1001
|
Validation of Inflammopathic, Adaptive, and Coagulopathic Sepsis Endotypes in Coronavirus Disease 2019. Crit Care Med 2021; 49:e170-e178. [PMID: 33201004 DOI: 10.1097/ccm.0000000000004786] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Complex critical syndromes like sepsis and coronavirus disease 2019 may be composed of underling "endotypes," which may respond differently to treatment. The aim of this study was to test whether a previously defined bacterial sepsis endotypes classifier recapitulates the same clinical and immunological endotypes in coronavirus disease 2019. DESIGN Prospective single-center observational cohort study. SETTING Patients were enrolled in Athens, Greece, and blood was shipped to Inflammatix (Burlingame, CA) for analysis. PATIENTS Adult patients within 24 hours of hospital admission with coronavirus disease 2019 confirmed by polymerase chain reaction and chest radiography. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We studied 97 patients with coronavirus disease 2019, of which 50 went on to severe respiratory failure (SRF) and 16 died. We applied a previously defined 33-messenger RNA classifier to assign endotype (Inflammopathic, Adaptive, or Coagulopathic) to each patient. We tested endotype status against other clinical parameters including laboratory values, severity scores, and outcomes. Patients were assigned as Inflammopathic (29%), Adaptive (44%), or Coagulopathic (27%), similar to our prior study in bacterial sepsis. Adaptive patients had lower rates of SRF and no deaths. Coagulopathic and Inflammopathic endotypes had 42% and 18% mortality rates, respectively. The Coagulopathic group showed highest d-dimers, and the Inflammopathic group showed highest C-reactive protein and interleukin-6 levels. CONCLUSIONS Our predefined 33-messenger RNA endotypes classifier recapitulated immune phenotypes in viral sepsis (coronavirus disease 2019) despite its prior training and validation only in bacterial sepsis. Further work should focus on continued validation of the endotypes and their interaction with immunomodulatory therapy.
Collapse
|
1002
|
Li S, Ma F, Yokota T, Garcia G, Palermo A, Wang Y, Farrell C, Wang YC, Wu R, Zhou Z, Pan C, Morselli M, Teitell MA, Ryazantsev S, Fishbein GA, Hoeve JT, Arboleda VA, Bloom J, Dillon B, Pellegrini M, Lusis AJ, Graeber TG, Arumugaswami V, Deb A. Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2-induced systemic toxicity. JCI Insight 2021; 6:145027. [PMID: 33284134 PMCID: PMC7934846 DOI: 10.1172/jci.insight.145027] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Extrapulmonary manifestations of COVID-19 are associated with a much higher mortality rate than pulmonary manifestations. However, little is known about the pathogenesis of systemic complications of COVID-19. Here, we create a murine model of SARS-CoV-2-induced severe systemic toxicity and multiorgan involvement by expressing the human ACE2 transgene in multiple tissues via viral delivery, followed by systemic administration of SARS-CoV-2. The animals develop a profound phenotype within 7 days with severe weight loss, morbidity, and failure to thrive. We demonstrate that there is metabolic suppression of oxidative phosphorylation and the tricarboxylic acid (TCA) cycle in multiple organs with neutrophilia, lymphopenia, and splenic atrophy, mirroring human COVID-19 phenotypes. Animals had a significantly lower heart rate, and electron microscopy demonstrated myofibrillar disarray and myocardial edema, a common pathogenic cardiac phenotype in human COVID-19. We performed metabolomic profiling of peripheral blood and identified a panel of TCA cycle metabolites that served as biomarkers of depressed oxidative phosphorylation. Finally, we observed that SARS-CoV-2 induces epigenetic changes of DNA methylation, which affects expression of immune response genes and could, in part, contribute to COVID-19 pathogenesis. Our model suggests that SARS-CoV-2-induced metabolic reprogramming and epigenetic changes in internal organs could contribute to systemic toxicity and lethality in COVID-19.
Collapse
Affiliation(s)
- Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
- California Nanosystems Institute
| | - Feiyang Ma
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
- California Nanosystems Institute
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Amelia Palermo
- California Nanosystems Institute
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- UCLA Metabolomics Center
- Crump Institute for Molecular Imaging
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
- California Nanosystems Institute
| | - Colin Farrell
- Department of Human Genetics, David Geffen School of Medicine
| | - Yu-Chen Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Human Genetics, David Geffen School of Medicine
| | - Rimao Wu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
- California Nanosystems Institute
| | - Zhiqiang Zhou
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Human Genetics, David Geffen School of Medicine
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Human Genetics, David Geffen School of Medicine
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine
| | | | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine
| | - Johanna ten Hoeve
- California Nanosystems Institute
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- UCLA Metabolomics Center
- Crump Institute for Molecular Imaging
| | - Valerie A. Arboleda
- Department of Human Genetics, David Geffen School of Medicine
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine
| | - Joshua Bloom
- Department of Human Genetics, David Geffen School of Medicine
- Department of Biological Chemistry, David Geffen School of Medicine
- Howard Hughes Medical Institute, and
| | - Barbara Dillon
- Department of Environment, Health and Safety, UCLA, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Human Genetics, David Geffen School of Medicine
| | - Thomas G. Graeber
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- California Nanosystems Institute
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- UCLA Metabolomics Center
- Crump Institute for Molecular Imaging
| | - Vaithilingaraja Arumugaswami
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research
- Molecular Biology Institute
- California Nanosystems Institute
| |
Collapse
|
1003
|
Meyer M, Wang Y, Edwards D, Smith GR, Rubenstein AB, Ramanathan P, Mire CE, Pietzsch C, Chen X, Ge Y, Cheng WS, Henry C, Woods A, Ma L, Stewart-Jones GBE, Bock KW, Minai M, Nagata BM, Periasamy S, Shi PY, Graham BS, Moore IN, Ramos I, Troyanskaya OG, Zaslavsky E, Carfi A, Sealfon SC, Bukreyev A. mRNA-1273 efficacy in a severe COVID-19 model: attenuated activation of pulmonary immune cells after challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.25.428136. [PMID: 33532780 PMCID: PMC7852274 DOI: 10.1101/2021.01.25.428136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mRNA-1273 vaccine was recently determined to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from interim Phase 3 results. Human studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibit more severe SARS-CoV-2 disease similar to hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and non-human primates, mRNA-1273- mediated immunity was non-sterilizing and coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high resolution analysis which is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a two-dose schedule and provides insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.
Collapse
|
1004
|
Hartley GE, Edwards ESJ, Aui PM, Varese N, Stojanovic S, McMahon J, Peleg AY, Boo I, Drummer HE, Hogarth PM, O'Hehir RE, van Zelm MC. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci Immunol 2021; 5:5/54/eabf8891. [PMID: 33443036 PMCID: PMC7877496 DOI: 10.1126/sciimmunol.abf8891] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Lasting immunity following SARS-CoV-2 infection is questioned because serum antibodies decline in convalescence. However, functional immunity is mediated by long-lived memory T and B (Bmem) cells. Therefore, we generated fluorescently-labeled tetramers of the spike receptor binding domain (RBD) and nucleocapsid protein (NCP) to determine the longevity and immunophenotype of SARS-CoV-2-specific Bmem cells in COVID-19 patients. A total of 36 blood samples were obtained from 25 COVID-19 patients between 4 and 242 days post-symptom onset including 11 paired samples. While serum IgG to RBD and NCP was identified in all patients, antibody levels began declining at 20 days post-symptom onset. RBD- and NCP-specific Bmem cells predominantly expressed IgM+ or IgG1+ and continued to rise until 150 days. RBD-specific IgG+ Bmem were predominantly CD27+, and numbers significantly correlated with circulating follicular helper T cell numbers. Thus, the SARS-CoV-2 antibody response contracts in convalescence with persistence of RBD- and NCP-specific Bmem cells. Flow cytometric detection of SARS-CoV-2-specific Bmem cells enables detection of long-term immune memory following infection or vaccination for COVID-19.
Collapse
Affiliation(s)
- Gemma E Hartley
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephanie Stojanovic
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, The Alfred and Central Clinical school, Monash University, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred and Central Clinical school, Monash University, Melbourne, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - P Mark Hogarth
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia. .,Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
1005
|
Shaan Lakshmanappa Y, Elizaldi SR, Roh JW, Schmidt BA, Carroll TD, Weaver KD, Smith JC, Verma A, Deere JD, Dutra J, Stone M, Franz S, Sammak RL, Olstad KJ, Rachel Reader J, Ma ZM, Nguyen NK, Watanabe J, Usachenko J, Immareddy R, Yee JL, Weiskopf D, Sette A, Hartigan-O'Connor D, McSorley SJ, Morrison JH, Tran NK, Simmons G, Busch MP, Kozlowski PA, Van Rompay KKA, Miller CJ, Iyer SS. SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Nat Commun 2021; 12:541. [PMID: 33483492 PMCID: PMC7822826 DOI: 10.1038/s41467-020-20642-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center (GC) response is an important question as we investigate vaccine induced immunity against COVID-19. Here, we report that SARS-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. SARS-CoV-2 Infection induced GC Tfh cells specific for the SARS-CoV-2 spike and nucleocapsid proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.
Collapse
Affiliation(s)
| | - Sonny R Elizaldi
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
- Graduate Group in Immunology, UC Davis, Davis, CA, USA
| | - Jamin W Roh
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
- Graduate Group in Immunology, UC Davis, Davis, CA, USA
| | - Brian A Schmidt
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
| | - Timothy D Carroll
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Kourtney D Weaver
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Anil Verma
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
| | - Jesse D Deere
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Joseph Dutra
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Mars Stone
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Sergej Franz
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | - J Rachel Reader
- California National Primate Research Center, UC Davis, Davis, CA, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Zhong-Min Ma
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Nancy K Nguyen
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
| | - Jennifer Watanabe
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Jodie Usachenko
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Ramya Immareddy
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - JoAnn L Yee
- California National Primate Research Center, UC Davis, Davis, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, San Diego, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, La Jolla, San Diego, CA, USA
| | - Dennis Hartigan-O'Connor
- California National Primate Research Center, UC Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, School of Medicine, UC Davis, Davis, CA, USA
| | - Stephen J McSorley
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - John H Morrison
- California National Primate Research Center, UC Davis, Davis, CA, USA
- Department of Neurology, School of Medicine, UC Davis, Davis, CA, USA
| | - Nam K Tran
- Pathology and Laboratory Medicine, School of Medicine, UC Davis, Davis, CA, USA
| | - Graham Simmons
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Michael P Busch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, UC Davis, Davis, CA, USA.
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA.
| | - Christopher J Miller
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA.
- California National Primate Research Center, UC Davis, Davis, CA, USA.
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA.
| | - Smita S Iyer
- Center for Immunology and Infectious Diseases, UC Davis, Davis, CA, USA.
- California National Primate Research Center, UC Davis, Davis, CA, USA.
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA.
| |
Collapse
|
1006
|
Kusnadi A, Ramírez-Suástegui C, Fajardo V, Chee SJ, Meckiff BJ, Simon H, Pelosi E, Seumois G, Ay F, Vijayanand P, Ottensmeier CH. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8 + T cells. Sci Immunol 2021; 6:eabe4782. [PMID: 33478949 PMCID: PMC8101257 DOI: 10.1126/sciimmunol.abe4782] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Serena J Chee
- NIHR and CRUK Southampton Experimental Cancer Medicine Center, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Emanuela Pelosi
- Southampton Specialist Virology Centre, Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
1007
|
da Silva Antunes R, Pallikkuth S, Williams E, Yu ED, Mateus J, Quiambao L, Wang E, Rawlings SA, Stadlbauer D, Jiang K, Amanat F, Arnold D, Andrews D, Fuego I, Dan JM, Grifoni A, Weiskopf D, Krammer F, Crotty S, Hoffer ME, Pahwa SG, Sette A. Differential T cell reactivity to seasonal coronaviruses and SARS-CoV-2 in community and health care workers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.12.21249683. [PMID: 33469594 PMCID: PMC7814840 DOI: 10.1101/2021.01.12.21249683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Herein we measured CD4+ T cell responses against common cold corona (CCC) viruses and SARS-CoV-2 in high-risk health care workers (HCW) and community controls. We observed higher levels of CCC reactive T cells in SARS-CoV-2 seronegative HCW compared to community donors, consistent with potential higher occupational exposure of HCW to CCC. We further show that SARS-CoV-2 reactivity of seronegative HCW was higher than community controls and correlation between CCC and SARS-CoV-2 responses is consistent with cross-reactivity and not associated with recent in vivo activation. Surprisingly, CCC reactivity was decreased in SARS-CoV-2 infected HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses, either directly or indirectly. This result was unexpected, but consistently detected in independent cohorts derived from Miami and San Diego.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Williams
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Arnold
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - David Andrews
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Irma Fuego
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
1008
|
Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, Penrice-Randal R, Millar T, Lerpiniere CEB, Tagliavini G, Hartley CS, Randle NP, Gachanja NN, Potey PMD, Dong X, Anderson AM, Campbell VL, Duguid AJ, Al Qsous W, BouHaidar R, Baillie JK, Dhaliwal K, Wallace WA, Bellamy COC, Prost S, Smith C, Hiscox JA, Harrison DJ, Lucas CD. Tissue-Specific Immunopathology in Fatal COVID-19. Am J Respir Crit Care Med 2021; 203:192-201. [PMID: 33217246 PMCID: PMC7874430 DOI: 10.1164/rccm.202008-3265oc] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.
Collapse
Affiliation(s)
- David A Dorward
- Centre for Inflammation Research, Queen's Medical Research Institute, and
- Department of Pathology
| | - Clark D Russell
- Centre for Inflammation Research, Queen's Medical Research Institute, and
- Regional Infectious Diseases Unit
| | - In Hwa Um
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tracey Millar
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Chris E B Lerpiniere
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Giulia Tagliavini
- Centre for Inflammation Research, Queen's Medical Research Institute, and
| | - Catherine S Hartley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nadine P Randle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Naomi N Gachanja
- Centre for Inflammation Research, Queen's Medical Research Institute, and
| | - Philippe M D Potey
- Centre for Inflammation Research, Queen's Medical Research Institute, and
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Wael Al Qsous
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | | | - J Kenneth Baillie
- Intensive Care Unit, and
- Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen's Medical Research Institute, and
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | | | - Christopher O C Bellamy
- Centre for Inflammation Research, Queen's Medical Research Institute, and
- Department of Pathology
| | - Sandrine Prost
- Centre for Inflammation Research, Queen's Medical Research Institute, and
| | - Colin Smith
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
- Department of Pathology
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
- Health Protection Research Unit in Emerging and Zoonotic Infections, National Institute for Health Research, United Kingdom
| | - David J Harrison
- Department of Pathology
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Christopher D Lucas
- Centre for Inflammation Research, Queen's Medical Research Institute, and
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
1009
|
Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021; 27:28-33. [PMID: 33442016 DOI: 10.1038/s41591-020-01202-8] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19, caused by SARS-CoV-2 infection, is mild to moderate in the majority of previously healthy individuals, but can cause life-threatening disease or persistent debilitating symptoms in some cases. The most important determinant of disease severity is age, with individuals over 65 years having the greatest risk of requiring intensive care, and men are more susceptible than women. In contrast to other respiratory viral infections, young children seem to be less severely affected. It is now clear that mild to severe acute infection is not the only outcome of COVID-19, and long-lasting symptoms are also possible. In contrast to severe acute COVID-19, such 'long COVID' is seemingly more likely in women than in men. Also, postinfectious hyperinflammatory disease has been described as an additional outcome after SARS-CoV-2 infection. Here I discuss our current understanding of the immunological determinants of COVID-19 disease presentation and severity and relate this to known immune-system differences between young and old people and between men and women, and other factors associated with different disease presentations and severity.
Collapse
|
1010
|
Aschenbrenner AC, Mouktaroudi M, Krämer B, Oestreich M, Antonakos N, Nuesch-Germano M, Gkizeli K, Bonaguro L, Reusch N, Baßler K, Saridaki M, Knoll R, Pecht T, Kapellos TS, Doulou S, Kröger C, Herbert M, Holsten L, Horne A, Gemünd ID, Rovina N, Agrawal S, Dahm K, van Uelft M, Drews A, Lenkeit L, Bruse N, Gerretsen J, Gierlich J, Becker M, Händler K, Kraut M, Theis H, Mengiste S, De Domenico E, Schulte-Schrepping J, Seep L, Raabe J, Hoffmeister C, ToVinh M, Keitel V, Rieke G, Talevi V, Skowasch D, Aziz NA, Pickkers P, van de Veerdonk FL, Netea MG, Schultze JL, Kox M, Breteler MMB, Nattermann J, Koutsoukou A, Giamarellos-Bourboulis EJ, Ulas T. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med 2021; 13:7. [PMID: 33441124 DOI: 10.1101/2020.07.07.20148395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/18/2020] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.
Collapse
Affiliation(s)
- Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Mouktaroudi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Benjamin Krämer
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Marie Oestreich
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Melanie Nuesch-Germano
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Konstantina Gkizeli
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Maria Saridaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Rainer Knoll
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sarandia Doulou
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Charlotte Kröger
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Miriam Herbert
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lisa Holsten
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ioanna D Gemünd
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nikoletta Rovina
- 1st Department of Pulmonary Medicine and Intensive Care Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Shobhit Agrawal
- West German Genome Center (WGGC), University of Bonn, Bonn, Germany
| | - Kilian Dahm
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna Drews
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Lena Lenkeit
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Niklas Bruse
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannik Gierlich
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthias Becker
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Michael Kraut
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Heidi Theis
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Simachew Mengiste
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elena De Domenico
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lea Seep
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan Raabe
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | | | - Michael ToVinh
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Rieke
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Section of Pneumology, University Hospital of Bonn (UKB), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Immunology & Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Antonia Koutsoukou
- 1st Department of Pulmonary Medicine and Intensive Care Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.
| |
Collapse
|
1011
|
Aschenbrenner AC, Mouktaroudi M, Krämer B, Oestreich M, Antonakos N, Nuesch-Germano M, Gkizeli K, Bonaguro L, Reusch N, Baßler K, Saridaki M, Knoll R, Pecht T, Kapellos TS, Doulou S, Kröger C, Herbert M, Holsten L, Horne A, Gemünd ID, Rovina N, Agrawal S, Dahm K, van Uelft M, Drews A, Lenkeit L, Bruse N, Gerretsen J, Gierlich J, Becker M, Händler K, Kraut M, Theis H, Mengiste S, De Domenico E, Schulte-Schrepping J, Seep L, Raabe J, Hoffmeister C, ToVinh M, Keitel V, Rieke G, Talevi V, Skowasch D, Aziz NA, Pickkers P, van de Veerdonk FL, Netea MG, Schultze JL, Kox M, Breteler MMB, Nattermann J, Koutsoukou A, Giamarellos-Bourboulis EJ, Ulas T. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med 2021; 13:7. [PMID: 33441124 PMCID: PMC7805430 DOI: 10.1186/s13073-020-00823-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.
Collapse
Affiliation(s)
- Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Mouktaroudi
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Benjamin Krämer
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Marie Oestreich
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Melanie Nuesch-Germano
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Konstantina Gkizeli
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Maria Saridaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Rainer Knoll
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sarandia Doulou
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Charlotte Kröger
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Miriam Herbert
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lisa Holsten
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ioanna D Gemünd
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nikoletta Rovina
- 1st Department of Pulmonary Medicine and Intensive Care Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Shobhit Agrawal
- West German Genome Center (WGGC), University of Bonn, Bonn, Germany
| | - Kilian Dahm
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna Drews
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Lena Lenkeit
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Niklas Bruse
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannik Gierlich
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthias Becker
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Michael Kraut
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Heidi Theis
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Simachew Mengiste
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elena De Domenico
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lea Seep
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan Raabe
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | | | - Michael ToVinh
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Rieke
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
| | - Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Section of Pneumology, University Hospital of Bonn (UKB), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Immunology & Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Antonia Koutsoukou
- 1st Department of Pulmonary Medicine and Intensive Care Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.
| |
Collapse
|
1012
|
Rha MS, Jeong HW, Ko JH, Choi SJ, Seo IH, Lee JS, Sa M, Kim AR, Joo EJ, Ahn JY, Kim JH, Song KH, Kim ES, Oh DH, Ahn MY, Choi HK, Jeon JH, Choi JP, Kim HB, Kim YK, Park SH, Choi WS, Choi JY, Peck KR, Shin EC. PD-1-Expressing SARS-CoV-2-Specific CD8 + T Cells Are Not Exhausted, but Functional in Patients with COVID-19. Immunity 2021; 54:44-52.e3. [PMID: 33338412 PMCID: PMC7834198 DOI: 10.1016/j.immuni.2020.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 01/25/2023]
Abstract
Memory T cell responses have been demonstrated in COVID-19 convalescents, but ex vivo phenotypes of SARS-CoV-2-specific T cells have been unclear. We detected SARS-CoV-2-specific CD8+ T cells by MHC class I multimer staining and examined their phenotypes and functions in acute and convalescent COVID-19. Multimer+ cells exhibited early differentiated effector-memory phenotypes in the early convalescent phase. The frequency of stem-like memory cells was increased among multimer+ cells in the late convalescent phase. Cytokine secretion assays combined with MHC class I multimer staining revealed that the proportion of interferon-γ (IFN-γ)-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to influenza A virus. Importantly, the proportion of IFN-γ-producing cells was higher in PD-1+ cells than PD-1- cells among multimer+ cells, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our current findings provide information for understanding of SARS-CoV-2-specific CD8+ T cells elicited by infection or vaccination.
Collapse
Affiliation(s)
- Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In-Ho Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Moa Sa
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Republic of Korea
| | - A Reum Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun-Jeong Joo
- Division of Infectious Diseases, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Dong Hyun Oh
- Department of Internal Medicine, Seoul Medical Center, Seoul 02053, Republic of Korea
| | - Mi Young Ahn
- Department of Internal Medicine, Seoul Medical Center, Seoul 02053, Republic of Korea
| | - Hee Kyoung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea
| | - Ji Hoon Jeon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea
| | - Jae-Phil Choi
- Department of Internal Medicine, Seoul Medical Center, Seoul 02053, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Young Keun Kim
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, KAIST Institute, Daejeon 34141, Republic of Korea.
| |
Collapse
|
1013
|
Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021; 28:9. [PMID: 33435929 PMCID: PMC7801873 DOI: 10.1186/s12929-020-00703-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gaining further insights into SARS-CoV-2 routes of infection and the underlying pathobiology of COVID-19 will support the design of rational treatments targeting the life cycle of the virus and/or the adverse effects (e.g., multi-organ collapse) that are triggered by COVID-19-mediated adult respiratory distress syndrome (ARDS) and/or other pathologies. MAIN BODY COVID-19 is a two-phase disease being marked by (phase 1) increased virus transmission and infection rates due to the wide expression of the main infection-related ACE2, TMPRSS2 and CTSB/L human genes in tissues of the respiratory and gastrointestinal tract, as well as by (phase 2) host- and probably sex- and/or age-specific uncontrolled inflammatory immune responses which drive hyper-cytokinemia, aggressive inflammation and (due to broad organotropism of SARS-CoV-2) collateral tissue damage and systemic failure likely because of imbalanced ACE/ANGII/AT1R and ACE2/ANG(1-7)/MASR axes signaling. CONCLUSION Here we discuss SARS-CoV-2 life cycle and a number of approaches aiming to suppress viral infection rates or propagation; increase virus antigen presentation in order to activate a robust and durable adaptive immune response from the host, and/or mitigate the ARDS-related "cytokine storm" and collateral tissue damage that triggers the severe life-threatening complications of COVID-19.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - George N Pavlakis
- Human Retrovirus Section, National Cancer Institute, Frederick, MD, 21702, USA
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece.
| |
Collapse
|
1014
|
Abers MS, Delmonte OM, Ricotta EE, Fintzi J, Fink DL, de Jesus AAA, Zarember KA, Alehashemi S, Oikonomou V, Desai JV, Canna SW, Shakoory B, Dobbs K, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D’Angio’ M, Bonfanti P, Castagnoli R, Montagna D, Licari A, Marseglia GL, Gliniewicz EF, Shaw E, Kahle DE, Rastegar AT, Stack M, Myint-Hpu K, Levinson SL, DiNubile MJ, Chertow DW, Burbelo PD, Cohen JI, Calvo KR, Tsang JS, NIAID COVID-19 Consortium, Su HC, Gallin JI, Kuhns DB, Goldbach-Mansky R, Lionakis MS, Notarangelo LD. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight 2021; 6:144455. [PMID: 33232303 PMCID: PMC7821609 DOI: 10.1172/jci.insight.144455] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.
Collapse
Affiliation(s)
- Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emily E. Ricotta
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Danielle L. Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adriana A. Almeida de Jesus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sara Alehashemi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jigar V. Desai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Scott W. Canna
- Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bita Shakoory
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili di Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders-University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders-University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D’Angio’
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders-University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | | | - Daniela Montagna
- Laboratory of Immunology and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | | | | | - Emily F. Gliniewicz
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dana E. Kahle
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andre T. Rastegar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Daniel W. Chertow
- Critical Care Medicine Department, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Peter D. Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Katherine R. Calvo
- Hematology Section, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - John S. Tsang
- Laboratory of Immune System Biology and Clinical Genomics Program, NIAID, NIH, Bethesda, Maryland, USA
- Center for Human Immunology, Autoimmunity, and Inflammation, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - John I. Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
1015
|
Cooper RS, Fraser AR, Smith L, Burgoyne P, Imlach SN, Jarvis LM, Turner DM, Zahra S, Turner ML, Campbell JDM. Rapid GMP-Compliant Expansion of SARS-CoV-2-Specific T Cells From Convalescent Donors for Use as an Allogeneic Cell Therapy for COVID-19. Front Immunol 2021; 11:598402. [PMID: 33488592 PMCID: PMC7819874 DOI: 10.3389/fimmu.2020.598402] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 disease caused by the SARS-CoV-2 virus is characterized by dysregulation of effector T cells and accumulation of exhausted T cells. T cell responses to viruses can be corrected by adoptive cellular therapy using donor-derived virus-specific T cells. One approach is the establishment of banks of HLA-typed virus-specific T cells for rapid deployment to patients. Here we show that SARS-CoV-2–exposed blood donations contain CD4 and CD8 memory T cells which recognize SARS-CoV-2 spike, nucleocapsid and membrane antigens. Peptides of these antigens can be used to isolate virus-specific T cells in a GMP-compliant process. The isolated T cells can be rapidly expanded using GMP-compliant reagents for use as an allogeneic therapy. Memory and effector phenotypes are present in the selected virus-specific T cells, but our method rapidly expands the desirable central memory phenotype. A manufacturing yield ranging from 1010 to 1011 T cells can be obtained within 21 days culture. Thus, multiple therapeutic doses of virus-specific T cells can be rapidly generated from convalescent donors for potential treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Rachel S Cooper
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Alasdair R Fraser
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Linda Smith
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Paul Burgoyne
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Stuart N Imlach
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Lisa M Jarvis
- National Microbiological Reference Unit, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - David M Turner
- Histocompatibility and Immunogenetics, Scottish National Blood Transfusion Service, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Sharon Zahra
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Marc L Turner
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - John D M Campbell
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| |
Collapse
|
1016
|
Suhail Y, Afzal J, Kshitiz. Incorporating and addressing testing bias within estimates of epidemic dynamics for SARS-CoV-2. BMC Med Res Methodol 2021; 21:11. [PMID: 33413154 PMCID: PMC7789897 DOI: 10.1186/s12874-020-01196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The disease burden of SARS-CoV-2 as measured by tests from various localities, and at different time points present varying estimates of infection and fatality rates. Models based on these acquired data may suffer from systematic errors and large estimation variances due to the biases associated with testing. An unbiased randomized testing to estimate the true fatality rate is still missing. METHODS Here, we characterize the effect of incidental sampling bias in the estimation of epidemic dynamics. Towards this, we explicitly modeled for sampling bias in an augmented compartment model to predict epidemic dynamics. We further calculate the bias from differences in disease prediction from biased, and randomized sampling, proposing a strategy to obtain unbiased estimates. RESULTS Our simulations demonstrate that sampling biases in favor of patients with higher disease manifestation could significantly affect direct estimates of infection and fatality rates calculated from the numbers of confirmed cases and deaths, and serological testing can partially mitigate these biased estimates. CONCLUSIONS The augmented compartmental model allows the explicit modeling of different testing policies and their effects on disease estimates. Our calculations for the dependence of expected confidence on a randomized sample sizes, show that relatively small sample sizes can provide statistically significant estimates for SARS-CoV-2 related death rates.
Collapse
Affiliation(s)
- Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Center for Cancer Systems Biology @ Yale, West Haven, CT, USA.
| | - Junaid Afzal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Center for Cancer Systems Biology @ Yale, West Haven, CT, USA.
| |
Collapse
|
1017
|
Lerman TT, Sagi M, Shafir Y, Sheena L, Cohen E, Goldberg E, Krause I. A possible increased risk of metamizole-associated neutropenia among COVID-19 patients. Br J Clin Pharmacol 2021; 87:2902-2906. [PMID: 33332642 DOI: 10.1111/bcp.14703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Metamizole is commonly used as analgesic and antipyretic drug. The use of metamizole is prohibited in several countries due to its rare side effect of neutropenia and even agranulocytosis. Among the many symptoms of COVID-19, fever and diffuse pain predominant and therefore it can be assumed that metamizole may be widely used in the current epidemic period. So far, there have been no reports on the safety of metamizole in COVID-19 patients. We describe a series of 3 patients who developed severe neutropenia under metamizole treatment, raising a concern of a possible increased risk of this side effect among COVID-19 patients.
Collapse
Affiliation(s)
- Tsahi T Lerman
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Moshe Sagi
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Yair Shafir
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Liron Sheena
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Eytan Cohen
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Elad Goldberg
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ilan Krause
- Department of Internal Medicine F-Recanati, Rabin Medical Center, Beilinson Hospital, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
1018
|
Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, Takehara KK, Eggenberger J, Hemann EA, Waterman HR, Fahning ML, Chen Y, Hale M, Rathe J, Stokes C, Wrenn S, Fiala B, Carter L, Hamerman JA, King NP, Gale M, Campbell DJ, Rawlings DJ, Pepper M. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 2021; 184:169-183.e17. [PMID: 33296701 PMCID: PMC7682481 DOI: 10.1016/j.cell.2020.11.029] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 01/14/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.
Collapse
Affiliation(s)
- Lauren B Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Peter A Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Christopher D Thouvenel
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kennidy K Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Julie Eggenberger
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Hayley R Waterman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mitchell L Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Yu Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jennifer Rathe
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jessica A Hamerman
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Daniel J Campbell
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
1019
|
Jenner AL, Aogo RA, Alfonso S, Crowe V, Smith AP, Morel PA, Davis CL, Smith AM, Craig M. COVID-19 virtual patient cohort reveals immune mechanisms driving disease outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.05.425420. [PMID: 33442689 PMCID: PMC7805446 DOI: 10.1101/2021.01.05.425420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results indicate that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8 + T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation. AUTHOR SUMMARY Understanding of how the immune system responds to SARS-CoV-2 infections is critical for improving diagnostic and treatment approaches. Identifying which immune mechanisms lead to divergent outcomes can be clinically difficult, and experimental models and longitudinal data are only beginning to emerge. In response, we developed a mechanistic, mathematical and computational model of the immunopathology of COVID-19 calibrated to and validated against a broad set of experimental and clinical immunological data. To study the drivers of severe COVID-19, we used our model to expand a cohort of virtual patients, each with realistic disease dynamics. Our results identify key processes that regulate the immune response to SARS-CoV-2 infection in virtual patients and suggest viable therapeutic targets, underlining the importance of a rational approach to studying novel pathogens using intra-host models.
Collapse
Affiliation(s)
- Adrianne L. Jenner
- CHU Sainte-Justine Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Rosemary A. Aogo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sofia Alfonso
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Vivienne Crowe
- Department of Mathematics and Statistics, Concordia University, Montréal, Québec, Canada
| | - Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Morgan Craig
- CHU Sainte-Justine Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
1020
|
Agresti N, Lalezari JP, Amodeo PP, Mody K, Mosher SF, Seethamraju H, Kelly SA, Pourhassan NZ, Sudduth CD, Bovinet C, ElSharkawi AE, Patterson BK, Stephen R, Sacha JB, Wu HL, Gross SA, Dhody K. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. J Transl Autoimmun 2021; 4:100083. [PMID: 33521616 PMCID: PMC7823045 DOI: 10.1016/j.jtauto.2021.100083] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with considerable morbidity and mortality. The number of confirmed cases of infection with SARS-CoV-2, the virus causing COVID-19 continues to escalate with over 70 million confirmed cases and over 1.6 million confirmed deaths. Severe-to-critical COVID-19 is associated with a dysregulated host immune response to the virus, which is thought to lead to pathogenic immune dysregulation and end-organ damage. Presently few effective treatment options are available to treat COVID-19. Leronlimab is a humanized IgG4, kappa monoclonal antibody that blocks C–C chemokine receptor type 5 (CCR5). It has been shown that in patients with severe COVID-19 treatment with leronlimab reduces elevated plasma IL-6 and chemokine ligand 5 (CCL5), and normalized CD4/CD8 ratios. We administered leronlimab to 4 critically ill COVID-19 patients in intensive care. All 4 of these patients improved clinically as measured by vasopressor support, and discontinuation of hemodialysis and mechanical ventilation. Following administration of leronlimab there was a statistically significant decrease in IL-6 observed in patient A (p=0.034) from day 0–7 and patient D (p=0.027) from day 0–14. This corresponds to restoration of the immune function as measured by CD4+/CD8+ T cell ratio. Although two of the patients went on to survive the other two subsequently died of surgical complications after an initial recovery from SARS-CoV-2 infection. Leronlimab is a monoclonal antibody in clinical trials to treat the cytokine storm. Critically ill patients received leronlimab through compassionate use and had remarkable recoveries measured objectively. The CCR5 receptor is important in recruiting inflammatory cells mainly T cells and macrophages. Leronlimab disrupted this signal and may have been responsible for restoration of the immune system, improved survival and decrease in IL-6.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ALT, alanine aminotransferase
- ARDS, acute respiratory distress syndrome
- AST, aspartate aminotransferase
- Acute respiratory distress syndrome (ARDS)
- BID, bis in die (twice a day)
- CCL2, chemokine C–C motif ligand 2
- CCL3, chemokine C–C motif ligand 3
- CCL4, chemokine C–C motif ligand 4
- CCL5, chemokine C–C motif ligand 5
- CCR1, C–C chemokine receptor type 1
- CCR5, C–C chemokine receptor type 5
- CDC, Centers for Disease Control
- CK, creatine kinase
- COPD, chronic obstructive pulmonary disease
- COVID-19, coronavirus disease 2019
- CRP, C-reactive protein
- CXCL10, chemokine C-X-C motif ligand 10
- CXCL2, chemokine C-X-C motif ligand 2
- Coronavirus disease 2019 (COVID-19)
- DPP4, dipeptidyl peptidase-4
- DVT, deep vein thrombosis
- EDTA, ethylenediaminetetraacetic acid
- FDA, Food and Drug Administration
- Fi02, fraction of inspired oxygen, IgG4
- Hydroxychloroquine, HLH
- Leronlimab (PRO 140)
- Middle East respiratory syndrome coronavirus, MIG
- National Early Warning Score, NK
- RO, receptor occupancy
- RT–PCR, reverse transcriptase polymerase chain reaction
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- T-reg RO, regulatory T cells – receptor occupancy
- TGF- α, transforming growth factor alpha
- TNF-α, tumor necrosis factor alpha
- TNF-β, tumor necrosis factor beta
- Tregs, regulatory T cells
- VEGF-A, vascular endothelial growth factor A
- WBC, white blood cell
- WHO, World Health Organization
- eIND, emergency investigational new drug application
- hemophagocytic lymphohistiocytosis, HTN
- hypertension, ICU
- immunoglobulin G4, HCQ
- intensive care unit, IL-1β
- interferon gamma, IL-6
- interferon gamma-inducible protein (IP) 10 or CXCL10, LOA
- interleukin 1 beta, IFN-ƴ
- interleukin 6, IP-10
- letter of authorization, MCP
- macrophage Inflammatory Proteins 1-alpha, MIP-1β
- macrophage Inflammatory Proteins 1-beta, N/A
- macrophage colony stimulating factor, MDC (CCL22)
- macrophage colony-stimulating factor encoded by the CCL22 gene, MERS-CoV
- monocyte chemoattractant protein, M-CSF
- monokine induced by IFN-γ (interferon gamma), MIP-1α
- natural killer, OSA
- not applicable, NEWS2
- obstructive sleep apnea, PDGF-AA
- per os (taken by mouth), RANTES
- platelet-derived growth factor AA, PDGF-AA/BB
- platelet-derived growth factor AA/BB, PEEP
- positive end-expiratory pressure, PNA
- pulmonary nodular amyloidosis, po
- regulated on activation, normal T expressed and secreted (also known as CCL5)
Collapse
Affiliation(s)
- Nicholas Agresti
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | | | - Phillip P Amodeo
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | - Kabir Mody
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 3222, USA
| | - Steven F Mosher
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | - Harish Seethamraju
- Montefiore Medical Center, Albert Einstein University, 1695A Eastchester Rd, Bronx, NY, 10467, USA
| | - Scott A Kelly
- CytoDyn, 1111 Main Street, Suite 660 Vancouver, WA, 98660, USA
| | | | - C David Sudduth
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | - Christopher Bovinet
- Spine Center of Southeast Georgia, 1111 Glynco Pkwy Ste 300, Brunswick, GA, 31525, USA
| | - Ahmed E ElSharkawi
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | | | - Reejis Stephen
- Southeast Georgia Health System, 2415 Parkwood Drive, Brunswick, GA, 31520, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR, 97006, USA
| | - Helen L Wu
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR, 97006, USA
| | - Seth A Gross
- NYU Langone Gastroenterology Associates, 240 East 38th Street, 23rd Floor New York, NY, 10016, USA
| | - Kush Dhody
- Amarex Clinical Research, 20201 Century Blvd, Germantown, MD, 20874, USA
| |
Collapse
|
1021
|
Usefulness of the New Hematological Parameter: Reactive Lymphocytes RE-LYMP with Flow Cytometry Markers of Inflammation in COVID-19. Cells 2021; 10:cells10010082. [PMID: 33419040 PMCID: PMC7825305 DOI: 10.3390/cells10010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Identification of patients with activation of the immune system which indicates the presence of infection is essential, especially in the times of the global coronavirus 2019 (COVID-19) pandemic. The aim of the present study was to evaluate the reactive lymphocytes (RE-LYMP) parameter in COVID-19 and to correlate it with activation lymphocytes markers by flow cytometry. The study group consisted of 40 patients: with COVID-19 infection (n = 20) and with others virus infections without COVID-19 (COVID-19(−) virus (n = 20)) and 20 healthy donors (HC). Blood count and flow cytometry were performed. The COVID-19(+) group had significantly lower RE-LYMP parameter than the COVID-19(−) virus group (5.45 vs. 11.05, p < 0.05). We observed higher proportion of plasmablasts in the COVID-19(+) and COVID-19(−) virus groups than HC (8.8 vs. 11.1 vs. 2.7, p < 0.05). In the COVID-19(+) there was a lower proportion of CD4+ CD38+ cells than in the other groups (significant differences between COVID-19(+) and COVID-19(−) virus groups). RE-LYMP correlated with activated T lymphocytes CD38+ and HLA-DR+ in the COVID-19(−) virus group, however in the COVID-19(+) group correlations with T lymphocytes CD25+ and CD45RO+ were observed. In summary the analysis of the RE-LYMP together with flow cytometric activation markers can be helpful in identifying and distinguishing patients with COVID-19(+) from other viruses and HC.
Collapse
|
1022
|
Chow RD, Majety M, Chen S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nat Commun 2021; 12:4. [PMID: 33397975 PMCID: PMC7782551 DOI: 10.1038/s41467-020-20323-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Age is a major risk factor for severe coronavirus disease-2019 (COVID-19). Here, we interrogate the transcriptional features and cellular landscape of the aging human lung. By intersecting these age-associated changes with experimental data on SARS-CoV-2, we identify several factors that may contribute to the heightened severity of COVID-19 in older populations. The aging lung is transcriptionally characterized by increased cell adhesion and stress responses, with reduced mitochondria and cellular replication. Deconvolution analysis reveals that the proportions of alveolar type 2 cells, proliferating basal cells, goblet cells, and proliferating natural killer/T cells decrease with age, whereas alveolar fibroblasts, pericytes, airway smooth muscle cells, endothelial cells and IGSF21+ dendritic cells increase with age. Several age-associated genes directly interact with the SARS-CoV-2 proteome. Age-associated genes are also dysregulated by SARS-CoV-2 infection in vitro and in patients with severe COVID-19. These analyses illuminate avenues for further studies on the relationship between age and COVID-19.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT, USA
| | - Medha Majety
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- The College, Yale University, New Haven, CT, 06520, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
1023
|
Mudd PA, Remy KE. Prolonged adaptive immune activation in COVID-19: implications for maintenance of long-term immunity? J Clin Invest 2021; 131:143928. [PMID: 33104057 PMCID: PMC7773393 DOI: 10.1172/jci143928] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ongoing observational clinical research has prioritized understanding the human immune response to SARS-CoV-2 during the coronavirus disease 2019 (COVID-19) pandemic. Several recent studies suggest that immune dysregulation with early and prolonged adaptive immune system activation can result in cellular exhaustion. In this issue of the JCI, Files et al. compared cellular immune phenotypes during the first two months of COVID-19 in hospitalized and less severe, non-hospitalized patients. The authors utilized flow cytometry to analyze circulating peripheral blood mononuclear cells. Both patient cohorts maintained B and T cell phenotypes consistent with activation and cellular exhaustion throughout the first two months of infection. Additionally, follow-up samples from the non-hospitalized patient cohort showed that activation markers and cellular exhaustion increased over time. These findings illustrate the persistent nature of the adaptive immune system changes that have been noted in COVID-19 and suggest longer term effects that may shape the maintenance of immunity to SARS-CoV-2.
Collapse
Affiliation(s)
| | - Kenneth E. Remy
- Division of Critical Care Medicine, Department of Pediatrics; and
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
1024
|
Files JK, Boppana S, Perez MD, Sarkar S, Lowman KE, Qin K, Sterrett S, Carlin E, Bansal A, Sabbaj S, Long DM, Kutsch O, Kobie J, Goepfert PA, Erdmann N. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest 2021; 131:140491. [PMID: 33119547 PMCID: PMC7773371 DOI: 10.1172/jci140491] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and nonhospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared with those of healthy and convalescent individuals, with the exception of an increase in B lymphocytes. Our findings show increased frequencies of T cell activation markers (CD69, OX40, HLA-DR, and CD154) in hospitalized patients, with other T cell activation/exhaustion markers (PD-L1 and TIGIT) remaining elevated in hospitalized and nonhospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization followed by an increase in PD1 frequencies in nonhospitalized individuals. Interestingly, many of these changes were found to increase over time in nonhospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation after SARS-CoV-2 infection. Changes in T cell activation/exhaustion in nonhospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation after SARS-CoV-2 infection, highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.
Collapse
Affiliation(s)
- Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Sushma Boppana
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Mildred D. Perez
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Sanghita Sarkar
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Kelsey E. Lowman
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Kai Qin
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Eric Carlin
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Steffanie Sabbaj
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Dustin M. Long
- Department of Biostatistics, School of Public Health, and
| | - Olaf Kutsch
- Division of Infectious Diseases, Department of Medicine, School of Medicine
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James Kobie
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Paul A. Goepfert
- Division of Infectious Diseases, Department of Medicine, School of Medicine
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine
| |
Collapse
|
1025
|
Hossein-Khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M. An update to "novel therapeutic approaches for treatment of COVID-19". J Mol Med (Berl) 2021; 99:303-310. [PMID: 33392632 PMCID: PMC7779099 DOI: 10.1007/s00109-020-02027-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Department of Molecular Biology, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia. .,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia. .,Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
1026
|
Burton AR, Maini MK. Human antiviral B cell responses: Emerging lessons from hepatitis B and COVID-19. Immunol Rev 2021; 299:108-117. [PMID: 33559128 PMCID: PMC8014162 DOI: 10.1111/imr.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Humoral immunity is a critical component of the coordinated response required to resolve viral infections and mediate protection following pathogen clearance or vaccination. A better understanding of factors shaping the memory B cell response will allow tailored development of efficient preventative vaccines against emerging acute viral infections, therapeutic vaccines, and immunotherapies for chronic viral infections. Here, we use recent data obtained by profiling antigen-specific B cell responses in hepatitis B as a framework to explore lessons that can be learnt from different viral infections about the diverse influences on humoral immunity. Hepatitis B provides a paradigm where successful B cell responses in resolved or vaccinated individuals can be contrasted to the failed response in chronic infection, while also exemplifying the degree to which B cell responses within infected individuals can differ to two antigens from the same virus. Drawing on studies in other human and murine infections, including emerging data from COVID-19, we consider the influence of antigen quantity and structure on the quality of the B cell response, the role of differential CD4 help, the importance of germinal center vs extrafollicular responses and the emerging concept that responses residing in non-lymphoid organs can participate in B cell memory.
Collapse
|
1027
|
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021; 17:46-64. [PMID: 33077917 PMCID: PMC7570423 DOI: 10.1038/s41581-020-00357-4] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
In December 2019, a novel coronavirus was isolated from the respiratory epithelium of patients with unexplained pneumonia in Wuhan, China. This pathogen, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a pathogenic condition that has been termed coronavirus disease 2019 (COVID-19) and has reached pandemic proportions. As of 17 September 2020, more than 30 million confirmed SARS-CoV-2 infections have been reported in 204 different countries, claiming more than 1 million lives worldwide. Accumulating evidence suggests that SARS-CoV-2 infection can lead to a variety of clinical conditions, ranging from asymptomatic to life-threatening cases. In the early stages of the disease, most patients experience mild clinical symptoms, including a high fever and dry cough. However, 20% of patients rapidly progress to severe illness characterized by atypical interstitial bilateral pneumonia, acute respiratory distress syndrome and multiorgan dysfunction. Almost 10% of these critically ill patients subsequently die. Insights into the pathogenic mechanisms underlying SARS-CoV-2 infection and COVID-19 progression are emerging and highlight the critical role of the immunological hyper-response - characterized by widespread endothelial damage, complement-induced blood clotting and systemic microangiopathy - in disease exacerbation. These insights may aid the identification of new or existing therapeutic interventions to limit the progression of early disease and treat severe cases.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Lisa F P Ng
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Laurent Renia
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
1028
|
Zaunders J, Phetsouphanh C. Long-term and short-term immunity to SARS-CoV-2: why it matters. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The adaptive immune system, regulated by CD4 T cells, is essential for control of many viral infections. Endemic coronavirus infections generally occur as short-term upper respiratory tract infections which in many cases appear to be cleared before adaptive immunity is fully involved, since adaptive immunity takes approximately 1.5–2 weeks to ramp up the response to a primary infection, or approximately 1 week for a recurrent infection. However, the adaptive immune response to SARS-CoV-2 infection will be critical to full recovery with minimal long-lasting effects, and to either prevention of recurrence of infection or at least reduced severity of symptoms. The detailed kinetics of this infection versus the dynamics of the immune response, including in vaccinated individuals, will largely determine these outcomes.
Collapse
|
1029
|
Graham JB, Swarts JL, Leist SR, Schäfer A, Menachery VD, Gralinski LE, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Heise MT, Baric RS, Lund JM. Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathog 2021; 17:e1009287. [PMID: 33513210 PMCID: PMC7875398 DOI: 10.1371/journal.ppat.1009287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from individuals that go on to become infected with SARS-CoV-2. Here, we utilized data from genetically diverse Collaborative Cross (CC) mice infected with SARS-CoV to determine whether baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. Our study serves as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.
Collapse
Affiliation(s)
- Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Vineet D. Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, Texas, Unites States of America
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Sophia Jeng
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Darla R. Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Michael A. Mooney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Shannon K. McWeeney
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, Unites States of America
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, Unites States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, Unites States of America
- Department of Global Health, University of Washington, Seattle, Wasington, Unites States of America
| |
Collapse
|
1030
|
Sanjay S, Singh Y, Roy D, Mahendradas P, Kawali A, Shetty R. Recurrent bilateral idiopathic anterior uveitis with vitritis post Coronavirus Disease 2019 infection. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_114_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
1031
|
Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 2021; 65:101205. [PMID: 33137510 PMCID: PMC7604159 DOI: 10.1016/j.arr.2020.101205] [Citation(s) in RCA: 588] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic was first reported in Wuhan, China in December 2019, moved across the globe at an unprecedented speed, and is having a profound and yet still unfolding health and socioeconomic impacts. SARS-CoV-2, a β-coronavirus, is a highly contagious respiratory pathogen that causes a disease that has been termed the 2019 coronavirus disease (COVID-19). Clinical experience thus far indicates that COVID-19 is highly heterogeneous, ranging from being asymptomatic and mild to severe and causing death. Host factors including age, sex, and comorbid conditions are key determinants of disease severity and progression. Aging itself is a prominent risk factor for severe disease and death from COVID-19. We hypothesize that age-related decline and dysregulation of immune function, i.e., immunosenescence and inflammaging play a major role in contributing to heightened vulnerability to severe COVID-19 outcomes in older adults. Much remains to be learned about the immune responses to SARS-CoV-2 infection. We need to begin partitioning all immunological outcome data by age to better understand disease heterogeneity and aging. Such knowledge is critical not only for understanding of COVID-19 pathogenesis but also for COVID-19 vaccine development.
Collapse
Affiliation(s)
- Yiyin Chen
- Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine and Johns Hopkins Biocontainment Unit, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cunjin Wu
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Geriatrics, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Nicole M Osevala
- Division of Geriatrics, Department of Medicine, Pennsylvania State University School of Medicine, Hershey, PA, United States
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Joseph B Margolick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany; Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Sean X Leng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
1032
|
Shi W, Liu X, Cao Q, Ma P, Le W, Xie L, Ye J, Wen W, Tang H, Su W, Zheng Y, Liu Y. High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L84-L98. [PMID: 33146564 PMCID: PMC7869955 DOI: 10.1152/ajplung.00355.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a global pandemic in March 2020. Pathogenic T cells and inflammatory monocytes are regarded as the central drivers of the cytokine storm associated with the severity of COVID-19. In this study, we explored the characteristic peripheral cellular profiles of patients with COVID-19 in both acute and convalescent phases by single-cell mass cytometry (CyTOF). Using a combination of algorithm-guided data analyses, we identified peripheral immune cell subsets in COVID-19 and revealed CD4+ T-cell depletion, T-cell differentiation, plasma cell expansion, and the reduced antigen presentation capacity of innate immunity. Notably, COVID-19 induces a dysregulation in the balance of monocyte populations by the expansion of the monocyte subsets. Collectively, our results represent a high-dimensional, single-cell profile of the peripheral immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiqi Cao
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenqing Le
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen Wen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
1033
|
Smith N, Goncalves P, Charbit B, Grzelak L, Beretta M, Planchais C, Bruel T, Rouilly V, Bondet V, Hadjadj J, Yatim N, Pere H, Merkling SH, Ghozlane A, Kernéis S, Rieux-Laucat F, Terrier B, Schwartz O, Mouquet H, Duffy D, Di Santo JP. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol 2021; 22:1428-1439. [PMID: 34471264 PMCID: PMC8553615 DOI: 10.1038/s41590-021-01028-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/12/2021] [Indexed: 01/20/2023]
Abstract
Coordinated local mucosal and systemic immune responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection either protect against coronavirus disease 2019 (COVID-19) pathologies or fail, leading to severe clinical outcomes. To understand this process, we performed an integrated analysis of SARS-CoV-2 spike-specific antibodies, cytokines, viral load and bacterial communities in paired nasopharyngeal swabs and plasma samples from a cohort of clinically distinct patients with COVID-19 during acute infection. Plasma viral load was associated with systemic inflammatory cytokines that were elevated in severe COVID-19, and also with spike-specific neutralizing antibodies. By contrast, nasopharyngeal viral load correlated with SARS-CoV-2 humoral responses but inversely with interferon responses, the latter associating with protective microbial communities. Potential pathogenic microorganisms, often implicated in secondary respiratory infections, were associated with mucosal inflammation and elevated in severe COVID-19. Our results demonstrate distinct tissue compartmentalization of SARS-CoV-2 immune responses and highlight a role for the nasopharyngeal microbiome in regulating local and systemic immunity that determines COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Nikaïa Smith
- grid.428999.70000 0001 2353 6535Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Pedro Goncalves
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Bruno Charbit
- grid.428999.70000 0001 2353 6535Cytometry and Biomarkers UTechS, Institut Pasteur, Paris, France
| | - Ludivine Grzelak
- grid.428999.70000 0001 2353 6535Virus and Immunity Unit, Institut Pasteur, Paris, France ,grid.508487.60000 0004 7885 7602Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maxime Beretta
- grid.428999.70000 0001 2353 6535Humoral Immunology Laboratory, Institut Pasteur, INSERM U1222, Paris, France
| | - Cyril Planchais
- grid.428999.70000 0001 2353 6535Humoral Immunology Laboratory, Institut Pasteur, INSERM U1222, Paris, France
| | - Timothée Bruel
- grid.428999.70000 0001 2353 6535Virus and Immunity Unit, Institut Pasteur, Paris, France
| | | | - Vincent Bondet
- grid.428999.70000 0001 2353 6535Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Jérôme Hadjadj
- grid.508487.60000 0004 7885 7602Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France ,grid.508487.60000 0004 7885 7602Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nader Yatim
- grid.428999.70000 0001 2353 6535Translational Immunology Lab, Institut Pasteur, Paris, France ,grid.508487.60000 0004 7885 7602Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France
| | - Helene Pere
- grid.417925.cUnité de Génomique Fonctionnelle des Tumeurs Solides, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sarah H. Merkling
- grid.428999.70000 0001 2353 6535Insect-Virus Interactions Unit, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Amine Ghozlane
- grid.428999.70000 0001 2353 6535Hub de Bioinformatique et Biostatistique, Institut Pasteur, Paris, France
| | - Solen Kernéis
- grid.411784.f0000 0001 0274 3893Equipe Mobile d’Infectiologie, Hôpital Cochin, AP-HP, APHP-CUP, Paris, France ,Université de Paris, INSERM, IAME, Paris, France ,grid.428999.70000 0001 2353 6535Epidemiology and Antimicrobial Resistance Modeling Laboratory, Institut Pasteur, Paris, France
| | - Frederic Rieux-Laucat
- grid.508487.60000 0004 7885 7602Imagine Institute, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Benjamin Terrier
- grid.508487.60000 0004 7885 7602Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France
| | - Olivier Schwartz
- grid.428999.70000 0001 2353 6535Virus and Immunity Unit, Institut Pasteur, Paris, France
| | - Hugo Mouquet
- grid.428999.70000 0001 2353 6535Humoral Immunology Laboratory, Institut Pasteur, INSERM U1222, Paris, France
| | - Darragh Duffy
- grid.428999.70000 0001 2353 6535Translational Immunology Lab, Institut Pasteur, Paris, France
| | - James P. Di Santo
- grid.428999.70000 0001 2353 6535Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| |
Collapse
|
1034
|
Meyer NJ, Lindell RB, Wherry EJ. Immune Stimulation With Recombinant Human Granulocyte Colony-Stimulating Factor for Coronavirus Disease 2019 (COVID-19)-Beware of Blind Spots. JAMA Intern Med 2021; 181:78-80. [PMID: 32910155 DOI: 10.1001/jamainternmed.2020.5536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Robert B Lindell
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia.,Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia.,Parker Institute for Cancer Immunotherapy at the University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
1035
|
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care and Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Daniel Brodie
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York.,Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, New York
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco.,Department of Anesthesia and Perioperative Care, University of California, San Francisco
| |
Collapse
|
1036
|
Chattopadhyay PK, Filby A, Jellison ER, Ferrari G, Green C, Cherian S, Irish J, Litwin V, other members of the ISAC COVID‐19 Work Group. A Cytometrist's Guide to Coordinating and Performing Effective COVID-19 Research. Cytometry A 2021; 99:11-18. [PMID: 32881296 PMCID: PMC7461086 DOI: 10.1002/cyto.a.24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022]
Abstract
Cytometry is playing a crucial role in addressing the COVID-19 pandemic. In this commentary-written by a variety of stakeholders in the cytometry, immunology, and infectious disease communities-we review cytometry's role in the COVID-19 response and discuss workflow issues critical to planning and executing effective research in this emerging field. We discuss sample procurement and processing, biosafety, technology options, data sharing, and the translation of research findings into clinical environments. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Andrew Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research ThemeBiosciences Institute, Newcastle UniversityNewcastleUK
| | - Evan R. Jellison
- Department of ImmunologyUConn School of MedicineFarmingtonConnecticutUSA
| | - Guido Ferrari
- Department of Surgery – EQAPOL Flow Cytometry ProgramDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Cherie Green
- Biomarker DevelopmentGenentech/RocheOceansideCaliforniaUSA
| | - Sindhu Cherian
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | | | | | | |
Collapse
|
1037
|
Collora JA, Liu R, Albrecht K, Ho YC. The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Curr Opin HIV AIDS 2021; 16:36-47. [PMID: 33165008 PMCID: PMC8162470 DOI: 10.1097/coh.0000000000000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW CD4 T cell loss is the hallmark of uncontrolled HIV-1 infection. Strikingly, CD4 T cell depletion is a strong indicator for disease severity in the recently emerged coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We reviewed recent single-cell immune profiling studies in HIV-1 infection and COVID-19 to provide critical insight in virus-induced immunopathogenesis. RECENT FINDINGS Cytokine dysregulation in HIV-1 leads to chronic inflammation, while severe SARS-CoV-2 infection induces cytokine release syndrome and increased mortality. HIV-1-specific CD4 T cells are dysfunctional, while SARS-CoV-2-specific CD4 T cells exhibit robust Th1 function and correlate with protective antibody responses. In HIV-1 infection, follicular helper T cells (TFH) are susceptible to HIV-1 infection and persist in immune-sanctuary sites in lymphoid tissues as an HIV-1 reservoir. In severe SARS-CoV-2 infection, TFH are absent in lymphoid tissues and are associated with diminished protective immunity. Advancement in HIV-1 DNA, RNA, and protein-based single-cell capture methods can overcome the rarity and heterogeneity of HIV-1-infected cells and identify mechanisms of HIV-1 persistence and clonal expansion dynamics. SUMMARY Single-cell immune profiling identifies a high-resolution picture of immune dysregulation in HIV-1 and SARS-CoV-2 infection and informs outcome prediction and therapeutic interventions.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
1038
|
McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Rep 2021; 6:e885. [PMID: 33458558 PMCID: PMC7803673 DOI: 10.1097/pr9.0000000000000885] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that infects cells through the angiotensin-converting enzyme 2 receptor, aided by proteases that prime the spike protein of the virus to enhance cellular entry. Neuropilin 1 and 2 (NRP1 and NRP2) act as additional viral entry factors. SARS-CoV-2 infection causes COVID-19 disease. There is now strong evidence for neurological impacts of COVID-19, with pain as an important symptom, both in the acute phase of the disease and at later stages that are colloquially referred to as "long COVID." In this narrative review, we discuss how COVID-19 may interact with the peripheral nervous system to cause pain in the early and late stages of the disease. We begin with a review of the state of the science on how viruses cause pain through direct and indirect interactions with nociceptors. We then cover what we currently know about how the unique cytokine profiles of moderate and severe COVID-19 may drive plasticity in nociceptors to promote pain and worsen existing pain states. Finally, we review evidence for direct infection of nociceptors by SARS-CoV-2 and the implications of this potential neurotropism. The state of the science points to multiple potential mechanisms through which COVID-19 could induce changes in nociceptor excitability that would be expected to promote pain, induce neuropathies, and worsen existing pain states.
Collapse
Affiliation(s)
- Amelia J. McFarland
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Muhammad S. Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
1039
|
Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology 2021; 162:30-43. [PMID: 32935333 PMCID: PMC7730020 DOI: 10.1111/imm.13262] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel coronavirus strain. Some studies suggest that COVID-19 could be an immune-related disease, and failure of effective immune responses in initial stages of viral infection could contribute to systemic inflammation and tissue damage, leading to worse disease outcomes. T cells can act as a double-edge sword with both pro- and anti-roles in the progression of COVID-19. Thus, better understanding of their roles in immune responses to SARS-CoV-2 infection is crucial. T cells primarily react to the spike protein on the coronavirus to initiate antiviral immunity; however, T-cell responses can be suboptimal, impaired or excessive in severe COVID-19 patients. This review focuses on the multifaceted roles of T cells in COVID-19 pathogenesis and rationalizes their significance in eliciting appropriate antiviral immune responses in COVID-19 patients and unexposed individuals. In addition, we summarize the potential therapeutic approaches related to T cells to treat COVID-19 patients. These include adoptive T-cell therapies, vaccines activating T-cell responses, recombinant cytokines, Th1 activators and Th17 blockers, and potential utilization of immune checkpoint inhibitors alone or in combination with anti-inflammatory drugs to improve antiviral T-cell responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Salman M. Toor
- Qatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar Foundation (QF)P.O. Box: 34110DohaQatar
| | - Reem Saleh
- Qatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar Foundation (QF)P.O. Box: 34110DohaQatar
| | - Varun Sasidharan Nair
- Qatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar Foundation (QF)P.O. Box: 34110DohaQatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar Foundation (QF)P.O. Box: 34110DohaQatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar Foundation (QF)P.O. Box: 34110DohaQatar
- Biomedical Research CenterSchool of Science, Engineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
1040
|
Matteucci C, Minutolo A, Balestrieri E, Petrone V, Fanelli M, Malagnino V, Ianetta M, Giovinazzo A, Barreca F, Di Cesare S, De Marco P, Miele MT, Toschi N, Mastino A, Sinibaldi Vallebona P, Bernardini S, Rogliani P, Sarmati L, Andreoni M, Grelli S, Garaci E. Thymosin Alpha 1 Mitigates Cytokine Storm in Blood Cells From Coronavirus Disease 2019 Patients. Open Forum Infect Dis 2021; 8:ofaa588. [PMID: 33506065 PMCID: PMC7798699 DOI: 10.1093/ofid/ofaa588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in severe acute respiratory syndrome coronavirus 2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancer. METHODS In this study, we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. RESULTS Genes associated with cytokine signaling and production were upregulated in blood cells from patients with COVID-19, and the ex vivo treatment with Tα1-mitigated cytokine expression, and inhibited lymphocyte activation in a CD8+ T-cell subset specifically. CONCLUSION These data suggest the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Marco Ianetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | | | - Filippo Barreca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens’ Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Patrizia De Marco
- Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Sinibaldi Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
1041
|
AbdelMassih A, Yacoub E, Husseiny RJ, Kamel A, Hozaien R, El Shershaby M, Rajab M, Yacoub S, Eid MA, Elahmady M, Gadalla M, Mokhtar S, Hassan AA, Abou-Zeid AS, Hussein M, Aboushadi N, Emad N, Zahra N, Hassan A, Hussein E, Ibrahim N, El Nahhas N, Elahmady T, Khallaf M, Mustafa H, Anis N, Albehairy M, Hanna F, Moris L, Ye J. Hypoxia-inducible factor (HIF): The link between obesity and COVID-19. ACTA ACUST UNITED AC 2020; 22:100317. [PMID: 33521378 PMCID: PMC7832240 DOI: 10.1016/j.obmed.2020.100317] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023]
Abstract
The COVID-19 death toll has involved to date more than 1 million confirmed deaths. The death rate is even higher in the obese COVID-19 patients, as a result of hypoxia, due to the interplay between adipose tissue hypoxia and obstructive sleep apnea. The discrepancy of manifestations seen in COVID-19 seems to be mediated by a differential immune response rather than a differential viral load. One of the key players of the immune response is HIF. HIF-1β is a stable constitutively expressed protein in the nucleus; and under hypoxic changes, its activity is unaffected, whereas the HIF-α subunit has a short half-life and because of its degradation by an enzyme known as propyl hydroxylase; under hypoxic conditions, propyl hydroxylase gets deactivated thus leading to the stabilization of HIF-1α. As mentioned before, HIF-1α expression is triggered by hypoxic states, this crippling condition will aggravate the pro-inflammatory characteristics of HIF-1α. The vast majority of decompensated COVID19 cases manifest with drastic lung injury and severe viral pneumonia, the infection-induced hypoxia will the existing hypoxia in obesity. This will additionally augment HIF-1α levels that will provoke the already existing cytokines' storm to fulminant. Consequently, this will directly correlate the effect of a hypoxic environment with the increase of HIF-1α level. HIFɑ exists in two main isoforms HIF-1α and HIF-2α. HIF-1α and HIF-2α act in distinct ways in how they work on different target genes. For example, HIF-2α may act on hemopoietin genes (heme-regulating genes); while HIF-1α acts on EPO. HIF-1α release seems to be markedly augmented in obesity due to adipose tissue hypoxia and obstructive sleep apnea resulting in cyclic hypoxia. HIF-1α can also be secreted by direct viral proteolytic effects. Whereas, HIF-2α is stimulated by chronic hypoxia. HIF-1α exerts detrimental effects on the immune system, characterized by unopposed pro-inflammation at the macrophages, dendritic cells, T cells, and complement levels resulting in cytokines' storm, which is linked to the poor outcomes of COVID-19. On the other hand, HIF-2α role is regulatory and largely opposes the actions mediated by HIF-1α. In view of this, inhibiting HIF-1α release or switching its production to HIF-2α by natural products such as resveratrol or by synthetic drugs, offer a good therapeutic strategy that can prevent COVID-19 worst outcome in infected patients. The approach of breaking the vicious circle between lung damage-induced hypoxia and HIF-1α pro-inflammatory stimulant through drugs is considered to be extremely promising as a therapeutic manner to combat further deterioration of COVID19 cases.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt.,Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt, 57357, Egypt
| | - Elaria Yacoub
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Reem J Husseiny
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Aya Kamel
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Rafeef Hozaien
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Meryam El Shershaby
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Maram Rajab
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Shenoda Yacoub
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Maryam A Eid
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Maryam Elahmady
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Mahenar Gadalla
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Sherouk Mokhtar
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Alaa A Hassan
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Aya S Abou-Zeid
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Mahinour Hussein
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Nour Aboushadi
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Nadine Emad
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Nihal Zahra
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Aya Hassan
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Engy Hussein
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Nourhan Ibrahim
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | - Nadine El Nahhas
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt.,Faculty of Dentistry, New Giza University, New Giza, Egypt
| | | | - Mohamed Khallaf
- Residency Training Program, Faculty of Medicine, Cairo University, Egypt
| | - Hadeel Mustafa
- Research Accessibility Team (students' and Interns' Research Program), Faculty of Medicine, Cairo University, Egypt
| | - Nancy Anis
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | | | - Farid Hanna
- Residency Training Program, Faculty of Medicine, Cairo University, Egypt
| | - Laila Moris
- Residency Training Program, Faculty of Medicine, Al Mansoura University, Egypt
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
1042
|
Hanna SJ, Codd AS, Gea-Mallorqui E, Scourfield DO, Richter FC, Ladell K, Borsa M, Compeer EB, Moon OR, Galloway SAE, Dimonte S, Capitani L, Shepherd FR, Wilson JD, Uhl LFK, Gallimore AM, Milicic A. T cell phenotypes in COVID-19 - a living review. OXFORD OPEN IMMUNOLOGY 2020; 2:iqaa007. [PMID: 33575657 PMCID: PMC7798577 DOI: 10.1093/oxfimm/iqaa007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients' long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation.
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK,Correspondence address. Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK. Tel: +44 29206 87342, E-mail:
| | - Amy S Codd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Ester Gea-Mallorqui
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Felix C Richter
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Mariana Borsa
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | - Owen R Moon
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sarah A E Galloway
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sandra Dimonte
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Freya R Shepherd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Joseph D Wilson
- Medical Sciences Division, University of Oxford, Headington, Oxford, OX3 9DU
| | - Lion F K Uhl
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK
| | | | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Anita Milicic
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
1043
|
Orologas-Stavrou N, Politou M, Rousakis P, Kostopoulos IV, Ntanasis-Stathopoulos I, Jahaj E, Tsiligkeridou E, Gavriatopoulou M, Kastritis E, Kotanidou A, Dimopoulos MA, Tsitsilonis OE, Terpos E. Peripheral Blood Immune Profiling of Convalescent Plasma Donors Reveals Alterations in Specific Immune Subpopulations Even at 2 Months Post SARS-CoV-2 Infection. Viruses 2020; 13:E26. [PMID: 33375675 PMCID: PMC7824046 DOI: 10.3390/v13010026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Immune profiling of patients with COVID-19 has shown that SARS-CoV-2 causes severe lymphocyte deficiencies (e.g., lymphopenia, decreased numbers, and exhaustion of T cells) and increased levels of pro-inflammatory monocytes. Peripheral blood (PB) samples from convalescent plasma (CP) donors, COVID-19 patients, and control subjects were analyzed by multiparametric flow cytometry, allowing the identification of a wide panel of immune cells, comprising lymphocytes (T, B, natural killer (NK) and NKT cells), monocytes, granulocytes, and their subsets. Compared to active COVID-19 patients, our results revealed that the immune profile of recovered donors was restored for most subpopulations. Nevertheless, even 2 months after recovery, CP donors still had reduced levels of CD4+ T and B cells, as well as granulocytes. CP donors with non-detectable levels of anti-SARS-CoV-2-specific antibodies in their serum were characterized by higher Th9 and Th17 cells, which were possibly expanded at the expense of Th2 humoral immunity. The most noticeable alterations were identified in previously hospitalized CP donors, who presented the lowest levels of CD8+ regulatory T cells, the highest levels of CD56+CD16- NKT cells, and a promotion of a Th17-type phenotype, which might be associated with a prolonged pro-inflammatory response. A longer follow-up of CP donors will eventually reveal the time needed for full recovery of their immune system competence.
Collapse
Affiliation(s)
- Nikolaos Orologas-Stavrou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (N.O.-S.); (P.R.); (I.V.K.); (O.E.T.)
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Pantelis Rousakis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (N.O.-S.); (P.R.); (I.V.K.); (O.E.T.)
| | - Ioannis V. Kostopoulos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (N.O.-S.); (P.R.); (I.V.K.); (O.E.T.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| | - Edison Jahaj
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.J.); (A.K.)
| | - Eleni Tsiligkeridou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.J.); (A.K.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| | - Ourania E. Tsitsilonis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (N.O.-S.); (P.R.); (I.V.K.); (O.E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.N.-S.); (E.T.); (M.G.); (E.K.); (M.-A.D.)
| |
Collapse
|
1044
|
Leonardi AJ, Proenca RB. Akt-Fas to Quell Aberrant T Cell Differentiation and Apoptosis in Covid-19. Front Immunol 2020; 11:600405. [PMID: 33408715 PMCID: PMC7779612 DOI: 10.3389/fimmu.2020.600405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease. Since T cells must race to cull infected cells, they are quick to differentiate and achieve cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and creates a dysfunctional immune response. Whether preservation of T cells, prevention of their aberrant differentiation, and expansion of their population may alter disease course is unknown. Its investigation requires experimental interrogation of the linked differentiation and death pathway by agents known to uncouple T cell proliferation and differentiation in both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Anthony J. Leonardi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rui B. Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
1045
|
Frasca D, Reidy L, Cray C, Diaz A, Romero M, Kahl K, Blomberg BB. Effects of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248483. [PMID: 33403370 PMCID: PMC7783955 DOI: 10.1101/2020.12.18.20248483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the effects of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Results have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known effects of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein) and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction that could be targeted to improve humoral immunity in individuals with obesity as well as with other chronic inflammatory conditions.
Collapse
|
1046
|
Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, Arnold D, Thomas M, Halliday A, Baum H, Rice C, Avison MB, Davidson AD, Santopaolo M, Oliver E, Goenka A, Finn A, Wooldridge L, Amulic B, Boyton RJ, Altmann DM, Butler DK, McMurray C, Stockton J, Nicholls S, Cooper C, Loman N, Cox MJ, Rivino L, Massey RC. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. eLife 2020; 9:e63430. [PMID: 33331820 PMCID: PMC7775105 DOI: 10.7554/elife.63430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.
Collapse
Affiliation(s)
- Michaela Gregorova
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Daniel Morse
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Joseph Steventon
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | | | | | | | | | - Alice Halliday
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Holly Baum
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Christopher Rice
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Marianna Santopaolo
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School in the Faculty of Health SciencesBristolUnited Kingdom
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Lung Division, Royal Brompton & Harefield NHS Foundation TrustLondonUnited Kingdom
| | - Daniel M Altmann
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - David K Butler
- Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Claire McMurray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Joanna Stockton
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Sam Nicholls
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Charles Cooper
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Nicholas Loman
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Michael J Cox
- Lung Division, Royal Brompton & Harefield NHS Foundation TrustLondonUnited Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| |
Collapse
|
1047
|
Keller MD, Harris KM, Jensen-Wachspress MA, Kankate VV, Lang H, Lazarski CA, Durkee-Shock J, Lee PH, Chaudhry K, Webber K, Datar A, Terpilowski M, Reynolds EK, Stevenson EM, Val S, Shancer Z, Zhang N, Ulrey R, Ekanem U, Stanojevic M, Geiger A, Liang H, Hoq F, Abraham AA, Hanley PJ, Cruz CR, Ferrer K, Dropulic L, Gangler K, Burbelo PD, Jones RB, Cohen JI, Bollard CM. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 2020; 136:2905-2917. [PMID: 33331927 PMCID: PMC7746091 DOI: 10.1182/blood.2020008488] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described in recovered patients, and may be important for immunity following infection and vaccination as well as for the development of an adoptive immunotherapy for the treatment of immunocompromised individuals. In this report, we demonstrate that SARS-CoV-2-specific T cells can be expanded from convalescent donors and recognize immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid. Following in vitro expansion using a good manufacturing practice-compliant methodology (designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic), membrane, spike, and nucleocapsid peptides elicited interferon-γ production, in 27 (59%), 12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly conserved region of membrane protein, which induced polyfunctional T-cell responses, which may be critical for the development of effective vaccine and T-cell therapies. Hence, our study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins, most importantly membrane protein, should be feasible for the prevention or early treatment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow transplantation to achieve antiviral control while mitigating uncontrolled inflammation.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research and
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC
| | | | | | | | - Haili Lang
- Center for Cancer and Immunology Research and
| | | | - Jessica Durkee-Shock
- Center for Cancer and Immunology Research and
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | - Eva M Stevenson
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | | | - Zoe Shancer
- Center for Cancer and Immunology Research and
| | - Nan Zhang
- Center for Cancer and Immunology Research and
| | | | | | | | | | - Hua Liang
- Department of Statistics, George Washington University, Washington, DC
| | - Fahmida Hoq
- Center for Cancer and Immunology Research and
| | - Allistair A Abraham
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| | - Patrick J Hanley
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| | - C Russell Cruz
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
| | - Kathleen Ferrer
- Division of Infectious Diseases, Children's National Hospital, Washington, DC
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Krista Gangler
- Leidos Biomedical Research, Inc, Frederick National Laboratory, Frederick, MD; and
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC
- Division of Blood and Marrow Transplantation and
| |
Collapse
|
1048
|
Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front Immunol 2020; 11:596631. [PMID: 33384690 PMCID: PMC7770166 DOI: 10.3389/fimmu.2020.596631] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a distinctive infection characterized by elevated inter-human transmission and presenting from absence of symptoms to severe cytokine storm that can lead to dismal prognosis. Like for HIV, lymphopenia and drastic reduction of CD4+ T cell counts in COVID-19 patients have been linked with poor clinical outcome. As CD4+ T cells play a critical role in orchestrating responses against viral infections, important lessons can be drawn by comparing T cell response in COVID-19 and in HIV infection and by studying HIV-infected patients who became infected by SARS-CoV-2. We critically reviewed host characteristics and hyper-inflammatory response in these two viral infections to have a better insight on the large difference in clinical outcome in persons being infected by SARS-CoV-2. The better understanding of mechanism of T cell dysfunction will contribute to the development of targeted therapy against severe COVID-19 and will help to rationally design vaccine involving T cell response for the long-term control of viral infection.
Collapse
Affiliation(s)
- Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
1049
|
Lederer K, Castaño D, Gómez Atria D, Oguin TH, Wang S, Manzoni TB, Muramatsu H, Hogan MJ, Amanat F, Cherubin P, Lundgreen KA, Tam YK, Fan SHY, Eisenlohr LC, Maillard I, Weissman D, Bates P, Krammer F, Sempowski GD, Pardi N, Locci M. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity 2020; 53:1281-1295.e5. [PMID: 33296685 PMCID: PMC7680029 DOI: 10.1016/j.immuni.2020.11.009] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
The deployment of effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to eradicate the coronavirus disease 2019 (COVID-19) pandemic. Many licensed vaccines confer protection by inducing long-lived plasma cells (LLPCs) and memory B cells (MBCs), cell types canonically generated during germinal center (GC) reactions. Here, we directly compared two vaccine platforms-mRNA vaccines and a recombinant protein formulated with an MF59-like adjuvant-looking for their abilities to quantitatively and qualitatively shape SARS-CoV-2-specific primary GC responses over time. We demonstrated that a single immunization with SARS-CoV-2 mRNA, but not with the recombinant protein vaccine, elicited potent SARS-CoV-2-specific GC B and T follicular helper (Tfh) cell responses as well as LLPCs and MBCs. Importantly, GC responses strongly correlated with neutralizing antibody production. mRNA vaccines more efficiently induced key regulators of the Tfh cell program and influenced the functional properties of Tfh cells. Overall, this study identifies SARS-CoV-2 mRNA vaccines as strong candidates for promoting robust GC-derived immune responses.
Collapse
Affiliation(s)
- Katlyn Lederer
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana Castaño
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Daniela Gómez Atria
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sidney Wang
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Hogan
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Cherubin
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendall A Lundgreen
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | - Laurence C Eisenlohr
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michela Locci
- Department of Microbiology, Center for Research on Coronavirus and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
1050
|
Galvan-Pena S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L, Magnuson A, Manickas-Hill Z, Piechocka-Trocha A, Worrall DP, Hall KE, Ghebremichael M, Walker BD, Li JZ, Yu XG, Mathis D, Benoist C. Profound Treg perturbations correlate with COVID-19 severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33330871 DOI: 10.1101/2020.12.11.416180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hallmark of severe COVID-19 disease has been an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We explored the hypothesis that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in both Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, which correlated with poor outcomes. Accordingly, these Tregs over-expressed a range of suppressive effectors, but also pro-inflammatory molecules like IL32. Most strikingly, they acquired similarity to tumor-infiltrating Tregs, known to suppress local anti-tumor responses. These traits were most marked in acute patients with severe disease, but persisted somewhat in convalescent patients. These results suggest that Tregs may play nefarious roles in COVID-19, via suppressing anti-viral T cell responses during the severe phase of the disease, and/or via a direct pro-inflammatory role.
Collapse
|