin: implications in allograft rejection. Clin Exp Immunol 2017; 192:213-223. [PMID: 29271477 DOI: 10.1111/cei.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/01/2022] Open
Abstract
Glycodelin is an immunomodulator, indispensable for the maintenance of pregnancy in humans. The glycoprotein induces apoptosis in activated CD4+ T cells, monocytes and natural killer (NK) cells, and suppresses the activity of cytotoxic T cells, macrophages and dendritic cells. This study explores the immunosuppressive property of glycodelin for its possible use in preventing graft rejection. Because glycodelin is found only in certain primates, the hypothesis was investigated in an allograft nude mouse model. It is demonstrated that treatment of alloactivated mononuclear cells with glycodelin thwarts graft rejection. Glycodelin decreases the number of activated CD4+ and CD8+ cells and down-regulates the expression of key proteins known to be involved in graft demise such as granzyme-B, eomesodermin (EOMES), interleukin (IL)-2 and proinflammatory cytokines [tumour necrosis factor (TNF)-α and IL-6], resulting in a weakened cell-mediated immune response. Immunosuppressive drugs for treating allograft rejection are associated with severe side effects. Glycodelin, a natural immunomodulator in humans, would be an ideal alternative candidate.
Collapse
Affiliation(s)
- A Dixit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - B Balakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - A A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
38
|
Lopez Aguilar A, Gao Y, Hou X, Lauvau G, Yates JR, Wu P. Profiling of Protein O-GlcNAcylation in Murine CD8 + Effector- and Memory-like T Cells. ACS Chem Biol 2017; 12:3031-3038. [PMID: 29125738 DOI: 10.1021/acschembio.7b00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During an acute infection, antigenic stimulation leads to activation, expansion, and differentiation of naïve CD8+ T cells, first into cytotoxic effector cells and eventually into long-lived memory cells. T cell antigen receptors (TCRs) detect antigens on antigen-presenting cells (APCs) in the form of antigenic peptides bound to major histocompatibility complex I (MHC-I)-encoded molecules and initiate TCR signal transduction network. This process is mediated by phosphorylation of many intracellular signaling proteins. Protein O-GlcNAc modification is another post-translational modification involved in this process, which often has either reciprocal or synergistic roles with phosphorylation. In this study, using a chemoenzymatic glycan labeling technique and proteomics analysis, we compared protein O-GlcNAcylation of murine effector and memory-like CD8+ T cells differentiated in vitro. By quantitative proteomics analysis, we identified 445 proteins that are significantly regulated in either effector- or memory-like T cell subsets. Furthermore, qualitative and quantitative analysis identified highly regulated protein clusters that suggest involvement of this post-translational modification in specific cellular processes. In effector-like T cells, protein O-GlcNAcylation is heavily involved in transcriptional and translational processes that drive fast effector T cells proliferation. During the formation of memory-like T cells, protein O-GlcNAcylation is involved in a more specific, perhaps more targeted regulation of transcription, mRNA processing, and translation. Significantly, O-GlcNAc plays a critical role as part of the "histone code" in both CD8+ T cells subgroups.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yu Gao
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaomeng Hou
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregoire Lauvau
- Department
of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - John R. Yates
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
39
|
Affiliation(s)
- Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
41
|
Kyaw T, Tipping P, Toh BH, Bobik A. Killer cells in atherosclerosis. Eur J Pharmacol 2017; 816:67-75. [PMID: 28483458 DOI: 10.1016/j.ejphar.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023]
Abstract
Cytotoxic lymphocytes (killer cells) play a critical role in host defence mechanisms, protecting against infections and in tumour surveillance. They can also exert detrimental effects in chronic inflammatory disorders and in autoimmune diseases. Tissue cell death and necrosis are prominent features of advanced atherosclerotic lesions including vulnerable/unstable lesions which are largely responsible for most heart attacks and strokes. Evidence for accumulation of killer cells in both human and mouse lesions together with their cytotoxic potential strongly suggest that these cells contribute to cell death and necrosis in lesions leading to vulnerable plaque development and potentially plaque rupture. Killer cells can be divided into two groups, adaptive and innate immune cells depending on whether they require antigen presentation for activation. Activated killer cells detect damaged or stressed cells and kill by cytotoxic mechanisms that include perforin, granzymes, TRAIL or FasL and in some cases TNF-α. In this review, we examine current knowledge on killer cells in atherosclerosis, including CD8 T cells, CD28- CD4 T cells, natural killer cells and γδ-T cells, mechanisms responsible for their activation, their migration to developing lesions and effector functions. We also discuss pharmacological strategies to prevent their deleterious vascular effects by preventing/limiting their cytotoxic effects within atherosclerotic lesions as well as potential immunomodulatory therapies that might better target lesion-resident killer cells, to minimise any compromise of the immune system, which could result in increased susceptibility to infections and reductions in tumour surveillance.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia; Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia.
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Wittlich M, Dudek M, Böttcher JP, Schanz O, Hegenbarth S, Bopp T, Schmitt E, Kurts C, Garbers C, Rose John S, Knolle PA, Wohlleber D. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J Hepatol 2017; 66:978-986. [PMID: 28025060 DOI: 10.1016/j.jhep.2016.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. METHODS Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. RESULTS We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. CONCLUSIONS Our findings indicate that LSECs can serve as a platform to facilitate CD4-CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. LAY SUMMARY Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells.
Collapse
Affiliation(s)
- Michaela Wittlich
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Jan P Böttcher
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Oliver Schanz
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Tobias Bopp
- Institute of Immunology, University Hospital Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Hospital Mainz, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | | | | | - Percy A Knolle
- Institute of Experimental Immunology, University Hospital Bonn, Germany; Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
43
|
Andrada E, Liébana R, Merida I. Diacylglycerol Kinase ζ Limits Cytokine-dependent Expansion of CD8 + T Cells with Broad Antitumor Capacity. EBioMedicine 2017; 19:39-48. [PMID: 28438506 PMCID: PMC5440620 DOI: 10.1016/j.ebiom.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 and -15 drive expansion/differentiation of cytotoxic CD8+ T cells that eliminate targets via antigen-independent killing. This property is clinically relevant for the improvement of T cell-based antitumor therapies. Diacylglycerol kinase α and ζ (DGKα/ζ) metabolize the diacylglycerol generated following antigen recognition by T lymphocytes. Enhanced expression of these two lipid kinases in tumor-infiltrating CD8+ T cells promotes a hyporesponsive state that contributes to tumor immune escape. Inhibition of these two enzymes might thus be of interest for potentiating conventional antigen-directed tumor elimination. In this study, we sought to characterize the contribution of DGKα and ζ to antigen-independent cytotoxic functions of CD8+ T cells. Analysis of DGKζ-deficient mice showed an increase in bystander memory-like CD8+ T cell populations not observed in DGKα-deficient mice. We demonstrate that DGKζ limits cytokine responses in an antigen-independent manner. Cytokine-specific expansion of DGKζ-deficient CD8+ T cells promoted enhanced differentiation of innate-like cytotoxic cells in vitro, and correlated with the more potent in vivo anti-tumor responses of DGKζ-deficient mice engrafted with the murine A20 lymphoma. Our studies reveal a isoform-specific function for DGKζ downstream of IL-2/IL-15-mediated expansion of innate-like cytotoxic T cells, Pharmacological manipulation of DGKζ activity is of therapeutic interest for cytokine-directed anti-tumor treatments. DGKζ, a well-characterized negative regulator of TCR signals, also limits IL-2/15 function. DGKζ impairs cytokine-induced differentiation of cytotoxic T cell populations with innate-like ability to kill targets. As a result, DGKζ-deficient mice demonstrate enhanced rejection of implanted B cell lymphoma compared to wild type mice. Targeting DGKζ activity might be of interest to enhance cytokine-mediated antitumor therapies.
The immune system defends the body from foreign invaders. In cancer, tumors disguise as self-body cells and evade immune attack. For this reason it is important to identify the mechanism that stop T lymphocytes from recognize and destroy tumors. In this study we investigate the role of Diacylglycerol kinase zeta (DGKζ) as an inhibitor of antitumor T cell functions. We demonstrate that lymphoma cells injected in mice genetically modified to lack DGKζ expression develop smaller tumors that resolve more rapidly than those grown in normal mice. Our studies suggest that inhibition of DGKζ could help to reinforce the antitumor capacity of immune T lymphocytes.
Collapse
Affiliation(s)
- Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain.
| |
Collapse
|
44
|
Li SX, Barrett BS, Guo K, Santiago ML. Tetherin/BST-2: Restriction Factor or Immunomodulator? Curr HIV Res 2016; 14:235-46. [PMID: 26957198 DOI: 10.2174/1570162x14999160224102752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell-mediated immune (CMI) responses are critical for the control of HIV-1 infection and their importance was highlighted by the existence of viral proteins, particularly Vpu and Nef, that antagonize these responses. Pandemic HIV-1 Vpu counteracts Tetherin/BST-2, a host factor that could prevent the release of HIV-1 virions by tethering virions on the cell surface, but a link between Tetherin and HIV-1 CMI responses has not yet been demonstrated in vivo. In vitro, the virological and immunological impact of Tetherin-mediated accumulation of virions ranged from enhanced or diminished cell-to-cell spread to enhanced recognition by virus-specific antibodies for natural killer cellmediated lysis. However, Tetherin-restricted virions could be internalized through an endocytosis motif in the Tetherin cytoplasmic tail. METHODS Given the uncertainties on which in vitro results manifest in vivo and the dearth of knowledge on how Tetherin influences retroviral immunity, in vivo retrovirus infections in mice encoding wild-type, null and endocytosis-defective Tetherin were performed. Here, we review and highlight the results from these in vivo studies. RESULTS Current data suggests that endocytosis-defective Tetherin functions as a potent innate restriction factor. By contrast, endocytosis-competent Tetherin, the form found in most mammals including humans and the form counteracted by HIV-1 Vpu, was linked to stronger CMI responses in mice. CONCLUSION We propose that the main role of endocytosis-competent Tetherin is not to directly restrict retroviral replication, but to promote a more effective CMI response against retroviruses.
Collapse
Affiliation(s)
| | | | | | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, Mail Stop B-168, 12700 E 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
45
|
Hashemi J, Hashemi-Najafabadi S, Vasheghani-Farahani E. Synergistic effect of PEGylation and pentoxifylline addition on immunoprotection of pancreatic islets. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:33-49. [PMID: 27683968 DOI: 10.1080/09205063.2016.1239952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, a method is proposed to reduce immunological response of immune system against Langerhans islets by PEGylation of islets combined with adjuvant therapy. For this purpose, the best composition for a mixture of succinimidyl valeric acid activated mPEG (mPEG-SVA) with different molecular weights (MWs) and for a mixture of succinimidyl carbonate activated mPEG (mPEG-SC) with different MWs was determined separately. Then, the effect of pentoxifylline (PTX) as an adjuvant drug on immunological response against PEGylated islets at best mPEG composition was studied. The extent of mPEGs reaction, the amount of interlukin-2 (IL-2) and perforin secretion, and the viability of lymphocytes and islets in homo and co-cultures in the presence of PTX at different concentrations were considered for the in vitro evaluation of the proposed method. It was found, that a mixture of mPEG-SVA with MWs of 10 and 5 kDa at a composition of 75 and 25%, respectively, was the best formulation. Also, the addition of PTX drug to co-culture medium increased the protection of PEGylated islets against immune system and a concentration of 75 μg mL-1 of PTX was suitable for islet protection with no adverse effect on immune cells.
Collapse
Affiliation(s)
- Javad Hashemi
- a Biomedical Engineering Division, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Sameereh Hashemi-Najafabadi
- a Biomedical Engineering Division, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| | - Ebrahim Vasheghani-Farahani
- a Biomedical Engineering Division, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
46
|
Plessers J, Dekimpe E, Van Woensel M, Roobrouck VD, Bullens DM, Pinxteren J, Verfaillie CM, Van Gool SW. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes. Stem Cells Transl Med 2016; 5:1607-1619. [PMID: 27465071 DOI: 10.5966/sctm.2016-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8-CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. SIGNIFICANCE Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy.
Collapse
Affiliation(s)
- Jeroen Plessers
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Emily Dekimpe
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Matthias Van Woensel
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Valerie D Roobrouck
- Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
- ReGenesys, Heverlee, Belgium
| | - Dominique M Bullens
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
- Clinical Department of Pediatrics, University Hospital UZ Leuven, Leuven, Belgium
| | | | - Catherine M Verfaillie
- Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stefaan W Van Gool
- Department of Paediatrics, Uniklinik Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- Immuno-Oncology Centre Cologne, Köln, Germany
| |
Collapse
|
47
|
Abstract
Dysregulation of the immune system contributes to the breakdown of immune regulation, leading to autoimmune diseases, such as type 1 diabetes (T1D). Current therapies for T1D include daily insulin, due to pancreatic β-cell destruction to maintain blood glucose levels, suppressive immunotherapy to decrease the symptoms associated with autoimmunity, and islet transplantation. Genetic risks for T1D have been linked to IL-2 and IL-2R signaling pathways that lead to the breakdown of self-tolerance mechanisms, primarily through altered regulatory T cell (Treg) function and homeostasis. In attempt to correct such deficits, therapeutic administration of IL-2 at low doses has gained attention due to the capacity to boost Tregs without the unwanted stimulation of effector T cells. Preclinical and clinical studies utilizing low-dose IL-2 have shown promising results to expand Tregs due to their high selective sensitivity to respond to IL-2. These results suggest that low-dose IL-2 therapy represents a new class of immunotherapy for T1D by promoting immune regulation rather than broadly suppressing unwanted and beneficial immune responses.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
| |
Collapse
|
48
|
Ren B, McKinstry WJ, Pham T, Newman J, Layton DS, Bean AG, Chen Z, Laurie KL, Borg K, Barr IG, Adams TE. Structural and functional characterisation of ferret interleukin-2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:32-38. [PMID: 26472619 PMCID: PMC7102629 DOI: 10.1016/j.dci.2015.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Å by X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A.
Collapse
Affiliation(s)
- Bin Ren
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | | | - Tam Pham
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | - Janet Newman
- CSIRO Manufacturing, Parkville, VIC 3052, Australia
| | | | - Andrew G Bean
- CSIRO Health and Biosecurity, Geelong, VIC 3219, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute, Melbourne, VIC 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Kathryn Borg
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | | |
Collapse
|
49
|
Singha AK, Bhattacharjee B, Maiti D. Cytotoxic activity of T lymphocytes is induced upon stimulation with IL-3 plus GM-CSF in animal leukemia model. Leuk Res 2015; 39:S0145-2126(15)30364-7. [PMID: 26350142 DOI: 10.1016/j.leukres.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/09/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023]
Abstract
Chemotherapy for leukemia has severe toxicity and bone marrow transplantation is both financially and logistically demanding. Therefore, immunotherapy is a feasible and promising approach to treat leukemia. For immunotherapy, cytotoxic T lymphocytes (CTL) against leukemic cells were induced. In BALB/c mice, leukemia was induced by N-ethyl-N'-nitrosourea (ENU). The mice were treated with recombinant IL-3 and GM-CSF - both 5μg/kg/day for four days to induce functional CTL. The IL-3+GM-CSF treatment increased total leukocyte counts, accompanied by significant increase in CTL activity, in the leukemic mice. The IL-3+GM-CSF treatment also enhanced the expression of both p40 and p35 isoforms of IL-12. Perforin and granzyme B expressions were increased in the treated group supporting the T lymphocyte-mediated cytotoxic killing of the target cells. The protein tyrosine kinase (PTK) activity was increased in leukemia but decreased after the treatment with IL-3 and GM-CSF. Interferon gamma (IFN-γ) production was decreased in leukemic condition but increased after the treatment with these colony stimulating factors. These data indicate the anti-leukemic potential of the IL-3 and GM-CSF combination therapy.
Collapse
Affiliation(s)
- Ashish Kumar Singha
- Immunology microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Bhaskar Bhattacharjee
- Immunology microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Debasish Maiti
- Immunology microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
50
|
Effect of induction therapy on the expression of molecular markers associated with rejection and tolerance. BMC Nephrol 2015; 16:146. [PMID: 26286066 PMCID: PMC4545708 DOI: 10.1186/s12882-015-0141-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/06/2015] [Indexed: 12/02/2022] Open
Abstract
Background Induction therapy can improve kidney transplantation (KTx) outcomes, but little is known about the mechanisms underlying its effects. Methods The mRNA levels of T cell-related genes associated with tolerance or rejection (CD247, GZMB, PRF1, FOXP3, MAN1A1, TCAIM, and TLR5) and lymphocyte subpopulations were monitored prospectively in the peripheral blood of 60 kidney transplant recipients before and 7, 14, 21, 28, 60, 90 days, 6 months, and 12 months after KTx. Patients were treated with calcineurin inhibitor-based triple immunosuppression and induction with rabbit anti-thymocyte globulin (rATG, n = 24), basiliximab (n = 17), or without induction (no-induction, n = 19). A generalized linear mixed model with gamma distribution for repeated measures, adjusted for rejection, recipient/donor age and delayed graft function, was used for statistical analysis. Results rATG treatment caused an intense reduction in all T cell type population and natural killer (NK) cells within 7 days, then a slow increase and repopulation was observed. This was also noticed in the expression levels of CD247, FOXP3, GZMB, and PRF1. The basiliximab group exhibited higher CD247, GZMB, FOXP3 and TCAIM mRNA levels and regulatory T cell (Treg) counts than the no-induction group. The levels of MAN1A1 and TLR5 mRNA expressions were increased, whereas TCAIM decreased in the rATG group as compared with those in the no-induction group. Conclusion The rATG induction therapy was associated with decreased T and NK cell-related transcript levels and with upregulation of two rejection-associated transcripts (MAN1A1 and TLR5) shortly after KTx. Basiliximab treatment was associated with increased absolute number of Treg cells, and increased level of FOXP3 and TCAIM expression.
Collapse
|