1
|
Zheng D, Ferrington N, Rathnayake D, Hasang W, Alemu A, Harawa V, Karahalios A, Fitzpatrick P, Gout E, Thielens NM, Seydel K, Taylor TE, Mandala W, Rogerson SJ, Aitken EH, Randall LM. Ficolin-1 in pediatric Plasmodium falciparum malaria and its possible role in parasite clearance and anemia. Infect Immun 2025:e0019425. [PMID: 40422078 DOI: 10.1128/iai.00194-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Plasmodium falciparum malaria causes significant disease, especially in young children. A successful immune response to P. falciparum is a major determinant of clinical outcome. The ficolins are a family of lectins that act as pattern recognition molecules and can activate the lectin complement pathway and may promote inflammation and facilitate opsonization and lysis of pathogens. Here, we have investigated the potential roles of ficolin-1 and ficolin-2 in the context of P. falciparum infection. We measured ficolin-1 and ficolin-2 concentrations in plasma from Malawian children presenting with uncomplicated or severe malaria or healthy controls (HCs) by ELISA. Using flow cytometry, we assessed whether ficolin-1 could bind to infected red blood cells (iRBCs) and whether it binds sialic acid on the iRBCs. Ficolin-1 and ficolin-2 plasma levels were measured in children from all clinical groups. Compared to HCs (reference), Ficolin-1 concentrations in plasma were higher in children with uncomplicated (geometric mean ratio: 1.88; 95% confidence interval [CI]: 1.25-2.82) and severe malaria (1.65; 95% CI: 1.10-2.46). Ficolin-1 levels were positively associated with peripheral blood monocyte (1.30; 1.02-1.67) and neutrophil counts (1.06; 1.00-1.13). Ficolin-2 was not associated with malaria. Hemoglobin levels were negatively associated with ficolin-1 (-0.38; -0.68 to -0.09) and ficolin-2 (-0.36; -0.68 to -0.04). Ficolin-1 bound more to iRBCs compared to uninfected RBCs, and binding was reduced in a ficolin-1 mutant that did not bind to sialic acid. These results highlight a largely overlooked role for ficolin-1 in the immune response to P. falciparum infection and point to a potential role for lectins contributing to parasite clearance and anaemia.
Collapse
Affiliation(s)
- Di Zheng
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Ferrington
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Dilini Rathnayake
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Wina Hasang
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Agersew Alemu
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Visopo Harawa
- Biomedical Sciences Department, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phoebe Fitzpatrick
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Methods and Implementation Support for Clinical Health (MISCH) Research Hub, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Evelyne Gout
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Terrie E Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Wilson Mandala
- Biomedical Sciences Department, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth H Aitken
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Randall
- Department of Medicine, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Mellors J, Dhaliwal R, Longet S, Tipton T, Barnes E, Dunachie SJ, Klenerman P, Hiscox J, Carroll M. Complement-mediated enhancement of SARS-CoV-2 antibody neutralisation potency in vaccinated individuals. Nat Commun 2025; 16:2666. [PMID: 40102474 PMCID: PMC11920438 DOI: 10.1038/s41467-025-57947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
With the continued emergence of SARS-CoV-2 variants and concerns of waning immunity, there is a need for better defined correlates of protection to aid future vaccine and therapeutic developments. Whilst neutralising antibody titres are associated with protection, these are typically determined in the absence of the complement system, which has the potential to enhance neutralisation titres and strengthen correlates with protection in vivo. Here we show that replenishment of the complement system in neutralisation assays can significantly enhance neutralisation titres, with up to an ~83-fold increase in neutralisation of the BA.1.1.529 strain using cross-reactive sera from vaccination against the ancestral strain. The magnitude of enhancement significantly varies between individuals, viral strains (wild-type/VIC01 and Omicron/BA.1), and cell lines (Vero E6 and Calu-3), and is abrogated following heat-inactivation of the complement source. Utilising ACE2 competition assays, we show that the mechanism of action is partially mediated by reducing ACE2-spike interactions. Through the addition of compstatin (a C3 inhibitor) to live virus neutralisation assays, the complement protein C3 is shown to be required for maximum efficiency. These findings further our understanding of SARS-CoV-2 immunity and neutralisation, with implications for protection against emerging variants and assessing future vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Jack Mellors
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Raman Dhaliwal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Centre International de Recherche en Infectiologie, Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Tom Tipton
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Carroll
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Zhang Z, Geng X, Yin M, Zhang S, Liu Y, Hu D, Zheng G. Unveiling ficolins: diagnostic and prognostic biomarkers linked to the Tumor Microenvironment in Lung Cancer. World J Surg Oncol 2024; 22:273. [PMID: 39390580 PMCID: PMC11468453 DOI: 10.1186/s12957-024-03558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Ficolins (FCNs) are a family of proteins, comprising FCN1, FCN2 and FCN3, and integral to the immune system which have been implicated in the onset and progression of tumors. Despite their recognized roles, a comprehensive analysis of FCNs in lung cancer remains elusive. METHODS We employed a variety of bioinformatics tools, including UCSC, SangerBox, Ualcan, cBioPortal, String, Metascape, GeneMANIA, TIDE, CTD, and CAMP databases to investigate the differential expression, diagnostic and prognostic significance, genetic alterations, functional enrichment, immune infiltration, and potential immunotherapeutic implications of FCN1, FCN2, and FCN3 in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Additionally, RT-qPCR and immunohistochemistry were utilized to validate the expressions of FCNs at the mRNA and protein levels in LUSC and LUAD. RESULTS Our comprehensive bioinformatic analysis, supported by RT-qPCR and immunohistochemistry, revealed that the expressions of FCN1, FCN2 and FCN3 were consistently downregulated in both LUSC and LUAD tumor tissues. FCNs demonstrated significant diagnostic potential for LUSC and LUAD, with the area under the receiver operating characteristic curve (AUC) for FCN1 and FCN3 exceeding 0.90. Furthermore, FCN2 and FCN3 showed a strong negative correlation with overall survival (OS) in LUSC, whereas FCN1 and FCN2 were positively correlated with OS in LUAD, suggesting their prognostic value in lung cancer. Gene enrichment analysis indicated that FCNs were predominantly associated with the complement system and complement activation pathways. Immune infiltration analysis further revealed a significant positive correlation between FCNs and the presence of neutrophils and resting mast cells. Our analysis of immunotherapy outcomes revealed a significant disparity in the immunophenoscore (IPS) among lung cancer patients treated with immune checkpoint inhibitors (ICIs), distinguishing those with high FCN expression from those with low FCN expression. Additionally, we identified small molecule compounds related to FCNs and drugs pertinent to LUSC and LUAD. CONCLUSION FCNs held promise as diagnostic and prognostic biomarkers for LUSC and LUAD. This study also elucidated the relationship of FCNs with the tumor microenvironment, offering novel insights into the immunotherapeutic landscape for LUSC and LUAD.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Xueyan Geng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Maopeng Yin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China
| | - Dongmei Hu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China.
| |
Collapse
|
4
|
Huang L, Tan X, Xuan W, Luo Q, Xie L, Xi Y, Li R, Li L, Li F, Zhao M, Jiang Y, Wu X. Ficolin-A/2 Aggravates Severe Lung Injury through Neutrophil Extracellular Traps Mediated by Gasdermin D-Induced Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:989-1006. [PMID: 38442803 DOI: 10.1016/j.ajpath.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Luo
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Xie
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunzhu Xi
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongliang Jiang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xu Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Castagnola V, Tomati V, Boselli L, Braccia C, Decherchi S, Pompa PP, Pedemonte N, Benfenati F, Armirotti A. Sources of biases in the in vitro testing of nanomaterials: the role of the biomolecular corona. NANOSCALE HORIZONS 2024; 9:799-816. [PMID: 38563642 DOI: 10.1039/d3nh00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Sergio Decherchi
- Data Science and Computation Facility, Istituto Italiano di Tecnologia, via Morego, 30, Genova, 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
6
|
Yiu JYT, Hally KE, Larsen PD, Holley AS. Neutrophil-Enriched Biomarkers and Long-Term Prognosis in Acute Coronary Syndrome: a Systematic Review and Meta-analysis. J Cardiovasc Transl Res 2024; 17:426-447. [PMID: 37594719 PMCID: PMC11052791 DOI: 10.1007/s12265-023-10425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Activated neutrophils release a range of inflammatory products that represent potential biomarkers, and there is interest in the prognostic value of these in acute coronary syndrome (ACS) patients. We conducted a systematic review to examine neutrophil-enriched biomarkers and the occurrence of major adverse cardiovascular events (MACE) in patients with ACS. We identified twenty-seven studies including 17,831 patients with ACS. The most studied biomarkers were neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO). Meta-analyses showed that elevated NGAL was associated with higher MACE rates (unadjusted risk ratio (RR) 1.52, 95% CI 1.12-2.06, p = 0.006) as were elevated MPO levels (unadjusted RR 1.61, 95% CI 1.22-2.13, p = 0.01). There was limited data suggesting that increased levels of calprotectin, proteinase-3 and double-stranded DNA were also associated with MACE. These results suggest that higher levels of neutrophil-enriched biomarkers may be predictive of MACE in patients with ACS, although higher-quality studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Jaquelina Y T Yiu
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Kathryn E Hally
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Peter D Larsen
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Ana S Holley
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand.
| |
Collapse
|
7
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
8
|
Mellors J, Carroll M. Direct enhancement of viral neutralising antibody potency by the complement system: a largely forgotten phenomenon. Cell Mol Life Sci 2024; 81:22. [PMID: 38200235 PMCID: PMC10781860 DOI: 10.1007/s00018-023-05074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Neutralisation assays are commonly used to assess vaccine-induced and naturally acquired immune responses; identify correlates of protection; and inform important decisions on the screening, development, and use of therapeutic antibodies. Neutralisation assays are useful tools that provide the gold standard for measuring the potency of neutralising antibodies, but they are not without limitations. Common methods such as the heat-inactivation of plasma samples prior to neutralisation assays, or the use of anticoagulants such as EDTA for blood collection, can inactivate the complement system. Even in non-heat-inactivated samples, the levels of complement activity can vary between samples. This can significantly impact the conclusions regarding neutralising antibody potency. Restoration of the complement system in these samples can be achieved using an exogenous source of plasma with preserved complement activity or with purified complement proteins. This can significantly enhance the neutralisation titres for some antibodies depending on characteristics such as antibody isotype and the epitope they bind, enable neutralisation with otherwise non-neutralising antibodies, and demonstrate a better relationship between in vitro and in vivo findings. In this review, we discuss the evidence for complement-mediated enhancement of antibody neutralisation against a range of viruses, explore the potential mechanisms which underpin this enhancement, highlight current gaps in the literature, and provide a brief summary of considerations for adopting this approach in future research applications.
Collapse
Affiliation(s)
- Jack Mellors
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Miles Carroll
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Gao P, Tang K, Lu Y, Wang M, Wang W, Wang T, Sun Y, Zhao J, Mao Y. Increased expression of ficolin-1 is associated with airway obstruction in asthma. BMC Pulm Med 2023; 23:470. [PMID: 37996869 PMCID: PMC10668451 DOI: 10.1186/s12890-023-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The activated complement cascade is involved in asthmatic airway inflammation. Ficolins are essential for innate immunity and can activate the complement lectin pathway. Despite this, the significance of ficolins in asthma has yet to be determined. This study aimed to explore the presence of ficolins in individuals with asthma and to determine the relationship between ficolins and clinical characteristics. METHODS For the study, 68 asthmatic patients and 30 healthy control subjects were recruited. Enzyme-linked immunosorbent assay was used to determine plasma ficolin-1, ficolin-2, and ficolin-3 concentrations both before and after inhaled corticosteroid (ICS) therapy. Further, the associations of plasma ficolin-1 level with pulmonary function and asthma control questionnaire (ACQ) score were examined in the asthma patients. RESULTS Patients with asthma exhibited significantly elevated plasma ficolin-1 levels (median, 493.9 ng/mL; IQR, 330.2-717.8 ng/mL) in comparison to healthy controls (median, 330.6 ng/mL; IQR, 233.8-371.1 ng/mL). After ICS treatment, plasma ficolin-1 (median, 518.1 ng/mL; IQR, 330.2-727.0 ng/mL) in asthmatic patients was significantly reduced (median, 374.7 ng/mL; IQR, 254.8-562.5 ng/mL). Additionally, ficolin-1 expressions in plasma were significantly correlated with pulmonary function parameters and ACQ score in asthmatic patients. Asthma patients with higher plasma ficolin-1 levels demonstrated poorer lung function than those with lower plasma ficolin-1 levels. CONCLUSIONS The results revealed that asthmatic patients had higher plasma ficolin-1 concentrations, which decreased after ICS treatment and were linked to their lung function, implying a potential involvement of ficolin-1 in asthma pathogenesis.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tongsheng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuxia Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
10
|
Wheeler EA, Lenhart-Pendergrass PM, Rysavy NM, Poch K, Caceres S, Calhoun KM, Serban K, Nick JA, Malcolm KC. Divergent host innate immune response to the smooth-to-rough M. abscessus adaptation to chronic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540822. [PMID: 37293112 PMCID: PMC10245581 DOI: 10.1101/2023.05.15.540822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses. We explored the role of the complement system in the clearance of M. abscessus morphotypes by neutrophils, an abundant cell in these infections. M. abscessus opsonized with plasma from healthy individuals promoted greater killing by neutrophils compared to opsonization in heat-inactivated plasma. Rough clinical isolates were more resistant to complement but were still efficiently killed. Complement C3 associated strongly with the smooth morphotype while mannose-binding lectin 2 was associated with the rough morphotype. M. abscessus killing was dependent on C3, but not on C1q or Factor B; furthermore, competition of mannose-binding lectin 2 binding with mannan or N-acetyl-glucosamine during opsonization did not inhibit killing. These data suggest that M. abscessus does not canonically activate complement through the classical, alternative, or lectin pathways. Complement-mediated killing was dependent on IgG and IgM for smooth and on IgG for rough M. abscessus. Both morphotypes were recognized by Complement Receptor 3 (CD11b), but not CR1 (CD35), and in a carbohydrate- and calcium-dependent manner. These data suggest the smooth-to-rough adaptation changes complement recognition of M. abscessus and that complement is an important factor for M. abscessus infection.
Collapse
Affiliation(s)
| | | | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO
| | - Kara M Calhoun
- Department of Medicine University of Colorado, Aurora, CO
| | - Karina Serban
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| |
Collapse
|
11
|
Xiao F, Guo J, Tomlinson S, Yuan G, He S. The role of the complosome in health and disease. Front Immunol 2023; 14:1146167. [PMID: 36969185 PMCID: PMC10036758 DOI: 10.3389/fimmu.2023.1146167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
The complement system is one of the immune system's oldest defense mechanisms and is historically regarded as a liver-derived and serum-active innate immune system that 'complements' cell-mediated and antibody-mediated immune responses against pathogens. However, the complement system is now recognized as a central component of both innate and adaptive immunity at both the systemic and local tissue levels. More findings have uncovered novel activities of an intracellularly active complement system-the complosome-that have shifted established functional paradigms in the field. The complosome has been shown to play a critical function in regulating T cell responses, cell physiology (such as metabolism), inflammatory disease processes, and cancer, which has amply proved its immense research potential and informed us that there is still much to learn about this system. Here, we summarize current understanding and discuss the emerging roles of the complosome in health and disease.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| |
Collapse
|
12
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
13
|
Sugawara-Suda M, Morishita K, Ichii O, Namba T, Aoshima K, Kagawa Y, Kim S, Hosoya K, Yokoyama N, Sasaki N, Nakamura K, Yamazaki J, Takiguchi M. Transcriptome and proteome analysis of dogs with precursor targeted immune-mediated anemia treated with splenectomy. PLoS One 2023; 18:e0285415. [PMID: 37146011 PMCID: PMC10162568 DOI: 10.1371/journal.pone.0285415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
Precursor-targeted immune-mediated anemia (PIMA) in dogs is characterized by persistent non-regenerative anemia and ineffective erythropoiesis, and it is suspected to be an immune-mediated disease. Most affected dogs respond to immunosuppressive therapies; however, some are resistant. In this study, we carried out splenectomy as an alternative therapy for refractory PIMA in dogs, and analyzed gene expression levels in the spleen of dogs with or without PIMA and in serum before and after splenectomy. A total of 1,385 genes were found to express differentially in the spleens from dogs with PIMA compared with healthy dogs by transcriptome analysis, of which 707 genes were up-regulated, including S100A12, S100A8, and S100A9 that are linked directly to the innate immune system and have been characterized as endogenous damage-associated molecular patterns. Furthermore, immunohistochemistry confirmed that S100A8/A9 protein expression levels were significantly higher in dogs with PIMA compared with those in healthy dogs. A total of 22 proteins were found to express differentially between the serum samples collected before and after splenectomy by proteome analysis, of which 12 proteins were up-regulated in the samples before. The lectin pathway of complement activation was identified by pathway analysis in pre-splenectomy samples. We speculated that S100A8/9 expression may be increased in the spleen of dogs with PIMA, resulting in activation of the lectin pathway before splenectomy. These findings further our understanding of the pathology and mechanisms of splenectomy for PIMA.
Collapse
Affiliation(s)
- Mei Sugawara-Suda
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
14
|
Lin SY, Zhou T, Cai S, Hu ZW, Zhong J, Dong L. Proteomic characteristics of saliva in patients with different subgroups of IgG4-RD. Front Immunol 2022; 13:1026921. [PMID: 36483554 PMCID: PMC9723444 DOI: 10.3389/fimmu.2022.1026921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Immunoglobulin G4-related disease (IgG4-RD) is a newly defined disease entity, with great heterogeneity among IgG4-RD subgroups with different organ involvement patterns. Identification of the proteomic characteristics of IgG4-RD subgroups will be critical for the understanding of the pathogenic mechanisms of IgG4-RD. METHOD In this study, we performed proteomic analysis using Tandem Mass Tags (TMT) technology with "high field" mass analyzer with improved resolution and sequencing speed to investigate the proteomic profile of saliva and plasma samples from ten untreated IgG4-RD patients and five healthy controls (HCs). Differentially expressed proteins (DEPs) were identified by "t test" function in R package. Functional enrichment analysis was used to investigate pathways enriched in IgG4-RD samples. RESULTS Most salivary DEPs identified in IgG4-RD patients compared with HCs were mainly enriched in neutrophil mediated GO bioprocess. Within the comparisons between four IgG4-RD subgroups, more DEPs were identified in the comparison of Mikulicz group and Head and neck group. Among four subgroups of IgG4-RD, Head and neck group showed the most distinctive proteomic expression pattern when compared with HCs. Moreover, "Neutrophil mediated process" related GO bioprocess was commonly identified between comparisons of Mikulicz group and Head and neck group, Head and neck group and Retroperitoneal aorta group, Head and neck group and HCs, IgG4-RD patients with saliva gland involvement and those without saliva gland involvement. Key DEPs that involved in this GO bioprocess were identified. Besides, we performed proteomic analysis for plasma samples between ten IgG4-RD and five HCs and there were several DEPs identified overlapped in saliva and plasma. CONCLUSION We identified multiple processes/factors and several signaling pathways in saliva that may be involved in the IgG4-RD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Park SJ, Kwon S, Lee MS, Jang BH, Guzmán-Cedillo AE, Kang JH. Human Cell-Camouflaged Nanomagnetic Scavengers Restore Immune Homeostasis in a Rodent Model with Bacteremia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203746. [PMID: 36070419 DOI: 10.1002/smll.202203746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Bong Hwan Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Axel E Guzmán-Cedillo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
16
|
Tanio M. Calcium-dependent reversible coaggregation activity of C-reactive protein and M-ficolin. Mol Immunol 2022; 149:157-164. [PMID: 35841688 DOI: 10.1016/j.molimm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
C-reactive protein (CRP) and M-ficolin are the pattern recognition proteins of the innate immune system. In this report, a mixture of CRP and M-ficolin reversibly co-aggregated in a calcium-dependent manner. This coaggregation was enhanced at low pH (6.5) or low salt (35 mM NaCl) concentrations. The co-aggregate was dissolved by adding EDTA and reformed by adding calcium. The M-ficolin fibrinogen-like domain (FD1), the ligand-binding domain of M-ficolin, also showed calcium-dependent coaggregation with CRP, indicating that reversible coaggregation is caused by CRP interacting with FD1. Interestingly, adding phosphocholine (PC), the ligand of CRP, to a CRP-FD1 mixture abolished the reversible coaggregation activity. PC also inhibited the interaction between CRP and FD1. These results indicate that CRP retains PC-binding activity in the coaggregation state and that FD1 binds specifically to the PC-binding site on CRP but does not fully occupy the five PC-binding sites on a CRP pentamer as judged by SDS-PAGE analysis of precipitates. Coaggregation analysis using FD1 mutants showed that FD1 also retains ligand-binding activity in the coaggregation state and that coaggregation requires the trimeric form of FD1. It was also found that modifications to the ligand-binding site of FD1 affect coaggregation efficiency. Although the biological functions of the coaggregation activity of CRP and M-ficolin remain unresolved, the co-aggregates may function as bacteria-trapping particles with affinities for ligands of CRP and M-ficolin. In addition, coaggregation may be involved in CRP deposition in the lesions of several arterial diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Michikazu Tanio
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama-city, Tokyo 208-0011, Japan.
| |
Collapse
|
17
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693. [PMID: 35914009 PMCID: PMC9342791 DOI: 10.1371/journal.ppat.1010693] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination. Klebsiella pneumoniae is a major human pathogen. While capsule is the main virulence factor of the pathogen, only several of more than 80 capsule serotypes are frequently identified in invasive infections. However, it remains unclear how capsule contributes to K. pneumoniae virulence. Here we show that capsule type defines K. pneumoniae virulence by differential escape of immune surveillance in the liver. While low-virulence (LV) types are captured by Kupffer cells (KCs), high-virulence (HV) types circumvent the anti-bacterial machinery. Further, inactivated K. pneumoniae vaccine enables KCs to capture the HV K. pneumoniae and protects mice from lethal infection. Our findings explain the clinical prevalence of HV capsule types, and provide promising insights for future vaccine development.
Collapse
Affiliation(s)
- Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuyuan Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lulu Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Quanjiang Ji
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fen Qu
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Lu
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Ficolin-3 may act as a tumour suppressor by recognising O-GlcNAcylation site in hepatocellular carcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Brix N, Glerup M, Thiel S, Mistegaard CE, Skals RG, Berntson L, Fasth A, Nielsen SM, Nordal E, Rygg M, Hasle H, Albertsen BK, Herlin T. M-ficolin: a valuable biomarker to identify leukaemia from juvenile idiopathic arthritis. Arch Dis Child 2022; 107:371-376. [PMID: 34686494 PMCID: PMC8938675 DOI: 10.1136/archdischild-2021-322114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Distinction on clinical grounds between acute lymphoblastic leukaemia presenting with arthropathy (ALLarthropathy) and juvenile idiopathic arthritis (JIA) is difficult, as the clinical and paraclinical signs of leukaemia may be vague. The primary aim was to examine the use of lectin complement pathway proteins as markers to differentiate ALLarthropathy from JIA. The secondary aims were to compare the protein levels at baseline and follow-up in a paired number of children with ALL and to examine the correlation with haematology counts, erythrocyte sedimentation reaction (ESR), C-reactive protein (CRP), blasts, relapse and death. STUDY DESIGN In this observational study, we measured M-ficolin, CL-K1 and MASP-3 in serum from children with ALL (n=151) and JIA (n=238) by time-resolved immunofluorometric assays. Logistic regression was used for predictions of ALL risk, considering the markers as the respective exposures. We performed internal validation using repeated '10-fold cross-validation' with 100 repetitions computing the area under the curve (AUC) as well as positive and negative predictive values in order to evaluate the predictive performance. RESULTS The level of M-ficolin was higher in JIA than ALLtotal and the ALLarthropathy subgroup. The M-ficolin level normalised after remission of ALL. M-ficolin could differentiate ALL from JIA with an AUC of 94% and positive predictive value (PPV) of 95%, exceeding CRP and haemoglobin. In a dichotomised predictive model with optimal cut-offs for M-ficolin, platelets and haemoglobin, AUC was 99% and PPV 98% in detecting ALL from JIA. CONCLUSION M-ficolin is a valuable marker to differentiate the child with ALL from JIA.
Collapse
Affiliation(s)
- Ninna Brix
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Mia Glerup
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Clara Elbæk Mistegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Lillemor Berntson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Fasth
- Department of Pediatrics, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| | - Susan Mary Nielsen
- Department of Pediatrics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ellen Nordal
- Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Klug Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Troels Herlin
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Tsakanova G, Stepanyan A, Steffensen R, Soghoyan A, Jensenius JC, Arakelyan A. Pattern Recognition Molecules of Lectin Complement Pathway in Ischemic Stroke. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1347-1368. [PMID: 34707385 PMCID: PMC8544564 DOI: 10.2147/pgpm.s326242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Purpose The current study aimed to investigate in an Armenian population the levels of pattern recognition molecules (PRMs) of lectin complement pathway (LCP), MBL (mannan-binding lectin) and M-ficolin in plasma in ischemic stroke (IS), and the possible association of 11 single nucleotide polymorphisms (SNPs) in MBL2, FCN1 and FCN2 genes. Patients and Methods A total of 122 patients with IS and 150 control subjects were included in this study. Immunofluorometric assays (TRIFMAs) and real-time polymerase chain reactions with TaqMan probes were conducted. Results According to the results, the levels of M-ficolin in IS patients are significantly higher than in control subjects, and the MBL2 rs11003125 and rs12780112 SNPs, as well as MBL2 rs12780112*T and FCN1 rs10120023*T minor alleles (MAs) are negatively associated with the risk of IS. Further, MBL2 rs11003125 and rs1800450 SNPs and the carriage of their MAs, as well as FCN1 rs2989727 SNP and the carriage of FCN1 rs10120023*T MA significantly alter plasma MBL and M-ficolin levels in IS patients, respectively. Five common haplotypes in MBL2 gene and three common haplotypes in FCN1 and FCN2 genes were revealed, among which CGTC was negatively associated with IS and decreasing MBL plasma levels in IS. Conclusion In conclusion, we suggest that LCP PRMs are associated with the risk of developing IS, and may also participate in pathological events leading to post-ischemic brain damage. This study emphasizes the important contribution of alterations of LCP PRMs on genomic and proteomic levels to the pathomechanisms of ischemic stroke, at least in an Armenian population.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.,CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Armine Soghoyan
- "Surb Grigor Lusavorich" Medical Center CJSC, Yerevan, Armenia
| | | | | |
Collapse
|
22
|
Murugaiah V, Varghese PM, Beirag N, DeCordova S, Sim RB, Kishore U. Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. Viruses 2021; 13:v13050824. [PMID: 34063241 PMCID: PMC8147407 DOI: 10.3390/v13050824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system represents a crucial part of innate immunity. It contains a diverse range of soluble activators, membrane-bound receptors, and regulators. Its principal function is to eliminate pathogens via activation of three distinct pathways: classical, alternative, and lectin. In the case of viruses, the complement activation results in effector functions such as virion opsonisation by complement components, phagocytosis induction, virolysis by the membrane attack complex, and promotion of immune responses through anaphylatoxins and chemotactic factors. Recent studies have shown that the addition of individual complement components can neutralise viruses without requiring the activation of the complement cascade. While the complement-mediated effector functions can neutralise a diverse range of viruses, numerous viruses have evolved mechanisms to subvert complement recognition/activation by encoding several proteins that inhibit the complement system, contributing to viral survival and pathogenesis. This review focuses on these complement-dependent and -independent interactions of complement components (especially C1q, C4b-binding protein, properdin, factor H, Mannose-binding lectin, and Ficolins) with several viruses and their consequences.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Syreeta DeCordova
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (V.M.); (P.M.V.); (N.B.); (S.D.)
- Correspondence: or
| |
Collapse
|
23
|
Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Ther Targets 2021; 25:191-209. [PMID: 33682588 DOI: 10.1080/14728222.2021.1901079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a systemic disease with immune abnormalities that can affect the entire digestive tract. A high percentage of patients with IBD are unresponsive to current pharmacological agents, hence the need exists for novel therapeutic approaches. There is compelling evidence that macrophage polarization plays a key role in the remission of IBD patients and that it could open up future treatment options for patients.Areas covered: This paper highlights the crucial role of macrophage polarization in IBD. The authors shed light on the phenotype and function of macrophages and potential drug targets for polarization regulation. Existing approaches for regulating macrophage polarization are discussed and potential solutions for safety concerns are considered. We performed a literature search on the IBD and macrophage polarization mainly published in PubMed January 2010-July 2020.Expert opinion: Evidence indicates that there are fewer M2 macrophages and a high proportion of M1 macrophages in the intestinal tissues of individuals who are non- responsive to treatment. Regulating macrophage polarization is a potential novel targeted option for IBD treatment. Improved mechanistic insights are required to uncover more precise and effective targets for skewing macrophages into a proper phenotype.
Collapse
Affiliation(s)
- Yaoyao Du
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Bellott DW, Page DC. Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Res 2021; 31:198-210. [PMID: 33479023 PMCID: PMC7849413 DOI: 10.1101/gr.268516.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.
Collapse
Affiliation(s)
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Wang P, Wu Q, Shuai ZW. Emerging role of ficolins in autoimmune diseases. Pharmacol Res 2021; 163:105266. [PMID: 33127557 DOI: 10.1016/j.phrs.2020.105266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Ficolins are pattern-recognition molecules (PRMs) that could form complexes with mannose-binding lectin-associated serine proteases (MASPs) to trigger complement activation via the lectin pathway, thereby mediating a series of immune responses including opsonization, phagocytosis and cytokine production. In the past few decades, accumulating evidence have suggested that ficolins play a major role in the onset and development of several autoimmune diseases (ADs), including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Type 1 diabetes (T1D), inflammatory bowel disease (IBD), etc. In this review, we synthesized previous literatures and recent advances to elucidate the immunological regulations of ficolins and discuss the potential diagnostic ability of ficolins in ADs, as well as giving an insight into the future therapeutic options for ficolins in ADs.
Collapse
Affiliation(s)
- Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, 199 Renai Road, Suzhou, Jiangsu, 215123, China.
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230016, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China.
| |
Collapse
|
26
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
27
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
28
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Ambrosio AR, Bavia L, Borges BS, Hiraiwa PM, Pietsch JLM, Ribeiro MCVDC, Figueiredo FB, Messias-Reason IJ. Novel findings on the role of ficolins and colectins in the innate response against Leishmania braziliensis. Acta Trop 2020; 212:105673. [PMID: 32827454 DOI: 10.1016/j.actatropica.2020.105673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Leishmania (Viannia) braziliensis is the main agent of mucocutaneous Leishmaniasis, a neglected tropical disease that affects thousands of people in Brazil. It has been shown that complement plays a critical role at early stages of Leishmania infection and that is involved in the invasion of macrophages by the promastigotes. Ficolins and collectins are soluble pattern recognition and triggering molecules of the lectin complement pathway. We investigated here whether lectin pathway activators ficolin-1, ficolin-2, ficolin-3 and CL-11 bind to live L. braziliensis promastigotes in vitro. Promastigote forms in the stationary growth phase were incubated with normal human serum (NHS) or recombinant ficolins 1, 2 and 3, MBL and CL-11, and protein binding was evaluated by confocal microscopy and flow cytometry. Ficolins 1, 2 and 3, MBL and CL-11 were able to bind to the surface of live promastigotes after incubation with either NHS or recombinant proteins. A partial inhibition by N-acetyl-d-glucosamine characterizing the participation of acetylated groups in the deposition of ficolins and CL-11 to glycoconjugates on the surface of L. braziliensis was observed. These evidences highlight a role for the lectin pathway in the innate response to L. braziliensis.
Collapse
Affiliation(s)
- Altair Rogerio Ambrosio
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil; Medical Department, Positivo University, Curitiba, Brazil.
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - João Luis Machado Pietsch
- Laboratory of Molecular Parasitology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Iara Jose Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
30
|
Pieczarka C, Andrade FA, Catarino SJ, Lidani KCF, Bavia L, Tizzot R, Skare T, de Messias-Reason IJ. Ficolin-1 and ficolin-3 polymorphisms and susceptibility to rheumatoid arthritis. Autoimmunity 2020; 53:400-407. [PMID: 32820945 DOI: 10.1080/08916934.2020.1809654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which compromises the synovial membrane resulting in chronic inflammation. Ficolins are key proteins of the lectin pathway of complement able to recognize pathogen-associated molecular patterns, apoptotic cells, and cellular debris mediating the clearance by phagocytes. High ficolin-1 and ficolin-3 levels have been observed in RA patients, however, the influence of polymorphisms in the FCN1 gene in RA is not completely established, while no study evaluated FCN3 gene polymorphisms in RA to date. We investigated the influence of FCN1 and FCN3 gene polymorphisms in the susceptibility and clinical presentation of RA. A total of 148 patients with RA and up to 160 controls from Southern Brazil were genotyped by sequence-specific PCR (PCR-SSP) for five FCN1 promoter polymorphisms (rs2989727, rs10120023, rs17039495, rs10117466, and rs10858293) and three FCN3 gene variants (rs532781899, rs28362807, and rs4494157). The FCN1 g.-542GG (rs10120023) genotype and g.-542G allele, were associated with increased susceptibility to RA (p = .025, OR = 1.69 [1.07-2.69]; p = .041, OR = 1.47 [1.02-2.12], respectively) and related to decreased FCN1 gene expression in whole blood (p < .00001), according to gene expression databases. In addition, the FCN1 AAGAG haplotype was more prevalent in rheumatoid factor seronegative in comparison to seropositive patients (p = .006, OR = 0.042 [0.002-0.80]). There was no association of FCN3 polymorphisms with the susceptibility or clinical characteristics of RA. Our results indicate that the FCN1 rs10120023 [g.-542G>A] polymorphism in the promoter region might contribute to RA susceptibility, probably by impacting FCN1 gene expression.
Collapse
Affiliation(s)
- Cristhine Pieczarka
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Sandra Jeremias Catarino
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thelma Skare
- Rheumatology Unit, Evangelical Mackenzie Hospital, Curitiba, Brazil
| | | |
Collapse
|
31
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
32
|
Pathak KV, McGilvrey MI, Hu CK, Garcia-Mansfield K, Lewandoski K, Eftekhari Z, Yuan YC, Zenhausern F, Menashi E, Pirrotte P. Molecular Profiling of Innate Immune Response Mechanisms in Ventilator-associated Pneumonia. Mol Cell Proteomics 2020; 19:1688-1705. [PMID: 32709677 PMCID: PMC8014993 DOI: 10.1074/mcp.ra120.002207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection, leading to high morbidity and mortality. Currently, bronchoalveolar lavage (BAL) is used in hospitals for VAP diagnosis and guiding treatment options. Although BAL collection procedures are invasive, alternatives such as endotracheal aspirates (ETA) may be of diagnostic value, however, their use has not been thoroughly explored. Longitudinal ETA and BAL were collected from 16 intubated patients up to 15 days, of which 11 developed VAP. We conducted a comprehensive LC-MS/MS based proteome and metabolome characterization of longitudinal ETA and BAL to detect host and pathogen responses to VAP infection. We discovered a diverse ETA proteome of the upper airways reflective of a rich and dynamic host-microbe interface. Prior to VAP diagnosis by microbial cultures from BAL, patient ETA presented characteristic signatures of reactive oxygen species and neutrophil degranulation, indicative of neutrophil mediated pathogen processing as a key host response to the VAP infection. Along with an increase in amino acids, this is suggestive of extracellular membrane degradation resulting from proteolytic activity of neutrophil proteases. The metaproteome approach successfully allowed simultaneous detection of pathogen peptides in patients' ETA, which may have potential use in diagnosis. Our findings suggest that ETA may facilitate early mechanistic insights into host-pathogen interactions associated with VAP infection and therefore provide its diagnosis and treatment.
Collapse
Affiliation(s)
- Khyatiben V Pathak
- Collaborative Center for Translatinal Mass Spectrometry, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marissa I McGilvrey
- Collaborative Center for Translatinal Mass Spectrometry, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Charles K Hu
- HonorHealth Clinical Research Institute, Scottsdale, Arizona, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translatinal Mass Spectrometry, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Karen Lewandoski
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Zahra Eftekhari
- Applied AI and Data Science, City of Hope Medical Center, Duarte, California, USA
| | - Yate-Ching Yuan
- Center for Informatics, City of Hope Medical Center, Duarte, California, USA
| | - Frederic Zenhausern
- Translational Genomics Research Institute, Phoenix, Arizona, USA; HonorHealth Clinical Research Institute, Scottsdale, Arizona, USA; Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Emmanuel Menashi
- HonorHealth Clinical Research Institute, Scottsdale, Arizona, USA
| | - Patrick Pirrotte
- Collaborative Center for Translatinal Mass Spectrometry, Translational Genomics Research Institute, Phoenix, Arizona, USA.
| |
Collapse
|
33
|
Hayashi M, Abe K, Fujita M, Takahashi A, Sekine H, Ohira H. Association between serum ficolin-1 level and disease progression in primary biliary cholangitis. PLoS One 2020; 15:e0238300. [PMID: 32915797 PMCID: PMC7485786 DOI: 10.1371/journal.pone.0238300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition molecules (PRMs) in the complement system contribute to homeostasis as mediators of complement activation. The contribution of PRMs to primary biliary cholangitis (PBC) is unknown. In the current study, we aimed to assess the association between PRMs and the clinical findings of PBC. A total of 122 PBC patients and 20 healthy controls were enrolled. We measured four different PRMs (mannose-binding lectin [MBL], ficolin-1, ficolin-2 and ficolin-3) using stored sera, and retrospectively analyzed the associations between PRMs and laboratory findings, histological findings, and the development of cirrhosis-related conditions. Ficolin-1 levels were significantly higher in the PBC patients than in the healthy controls (152 ng/mL vs 102 ng/mL, P = 0.034), but no significant differences were observed regarding MBL, ficolin-2, and ficolin-3 levels. Ficolin-1 was significantly correlated with alkaline phosphatase (ALP). Low ficolin-1 levels were significantly associated with the development of cirrhosis-related conditions independent for histological stage and ALP levels (hazard ratio: 0.933; 95% confidence interval: 0.875-0.994; P = 0.032). Patients with low levels of ficolin-1 (< 77 ng/mL) had a significantly increased rate of developing cirrhosis-related conditions. Low ficolin-1 levels were associated with disease progression independent of histological stage and ALP levels in patients with PBC.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
34
|
Lanigan LT, Mackie M, Feine S, Hublin JJ, Schmitz RW, Wilcke A, Collins MJ, Cappellini E, Olsen JV, Taurozzi AJ, Welker F. Multi-protease analysis of Pleistocene bone proteomes. J Proteomics 2020; 228:103889. [DOI: 10.1016/j.jprot.2020.103889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
|
35
|
Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, Klavinskis LS, Sacks S. Rationale for targeting complement in COVID-19. EMBO Mol Med 2020; 12:e12642. [PMID: 32559343 PMCID: PMC7323084 DOI: 10.15252/emmm.202012642] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, has recently emerged in China and spread internationally, posing a health emergency to the global community. COVID-19 caused by SARS-CoV-2 is associated with an acute respiratory illness that varies from mild to the life-threatening acute respiratory distress syndrome (ARDS). The complement system is part of the innate immune arsenal against pathogens, in which many viruses can evade or employ to mediate cell entry. The immunopathology and acute lung injury orchestrated through the influx of pro-inflammatory macrophages and neutrophils can be directly activated by complement components to prime an overzealous cytokine storm. The manifestations of severe COVID-19 such as the ARDS, sepsis and multiorgan failure have an established relationship with activation of the complement cascade. We have collected evidence from all the current studies we are aware of on SARS-CoV-2 immunopathogenesis and the preceding literature on SARS-CoV-1 and MERS-CoV infection linking severe COVID-19 disease directly with dysfunction of the complement pathways. This information lends support for a therapeutic anti-inflammatory strategy against complement, where a number of clinically ready potential therapeutic agents are available.
Collapse
MESH Headings
- Adult
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/virology
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Complement Activation/drug effects
- Complement C3b/antagonists & inhibitors
- Complement C3b/physiology
- Complement Inactivating Agents/pharmacology
- Complement Inactivating Agents/therapeutic use
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/immunology
- Glycosylation
- Humans
- Immunity, Innate
- Ligands
- Mice
- Models, Animal
- Models, Molecular
- Pandemics
- Pattern Recognition, Automated
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Virus/metabolism
- Respiratory Distress Syndrome/etiology
- Respiratory Distress Syndrome/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Anastasia Polycarpou
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Mark Howard
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Conrad A Farrar
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Roseanna Greenlaw
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Giorgia Fanelli
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Russell Wallis
- Department of Respiratory Science and InfectionLeicester Institute of Chemical and Structural BiologyUniversity of LeicesterLeicesterUK
| | - Linda S Klavinskis
- Department of Infectious DiseasesSchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Steven Sacks
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| |
Collapse
|
36
|
Wu X, Yao D, Bao L, Liu D, Xu X, An Y, Zhang X, Cao B. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement. Immunol Cell Biol 2020; 98:595-606. [PMID: 32339310 DOI: 10.1111/imcb.12344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Ficolins are important and widely distributed pattern recognition molecules that can induce lectin complement pathway activation and initiate the innate immune response. Although ficolins can bind lipopolysaccharide (LPS) in vitro, the sources, dynamic changes and roles of local ficolins in LPS-induced pulmonary inflammation and injury remain poorly understood. In this study, we established a ficolin knockout mouse model by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology, and used flow cytometry and hematoxylin and eosin staining to study the expressions and roles of local ficolins in LPS-induced pulmonary inflammation and injury. Our results show that besides ficolin B (FcnB), ficolin A (FcnA) is also expressed in leukocytes from the bone marrow, peripheral blood, lung and spleen. Further analyses showed that macrophages and neutrophils are the main sources of FcnA and FcnB, and T and B cells also express a small amount of FcnB. The intranasal administration of LPS induced local pulmonary inflammation with the increased recruitment of macrophages and neutrophils. LPS stimulation induced increased expression of FcnA and FcnB in neutrophils at the acute stage and in macrophages at the late stage. The severity of the lung injury and local inflammation of Fcna-/- mice was increased by the induction of extracellular complement activation. The recovery of LPS-induced local lung inflammation and injury was delayed in Fcnb-/- mice. Hence, these findings suggested that the local macrophage- and neutrophil-derived FcnA protects against LPS-induced acute lung injury by mediating extracellular complement activation.
Collapse
Affiliation(s)
- Xu Wu
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine , Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100006, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
37
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
38
|
Zhu G, Zhao G, Lin J, Li C, Wang Q, Xu Q, Peng X, Zheng H. FCN-A mediates the inflammatory response and the macrophage polarization in Aspergillus fumigatus keratitis of mice by activating the MAPK signaling pathway. Int Immunopharmacol 2020; 83:106473. [PMID: 32272397 DOI: 10.1016/j.intimp.2020.106473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
Fungal keratitis (FK) is a severe corneal disease that may cause vision loss. Previous studies indicate that the innate immune response produces the most effective anti-Aspergillus immune resistance. Ficolin-A (FCN-A), a soluble pattern-recognition receptor (PRR) family plays an important role in the innate immunity. In this study, we aimed to study the role of FCN-A in the A. fumigatus infected cornea. Here for the first time, we reported that the expression of FCN-A increases after A. fumigatus infection in the cornea of mice. Then, our results showed that the down-regulation of FCN-A reduced the inflammatory response of the cornea infected mice and decreased the expression of the TNF-a, p-p38, p-JNK. We also found that FCN-A can affect the recruitment of macrophages in the cornea of mice with A. fumigatus keratitis. In the mouse model of A. fumigatus keratitis and the A. fumigatus stimulation of RAW 264.7 cells, knocking down of FCN-A expression promoted the macrophage polarization toward M2. Furthermore, we observed that both the p38 and JNK inhibitors pretreatment decreased the proportion of M1/M2 in RAW 264.7 cells. Taken together, our data provide evidence that FCN-A participated in the inflammatory response of A. fumigatus keratitis in mice. Moreover, FCN-A mediates the inflammatory response and the polarization of the macrophages by activating the MAPK signaling pathway in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| |
Collapse
|
39
|
Elkoumi MA, Abdellatif SH, Mohamed FY, Sherif AH, Elashkar SSA, Saleh RM, Boraey NF, Abdelaal NM, Akeel NE, Elhewala AA, Mosbah AA, Zakaria MT, Soliman MM, Salah A, Sedky YM, Sobieh AA, Mashali MH, Waked NM, Elshreif AM, Hafez SF, Hashem MIA, Shehab MM, Soliman AA, Emam AA, Ahmed AAA, Fahim MS, Elshehawy NA, Abdel-Aziz MM, Abdou AM, El-Shehawy AA, Youssef MAA, Fahmy DS, Malek MM, Osman SF, Ibrahim MAM, Alanwar MI, Zeidan NMS. Ficolin-1 gene (FCN1) -144 C/A polymorphism is associated with adverse outcome of severe pneumonia in the under-five Egyptian children: A multicenter study. Pediatr Pulmonol 2020; 55:1175-1183. [PMID: 32142211 DOI: 10.1002/ppul.24719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pneumonia is the foremost cause of child death worldwide. M-ficolin is encoded by the FCN1 gene and represents a novel link between innate and adaptive immunity. OBJECTIVES To investigate the FCN1 -144 C/A (rs10117466) polymorphism as a potential marker for pneumonia severity and adverse outcome namely complications or mortality in the under-five Egyptian children. METHODS This was a prospective multicenter study that included 620 children hospitalized with World Health Organization-defined severe pneumonia and 620 matched healthy control children. Polymorphism rs10117466 of the FCN1 gene promoter was analyzed by PCR-SSP, while serum M-ficolin levels were assessed by ELISA. RESULTS The FCN1 A/A genotype and A allele at the -144 position were more frequently observed in patients compared to the control children (43.4% vs 27.6%; odds ratio [OR]: 1.62; [95% confidence interval {CI}: 1.18-2.2]; for the A/A genotype) and (60.8% vs 52.5%; OR: 1.4; [95% CI: 1.19-1.65]; for the A allele); P < .01. The FCN1 -144 A/A homozygous patients had significantly higher serum M-ficolin concentrations (mean: 1844 ± 396 ng/mL) compared with those carrying the C/C or C/A genotype (mean: 857 ± 278 and 1073 ± 323 ng/mL, respectively; P = .002). FCN1 -144 A/A genotype was an independent risk factor for adverse outcomes in children with severe pneumonia (adjusted OR = 4.85, [95% CI: 2.96-10.25]; P = .01). CONCLUSION The FCN1 A/A genotype at the -144 position was associated with high M-ficolin serum levels and possibly contributes to enhanced inflammatory response resulting in the adverse outcome of pneumonia in the under-five Egyptian children.
Collapse
Affiliation(s)
- Mohamed A Elkoumi
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sawsan H Abdellatif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faisal Y Mohamed
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed H Sherif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa S A Elashkar
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab M Saleh
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - NourEldin M Abdelaal
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nagwa E Akeel
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elhewala
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Mosbah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mervat T Zakaria
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohammed M Soliman
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Salah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasser M Sedky
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaa A Sobieh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed H Mashali
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nevin M Waked
- Department of Pediatrics, Faculty of Medicine, October 6 University, Cairo, Egypt
| | - Anas M Elshreif
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Sahbaa F Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed S Fahim
- Department of Anathesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Naglaa A Elshehawy
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Adel M Abdou
- Department of Clinical pathology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Ahmed A El-Shehawy
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Manal A A Youssef
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia S Fahmy
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif F Osman
- Department of Radiology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Mohamed A M Ibrahim
- Department of Clinical pathology, Faculty of Medicine, Sohag University, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nancy M S Zeidan
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
40
|
Frederiksen K, Krag AE, Larsen JB, Kiil BJ, Thiel S, Hvas AM. Remote ischemic preconditioning does not influence lectin pathway protein levels in head and neck cancer patients undergoing surgery. PLoS One 2020; 15:e0230411. [PMID: 32267878 PMCID: PMC7141620 DOI: 10.1371/journal.pone.0230411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer patients who undergo tumor removal, and reconstructive surgery by transfer of a free tissue flap, are at high risk of surgical site infection and ischemia-reperfusion injury. Complement activation through the lectin pathway (LP) may contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) is a recent experimental treatment targeting ischemia-reperfusion injury. The study aims were to investigate LP protein plasma levels in head and neck cancer patients compared with healthy individuals, to explore whether RIPC affects LP protein levels in head and neck cancer surgery, and finally to examine the association between postoperative LP protein levels and the risk of surgical site infection. METHODS Head and neck cancer patients (n = 60) undergoing tumor resection and reconstructive surgery were randomized 1:1 to RIPC or sham intervention administered intraoperatively. Blood samples were obtained preoperatively, 6 hours after RIPC/sham, and on the first postoperative day. LP protein plasma levels were measured utilizing time-resolved immunofluorometric assays. RESULTS H-ficolin and M-ficolin levels were significantly increased in cancer patients compared with healthy individuals (both P ≤ 0.02). Conversely, mannan-binding lectin (MBL)-associated serine protease (MASP)-1, MASP-3, collectin liver-1 (CL-L1), and MBL-associated protein of 44 kilodalton (MAp44) levels were decreased in cancer patients compared with healthy individuals (all P ≤ 0.04). A significant reduction in all LP protein levels was observed after surgery (all P < 0.001); however, RIPC did not affect LP protein levels. No difference was demonstrated in postoperative LP protein levels between patients who developed surgical site infection and patients who did not (all P > 0.13). CONCLUSIONS The LP was altered in head and neck cancer patients. LP protein levels were reduced after surgery, but intraoperative RIPC did not influence the LP. Postoperative LP protein levels were not associated with surgical site infection.
Collapse
Affiliation(s)
- Kristine Frederiksen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Engel Krag
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Jul Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Medjeral-Thomas NR, O'Shaughnessy MM. Complement in IgA Nephropathy: The Role of Complement in the Pathogenesis, Diagnosis, and Future Management of IgA Nephropathy. Adv Chronic Kidney Dis 2020; 27:111-119. [PMID: 32553243 DOI: 10.1053/j.ackd.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is an important cause of chronic and end-stage kidney disease. IgAN pathogenesis is incompletely understood. In particular, we cannot adequately explain the heterogeneity in clinical and histologic features and severities that characterizes IgAN. This limits patient stratification to appropriate and effective treatments and the development of disease-targeted therapies. Studies of the role of the alternative, lectin, and terminal complement pathways in IgAN have enhanced our understanding of disease pathogenesis and inform the development of novel diagnostic and therapeutic strategies. For example, recent genetic, serologic, and immunohistologic evidence suggests that imbalances between the main alternative complement pathway regulator protein (factor H) and competitor proteins that deregulate complement activity (factor H-related proteins 1 and 5, FHR1, and FHR5) associate with IgAN severity: a relative abundance of FHR1 and FHR5 amplifies complement-dependent inflammation and exacerbates kidney injury. Ongoing characterization of the mechanisms by which complement activity contributes to IgAN pathogenesis will facilitate the development of complement-based diagnostic techniques, biomarkers of disease activity and severity, and novel targeted therapies.
Collapse
|
42
|
Świerzko AS, Michalski M, Sokołowska A, Nowicki M, Szala-Poździej A, Eppa Ł, Mitrus I, Szmigielska-Kapłon A, Sobczyk-Kruszelnicka M, Michalak K, Gołos A, Wierzbowska A, Giebel S, Jamroziak K, Kowalski ML, Brzezińska O, Thiel S, Matsushita M, Jensenius JC, Gajek G, Cedzyński M. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front Immunol 2020; 10:3097. [PMID: 32047495 PMCID: PMC6997528 DOI: 10.3389/fimmu.2019.03097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
A prospective study of 312 patients [194 with multiple myeloma (MM) and 118 with lymphomas (LYMPH)] receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HSCT) was conducted. Ficolins are innate immune defense factors, able to distinguish between "self" "abnormal self," and "non-self" and contribute to the elimination of the last two by direct opsonization and/or initiation of complement activation via the lectin pathway. Concentrations of ficolin-1, ficolin-2, and ficolin-3 in serially taken serum samples were determined as were the polymorphisms of the corresponding (FCN1, FCN2, and FCN3) genes. Serum samples were collected before conditioning chemotherapy, before HSCT, and once weekly post-HSCT (four to five samples in total); some patients were also sampled at 1 and/or 3 months post-transplantation. The control group (C) consisted of 267 healthy unrelated individuals. Median ficolin-1 and ficolin-2 (but not ficolin-3) levels in MM patients' sera taken before chemotherapy were lower (and correspondingly frequencies of the lowest concentrations were higher) compared with controls. That appeared to be associated with the malignant disease itself rather than with post-HSCT complications (febrile neutropenia, infections accompanied, or not with bacteremia). Higher frequencies of the FCN1 genotype G/A-C/C-G/G (corresponding to polymorphisms at positions -542, -144, and +6658, respectively) and FCN2 gene heterozygosity for the -857 C>A polymorphism were found among patients diagnosed with MM compared with the C group. Furthermore, FCN2 G/G homozygosity (-557 A>G) was found more frequently and heterozygosity G/T at +6424 less frequently among LYMPH patients than among the healthy subjects. Heterozygosity for +1637delC mutation of the FCN3 gene was more common among patients diagnosed with lymphomas who experienced hospital infections. Although no evidence for an association of low ficolin-1 or ficolin-2 with infections during neutropenia following chemotherapy before HSCT was found, we observed a possible protective effect of ficolins during follow-up.
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital, Łódz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Łukasz Eppa
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Michalak
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
- Department of Rheumatology, Medical University of Łódz, Łódz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| |
Collapse
|
43
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
44
|
Kobayashi T, Kuronuma K, Saito A, Ikeda K, Ariki S, Saitou A, Otsuka M, Chiba H, Takahashi S, Takahashi M, Takahashi H. Insufficient serum L-ficolin is associated with disease presence and extent of pulmonary Mycobacterium avium complex disease. Respir Res 2019; 20:224. [PMID: 31638993 PMCID: PMC6805425 DOI: 10.1186/s12931-019-1185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The incidence of infectious disease caused by nontuberculous mycobacteria is increasing worldwide. Pulmonary Mycobacterium avium complex (MAC) disease is difficult to treat with chemotherapy, and its mechanism of infection, infection route, disease onset, and severity remain unknown. Ficolins are oligomeric defense lectins. L-ficolin plays an important role in innate immunity. This study's aim was to identify L-ficolin's role in patients with pulmonary MAC disease. METHODS Between April 2011 and September 2017, 61 Japanese patients with pulmonary MAC disease were seen at our hospital. A control group, comprising 30 healthy individuals, without respiratory disease were enrolled in our study. The relationship between serum L-ficolin levels and disease severity was assessed, and L-ficolin's antibacterial role was examined. RESULTS Serum L-ficolin levels were significantly lower in patients with pulmonary MAC disease than in healthy subjects (1.69 ± 1.27 μg/ml vs. 3.96 ± 1.42 μg/ml; p < 0.001). The cut-off value, based on receiver operating characteristic (ROC) analysis results, was 2.48 μg/ml (area under the curve (AUC) 0.90, sensitivity and specificity 83.6 and 86.7%, respectively). Serum L-ficolin levels were significantly lower in the patients with nodular bronchiectatic type disease compared with the patients with fibrocavitary type disease and were lower in the high-resolution computed tomography high-scoring group compared with low-scoring group. An in vitro analysis showed that purified recombinant L-ficolin bound to M. avium and its major cell wall component, lipoarabinomannan, in a concentration-dependent manner. In addition, recombinant L-ficolin suppressed M. avium growth in a concentration-dependent manner. CONCLUSIONS Insufficient serum L-ficolin is associated with disease progression in pulmonary MAC disease, and the level of serum L-ficolin is a possible biomarker. TRIAL REGISTRATION This study is registered with UMIN ( UMIN000022392 ).
Collapse
Affiliation(s)
- Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Atsushi Saitou
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
45
|
Jørgensen CM, Jensen L, Christiansen M, Bjerre M, Jensen JMB, Thiel S. Pattern Recognition Molecules of the Lectin Pathway-Screening of Patients with Suspected Immunodeficiency. J Clin Immunol 2019; 39:668-677. [PMID: 31377972 DOI: 10.1007/s10875-019-00675-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare plasma concentrations of all lectin pathway (LP) pattern recognition molecules (PRMs) in patients referred for laboratory evaluation due to recurrent infections with healthy individuals. METHODS Patients were divided into categories according to referral: recurrent airway infections (RAI), recurrent abscesses, common variable immunodeficiency (CVID), lung transplantation candidates (LTX), and 'other causes'. LP PRMs (mannose-binding lectin (MBL), collectin liver 1 (CL-L1), H-ficolin, L-ficolin, M-ficolin) and C-reactive protein (CRP) were determined in 332 patients and 150 healthy blood donors using time-resolved immunofluorometric assays. RESULTS None of the LP PRMs was found in lower concentration in the patient categories; however, several PRMs were detected in higher concentrations. M-ficolin was found in higher concentrations in all patient categories. Patients suffering from RAI had higher concentrations of CL-L1 and H-ficolin. Patients suffering from abscesses exhibited higher concentrations of MBL and CL-L1, whereas LTX had higher concentrations of MBL. Patients with other causes of referral had higher concentrations of MBL and CL-L1. Prevalence of combined deficiencies of PRMs in patient categories and controls did not differ. CRP was used as a marker of ongoing inflammation and was significantly higher among all patient categories. Furthermore, CRP was found to correlate with both M-ficolin and L-ficolin. CONCLUSION The results suggest that neither single nor combined deficiencies of LP PRMs are more frequent among patients referred for an immunological evaluation than in healthy individuals. Future studies are needed and should focus on deficiencies of LP PRMs combined with deficiencies in other parts of the immune system.
Collapse
Affiliation(s)
- Clara Mistegård Jørgensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark. .,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Medicine - Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Department of Clinical Medicine - Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Clinical Medicine - Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark
| |
Collapse
|
46
|
Tortajada A, Gutierrez E, Pickering MC, Praga Terente M, Medjeral-Thomas N. The role of complement in IgA nephropathy. Mol Immunol 2019; 114:123-132. [PMID: 31351413 DOI: 10.1016/j.molimm.2019.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
IgA nephropathy (IgAN) is common and often progresses to end stage renal disease. IgAN encompasses a wide range of histology and clinical features. IgAN pathogenesis is incompletely understood; the current multi-hit hypothesis of IgAN pathogenesis does not explain the range of glomerular inflammation and renal injury associated with mesangial IgA deposition. Although associations between IgAN and glomerular and circulating markers of complement activation are established, the mechanism of complement activation and contribution to glomerular inflammation and injury are not defined. Recent identification of specific complement pathways and proteins in severe IgAN cases had advanced our understanding of complement in IgAN pathogenesis. In particular, a growing body of evidence implicates the complement factor H related proteins 1 and 5 and lectin pathway as pathogenic in a subset of patients with severe disease. These data suggest complement deregulation and activity may be dominant drivers of renal injury in IgAN. Thereby, markers of complement activation may identify IgAN patients likely to progress to significant renal impairment and complement inhibition may emerge as an effective method of preventing and reducing glomerular injury in IgAN.
Collapse
Affiliation(s)
- Agustin Tortajada
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo Gutierrez
- Department of Nephrology, Research Institute Universitary Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Manuel Praga Terente
- Department of Nephrology, Research Institute Universitary Hospital 12 de Octubre (imas12), Madrid, Spain
| | | |
Collapse
|
47
|
Jarlhelt I, Genster N, Kirketerp-Møller N, Skjoedt MO, Garred P. The ficolin response to LPS challenge in mice. Mol Immunol 2019; 108:121-127. [PMID: 30818229 DOI: 10.1016/j.molimm.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The ficolins belong to an important family of pattern recognition molecules, which contributes to complement activation via the lectin pathway. How the ficolins respond to inflammatory stimuli remains only partly understood. In the present study, we investigated the ficolin A and ficolin B expression and protein distribution patterns in a mouse model of LPS-induced inflammation. The time- and tissue-specific expression of ficolin A and B was determined by real time PCR. Furthermore, ficolin protein levels in serum and bone marrow extracts from LPS challenged mice were determined by novel in-house developed sandwich ELISAs. Ficolin A was mainly expressed in liver and spleen. However, our data also suggested that ficolin A is expressed in bone marrow, which is the main site of ficolin B expression. The level of ficolin A and B expression was increased after stimulation with LPS in the investigated tissues. This was followed by a downregulation of expression, causing mRNA levels to return to baseline 24 h post LPS challenge. Protein levels appeared to follow the same pattern as the expression profiles, with an exception of ficolin B levels in serum, which kept increasing for 24 h. Ficolin A was likewise significantly increased in bronchoalveolar lavage fluid from mice infected with the fungi A. fumigatus, pointing towards a similar effect of the ficolins in non-sterile mouse models of inflammation. The results demonstrate that LPS-induced inflammation can induce a significant ficolin response, suggesting that the murine ficolins are acute phase reactants with increase in both mRNA expression and protein levels during systemic inflammation.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Jalal PJ, Urbanowicz RA, Horncastle E, Pathak M, Goddard C, Saeed A, Mason CP, Ball JK, Irving WL, McClure CP, King BJ, Tarr AW. Expression of human ficolin-2 in hepatocytes confers resistance to infection by diverse hepatotropic viruses. J Med Microbiol 2019; 68:642-648. [PMID: 30747617 DOI: 10.1099/jmm.0.000935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The liver-expressed pattern recognition receptors mannose-binding lectin (MBL), ficolin-2 and ficolin-3 contribute to the innate immune response by activating complement. Binding of soluble ficolin-2 to viral pathogens can directly neutralize virus entry. We observed that the human hepatoma cell line HuH7.5, which is routinely used for the study of hepatotropic viruses, is deficient in expression of MBL, ficolin-2 and ficolin-3. We generated a cell line that expressed and secreted ficolin-2. This cell line (HuH7.5 [FCN2]) was more resistant to infection with hepatitis C virus (HCV), ebolavirus and vesicular stomatitis virus, but surprisingly was more susceptible to infection with rabies virus. Cell-to-cell spread of HCV was also inhibited in ficolin-2 expressing cells. This illustrates that ficolin-2 expression in hepatocytes contributes to innate resistance to virus infection, but some viruses might utilize ficolin-2 to facilitate entry.
Collapse
Affiliation(s)
- Paywast J Jalal
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Biology Department, Faculty of Science, University of Sulaimani, Sulaimani, Iraq
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Emma Horncastle
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Monika Pathak
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Chun Goddard
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Amanj Saeed
- Biology Department, Faculty of Science, University of Sulaimani, Sulaimani, Iraq
| | - Christopher P Mason
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
49
|
Katayama M, Ota K, Nagi-Miura N, Ohno N, Yabuta N, Nojima H, Kumanogoh A, Hirano T. Ficolin-1 is a promising therapeutic target for autoimmune diseases. Int Immunol 2019; 31:23-32. [PMID: 30169661 PMCID: PMC6364620 DOI: 10.1093/intimm/dxy056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023] Open
Abstract
Previously, we reported that mRNA expression of ficolin-1 (FCN1), a component of the complement lectin pathway, is elevated in peripheral blood mononuclear cells of patients with vasculitis syndrome, and that FCN1-positive cells infiltrate into inflamed regions in patient specimens. In addition, we reported that the serum FCN1 concentration is elevated in patients with Kawasaki disease (KD), a pediatric vasculitis, but dramatically decreases after intravenous immunoglobulin (IVIG) treatment. Furthermore, we showed that FCN1 binds to IgG1 in a pull-down assay. These results suggested that removal of FCN1 may be a therapeutic mechanism of IVIG. In this study, we prepared anti-FCN1 monoclonal antibody (mAb) and examined its therapeutic potential in mice treated with Candida albicans water-soluble fraction (CAWS), which induces KD-like vasculitis in the coronary artery. Indeed, treatment with anti-FCN1 mAb decreased the histological score of vasculitis (P = 0.03). To investigate the role of FCN1, we assessed blood samples of patients with various autoimmune diseases and demonstrated that serum levels of FCN1 were elevated not only in patients with vasculitis, but also in those with rheumatoid arthritis. Additionally, FCN1-targeted treatment of a mouse model of arthritis [collagen antibody-induced arthritis (CAIA)] revealed that administration of anti-FCN1 mAb ameliorated symptoms of arthritis (P < 0.01). These results suggest that FCN1 is involved in the pathogenesis of autoimmune diseases, and that targeting FCN1 represents a promising strategy for treating these diseases.
Collapse
Affiliation(s)
- Michihito Katayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Noriko Nagi-Miura
- Center for the Advancement of Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
50
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|