51
|
Hafiz S, Dennis JC, Schwartz D, Judd R, Tao YX, Khazal K, Akingbemi B, Mo XL, Abdel-Mageed AB, Morrison E, Mansour M. Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation. Int J Oncol 2012; 41:1373-80. [PMID: 22842514 DOI: 10.3892/ijo.2012.1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/08/2012] [Indexed: 11/05/2022] Open
Abstract
The melanocortin receptors (MCRs 1-5) are G protein coupled-receptors (GPCRs) that regulate food intake, inflammation, skin pigmentation, sexual function and steroidogenesis. Their peptide ligands, the melanocortins, are α-, β- and γ-melanocyte-stimulating hormone and adrenocorticotropic hormone (ACTH) all of which are secreted from the anterior pituitary gland under hypothalamic control. MC2R binds ACTH but has no affinity for the other melanocortins and is, thereby, pharmacologically different from MCRs that bind those ligands. Evidence suggests that elevated GPCRs transactivate the androgen receptor (AR), the critical mediator of prostate cell growth, and consequently promote prostate cancer cell proliferation. It may be that reduced central melanocortin signaling is coincidental with reversal of prostate cancer cachexia, but no data are available on the expression of, or the role for, MCRs in prostate cancer. Here, we show that MCR (1-5) mRNAs are expressed in androgen-dependent LNCaP and androgen-independent PC3 and DU-145 human prostate cancer cell lines. Further, MC2R, the specific target of ACTH, is expressed in LNCaP, PC3 and DU-145 cells. Among the several synthetic MCR peptide ligands that we used, only ACTH promoted concentration-dependent cell proliferation in the three cell lines as shown by MTT cell proliferation assay. In LNCaP cells, the effect was additive with testosterone stimulation and was partially blunted with SHU9119, a non-selective MCR antagonist. In the same cells, ACTH induced cAMP production and increased AR nuclear labeling in immunocytochemical assays. Our observations suggest that MC2R is involved in prostate carcinogenesis and that targeting MC2R signaling may provide a novel avenue in prostate carcinoma treatment.
Collapse
Affiliation(s)
- Saly Hafiz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Targeting JNK for therapeutic depletion of stem-like glioblastoma cells. Sci Rep 2012; 2:516. [PMID: 22816039 PMCID: PMC3400080 DOI: 10.1038/srep00516] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/27/2012] [Indexed: 01/14/2023] Open
Abstract
Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells.
Collapse
|
53
|
Halleskog C, Dijksterhuis JP, Kilander MBC, Becerril-Ortega J, Villaescusa JC, Lindgren E, Arenas E, Schulte G. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 2012; 9:111. [PMID: 22647544 PMCID: PMC3458933 DOI: 10.1186/1742-2094-9-111] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/30/2012] [Indexed: 12/30/2022] Open
Abstract
Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2) axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions Thus, WNT-5A-induced and G protein-dependent signaling to ERK1/2 is important for the regulation of proinflammatory responses in mouse primary microglia cells. We show for the first time that WNT-5A/G protein signaling mediates physiologically important processes in primary mammalian cells with natural receptor and G protein stochiometry. Consequently, WNT-5A emerges as an important means of astrocyte-microglia communication and we, therefore, suggest WNT-5A as a new player in neuroinflammatory conditions, such as neurodegenerative disease, hypoxia, stroke, injury and infection.
Collapse
Affiliation(s)
- Carina Halleskog
- Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Karolinska Institutet, Nanna Svartz väg 2, Stockholm, S-17177, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Gαq G proteins modulate MMP-9 gelatinase during remodeling of the murine femoral artery. J Surg Res 2012; 181:32-40. [PMID: 22595017 DOI: 10.1016/j.jss.2012.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/04/2012] [Accepted: 04/17/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Vessels heal after injury and G protein-coupled receptors are involved in the vascular smooth muscle cell proliferation required to form intimal hyperplasia. We have previously identified the role of Gαq in vascular smooth muscle cell proliferation in vitro. This study now examines the role of Gαq in the developing intimal hyperplasia in a murine model and the impact of disruption of Gαq signaling on intimal hyperplasia development. METHODS We employed a murine femoral wire injury model in which a micro-wire is passed through a branch of the femoral artery and used to denude the common femoral artery. We perfusion-fixed specimens and stained sections with hematoxylin-eosin and Movat's stains such that morphometric analysis could be performed using an Image-Pro system. We also harvested additional specimens of femoral artery and snap-froze them for Western blotting or zymography, to allow for the study of G protein expression and both protease expression and activity. We used contralateral vessels as controls. We immersed additional vessels in pluronic gel containing the chemical Gαq G protein inhibitors GP-2A, siRNA to Gαq or adenovirus containing mutant inactive Gαq. RESULTS Gαq expression increased in a time-dependent manner after femoral artery injury. Sham-operated vessels did not produce such a response. Inhibition of Gαq reduced cell proliferation without affecting cell migration. Interruption of Gαq signaling also inhibited the development of intimal hyperplasia. Inhibition of Gαq did not alter peak urinary-type plasminogen activator activity and expression, but did increase early plasminogen activator inhibitor-1 activity and expression. Inhibition of Gαq reduced peak metalloproteinase (MMP)-9 activity at Day 3 but did not influence peak MMP-2 activity at Day 7. Protein expression for MMP-9 was also decreased, but that of MMP-2 was not affected. There were no changes in the expression or the activity of the respective inhibitors for MMP-9 and MMP-2, and tissue inhibitor of metalloproteinases-1 and -2. CONCLUSIONS These data demonstrate that femoral wire injury in the mouse is associated with a time-dependent increase in Gαq expression. Inhibition of Gαq alters cell proliferation and is associated with decreased MMP-9 expression and activity.
Collapse
|
55
|
Emery AC, Eiden LE. Signaling through the neuropeptide GPCR PAC₁ induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J 2012; 26:3199-211. [PMID: 22532442 DOI: 10.1096/fj.11-203042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both cAMP and ERK are necessary for neuroendocrine cell neuritogenesis, and pituitary adenylate cyclase-activating polypeptide (PACAP) activates each. It is important to know whether cAMP and ERK are arranged in a novel, linear pathway or in two parallel pathways using known signaling mechanisms. Native cellular responses [cAMP elevation, ERK phosphorylation, cAMP responsive element binding (CREB) phosphorylation, and neuritogenesis] and promoter-reporter gene activation after treatment with forskolin, cAMP analogs, and PACAP were measured in Neuroscreen-1 (NS-1) cells, a PC12 variant enabling simultaneous morphological, molecular biological, and biochemical analysis. Forskolin (25 μM) and cAMP analogs (8-bromo-cAMP, dibutyryl-cAMP, and 8-chlorophenylthio-cAMP) stimulated ERK phosphorylation and neuritogenesis in NS-1 cells. Both ERK phosphorylation and neuritogenesis were MEK dependent (blocked by 10 μM U0126) and PKA independent (insensitive to 30 μM H-89 or 100 nM myristoylated protein kinase A inhibitor). CREB phosphorylation induced by PACAP was blocked by H-89. The exchange protein activated by cAMP (Epac)-selective 8-(4-chlorophenylthio)-2'-O-Me-cAMP (100-500 μM) activated Rap1 without affecting the other cAMP-dependent processes. Thus, PACAP-38 potently stimulated two distinct and independent cAMP pathways leading to CREB or ERK activation in NS-1 cells. Drug concentrations for appropriate effect were derived from control data for all compounds. In summary, a novel PKA- and Epac-independent signaling pathway: PACAP → adenylate cyclase → cAMP → ERK → neuritogenesis has been identified.
Collapse
Affiliation(s)
- Andrew C Emery
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892-4090, USA
| | | |
Collapse
|
56
|
|
57
|
Zhang JH, Pandey M, Seigneur EM, Panicker LM, Koo L, Schwartz OM, Chen W, Chen CK, Simonds WF. Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice. J Neurochem 2011; 119:544-54. [PMID: 21883221 PMCID: PMC3192915 DOI: 10.1111/j.1471-4159.2011.07457.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gβ5 is a divergent member of the signal-transducing G protein β subunit family encoded by GNB5 and expressed principally in brain and neuronal tissue. Among heterotrimeric Gβ isoforms, Gβ5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling proteins that contain G protein-γ like domains. Previous studies employing Gnb5 knockout (KO) mice have shown that Gβ5 is an essential stabilizer of such regulator of G protein signaling proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. However, little is known of the function of Gβ5 in the brain outside the visual system. We show here that mice lacking Gβ5 have a markedly abnormal neurologic phenotype that includes impaired development, tiptoe-walking, motor learning and coordination deficiencies, and hyperactivity. We further show that Gβ5-deficient mice have abnormalities of neuronal development in cerebellum and hippocampus. We find that the expression of both mRNA and protein from multiple neuronal genes is dysregulated in Gnb5 KO mice. Taken together with previous observations from Gnb5 KO mice, our findings suggest a model in which Gβ5 regulates dendritic arborization and/or synapse formation during development, in part by effects on gene expression.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Erica M. Seigneur
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Leelamma M. Panicker
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lily Koo
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Owen M. Schwartz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ching-Kang Chen
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
58
|
Cook DR, Gleichman AJ, Cross SA, Doshi S, Ho W, Jordan-Sciutto KL, Lynch DR, Kolson DL. NMDA receptor modulation by the neuropeptide apelin: implications for excitotoxic injury. J Neurochem 2011; 118:1113-23. [PMID: 21749375 PMCID: PMC3166410 DOI: 10.1111/j.1471-4159.2011.07383.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Excitotoxic neuronal damage via over-activation of the NMDA receptor has been implicated in many neurodegenerative diseases. In vitro modeling of excitotoxic injury has shown that activation of G-protein coupled receptors (GPCRs) counteracts such injury through modulation of neuronal pro-survival pathways and/or NMDA receptor signaling. We have previously demonstrated that the GPCR APJ and its endogenous neuropeptide ligand apelin can protect neurons against excitotoxicity, but the mechanism(s) of this neuroprotection remain incompletely understood. We hypothesized that apelin can promote neuronal survival by activating pro-survival signaling as well as inhibiting NMDA receptor-mediated excitotoxic signaling cascades. Our results demonstrate that (i) apelin activates pro-survival signaling via inositol trisphosphate (IP(3) ), protein kinase C (PKC), mitogen-activated protein kinase kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase-1/2 (ERK1/2) to protect against excitotoxicity, and (ii) apelin inhibits excitotoxic signaling by attenuating NMDA receptor and calpain activity, and by modulating NMDA receptor subunit NR2B phosphorylation at serine 1480. These studies delineate a novel apelinergic signaling pathway that concurrently promotes survival and limits NMDA receptor-mediated injury to protect neurons against excitotoxicity. Defining apelin-mediated neuroprotection advances our understanding of neuroprotective pathways and will potentially improve our ability to develop therapeutics for excitotoxicity-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Denise R. Cook
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amy J. Gleichman
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Stephanie A. Cross
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shachee Doshi
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Wenzhe Ho
- Department of Pathology & Laboratory Medicine, School of Medicine, Temple University, Philadelphia, PA
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - David R. Lynch
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Dennis L. Kolson
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
59
|
Banerjee R, Henson BS, Russo N, Tsodikov A, D'Silva NJ. Rap1 mediates galanin receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell Signal 2011; 23:1110-8. [PMID: 21345369 PMCID: PMC3090707 DOI: 10.1016/j.cellsig.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 02/06/2023]
Abstract
Previously we showed that galanin, a neuropeptide, is secreted by human squamous cell carcinoma of the head and neck (SCCHN) in which it exhibits an autocrine mitogenic effect. We also showed that rap1, a ras-like signaling protein, is a critical mediator of SCCHN progression. Given the emerging importance of the galanin cascade in regulating proliferation and survival, we investigated the effect of GAL on SCCHN progression via induction of galanin receptor 2 (GALR2)-mediated rap1 activation. Studies were performed in multiple SCCHN cell lines by inducing endogenous GALR2, by stably overexpressing GALR2 and by downregulating endogenous GALR2 with siGALR2. Cell proliferation and survival, mediated by the ERK and AKT signaling cascades, respectively, were evaluated by functional and immunoblot analysis. The role of rap1 in GALR2-mediated proliferation and survival was evaluated by modulating expression. Finally, the effect of GALR2 on tumor growth was determined. GALR2 stimulated proliferation and survival via ERK and AKT activation, respectively. Knockdown or inactivation of rap1 inhibited GALR2-induced, AKT and ERK-mediated survival and proliferation. Overexpression of GALR2 promoted tumor growth in vivo. GALR2 promotes proliferation and survival in vitro, and promotes tumor growth in vivo, consistent with an oncogenic role for GALR2 in SCCHN.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Guanosine Triphosphate/metabolism
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 2/metabolism
- Transplantation, Heterologous
- Tumor Burden
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
60
|
Pertuit M, Romano D, Zeiller C, Barlier A, Enjalbert A, Gerard C. The gsp oncogene disrupts Ras/ERK-dependent prolactin gene regulation in gsp inducible somatotroph cell line. Endocrinology 2011; 152:1234-43. [PMID: 21285319 DOI: 10.1210/en.2010-1077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The MAPK ERK1/2 cascade regulates all the critical cellular functions, and in many pathological situations, these regulatory processes are perturbed. It has been clearly established that this cascade is an integrative point in the control of the pituitary functions exerted by various extracellular signals. In particular, ERK1/2 cross talk with the cAMP pathway is determinant in the control of somatolactotroph hormonal secretion exerted via neuropeptide receptors. GH-secreting adenomas are characterized by frequent cAMP pathway alterations, such as constitutive activation of the α-subunit of the heterotrimeric Gs protein (the gsp oncogene), overexpression of Gsα, and changes in the protein kinase A regulatory subunits. However, it has not yet been established exactly how these alterations result in GH-secreting adenomas or how the ERK1/2 cascade contributes to the process of GH-secreting adenoma tumorigenesis. In this study on the conditional gsp-oncogene-expressing GH4C1 cell line, expression of the gsp oncogene, which was observed in up to 40% of GH-secreting adenomas, was found to induce sustained ERK1/2 activation, which required activation of the protein kinase A and the GTPases Ras and Rap1. All these signaling components contribute to the chronic activation of the human prolactin promoter. The data obtained here show that Ras plays a crucial role in these processes: in a physiopathological context, i.e. in the presence of the gsp oncogene, it switched from being a repressor of the cAMP/ protein kinase A ERK-sensitive prolactin gene control exerted by neuropeptides to an activator of the prolactin promoter.
Collapse
Affiliation(s)
- M Pertuit
- CRN2M, Unité Mixte de Recherche 6231, Department of Neuroendocrinology-Neuroimmunology, Institut Fédératif Jean-Roche, Faculté de Médecine Secteur Nord, Université de la Méditerranée CS80011, Boulevard Pierre Dramard, 13344 Marseille cedex 15, France
| | | | | | | | | | | |
Collapse
|
61
|
Lue H, Dewor M, Leng L, Bucala R, Bernhagen J. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal 2011; 23:135-44. [PMID: 20807568 PMCID: PMC3586206 DOI: 10.1016/j.cellsig.2010.08.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/17/2010] [Accepted: 08/24/2010] [Indexed: 12/31/2022]
Abstract
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family and controls essential processes such as inflammation, cell differentiation, and apoptosis. JNK signalling is triggered by extracellular signals such as cytokines and environmental stresses. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine with chemokine-like functions in leukocyte recruitment and atherosclerosis. MIF promotes MAPK signalling through ERK1/2, while it can either activate or inhibit JNK phosphorylation, depending on the cell type and underlying stimulation context. MIF activities are mediated by non-cognate interactions with the CXC chemokine receptors CXCR2 and CXCR4 or by ligation of CD74, which is the cell surface expressed form of the class II invariant chain. ERK1/2 signalling stimulated by MIF is dependent on CD74, but the receptor pathway involved in MIF activation of the JNK pathway is unknown. Here we comprehensively characterize the stimulatory effect of MIF on the canonical JNK/c-Jun/AP-1 pathway in fibroblasts and T cell lines and identify the upstream signalling components. Physiological concentrations of recombinant MIF triggered the phosphorylation of JNK and c-Jun and rapidly activated AP-1. In T cells, MIF-mediated activation of the JNK pathway led to upregulated gene expression of the inflammatory chemokine CXCL8. Activation of JNK signalling by MIF involved the upstream kinases PI3K and SRC and was found to be dependent on CXCR4 and CD74. Together, these data show that the CXCR4/CD74/SRC/PI3K axis mediates a rapid and transient activation of the JNK pathway as triggered by the inflammatory cytokine MIF in T cells and fibroblasts.
Collapse
Affiliation(s)
- Hongqi Lue
- Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Manfred Dewor
- Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Lin Leng
- Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Richard Bucala
- Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Jürgen Bernhagen
- Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
62
|
Shannon LA, Calloway PA, Welch TP, Vines CM. CCR7/CCL21 migration on fibronectin is mediated by phospholipase Cgamma1 and ERK1/2 in primary T lymphocytes. J Biol Chem 2010; 285:38781-7. [PMID: 20889506 PMCID: PMC2998076 DOI: 10.1074/jbc.m110.152173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/14/2010] [Indexed: 12/23/2022] Open
Abstract
CCR7 binds to its cognate ligand, CCL21, to mediate the migration of circulating naive T lymphocytes to the lymph nodes. T lymphocytes can bind to fibronectin, a constituent of lymph nodes, via their β1 integrins, which is a primary mechanism of T lymphocyte migration; however, the signaling pathways involved are unclear. We report that rapid (within 2 min) and transient phosphorylation of ERK1/2 is required for T cell migration on fibronectin in response to CCL21. Conversely, prevention of ERK1/2 phosphorylation by inhibition of its kinase, MAPK/MEK, prevented T lymphocyte migration. Previous studies have suggested that phospholipase Cγ1 (PLCγ1) can mediate phosphorylation of ERK1/2, which is required for β1 integrin activation. Paradoxically, we found that inhibition of PLCγ1 phosphorylation by the general PLC inhibitor U73122 was associated with a delayed and reduced phosphorylation of ERK1/2 and reduced migration of T lymphocytes on fibronectin. To further characterize the relationship between ERK1/2 and PLCγ1, we reduced PLCγ1 levels by 85% using shRNA and observed a reduced phosphorylation of ERK1/2 and a significant loss of CCR7-mediated migration of T lymphocytes on fibronectin. In addition, we found that inhibition of ERK1/2 phosphorylation by U0126 resulted in a decreased phosphorylation of PLCγ1, suggesting a feedback loop between ERK1/2 and PLCγ1. Overall, these results suggest that the CCR7 signaling pathway leading to T lymphocyte migration on fibronectin is a β1 integrin-dependent pathway involving transient ERK1/2 phosphorylation, which is modulated by PLCγ1.
Collapse
Affiliation(s)
- Laura A. Shannon
- From the Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Psachal A. Calloway
- From the Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - T. Paul Welch
- From the Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Charlotte M. Vines
- From the Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
63
|
Zimmerman B, Simaan M, Akoume MY, Houri N, Chevallier S, Séguéla P, Laporte SA. Role of ßarrestins in bradykinin B2 receptor-mediated signalling. Cell Signal 2010; 23:648-59. [PMID: 21145390 DOI: 10.1016/j.cellsig.2010.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
G protein-coupled receptors (GPCRs) can engage multiple pathways to activate ERK1/2 via both G proteins and/or ßarrestin. Receptor recruitment of ßarrestin is also important for GPCR desensitization, internalization and resensitization. Modulation of the receptor/ßarrestin interaction through modification of either component would presumably alter the output generated by receptor activation. Here we examined how ßarrestins regulate bradykinin (BK) B2 receptor (B2R) signalling and desensitization by either truncating ßarrestin1 or ßarrestin2 or by alanine substitution of a serine/threonine cluster in the C-terminal tail of B2R (B2R-4A), conditions which all affect the avidity of the B2R/ßarrestin complex. We first demonstrate that BK-mediated ERK1/2 activation is biphasic containing an early peak (between 2-5min) followed by sustained activation for at least 60min. The early but not the sustained phase was predictably affected by inhibition of either Gαq/11 or Gαi/o, whereas loss of ßarrestin2 but not ßarrestin1 resulted in diminished prolonged ERK1/2 activation. ßarrestin2's role was further examined using a truncation mutant with augmented avidity for the agonist-occupied receptor, revealing an increase in both immediate and extended ERK1/2 signalling. We also show that ERK1/2 is recruited to the B2R/ßarrestin complex on endosomes as well as the plasma membrane. Moreover, we investigated ßarrestin's role using the B2R-4A, which is deficient in ßarrestin binding and does not internalize. We show that ERK1/2 signalling downstream of the receptor is entirely G protein-dependent and receptor-mediated intracellular calcium mobilization studies revealed a lack of desensitization. Functionally, the lack of desensitization resulted in increased cell growth and migration compared to the wild-type receptor, which was sensitive to MEK inhibition. These results highlight ßarrestin's crucial role in the maintenance of proper B2R signalling.
Collapse
Affiliation(s)
- Brandon Zimmerman
- McGill University Health Center Research Institute, Department of Medicine, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
64
|
Tian C, Ye F, Wang L, Deng Y, Dong Y, Wang X, Xu T, Lei T, Wang X. Nitric oxide inhibits ghrelin-induced cell proliferation and ERK1/2 activation in GH3 cells. Endocrine 2010; 38:412-6. [PMID: 20972719 DOI: 10.1007/s12020-010-9402-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/25/2010] [Indexed: 01/03/2023]
Abstract
Ghrelin stimulates growth hormone release and cell proliferation, which strongly supports a significant role for this peptide in the control of growth hormone-releasing adenomas function and growth. Nitric oxide can influence the stimulatory effects of ghrelin on growth hormone secretion in growth hormone-releasing adenomas. However, the effect of nitric oxide (NO) on ghrelin-induced cell proliferation and the mechanism of this effect in the adenoma were not clarified. In this study, we observed that ghrelin, at a concentration of 10⁻⁹ to 10⁻⁶ M, significantly increased BrdU incorporation into rat GH3 cells. A NO donor, S-nitroso-N-acetylpenicillamine (SNAP), blunted basal, and ghrelin-induced cell proliferation. A blocker of NO synthase, Nw-nitro-L-arginine methyl ester hydrochloride (NAME), had no influence on these actions. The activation of extracellular signal-regulated kinase (ERK) 1/2 was examined by western blotting. The results showed that SNAP reduced ghrelin-stimulated ERK1/2 activation but NAME had no influence on this activation. Together, this study indicates that NO inhibited ghrelin-induced cell proliferation by blocking ERK1/2 activation in GH3 cells.
Collapse
Affiliation(s)
- Chunlei Tian
- Department of Neurosurgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Center People's Hospital, Yi-Ling-Da-Dao, 183, Yichang 443003, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kirui JK, Xie Y, Wolff DW, Jiang H, Abel PW, Tu Y. Gbetagamma signaling promotes breast cancer cell migration and invasion. J Pharmacol Exp Ther 2010; 333:393-403. [PMID: 20110378 PMCID: PMC2872950 DOI: 10.1124/jpet.109.164814] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Signaling through G protein-coupled receptors (GPCRs) promotes breast cancer metastasis. G proteins convey GPCR signals by dissociating into Galpha and Gbetagamma subunits. The aim of the present study was to determine whether blockade of Gbetagamma signaling suppresses breast cancer cell migration and invasion, which are critical components of metastasis. Conditioned media (CM) of NIH-3T3 fibroblasts are widely used as chemoattractants in in vitro cancer metastasis studies. Expression of a Gbetagamma scavenger peptide attenuated NIH-3T3 CM-induced migration and invasion of both metastatic breast cancer MDA-MB-231 and MDA-MB-436 cells by 40 to 50% without effects on cell viability. Migration and invasion of cells in response to NIH-3T3 CM were also blocked by 8-(4,5,6-trihydroxy-3-oxo-3H-xanthen-9-yl)-1-naph-thalene-carboxylic acid) (M119K), a Gbetagamma inhibitor, with maximum inhibition exceeding 80% and half-maximal inhibitory concentration (IC50) values of 1 to 2 microM. M119K also attenuated Rac-dependent formation of lamellipodia, a key structure required for metastasis. Constitutively active Rac1 rescued Gbetagamma blockade-mediated inhibition of breast cancer cell migration, whereas dominant negative Rac1 inhibited cell migration similar to Gbetagamma blockade. Furthermore, M119K suppressed Gi protein-coupled CXC chemokine receptor 4 (CXCR4)-dependent MDA-MB-231 cell migration by 80% with an IC50 value of 1 microM, whereas tyrosine kinase receptor-dependent cell migration was significantly less inhibited. However, CXCR4-dependent inhibition of adenylyl cyclase, a Gialpha-mediated response in MDA-MB-231 cells, was not blocked by M119K but was blocked by pertussis toxin, which selectively inactivates Gialpha. This report is the first to directly demonstrate the role of Gbetagamma in cancer cell migration and invasion and suggests that targeting Gbetagamma signaling pathways may provide a novel strategy for suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Joseph K Kirui
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | |
Collapse
|
66
|
García-Hoz C, Sánchez-Fernández G, Díaz-Meco MT, Moscat J, Mayor F, Ribas C. G alpha(q) acts as an adaptor protein in protein kinase C zeta (PKCzeta)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J Biol Chem 2010; 285:13480-9. [PMID: 20200162 DOI: 10.1074/jbc.m109.098699] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
G(q)-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of different cellular functions. These receptors can regulate a highly interconnected network of biochemical routes that control the activity of several members of the mitogen-activated protein kinase (MAPK) family. The ERK5 MAPK has been shown to be activated by G(q)-coupled GPCR via unknown mechanisms. We find that the atypical protein kinase C (PKCzeta), previously reported to interact with the ERK5 activator MEK5 and to be involved in epidermal growth factor-mediated ERK5 stimulation, plays a crucial role in the activation of the ERK5 pathway by G(q)-coupled GPCR. Stimulation of ERK5 by G(q)-coupled GPCR is abolished upon pharmacological inhibition of PKCzeta as well as in embryonic fibroblasts obtained from PKCzeta-deficient mice. Both PKCzeta and MEK5 associate to G alpha(q) upon activation of GPCR, thus forming a ternary complex that seems essential for the activation of ERK5. These data put forward a novel function of G alpha(q) as a scaffold protein involved in the modulation of the ERK5 cascade by GPCR that could be relevant in G(q)-mediated physiological functions.
Collapse
Affiliation(s)
- Carlota García-Hoz
- Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
67
|
May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM. Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival. J Biol Chem 2010; 285:9749-9761. [PMID: 20093365 PMCID: PMC2843224 DOI: 10.1074/jbc.m109.043117] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC(1) receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC(1)HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC(1)HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC(1)HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on G alpha(q)/phosphatidylinositol 3-kinase gamma activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase gamma-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC(1)HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.
Collapse
Affiliation(s)
- Victor May
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405.
| | - Eve Lutz
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, Glasgow G1 1XW, Scotland, United Kingdom
| | - Christopher MacKenzie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, Glasgow G1 1XW, Scotland, United Kingdom
| | - Kristin C Schutz
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kate Dozark
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Karen M Braas
- Departments of Anatomy and Neurobiology and of Pharmacology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
68
|
Hoesel LM, Mattar AF, Arbabi S, Niederbichler AD, Ipaktchi K, Su GL, Westfall MV, Wang SC, Hemmila MR. Local wound p38 MAPK inhibition attenuates burn-induced cardiac dysfunction. Surgery 2009; 146:775-85; discussion 785-6. [PMID: 19789038 DOI: 10.1016/j.surg.2009.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/29/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Topical inhibition of activated p38 MAPK within burn wounds attenuates the local and systemic inflammatory response. In this study, we investigated the effects of local activated p38 MAPK inhibition on burn-induced cardiac dysfunction. METHODS Using a standardized rat model of scald burn injury, rats were given a 30% total body surface area partial thickness burn or sham injury, and the wounds were treated with an activated p38 MAPK inhibitor (SB) or vehicle. Systemic blood pressure measurements were recorded in vivo followed by in vitro assessment of sarcomere contraction in single-cell suspensions of isolated cardiomyocytes. RESULTS Systolic blood pressure or maximum left ventricular pressures in vivo and peak cardiomyocyte sarcomere contractility in vitro were significantly reduced after burn injury. These functional deficits were abolished 24 h after burn injury following local p38 MAPK inhibition. In vitro incubation of normal cardiomyocytes with homogenate from burned skin or burn serum resulted in a similar pattern of impaired cardiomyocyte contractility. These effects were reversed in normal cardiomyocytes exposed to burn skin homogenates treated topically with a p38 MAPK inhibitor. A Western blot analysis showed that cardiac p38 MAPK activation was not affected by dermal blockade of activated p38 MAPK, arguing against systemic absorption of the inhibitor and indicating the involvement of systemic cytokine signaling. CONCLUSION Topical activated p38 MAPK inhibition within burned skin attenuates the release of proinflammatory mediators and prevents burn-induced cardiac dysfunction after thermal injury. These results support the inhibition of burn-wound inflammatory signaling as a new therapeutic approach to prevent potential postthermal injury multiorgan dysfunction syndrome.
Collapse
Affiliation(s)
- Laszlo M Hoesel
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dynorphin, stress, and depression. Brain Res 2009; 1314:56-73. [PMID: 19782055 DOI: 10.1016/j.brainres.2009.09.074] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 12/29/2022]
Abstract
Stress is most often associated with aversive states. It rapidly induces the release of hormones and neuropeptides including dynorphin, which activates kappa opioid receptors (KORs) in the central and peripheral nervous systems. In animal models, many aversive effects of stress are mimicked or exacerbated by stimulation of KORs in limbic brain regions. Although KOR signaling during acute stress may increase physical ability (by producing analgesia) and motivation to escape a threat (by producing aversion), prolonged KOR signaling in response to chronic or uncontrollable stress can lead to persistent expression of behavioral signs that are characteristic of human depressive disorders (i.e., "prodepressive-like" signs). Accumulating evidence suggests that KORs contribute to the progressive amplification (sensitization) of stress-induced behaviors that occurs with repeated exposure to stress. Many of the aversive effects of stress are blocked by KOR antagonists, suggesting that these agents may have potential as therapeutics for stress-related conditions such as depression and anxiety disorders. This review summarizes current data on how KOR systems contribute to the acute (rapid), delayed, and cumulative molecular and behavioral effects of stress. We focus on behavioral paradigms that provide insight on interactions between stress and KOR function within each of these temporal categories. Using a simplified model, we consider the time course and mechanism of KOR-mediated effects in stress and suggest future directions that may be useful in determining whether KOR antagonists exert their therapeutic effects by preventing the development of stress-induced behaviors, the expression of stress-induced behaviors, or both.
Collapse
|
70
|
Weis N, Weigert A, von Knethen A, Brüne B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol Biol Cell 2009; 20:1280-8. [PMID: 19129475 DOI: 10.1091/mbc.e08-10-1005] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cells (AC) are rapidly engulfed by professional phagocytes such as macrophages to avoid secondary necrosis and thus inflammation. Recognition of AC polarizes macrophages toward an anti-inflammatory phenotype, which shows homology to an alternatively activated M2 macrophage. However, mechanistic details provoking these phenotype alterations are incompletely understood. Here, we demonstrate a biphasic up-regulation of heme oxygenase-1 (HO-1), a protein that bears an antiapoptotic as well as an anti-inflammatory potential, in primary human macrophages, which were exposed to the supernatant of AC. Although the first phase of HO-1 induction at 6 h was accomplished by AC-derived sphingosine-1-phosphate (S1P) acting via S1P receptor 1, the second wave of HO-1 induction at 24 h was attributed to autocrine signaling of vascular endothelial growth factor A (VEGFA), whose expression and release were facilitated by S1P. Whereas VEGFA release from macrophages was signal transducer and activator of transcription (STAT) 1-dependent, vascular endothelial growth factor itself triggered STAT1/STAT3 heterodimer formation, which bound to and activated the HO-1 promoter. Knockdown of HO-1 proved its relevance in facilitating enhanced expression of the antiapoptotic proteins Bcl-2 and Bcl-X(L), as well as the anti-inflammatory adenosine receptor A(2A). These findings suggest that HO-1, which is induced by AC-derived S1P, is critically involved in macrophage polarization toward an M2 phenotype.
Collapse
Affiliation(s)
- Nicole Weis
- Goethe-University, Institute of Biochemistry I/ZAFES, 60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
71
|
Lee MH, Klein RL, El-Shewy HM, Luttrell DK, Luttrell LM. The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2 through a Src/Ras-dependent pathway and stimulate cell growth. Biochemistry 2008; 47:11682-92. [PMID: 18842004 PMCID: PMC2665882 DOI: 10.1021/bi801451f] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adiponectin is an adipocyte-derived cytokine that has attracted much attention because of its insulin-sensitizing effects in liver and skeletal muscle. Two adiponectin receptors, AdipoR1/R2, have been cloned, but relatively little is known about their intracellular signaling mechanisms. We found that full-length adiponectin rapidly and robustly activates the ERK1/2 mitogen-activated protein kinase pathway in primary vascular smooth muscle, vascular endothelial cells, and hepatocytes. In a HEK293 cell model, we found that downregulating AdipoR1/R2 simultaneously, but not individually, by RNA interference attenuated adiponectin-induced ERK1/2 activation, suggesting that either receptor was sufficient to mediate the response. Downregulation of T-cadherin, another adiponectin binding protein, enhanced the response. Downregulation of APPL1, an adapter protein and putative mediator of AdipoR1/R2 signaling, impaired adiponectin-stimulated ERK1/2 activation. Inhibiting PKA modestly attenuated ERK1/2 activation, while inhibition of Src family tyrosine kinases with PP2 abolished the response. The small GTPase inhibitor Clostridium difficile toxin B also produced complete inhibition. Adiponectin caused rapid, PP2-sensitive activation of Ras, but not the cAMP-regulated small GTPase, Rap1, suggesting that Src-dependent Ras activation is the dominant mechanism of adiponectin-stimulated ERK1/2 activation. To test whether Ras-ERK1/2 signaling by adiponectin was physiologically relevant, we determined the effects of overexpressing AdipoR1, adiponectin, or both on the rate of HEK293 cell growth. Overexpression of adiponectin alone, but not AdipoR1 alone, supported growth under serum-free conditions, while simultaneous expression of both led to further enhancement. These results suggest that adiponectin can exert proliferative effects by activating Ras signaling pathways.
Collapse
Affiliation(s)
- Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
72
|
Nafisi H, Banihashemi B, Daigle M, Albert PR. GAP1(IP4BP)/RASA3 mediates Galphai-induced inhibition of mitogen-activated protein kinase. J Biol Chem 2008; 283:35908-17. [PMID: 18952607 DOI: 10.1074/jbc.m803622200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine D2S receptor (short isoform) couples to inhibitory Galphai/o proteins to inhibit thyrotropin-releasing hormone (TRH)-stimulated p42/p44 mitogen-activated protein kinase (ERK1/2) phosphorylation in GH4ZR7 rat pituitary cells, consistent with its actions to inhibit prolactin gene transcription and cell proliferation. However, the underlying mechanism is unclear. To identify novel Galphai effectors, yeast two-hybrid screening of a GH4ZR7 cDNA library was done using constitutively active Galphai3-Q204L, and multiple clones of the RasGAP cDNA GAP1(IP4BP)/RASA3 were identified. In yeast mating assay, RASA3 preferentially interacted with activated forms of Galphai/o/z proteins, but not with Galphas. A direct interaction was indicated by in vitro pull-down assay, in which S-His-RASA3 preferentially bound guanosine 5'-O-(gamma-thio)triphosphate-activated Galphai3 and Galphai2 compared with guanosine 5'-O-(beta-thio)diphosphate-inactivated proteins. Similarly, in co-immunoprecipitation studies in HEK-293 cells, FLAG-tagged RASA3 preferentially interacted with activated mutants of Galphai3 and Galphai2 compared with wild type proteins. In GH4ZR7 cells, co-immunoprecipitation studies of endogenous proteins demonstrated a Galphai3-RASA3 complex that was induced upon TRH/D2S receptor co-activation. To address RASA3 function in dopamine D2S receptor-induced inhibition of ERK1/2 activity, endogenous RASA3 protein expression was suppressed (70% knockdown) in GH4ZR7 cells stably transfected with full-length antisense cDNA of RASA3. The selected antisense clones had similar levels of dopamine D2S receptor binding and D2S-induced inhibition of cAMP formation compared with parental GH4ZR7 cells. In these clones, D2S-mediated inhibition of TRH-induced phospho-ERK1/2 was reversed by 70-80% compared with parental GH4ZR7 cells. Our results provide a novel mechanism for dopamine D2S-induced inhibition of ERK1/2 and indicate that RASA3 links Galphai proteins to inhibit Gq-induced Ras/ERK1/2 activation.
Collapse
Affiliation(s)
- Houman Nafisi
- Ottawa Health Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | | | | |
Collapse
|
73
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
74
|
Smrcka AV, Lehmann DM, Dessal AL. G protein betagamma subunits as targets for small molecule therapeutic development. Comb Chem High Throughput Screen 2008; 11:382-95. [PMID: 18537559 PMCID: PMC2688719 DOI: 10.2174/138620708784534761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G proteins mediate the action of G protein coupled receptors (GPCRs), a major target of current pharmaceuticals and a major target of interest in future drug development. Most pharmaceutical interest has been in the development of selective GPCR agonists and antagonists that activate or inhibit specific GPCRs. Some recent thinking has focused on the idea that some pathologies are the result of the actions of an array of GPCRs suggesting that targeting single receptors may have limited efficacy. Thus, targeting pathways common to multiple GPCRs that control critical pathways involved in disease has potential therapeutic relevance. G protein betagamma subunits released from some GPCRs upon receptor activation regulate a variety of downstream pathways to control various aspects of mammalian physiology. There is evidence from cell- based and animal models that excess Gbetagamma signaling can be detrimental and blocking Gbetagamma signaling has salutary effects in a number of pathological models. Gbetagamma regulates downstream pathways through modulation of enzymes that produce cellular second messengers or through regulation of ion channels by direct protein-protein interactions. Thus, blocking Gbetagamma functions requires development of small molecule agents that disrupt Gbetagamma protein interactions with downstream partners. Here we discuss evidence that small molecule targeting Gbetagamma could be of therapeutic value. The concept of disruption of protein-protein interactions by targeting a "hot spot" on Gbetagamma is delineated and the biochemical and virtual screening strategies for identification of small molecules that selectively target Gbetagamma functions are outlined. Evaluation of the effectiveness of virtual screening indicates that computational screening enhanced identification of true Gbetagamma binding molecules. However, further refinement of the approach could significantly improve the yield of Gbetagamma binding molecules from this screen that could result in multiple candidate leads for future drug development.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
75
|
Bromberg KD, Ma'ayan A, Neves SR, Iyengar R. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 2008; 320:903-9. [PMID: 18487186 PMCID: PMC2776723 DOI: 10.1126/science.1152662] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabinoid receptor 1 (CB1R) regulates neuronal differentiation. To understand the logic underlying decision-making in the signaling network controlling CB1R-induced neurite outgrowth, we profiled the activation of several hundred transcription factors after cell stimulation. We assembled an in silico signaling network by connecting CB1R to 23 activated transcription factors. Statistical analyses of this network predicted a role for the breast cancer 1 protein BRCA1 in neuronal differentiation and a new pathway from CB1R through phosphoinositol 3-kinase to the transcription factor paired box 6 (PAX6). Both predictions were experimentally confirmed. Results of transcription factor activation experiments that used pharmacological inhibitors of kinases revealed a network organization of partial OR gates regulating kinases stacked above AND gates that control transcription factors, which together allow for distributed decision-making in CB1R-induced neurite outgrowth.
Collapse
Affiliation(s)
- Kenneth D. Bromberg
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
76
|
Kohno T, Wang H, Amaya F, Brenner GJ, Cheng JK, Ji RR, Woolf CJ. Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J Neurosci 2008; 28:4533-40. [PMID: 18434532 PMCID: PMC2653863 DOI: 10.1523/jneurosci.5349-07.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 02/28/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022] Open
Abstract
Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B(2) receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B(2) receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the delta isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity.
Collapse
Affiliation(s)
- Tatsuro Kohno
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan, and
| | - Haibin Wang
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Fumimasa Amaya
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Gary J. Brenner
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Jen-Kun Cheng
- Pain Research Center, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Ru-Rong Ji
- Pain Research Center, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Clifford J. Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
77
|
Fadlelmola FM, Zhou M, de Leeuw RJ, Dosanjh NS, Harmer K, Huntsman D, Lam WL, Banerjee D. Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma cell lines. Mol Cancer 2008; 7:2. [PMID: 18179710 PMCID: PMC2254646 DOI: 10.1186/1476-4598-7-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/07/2008] [Indexed: 01/09/2023] Open
Abstract
Background Hodgkin lymphoma (HL) and Anaplastic Large Cell Lymphoma (ALCL), are forms of malignant lymphoma defined by unique morphologic, immunophenotypic, genotypic, and clinical characteristics, but both overexpress CD30. We used sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization to screen HL-derived cell lines (KMH2 and L428) and ALCL cell lines (DEL and SR-786) in order to identify disease-associated gene copy number gains and losses. Results Significant copy number gains and losses were observed on several chromosomes in all four cell lines. Assessment of copy number alterations with 26,819 DNA segments identified an average of 20 genetic alterations. Of the recurrent minimally altered regions identified, 11 (55%) were within previously published regions of chromosomal alterations in HL and ALCL cell lines while 9 (45%) were novel alterations not previously reported. HL cell lines L428 and KMH2 shared gains in chromosome cytobands 2q23.1-q24.2, 7q32.2-q36.3, 9p21.3-p13.3, 12q13.13-q14.1, and losses in 13q12.13-q12.3, and 18q21.32-q23. ALCL cell lines SR-786 and DEL, showed gains in cytobands 5p15.32-p14.3, 20p12.3-q13.11, and 20q13.2-q13.32. Both pairs of HL and ALCL cell lines showed losses in 18q21.32-18q23. Conclusion This study is considered to be the first one describing HL and ALCL cell line genomes at sub-megabase resolution. This high-resolution analysis allowed us to propose novel candidate target genes that could potentially contribute to the pathogenesis of HL and ALCL. FISH was used to confirm the amplification of all three isoforms of the trypsin gene (PRSS1/PRSS2/PRSS3) in KMH2 and L428 (HL) and DEL (ALCL) cell lines. These are novel findings that have not been previously reported in the lymphoma literature, and opens up an entirely new area of research that has not been previously associated with lymphoma biology. The findings raise interesting possibilities about the role of signaling pathways triggered by membrane associated serine proteases in HL and aggressive NHL, similar to those described in epithelial tumors.
Collapse
Affiliation(s)
- Faisal M Fadlelmola
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver Cancer Centre, Vancouver, BC, V5Z 4E6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Pazos Y, Alvarez CJP, Camiña JP, Casanueva FF. Lysophosphatidic acid inhibits ghrelin secretion in the human gastric adenocarcinoma AGS cell line − role of mitogenic activated protein kinase signaling pathway. FEBS J 2007; 274:5714-26. [DOI: 10.1111/j.1742-4658.2007.06091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Paruch S, Heinis M, Lemay J, Hoeffel G, Marañón C, Hosmalin A, Périanin A. CCR5 signaling through phospholipase D involves p44/42 MAP-kinases and promotes HIV-1 LTR-directed gene expression. FASEB J 2007; 21:4038-46. [PMID: 17627030 DOI: 10.1096/fj.06-7325com] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The chemokine receptor CCR5 plays an important role as an entry gate for the human immunodeficiency virus-1 (HIV-1) and for viral postentry events. Among signal transducers used by chemoattractant receptors, the phosphatidylcholine-specific phospholipase D (PLD) produces large amounts of second messengers in most cell types. However, the relevance of PLD isoforms to CCR5 signaling and HIV-1 infection process remains unexplored. We show here that CCR5 activation by MIP-1beta in HeLa-MAGI cells triggered a rapid and substantial PLD activity, as assessed by mass choline production. This activity required the activation of ERK1/2-MAP kinases and involved both PLD1 and PLD2. MIP-1beta also promoted the activation of an HIV-1 long terminal repeat (LTR) by the transactivator Tat in HeLa P4.2 cells through a process involving ERK1/2. Expression of wild-type and catalytically inactive PLDs dramatically boosted and inhibited the LTR activation, respectively, without altering Tat expression. Wild-type and inactive PLDs also respectively potentiated and inhibited HIV-1(BAL) replication in MAGI cells. Finally, in monocytic THP-1 cells, antisense oligonucleotides to both PLDs dramatically inhibited the HIV-1 replication. Thus, PLD is activated downstream of ERK1/2 upon CCR5 activation and plays a major role in promoting HIV-1 LTR transactivation and virus replication, which may open novel perspectives to anti-HIV-1 strategies.
Collapse
Affiliation(s)
- Sylvain Paruch
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Rey A, Manen D, Rizzoli R, Ferrari SL, Caverzasio J. Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 2007; 41:59-67. [PMID: 17434817 DOI: 10.1016/j.bone.2007.02.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/21/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Increased bone formation by PTH mainly results from activation of osteoblasts, an effect largely mediated by the cAMP-PKA pathway. Other pathways, however, are likely to be involved in this process. In this study we investigated whether PTH can activate p38 MAPK and the role of this kinase in osteoblastic cells. Bovine PTH(1-34) and forskolin markedly increased alkaline phosphatase (ALP) activity and doubled osteocalcin (Oc) expression in early differentiating MC3T3-E1 cells. These effects were associated with increase in cellular cAMP and activation of the MAP kinases ERK and p38. Activation of these MAP kinases was detectable after 1 h incubation with 10(-7) M PTH and lasted 1-2 h. Activation of p38 was mimicked by 10 microM forskolin and prevented by H89 suggesting a cAMP-PKA-dependent mechanism of p38 activation. Interestingly, PTH-induced ALP stimulation was dose-dependently inhibited by a specific p38 inhibitor with no change in the generation of cAMP and the production of osteocalcin. Similar inhibitory effect was obtained in cells stably expressing a dominant-negative p38 molecule. Finally, treatment of MC3T3-E1 cells with PTH for 3 weeks significantly enhanced matrix mineralization and this effect was markedly reduced by a selective p38 but not a specific MEK inhibitor. In conclusion, data presented in this study indicate that PTH can activate p38 in early differentiating osteoblastic cells. Activation of p38 is cAMP-PKA-dependent and mediates PTH-induced stimulation of ALP which plays a critical role for the calcification of the bone matrix.
Collapse
Affiliation(s)
- A Rey
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
81
|
Abstract
The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38alpha, p38beta, p38gamma, p38delta) and ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein-protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.
Collapse
Affiliation(s)
- A G Turjanski
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
82
|
Schulte G, Levy FO. Novel aspects of G-protein-coupled receptor signalling--different ways to achieve specificity. Acta Physiol (Oxf) 2007; 190:33-8. [PMID: 17428230 DOI: 10.1111/j.1365-201x.2007.01696.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our understanding of signal transduction via G-protein-coupled receptors (GPCR) has developed dramatically during the last decades. The initial idea of linear signalling pathways transferring information from the cell membrane to the nucleus has evolved into a complicated network of signalling pathways offering the possibility of crosstalk, fine tuning and specific regulation at multiple levels. During the recent meeting on GPCRs at the Karolinska Institutet, Stockholm novel aspects of GPCR signalling were presented and discussed. Here, we will discuss several possibilities for GPCRs to achieve specificity in signal transduction, such as the phenomenon of biased agonism, receptor multimerization, the role of co-receptors, the regulation of heterotrimeric G proteins as well as multiple G(s)-dependent pathways to extracellular single-regulated protein kinases.
Collapse
Affiliation(s)
- G Schulte
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
83
|
Yan C, Ding B, Shishido T, Woo CH, Itoh S, Jeon KI, Liu W, Xu H, McClain C, Molina CA, Blaxall BC, Abe JI. Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res 2007; 100:510-9. [PMID: 17272811 PMCID: PMC4115673 DOI: 10.1161/01.res.0000259045.49371.9c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial evidence suggests that the progressive loss of cardiomyocytes caused by apoptosis significantly contributes to the development of heart failure. beta-Adrenergic receptor activation and subsequent persistent phosphodiesterase 3A (PDE3A) downregulation and concomitant inducible cAMP early repressor (ICER) upregulation (PDE3A/ICER feedback loop) has been proposed to play a key role in the pathogenesis of cardiomyocyte apoptosis. In contrast, insulin-like growth factor-1 can activate cell survival pathways, providing protection against cell death and restoring muscle function. In this study, we found that insulin-like growth factor-1 activates extracellular signal-regulated kinase 5 (ERK5) and inhibits PDE3A/ICER feedback loop. Insulin-like growth factor-1 normalized isoproterenol-mediated PDE3A downregulation and ICER upregulation via ERK5/MEF2 activation, and also inhibited isoproterenol-induced myocyte apoptosis. To determine the physiological relevance of ERK5 activation in regulating PDE3A/ICER feedback loop, we investigated the PDE3A/ICER expression and cardiomyocyte apoptosis in transgenic mice with cardiac specific expression of a constitutively active form of mitogen-activated protein (MAP)/extracellular signal-regulated protein kinase (ERK) kinase 5alpha (MEK5alpha) (CA-MEK5alpha-Tg). In wild-type mice, pressure overload- or doxorubicin-induced significant reduction of PDE3A expression and subsequent ICER induction. Cardiac specific expression of CA-MEK5alpha rescued pressure overload- or doxorubicin-mediated PDE3A downregulation and ICER upregulation and inhibited myocyte apoptosis as well as subsequent cardiac dysfunction in vivo. These data suggest that preventing the feedback loop of PDE3A/ICER by ERK5 activation could inhibit progression of myocyte apoptosis as well as cardiac dysfunction. These data suggest a new therapeutic paradigm for end stage of heart failure by inhibiting the PDE3A/ICER feedback loop via activating ERK5.
Collapse
Affiliation(s)
- Chen Yan
- Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Mousseaux D, Le Gallic L, Ryan J, Oiry C, Gagne D, Fehrentz JA, Galleyrand JC, Martinez J. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCvarepsilon pathway. Br J Pharmacol 2006; 148:350-65. [PMID: 16582936 PMCID: PMC1751558 DOI: 10.1038/sj.bjp.0706727] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. 2. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. 3. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dependent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. 4. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (epsilon, delta), but not conventional or atypical PKCs. Further analyses suggest that PKCepsilon is required for the activation of ERK1/2. 5. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKCepsilon-dependent pathway.
Collapse
Affiliation(s)
- Delphine Mousseaux
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Lionel Le Gallic
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Joanne Ryan
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Catherine Oiry
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Didier Gagne
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Jean-Alain Fehrentz
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Jean-Claude Galleyrand
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
- Author for correspondence:
| | - Jean Martinez
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| |
Collapse
|
85
|
Caunt CJ, Finch AR, Sedgley KR, McArdle CA. Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 2006; 17:276-83. [PMID: 16890451 DOI: 10.1016/j.tem.2006.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/30/2006] [Accepted: 07/17/2006] [Indexed: 12/01/2022]
Abstract
Vast numbers of extracellular signalling molecules exert effects on their target cells by activation of a relatively limited number of mitogen-activated protein kinase (MAPK) cascades, raising the question of how specificity is achieved. To a large extent, this appears to be attributable to differences in kinetics and compartmentalization of MAPK protein activation that are dictated by MAPK-associated proteins serving as scaffolds, anchors, activators or effectors. Here, we review spatiotemporal aspects of signalling via the Ras-Raf-extracellular signal-regulated kinase pathway, emphasizing recent work on roles of arrestins as scaffolds and transducers for seven transmembrane receptor signalling.
Collapse
Affiliation(s)
- Christopher J Caunt
- University of Bristol, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Whitson Street, Bristol, BS1 3NY, UK
| | | | | | | |
Collapse
|
86
|
Brzostowski JA, Kimmel AR. Nonadaptive regulation of ERK2 in Dictyostelium: implications for mechanisms of cAMP relay. Mol Biol Cell 2006; 17:4220-7. [PMID: 16870702 PMCID: PMC1635358 DOI: 10.1091/mbc.e06-05-0376] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is assumed that ERK2 in Dictyostelium is subject to adaptive regulation in response to constant extracellular ligand stimulation. We now show, to the contrary, that ERK2 remains active under continuous stimulation, differing from most ligand-activated pathways in chemotactically competent Dictyostelium and other cells. We show that the upstream phosphorylation pathway, responsible for ERK2 activation, transiently responds to receptor stimulation, whereas ERK2 dephosphorylation (deactivation) is inhibited by continuous stimulation. We argue that the net result of these two regulatory actions is a persistently active ERK2 pathway when the extracellular ligand (i.e., cAMP) concentration is held constant and that oscillatory production/destruction of secreted cAMP in chemotaxing cells accounts for the observed oscillatory activity of ERK2. We also show that pathways controlling seven-transmembrane receptor (7-TMR) ERK2 activation/deactivation function independently of G proteins and ligand-induced production of intracellular cAMP and the consequent activation of PKA. Finally, we propose that this regulation enables ERK2 to function both in an oscillatory manner, critical for chemotaxis, and in a persistent manner, necessary for gene expression, as secreted ligand concentration increases during later development. This work redefines mechanisms of ERK2 regulation by 7-TMR signaling in Dictyostelium and establishes new implications for control of signal relay during chemotaxis.
Collapse
Affiliation(s)
- Joseph A. Brzostowski
- *Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-8028; and
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Alan R. Kimmel
- *Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-8028; and
| |
Collapse
|
87
|
Bruchas MR, Macey TA, Lowe JD, Chavkin C. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 2006; 281:18081-9. [PMID: 16648139 PMCID: PMC2096730 DOI: 10.1074/jbc.m513640200] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (gamma-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Arrestins/metabolism
- Astrocytes/cytology
- Astrocytes/metabolism
- Cells, Cultured
- Corpus Striatum/cytology
- G-Protein-Coupled Receptor Kinase 3
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/cytology
- Neurons/metabolism
- Phosphorylation
- Rats
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Signal Transduction/physiology
- beta-Adrenergic Receptor Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Michael R. Bruchas
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Tara A. Macey
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Janet D. Lowe
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Charles Chavkin
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
88
|
Sud N, Sharma R, Ray R, Chattopadhyay TK, Ralhan R. Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett 2006; 233:265-70. [PMID: 15916848 DOI: 10.1016/j.canlet.2005.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 03/06/2005] [Accepted: 03/11/2005] [Indexed: 12/22/2022]
Abstract
Herein, we describe the identification of GPCR56, an orphan G-protein coupled receptor, to be differentially expressed in esophageal squamous cell carcinoma. Although, GPCRs have been demonstrated to be altered in various human cancers, much is still unknown about GPCR56 expression in tumors. To evaluate the expression of these genes in esophageal tissues, we performed semi-quantitative Reverse-Transcription Polymerase Chain Reaction in ESCCs, dysplasia and matched normal esophageal epithelium. Increased transcript levels of GPCR56 were detected in 48% of ESCCs, while the adjacent non-malignant esophageal tissue did not show the expression of this transcript. Interestingly, most of the dysplastic tissues analyzed also exhibited increased expression of GPCR56 suggesting that alteration in GPCR56 expression is an early event in esophageal tumorigenesis. In depth analysis of GPCR56 in different stages of development and progression of esophageal tumorigenesis is warranted to explore its utility as potential early diagnostic marker and its function in esophageal cancer.
Collapse
Affiliation(s)
- Neetu Sud
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
89
|
Zhang W, Anger T, Su J, Hao J, Xu X, Zhu M, Gach A, Cui L, Liao R, Mende U. Selective Loss of Fine Tuning of Gq/11 Signaling by RGS2 Protein Exacerbates Cardiomyocyte Hypertrophy. J Biol Chem 2006; 281:5811-20. [PMID: 16380388 DOI: 10.1074/jbc.m507871200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alterations in cardiac G protein-mediated signaling, most prominently G(q/11) signaling, are centrally involved in hypertrophy and heart failure development. Several RGS proteins that can act as negative regulators of G protein signaling are expressed in the heart, but their functional roles are still poorly understood. RGS expression changes have been described in hypertrophic and failing hearts. In this study, we report a marked decrease in RGS2 (but not other major cardiac RGS proteins (RGS3-RGS5)) that occurs prior to hypertrophy development in different models with enhanced G(q/11) signaling (transgenic expression of activated Galpha(q)(*) and pressure overload due to aortic constriction). To assess functional consequences of selective down-regulation of endogenous RGS2, we identified targeting sequences for effective RGS2 RNA interference and used lipid-based transfection to achieve uptake of fluorescently labeled RGS2 small interfering RNA in >90% of neonatal and adult ventricular myocytes. Endogenous RGS2 expression was dose-dependently suppressed (up to 90%) with no major change in RGS3-RGS5. RGS2 knockdown increased phenylephrine- and endothelin-1-induced phospholipase Cbeta stimulation in both cell types and exacerbated the hypertrophic effect (increase in cell size and radiolabeled protein) in neonatal myocytes, with no major change in G(q/11)-mediated ERK1/2, p38, or JNK activation. Taken together, this study demonstrates that endogenous RGS2 exerts functionally important inhibitory restraint on G(q/11)-mediated phospholipase Cbeta activation and hypertrophy in ventricular myocytes. Our findings point toward a potential pathophysiological role of loss of fine tuning due to selective RGS2 down-regulation in G(q/11)-mediated remodeling. Furthermore, this study shows the feasibility of effective RNA interference in cardiomyocytes using lipid-based small interfering RNA transfection.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Hypertrophy
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phospholipase C beta
- RGS Proteins/genetics
- RGS Proteins/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Second Messenger Systems/physiology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Wei Zhang
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ammoun S, Lindholm D, Wootz H, Akerman KEO, Kukkonen JP. G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J Biol Chem 2005; 281:834-42. [PMID: 16282319 DOI: 10.1074/jbc.m508603200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the signaling of OX(1) receptors to cell death using Chinese hamster ovary cells as a model system. OX(1) receptor stimulation with orexin-A caused a delayed cell death independently of cytosolic Ca(2+) elevation. The classical mitogen-activated protein kinase (MAPK) pathways, ERK and p38, were strongly activated by orexin-A. p38 was essential for induction of cell death, whereas the ERK pathway appeared protective. A pathway often implicated in the p38-mediated cell death, activation of p53, did not mediate the cell death, as there was no stabilization of p53 or increase in p53-dependent transcriptional activity, and dominant-negative p53 constructs did not inhibit cell demise. Under basal conditions, orexin-A-induced cell death was associated with compact chromatin condensation and it required de novo gene transcription and protein synthesis, the classical hallmarks of programmed (apoptotic) cell death. However, though the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethyl ketone (Z-VAD-fmk) fully inhibited the caspase activity, it did not rescue the cells from orexin-A-induced death. In the presence of Z-VAD-fmk, orexin-A-induced cell death was still dependent on p38 and de novo protein synthesis, but it no longer required gene transcription. Thus, caspase inhibition causes activation of alternative, gene transcription-independent death pathway. In summary, the present study points out mechanisms for orexin receptor-mediated cell death and adds to our general understanding of the role of G-protein-coupled receptor signaling in cell death by suggesting a pathway from G-protein-coupled receptors to cell death via p38 mitogen-/stress-activated protein kinase independent of p53 and caspase activation.
Collapse
Affiliation(s)
- Sylwia Ammoun
- Department of Neuroscience, Unit of Physiology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
91
|
Lu XH, Dwyer DS. Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 2005; 27:43-64. [PMID: 16055946 DOI: 10.1385/jmn:27:1:043] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 01/26/2005] [Indexed: 11/11/2022]
Abstract
Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine, were found to enhance neurite outgrowth induced by nerve growth factor (NGF) in PC12 cells. These drugs increased the number of cells bearing neurites, the length of primary neurites, and the size of the cell body of NGF-differentiated PC12 cells. In addition, the drugs induced sprouting of neurite-like processes in PC12 cells in the absence of NGF. Olanzapine, quetiapine, and clozapine enhanced the phosphorylation of Akt and ERK in combination with NGF, and specific inhibitors of these pathways attenuated these effects. Pretreatment of cells overnight with pertussis toxin had no effect on NGF-induced differentiation but significantly decreased the effects of the antipsychotic drugs on neurite outgrowth, suggesting that Gi/Go-coupled receptors are involved in the response to drug. A better understanding of the mechanisms underlying the effects of the second-generation drugs might suggest new therapeutic targets for enhancement of neurite outgrowth.
Collapse
Affiliation(s)
- Xiao-Hong Lu
- Department of Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
92
|
Boland R, Buitrago C, De Boland AR. Modulation of tyrosine phosphorylation signalling pathways by 1alpha,25(OH)2-vitamin D3. Trends Endocrinol Metab 2005; 16:280-7. [PMID: 16002300 DOI: 10.1016/j.tem.2005.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/11/2005] [Accepted: 06/23/2005] [Indexed: 12/15/2022]
Abstract
Hormonally active vitamin D(3), 1alpha,25(OH)(2)D(3), interacts with the classic vitamin D nuclear receptor that regulates gene transcription and with a putative cell membrane receptor that mediates rapid biological responses. 1alpha,25(OH)(2)D(3) actions on target tissues regulate: mineral metabolism and intracellular Ca(2+); protein kinase cascades leading to cell proliferation, differentiation and apoptosis; muscle growth and contractility; and the immune system. There is evidence for underlying 1alpha,25(OH)(2)D(3)-mediated protein tyrosine phosphorylation signalling in bone, intestine, muscle, epidermal and cancer cells. Extracellular-signal-regulated kinases-1/2, p38 and/or c-jun N-terminal kinase pathways play important roles in mediating 1alpha,25(OH)(2)D(3) actions. Studies to elucidate key regulatory metabolic steps and crosstalk sites in these pathways would enhance our understanding of the significance of tyrosine phosphorylation cascades in normal 1alpha,25(OH)(2)D(3) physiology, pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Ricardo Boland
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, (8000) Bahía Blanca, Argentina.
| | | | | |
Collapse
|
93
|
Boulware MI, Weick JP, Becklund BR, Kuo SP, Groth RD, Mermelstein PG. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. J Neurosci 2005; 25:5066-78. [PMID: 15901789 PMCID: PMC6724851 DOI: 10.1523/jneurosci.1427-05.2005] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 04/13/2005] [Accepted: 04/16/2005] [Indexed: 12/12/2022] Open
Abstract
In addition to mediating sexual maturation and reproduction through stimulation of classical intracellular receptors that bind DNA and regulate gene expression, estradiol is also thought to influence various brain functions by acting on receptors localized to the neuronal membrane surface. Many intracellular signaling pathways and modulatory proteins are affected by estradiol via this unconventional route, including regulation of the transcription factor cAMP response element-binding protein (CREB). However, the mechanisms by which estradiol acts at the membrane surface are poorly understood. Because both estradiol and CREB have been implicated in regulating learning and memory, we characterized the effects of estradiol on this transcription factor in cultured rat hippocampal neurons. Within minutes of administration, estradiol triggered mitogen-activated protein kinase (MAPK)-dependent CREB phosphorylation in unstimulated neurons. Furthermore, after brief depolarization, estradiol attenuated L-type calcium channel-mediated CREB phosphorylation. Thus, estradiol exhibited both positive and negative influences on CREB activity. These effects of estradiol were sex specific and traced to membrane-localized estrogen receptors that stimulated group I and II metabotropic glutamate receptor (mGluR) signaling. Activation of estrogen receptor alpha (ERalpha) led to mGluR1a signaling, triggering CREB phosphorylation through phospholipase C regulation of MAPK. In addition, estradiol stimulation of ERalpha or ERbeta triggered mGluR2/3 signaling, decreasing L-type calcium channel-mediated CREB phosphorylation. These results not only characterize estradiol regulation of CREB but also provide two putative signaling mechanisms that may account for many of the unexplained observations regarding the influence of estradiol on nervous system function.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
94
|
Ledirac N, Antherieu S, d'Uby AD, Caron JC, Rahmani R. Effects of Organochlorine Insecticides on MAP Kinase Pathways in Human HaCaT Keratinocytes: Key Role of Reactive Oxygen Species. Toxicol Sci 2005; 86:444-52. [PMID: 15888667 DOI: 10.1093/toxsci/kfi192] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organochlorine pesticides (OCs) are reported as potential carcinogens in humans. The aim of this study was to investigate the effects of four OCs (dieldrin, endosulfan, heptachlor, and lindane) on mitogen-activated protein kinase (MAPK) cascades and more specifically to identify the mechanism underlying OC-induced ERK1/2 activation. Organochlorine pesticides increased phosphorylated Raf, MEK1/2, ERK1/2, and c-Jun in human HaCaT cells, but they had no effect on p38 MAPK activation. Moreover, blockade of Raf, MEK1/2, or PKC activation with geldanamycin, U0126, or calphostin C inhibited ERK1/2 phosphorylation, demonstrating a PKC-Raf-MEK1/2 pathway. We also showed that these insecticides induced the production of reactive oxygen species (ROS). Pre-treatment with the antioxidant molecule N-acetyl cysteine sharply decreased the level of phospho-ERK1/2 and had no effect on Raf and MEK1/2 activation, suggesting a Raf-independent mechanism. This study indicates that OCs strongly activate the ERK1/2 pathway, and it identifies a critical role of ROS in OC-induced ERK activation, probably by stabilizing its phosphorylation.
Collapse
Affiliation(s)
- Nathalie Ledirac
- Laboratoire de Toxicologie Cellulaire et Moléculaire, Centre de Recherche INRA, 400 route des Chappes, 06903 Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|
95
|
Sodhi A, Montaner S, Gutkind JS. Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 2005; 5:998-1012. [PMID: 15573137 DOI: 10.1038/nrm1529] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viruses use a surprising diversity of approaches to hijack G-protein-coupled receptors and harness their activated intracellular signalling pathways. All of these approaches ultimately function to ensure viral replicative success and often contribute to their pathogenesis. Indeed, a single virus might deploy a repertoire of these strategies to regulate key intracellular survival, proliferative and chemotactic pathways. Understanding the contribution of these biochemical routes to viral pathogenesis might facilitate the development of effective target-specific therapeutic strategies against viral diseases.
Collapse
Affiliation(s)
- Akrit Sodhi
- Cell Growth Regulation Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 211, Bethesda, Maryland 20892-4330, USA
| | | | | |
Collapse
|
96
|
Zhong Z, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia 2005; 48:187-97. [PMID: 15624099 DOI: 10.1007/s00125-004-1602-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/13/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Accumulating evidence indicates that replacement of C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, but the molecular mechanisms involved are incompletely understood. C-peptide shows specific binding to a G-protein-coupled membrane binding site, resulting in Ca(2+) influx, activation of mitogen-activated protein kinase signalling pathways, and stimulation of Na(+), K(+)-ATPase and endothelial nitric oxide synthase. This study examines the intracellular signalling pathways activated by C-peptide in human renal tubular cells. METHODS Human renal tubular cells were cultured from the outer cortex of renal tissue obtained from patients undergoing elective nephrectomy. Extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and Akt/protein kinase B (PKB) activation was determined using phospho-specific antibodies. Protein kinase C (PKC) and RhoA activation was determined by measuring their translocation to the cell membrane fraction using isoform-specific antibodies. RESULTS Human C-peptide increases phosphorylation of ERK1/2 and Akt/PKB in a concentration- and time-dependent manner in renal tubular cells. The C-terminal pentapeptide of C-peptide is equipotent with the full-length C-peptide, whereas scrambled C-peptide has no effect. C-peptide stimulation also results in phosphorylation of JNK, but not of p38 mitogen-activated protein kinase. MEK1/2 inhibitor PD98059 blocks the C-peptide effect on ERK1/2 phosphorylation. C-peptide causes specific translocation of PKC isoforms delta and epsilon to the membrane fraction in tubular cells. All stimulatory effects of C-peptide were abolished by pertussis toxin. The isoform-specific PKC-delta inhibitor rottlerin and the broad-spectrum PKC inhibitor GF109203X both abolish the C-peptide effect on ERK1/2 phosphorylation. C-peptide stimulation also causes translocation of the small GTPase RhoA from the cytosol to the cell membrane. Inhibition of phospholipase C abolished the stimulatory effect of C-peptide on phosphorylation of ERK1/2, JNK and PKC-delta. CONCLUSIONS/INTERPRETATION C-peptide signal transduction in human renal tubular cells involves the activation of phospholipase C and PKC-delta and PKC-epsilon, as well as RhoA, followed by phosphorylation of ERK1/2 and JNK, and a parallel activation of Akt.
Collapse
Affiliation(s)
- Z Zhong
- Section of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
97
|
Fischer HP. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:1-68. [PMID: 16216773 DOI: 10.1016/s1387-2656(05)11001-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing a new drug is a tedious and expensive undertaking. The recently developed high-throughput experimental technologies, summarised by the terms genomics, transcriptomics, proteomics and metabolomics provide for the first time ever the means to comprehensively monitor the molecular level of disease processes. The "-omics" technologies facilitate the systematic characterisation of a drug target's physiology, thereby helping to reduce the typically high attrition rates in discovery projects, and improving the overall efficiency of pharmaceutical research processes. Currently, the bottleneck for taking full advantage of the new experimental technologies are the rapidly growing volumes of automatically produced biological data. A lack of scalable database systems and computational tools for target discovery has been recognised as a major hurdle. In this review, an overview will be given on recent progress in computational biology that has an impact on drug discovery applications. The focus will be on novel in silico methods to reconstruct regulatory networks, signalling cascades, and metabolic pathways, with an emphasis on comparative genomics and microarray-based approaches. Promising methods, such as the mathematical simulation of pathway dynamics are discussed in the context of applications in discovery projects. The review concludes by exemplifying concrete data-driven studies in pharmaceutical research that demonstrate the value of integrated computational systems for drug target identification and validation, screening assay development, as well as drug candidate efficacy and toxicity evaluations.
Collapse
|
98
|
Ciccarelli R, D'Alimonte I, Santavenere C, D'Auro M, Ballerini P, Nargi E, Buccella S, Nicosia S, Folco G, Caciagli F, Di Iorio P. Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway. Eur J Neurosci 2004; 20:1514-24. [PMID: 15355318 DOI: 10.1111/j.1460-9568.2004.03613.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cysteinyl-leukotrienes (cys-LTs), potent mediators in inflammatory diseases, are produced by nervous tissue, but their cellular source and role in the brain are not very well known. In this report we have demonstrated that rat cultured astrocytes express the enzymes (5'-lipoxygenase and LTC(4) synthase) required for cys-LT production, and release cys-LTs in resting condition and, to a greater extent, in response to calcium ionophore A23187, 1 h combined oxygen-glucose deprivation or 2-methyl-thioATP, a selective P2Y(1)/ATP receptor agonist. MK-886, a LT synthesis inhibitor, prevented basal and evoked cys-LT release. In addition, 2-methyl-thioATP-induced cys-LT release was abolished by suramin, a P2 receptor antagonist, or by inhibitors of ATP binding cassette proteins involved in cys-LT release. We also showed that astrocytes express cys-LT(1) and not cys-LT(2) receptors. The stimulation of these receptors by LTD(4) activated the mitogen-activated protein kinase (MAPK) pathway. This effect was: (i) insensitive to inhibitors of receptor-coupled Gi protein (pertussis toxin) or tyrosine kinase receptors (genistein); (ii) abolished by MK-571, a cys-LT(1) selective receptor antagonist, or PD98059, a MAPK inhibitor; (iii) reduced by inhibitors of calcium/calmodulin-dependent kinase II (KN-93), Ca(2+)-dependent and -independent (GF102903X) or Ca(2+)-dependent (Gö6976) protein kinase C isoforms. LTD(4) also increased astrocyte proliferation and glial fibrillary acidic protein content, which are considered hallmarks of reactive astrogliosis. Both effects were counteracted by cell pretreatment with MK-571 or PD98059. Thus, cys-LTs released from astrocytes might play an autocrine role in the induction of reactive astrogliosis that, in brain injuries, contributes to the formation of a reparative glial scar.
Collapse
Affiliation(s)
- Renata Ciccarelli
- Department of Biomedical Sciences, Section of Pharmacology, Medical School, G. D'Annunzio University of Chieti, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Buckley S, Barsky L, Weinberg K, Warburton D. In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia-induced DNA damage through MAP kinase signaling. Am J Physiol Lung Cell Mol Physiol 2004; 288:L569-75. [PMID: 15579626 DOI: 10.1152/ajplung.00278.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inosine, a naturally occurring purine with anti-inflammatory properties, was assessed as a possible modulator of hyperoxic damage to the pulmonary alveolar epithelium. Rats were treated with inosine, 200 mg/kg ip, twice daily during 48-h exposure to >90% oxygen. The alveolar epithelial type 2 cells (AEC2) were then isolated and cultured. AEC2 isolated from inosine-treated hyperoxic rats had less DNA damage and had increased antioxidant status compared with AEC2 from hyperoxic rats. Inosine treatment during hyperoxia also reduced the proportion of AEC2 in S and G2/M phases of the cell cycle and increased levels of the DNA repair enzyme 8-oxoguanine DNA glycosylase. Bronchoalveolar lavage (BAL) recovered from hyperoxic, inosine-treated rats contained threefold higher levels of active transforming growth factor-beta than BAL from rats exposed to hyperoxia alone, and Smad2 was activated in AEC2 isolated from these animals. ERK1/2 was activated both in freshly isolated and 24-h-cultured AEC2 by in vivo inosine treatment, whereas blockade of the MAPK pathway in vitro reduced the protective effect of in the vivo inosine treatment. Together, the data suggest that inosine treatment during hyperoxic exposure results in protective signaling mediated through pathways downstream of MEK. Thus inosine may deserve further evaluation for its potential to reduce hyperoxic damage to the pulmonary alveolar epithelium.
Collapse
Affiliation(s)
- S Buckley
- Developmental Biology, Saban Research Institute, Children's Hospital of Los Angeles, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
100
|
Akaike M, Che W, Marmarosh NL, Ohta S, Osawa M, Ding B, Berk BC, Yan C, Abe JI. The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Mol Cell Biol 2004; 24:8691-704. [PMID: 15367687 PMCID: PMC516745 DOI: 10.1128/mcb.24.19.8691-8704.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that form a subfamily of the nuclear receptor gene family. Since both flow and PPARgamma have atheroprotective effects and extracellular signal-regulated kinase 5 (ERK5) kinase activity is significantly increased by flow, we investigated whether ERK5 kinase regulates PPARgamma activity. We found that activation of ERK5 induced PPARgamma1 activation in endothelial cells (ECs). However, we could not detect PPARgamma phosphorylation by incubation with activated ERK5 in vitro, in contrast to ERK1/2 and JNK, suggesting a role for ERK5 as a scaffold. Endogenous PPARgamma1 was coimmunoprecipitated with endogenous ERK5 in ECs. By mammalian two-hybrid analysis, we found that PPARgamma1 associated with ERK5a at the hinge-helix 1 region of PPARgamma1. Expressing a hinge-helix 1 region PPARgamma1 fragment disrupted the ERK5a-PPARgamma1 interaction, suggesting a critical role for hinge-helix 1 region of PPARgamma in the ERK5-PPARgamma interaction. Flow increased ERK5 and PPARgamma1 activation, and the hinge-helix 1 region of the PPARgamma1 fragment and dominant negative MEK5beta significantly reduced flow-induced PPARgamma activation. The dominant negative MEK5beta also prevented flow-mediated inhibition of tumor necrosis factor alpha-mediated NF-kappaB activation and adhesion molecule expression, including vascular cellular adhesion molecule 1 and E-selectin, indicating a physiological role for ERK5 and PPARgamma activation in flow-mediated antiinflammatory effects. We also found that ERK5 kinase activation was required, likely by inducing a conformational change in the NH(2)-terminal region of ERK5 that prevented association of ERK5 and PPARgamma1. Furthermore, association of ERK5a and PPARgamma1 disrupted the interaction of SMRT and PPARgamma1, thereby inducing PPARgamma activation. These data suggest that ERK5 mediates flow- and ligand-induced PPARgamma activation via the interaction of ERK5 with the hinge-helix 1 region of PPARgamma.
Collapse
Affiliation(s)
- Masashi Akaike
- Center for Cardiovascular Research, 601 Elmwood Ave., Box 679, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|