101
|
Palmer GA, Brogdon JL, Constant SL, Tattersall P. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation. J Virol 2004; 78:1101-8. [PMID: 14722265 PMCID: PMC321389 DOI: 10.1128/jvi.78.3.1101-1108.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 10/16/2003] [Indexed: 11/20/2022] Open
Abstract
An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Gene A Palmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
102
|
Samulski RJ. AAV vectors, the future workhorse of human gene therapy. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:25-40. [PMID: 12894449 DOI: 10.1007/978-3-662-05352-2_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- R J Samulski
- Gene Therapy Center, University of North Carolina, CB#7352, Chapel Hill, NC 27599-7352, USA.
| |
Collapse
|
103
|
Hendriks WT, Ruitenberg MJ, Blits B, Boer GJ, Verhaagen J. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. PROGRESS IN BRAIN RESEARCH 2004; 146:451-76. [PMID: 14699980 DOI: 10.1016/s0079-6123(03)46029-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injuries to the adult mammalian spinal cord often lead to severe damage to both ascending (sensory) pathways and descending (motor) nerve pathways without the perspective of complete functional recovery. Future spinal cord repair strategies should comprise a multi-factorial approach addressing several issues, including optimalization of survival and function of spared central nervous system neurons in partial lesions and the modulation of trophic and inhibitory influences to promote and guide axonal regrowth. Neurotrophins have emerged as promising molecules to augment neuroprotection and neuronal regeneration. Although intracerebroventricular, intrathecal and local protein delivery of neurotrophins to the injured spinal cord has resulted in enhanced survival and regeneration of injured neurons, there are a number of drawbacks to these methods. Viral vector-mediated transfer of neurotrophin genes to the injured spinal cord is emerging as a novel and effective strategy to express neurotrophins in the injured nervous system. Ex vivo transfer of neurotrophic factor genes is explored as a way to bridge lesions cavities for axonal regeneration. Several viral vector systems, based on herpes simplex virus, adenovirus, adeno-associated virus, lentivirus, and moloney leukaemia virus, have been employed. The genetic modification of fibroblasts, Schwann cells, olfactory ensheathing glia cells, and stem cells, prior to implantation to the injured spinal cord has resulted in improved cellular nerve guides. So far, neurotrophic factor gene transfer to the injured spinal cord has led to results comparable to those obtained with direct protein delivery, but has a number of advantages. The steady advances that have been made in combining new viral vector systems with a range of promising cellular platforms for ex vivo gene transfer (e.g., primary embryonic neurons, Schwann cells, olfactory ensheating glia cells and neural stem cells) holds promising perspectives for the development of new neurotrophic factor-based therapies to repair the injured nervous system.
Collapse
Affiliation(s)
- William T Hendriks
- Graduate School for Neurosciences Amsterdam, Department of Neuroregeneration, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
104
|
Lalani AS, Chang B, Lin J, Case SS, Luan B, Wu-Prior WW, VanRoey M, Jooss K. Anti-Tumor Efficacy of Human Angiostatin Using Liver-Mediated Adeno-Associated Virus Gene Therapy. Mol Ther 2004; 9:56-66. [PMID: 14741778 DOI: 10.1016/j.ymthe.2003.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Angiostatin is a potent endogenous inhibitor of angiogenesis and tumor growth in vivo. The therapeutic potential of adeno-associated viral (AAV) gene delivery of angiostatin in modulating tumor growth in vivo was evaluated. Sustained levels of angiostatin were detected in the sera of mice for up to 6 months after they received a single injection of AAV-angiostatin. AAV-mediated stable expression of angiostatin inhibited tumor burden in the highly aggressive B16F10 melanoma and Lewis lung carcinoma (LLC) models of experimental metastasis. Moreover, AAV-angiostatin prolonged survival in B16F10 and LLC tumor-bearing mice compared to control groups. Anti-tumor efficacy was consistently observed when angiostatin serum levels of 15-50 ng/ml were detected following gene transfer, but the effect was minimal when the levels were lower or higher than this range. The combination of AAV-angiostatin gene therapy with chemotherapy was also shown to extend marginally the survival of mice bearing preestablished human tumors; however, the effect was evident only within a narrow dose of circulating angiostatin. These studies demonstrate the feasibility of using AAV anti-angiogenic gene therapy as a cancer treatment modality and suggest that the optimal anti-tumor efficacy of angiostatin following gene transfer may be limited to a narrow dose range.
Collapse
MESH Headings
- Angiogenesis Inhibitors/genetics
- Angiogenesis Inhibitors/metabolism
- Angiostatins/genetics
- Angiostatins/metabolism
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line
- Chick Embryo
- Combined Modality Therapy
- Dependovirus/genetics
- Female
- Gene Expression
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Humans
- Liver/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/therapy
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Alshad S Lalani
- Cell Genesys, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Garrett DJ, Larson JE, Dunn D, Marrero L, Cohen JC. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates. BMC Biotechnol 2003; 3:16. [PMID: 14519209 PMCID: PMC239997 DOI: 10.1186/1472-6750-3-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 09/30/2003] [Indexed: 11/28/2022] Open
Abstract
Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV) have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP) was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.
Collapse
Affiliation(s)
- Deiadra J Garrett
- Ochsner Children's Research Institute, Ochsner Clinic Foundation, New Orleans, LA, USA, 70121
- Departments of Medicine, Genetics, and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Janet E Larson
- Ochsner Children's Research Institute, Ochsner Clinic Foundation, New Orleans, LA, USA, 70121
| | - Daisy Dunn
- Ochsner Children's Research Institute, Ochsner Clinic Foundation, New Orleans, LA, USA, 70121
| | - Luis Marrero
- Departments of Medicine, Genetics, and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - J Craig Cohen
- Departments of Medicine, Genetics, and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
106
|
Luk KDK, Chen Y, Cheung KMC, Kung HF, Lu WW, Leong JCY. Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun 2003; 308:636-45. [PMID: 12914798 DOI: 10.1016/s0006-291x(03)01429-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adeno-associated virus (AAV) is so far the most valuable vehicle for gene therapy because it has no association with immune response and human disease. The present study was conducted to investigate the feasibility of AAV-mediated BMP4 gene transfer for bone formation. In vitro study suggested that AAV-BMP4 vectors could transduce myoblast C2C12 cells and produce osteogenic BMP4. In vivo study demonstrated that new bone formation could be induced by direct injection of AAV-BMP4 into the skeletal muscle of immunocompetent rats. Histological analysis revealed that the newly formed bone was induced through endochondral mechanism. Immunohistochemical staining further demonstrated that AAV-BMP4 gene delivery could mediate long-term transduction, and the involvement of BMP4 expression was responsible for the endochondral ossification. This study is, to our knowledge, the first report in the field of AAV-based BMP gene transfer and should be promising for clinical orthopaedic applications.
Collapse
Affiliation(s)
- Keith D K Luk
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
107
|
Chen Y, Luk KDK, Cheung KMC, Xu R, Lin MC, Lu WW, Leong JCY, Kung HF. Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther 2003; 10:1345-53. [PMID: 12883531 DOI: 10.1038/sj.gt.3301999] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous reports have suggested that bone morphogenetic protein (BMP) gene therapy could be applied for in vivo bone regeneration. However, these studies were conducted either using immunodeficient animals because of immunogenicity of adenovirus vectors, or using ex vivo gene transfer technique, which is much more difficult to handle. Adeno-associated virus (AAV) is a replication-defective virus without any association with immunogenicity and human disease. This study was conducted to investigate whether orthotopic new bone formation could be induced by in vivo gene therapy using AAV-based BMP2 vectors. To test the feasibility of this approach, we constructed an AAV vector carrying human BMP2 gene. Mouse myoblast cells (C2C12) transduced with this vector could produce and secrete biologically active BMP2 protein and induce osteogenic activity, which was confirmed by ELISA and alkaline phosphatase activity assay. For in vivo study, AAV-BMP2 vectors were directly injected into the hindlimb muscle of immunocompetent Sprague-Dawley rats. Significant new bone under X-ray films could be detected as early as 3 weeks postinjection. The ossification tissue was further examined by histological and immunohistochemical analysis. This study is, to our knowledge, the first to establish the feasibility of AAV-based BMP2 gene therapy for endochondral ossification in immunocompetent animals.
Collapse
Affiliation(s)
- Y Chen
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Blömer U, Ganser A, Scherr M. Invasive drug delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:431-51. [PMID: 12575831 DOI: 10.1007/978-1-4615-0123-7_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The central nervous system is a very attractive target for new therapeutic strategies since many genes involved in neurological diseases are known and often only local low level gene expression is required. However, as the blood brain barrier on one hand prevents some therapeutic agents given systematically from exerting their activity in the CNS, it also provides an immune privileged environment. Neurosurgical technology meanwhile allows the access of nearly every single centre of the CNS and provides the surgical tool for direct gene delivery via minimal invasive surgical approaches to the brain. Successful therapy of the central nervous system requires new tools for delivery of therapeutics in vitro and in vivo (Fig. 1). The application of therapeutic proteins via pumps into the CSF was shown to be only of limited value since the protein mostly is not sufficiently transported within the tissue and the half life of proteins limits the therapeutic success. Direct gene delivery into the host cell has been a main strategy for years, and in the beginning the direct DNA delivery or encapsulation in liposomes or other artificial encapsulation have been applied with different success. For several years the most promising tools have been vectors based on viruses. Viruses are able to use the host cell machinery for protein synthesis, and some of them are able to stably insert into the host cell genome and provide long term transgene expression as long as the cell is alive. The increasing knowledge of viruses and their live cycle promoted the development of viral vectors that function like a shuttle to the cell, with a single round of infection either integrating or transiently expressing the transgene. Viral vectors have proven to be one of the most efficient and stable transgene shuttle into the cell and have gained increasing importance. The limitations of some viral vectors like the adenoviral vector and adeno-associated viral vector have been improved by new constructs like HIV-1 based lentiviral vectors. The immune response caused by expression of viral proteins, or the inability of some viral vectors like the retroviral vector to infect only dividing cells have been overcome by these new constructs. Lentiviral vectors allow an efficient and stable transgene expression over years in vivo without effecting transgene expression or immune response. In this Chapter we will describe synthetic vectors, give an overview of the most common viral vectors and focus our attention on lentiviral vectors, since we consider them to be the most efficient tool for gene delivery in the CNS.
Collapse
Affiliation(s)
- Ulrike Blömer
- Department of Hematology and Oncology, Medical School Hannover, Carl-Neuber-Str. 1,30625 Hannover, Germany
| | | | | |
Collapse
|
109
|
Büning H, Ried MU, Perabo L, Gerner FM, Huttner NA, Enssle J, Hallek M. Receptor targeting of adeno-associated virus vectors. Gene Ther 2003; 10:1142-51. [PMID: 12833123 DOI: 10.1038/sj.gt.3301976] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adeno-associated virus (AAV) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for in vivo gene therapy, because it does not allow the selective tissue- or organ-restricted transduction required to enhance the safety and efficiency of the gene transfer. Therefore, increasing efforts are being made to target AAV-2-based vectors to specific receptors. The studies summarized in this review show that it is possible to target AAV-2 to a specific cell. So far, the most promising approach is the genetic modification of the viral capsid. However, the currently available AAV-2 targeting vectors need to be improved with regard to the elimination of the wild-type AAV-2 tropism and the improvement of infectious titers. The creation of highly efficient AAV-2 targeting vectors will also require a better understanding of the transmembrane and intracellular processing of this virus.
Collapse
Affiliation(s)
- H Büning
- Genzentrum Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Münich, Germany
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, University of Abertay Dundee, Dundee, Scotland, UK.
| |
Collapse
|
111
|
Krol J, Sato S, Rettenberger P, Assfalg-Machleidt I, Schmitt M, Magdolen V, Magdolen U. Novel bi- and trifunctional inhibitors of tumor-associated proteolytic systems. Biol Chem 2003; 384:1085-96. [PMID: 12956425 DOI: 10.1515/bc.2003.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serine proteases, cysteine proteases, and matrix metalloproteinases (MMPs) are involved in cancer cell invasion and metastasis. Recently, a recombinant bifunctional inhibitor (chCys-uPA19-31) directed against cysteine proteases and the urokinase-type plasminogen activator (uPA)/plasmin serine protease system was generated by introducing the uPA receptor (uPAR)-binding site of uPA into chicken cystatin (chCysWT). In the present study, we designed and recombinantly produced multifunctional inhibitors also targeting MMPs. The inhibitors comprise the N-terminal inhibitory domain of human TIMP-1 (tissue inhibitor of matrix metalloproteinase-1) or TIMP-3, fused to chCys-uPA19-31 or chCysWT. As demonstrated by various techniques, these fusion proteins effectively interfere with all three targeted protease systems. In in vitro Matrigel invasion assays, the addition of recombinant inhibitors strongly reduced invasion of ovarian cancer cells (OV-MZ-6#8). Additionally, OV-MZ-6#8 cells were stably transfected with expression plasmids encoding the various inhibitors. Synthesis and secretion of the inhibitors was verified by a newly developed ELISA, which selectively detects the recombinant proteins. Invasive capacity of inhibitor-producing cells was significantly reduced compared to vector-transfected control cells. Thus, these novel, compact, and small-size inhibitors directed against up to three different tumor-associated proteolytic systems may represent promising agents for prevention of tumor cell migration and metastasis.
Collapse
Affiliation(s)
- Janna Krol
- Klinische Forschergruppe der Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, D-81675 München, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 2003; 10:955-63. [PMID: 12756416 DOI: 10.1038/sj.gt.3302037] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral vectors have provided effective methods for in vivo gene delivery for therapeutic purposes. The ability of viruses to infect a wide variety of cell types in vivo has been exploited for several applications, such as liver, lung, muscle, brain, eye and many others. Immune responses directed towards the viral capsids and the transgene products have severely affected the ability of these vectors to induce long-term gene expression. This paper reviews the influence of viral vectors on antigen-presenting cells (APC), which are central to the induction of innate as well as adaptive immune responses. In this respect, we have focused on adenovirus and adeno-associated viruses because of the polar responses these vector systems induce in vivo. While adenovirus vector can induce significant inflammatory responses, adeno-associated viral vectors are characterized by their inability to consistantly induce immune responses to the transgene product. Understanding the mechanism of infection, transduction and activation of APC by viral vectors will provide strategies to develop safe vectors and prevent immune responses in gene therapies.
Collapse
Affiliation(s)
- K Jooss
- Cell Genesys, South San Francisco, CA 94404, USA
| | | |
Collapse
|
113
|
Abstract
Malignant gliomas remain amongst the most difficult cancer to treat. Viral-based gene therapies have been employed for the last decade in preclinical and clinical modes as a novel treatment modality. In this review, such therapies are summarized. The overwhelming majority of clinical studies point one to conclude that methodologies that will increase tumor infection/transduction will lead to enhanced therapeutic results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-oncology Laboratory, Neurosurgery Service, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
114
|
Abstract
Gene therapy has been applied in a variety of experimental models of autoimmunity with some success. In this article, we outline recent developments in gene therapy vectors, discuss advantages and disadvantages of each, and highlight their recent applications in autoimmune models. We also consider progress in vector targeting and components for regulating transgene expression, which will both improve gene therapy safety and empower gene therapy to fullfil its potential as a therapeutic modality. In conclusion, we consider candidate vectors that satisfy requirements for application in the principal therapeutic strategies in which gene therapy will be applied to autoimmune conditions.
Collapse
Affiliation(s)
- D J Gould
- 1Bone & Joint Research Unit, Barts & The London, Queen Mary's Medical School, University of London, London, UK
| | | |
Collapse
|
115
|
Abstract
Since the first reports describing the injection of recombinant adeno-associated viral (AAV) vectors in the murine eye, the advancement of the field has been enormous resulting in the correction of several animal models of retinal diseases. The recent development of "pseudotyped" AAV vectors with transduction characteristics that best fit the correction of specific retinal disease phenotypes and of sophisticated systems for tight regulation of gene expression expands on the potentiality of this delivery system for the eye.
Collapse
Affiliation(s)
- Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Napoli, Italy.
| |
Collapse
|
116
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
117
|
Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003; 77:3495-504. [PMID: 12610125 PMCID: PMC149530 DOI: 10.1128/jvi.77.6.3495-3504.2003] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Accepted: 12/18/2002] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are promising human gene transfer vectors, because they mediate long-term gene expression in vivo. The vector DNA form responsible for sustained gene expression has not been clearly defined, but it has been presumed that the vector integrates to some degree and persists in this manner. Using two independent methods, we were unable to identify rAAV integrants in mouse muscle. In the first approach, we were unable to recover host cell-vector DNA junctions from a lambda phage library generated using transduced mouse muscle DNA that contained a high vector copy number. Following this result, we devised a PCR assay based on the principle that integrated rAAV vector sequences could be amplified using primers specific for mouse interspersed repetitive sequences (B1 elements). Using this assay, we analyzed transduced mouse muscle DNA isolated from 6 to 57 weeks after injection and did not detect amplification above background levels. Based on the demonstrated sensitivity of the assay, these results suggested that >99.5% of vector DNA was not integrated. Additional analyses using a novel DNA exonuclease showed that the majority of the rAAV vector DNA in muscle persisted over time as transcriptionally active monomeric and concatameric episomes.
Collapse
Affiliation(s)
- Bruce C Schnepp
- Columbus Children's Research Institute, Columbus Children's Hospital, and Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43205, USA
| | | | | | | | | |
Collapse
|
118
|
Dejneka NS, Surace EM, Bennett J. Gene therapy for Leber congenital amaurosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:415-22. [PMID: 15180293 DOI: 10.1007/978-1-4615-0067-4_53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nadine S Dejneka
- University of Pennsylvania, Scheie Eye Institute, Philadelphia, PA 19104-6069, USA.
| | | | | |
Collapse
|
119
|
Saaristo A, Karkkainen MJ, Alitalo K. Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann N Y Acad Sci 2002; 979:94-110. [PMID: 12543720 DOI: 10.1111/j.1749-6632.2002.tb04871.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abnormal function of the lymphatic vessels is associated with a variety of diseases, such as tumor metastasis and lymphedema. The development of strategies for local and controlled induction or inhibition of lymphangiogenesis would thus be of major importance for the treatment of such diseases. Two growth factors, vascular endothelial growth factor C (VEGF-C) and D (VEGF-D), have been found to be important in the proper formation and maintenance of the lymphatic network, through their receptor VEGFR-3. In patients with lymphedema, heterozygous inactivation of VEGFR-3 leads to primary lymphedema due to defective lymphatic drainage in the limbs. We have shown that VEGF-C gene transfer to the skin of mice with lymphedema induces regeneration of the cutaneous lymphatic vessel network. However, as is the case with VEGF, high levels of VEGF-C cause blood vessel growth and leakiness, resulting in tissue edema. Strategies to avoid these side-effects have also been developed. This new field of reseach has important implications for the development of new therapies for human lymphedema.
Collapse
Affiliation(s)
- Anne Saaristo
- Molecular/Cancer Biology Laboratory, Biomedicum, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
120
|
Pajusola K, Gruchala M, Joch H, Lüscher TF, Ylä-Herttuala S, Büeler H. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol 2002; 76:11530-40. [PMID: 12388714 PMCID: PMC136795 DOI: 10.1128/jvi.76.22.11530-11540.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) are promising vectors for various gene therapy applications due to their long-lasting transgene expression and wide spectrum of target cells. Recently, however, it has become apparent that there are considerable differences in the efficiencies of transduction of different cell types by AAVs. Here, we analyzed the efficiencies of transduction and the transport mechanisms of AAV type 2 (AAV-2) in different cell types, emphasizing endothelial cells. Expression analyses in both cultured cells and the rabbit carotid artery assay showed a remarkably low level of endothelial cell transduction in comparison to the highly permissive cell types. The study of the endosomal pathways of AAV-2 with fluorescently labeled virus showed clear targeting of the Golgi area in permissive cell lines, but this phenomenon was absent in the endothelial cell line EAhy-926. On the other hand, the response to the block of endosomal acidification by bafilomycin A1 also showed differences among the permissive cell types. We also analyzed the effect of proteasome inhibitors on endothelial cells, but their impact on the primary cells and in vivo was not significant. On the contrary, analysis of the expression pattern of heparan sulfate proteoglycans (HSPGs), the primary receptors of AAV-2, revealed massive deposits of HSPG in the extracellular matrix of endothelial cells. The matrix-associated receptors may therefore compete for virus binding and reduce transduction in endothelial cells. Accordingly, in endothelial cells detached from their matrix, AAV-2 transduction was significantly increased. Altogether, these results point to a more complex cell-type-specific mode of transduction of AAV-2 than previously appreciated.
Collapse
Affiliation(s)
- Katri Pajusola
- Institute of Molecular Biology, University of Zurich, 8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
Regulated adeno-associated virus (AAV) vectors have broad utility in both experimental and applied gene therapy, and to date, several regulation systems have exhibited a capability to control gene expression from viral vectors over two orders of magnitude. The tetracycline responsive system has been the most used in AAV, although other regulation systems such as RU486- and rapamycin-responsive systems are reasonable options. AAV vectors influence how regulation systems function by several mechanisms, leading to increased background gene expression and restricted induction. Methods to reduce background expression continue to be explored and systems not yet tried in AAV may prove quite functional. Although regulated promoters are often assumed to exhibit ubiquitous expression, the tropism of different neuronal subtypes can be altered dramatically by changing promoters in recombinant AAV vectors. Differences in promoter-directed tropism have significant consequences for proper expression of gene products as well as the utility of dual vector regulation. Thus regulated vector systems must be carefully optimized for each application.
Collapse
Affiliation(s)
- Rebecca P Haberman
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
122
|
Auricchio A, Behling KC, Maguire AM, O'Connor EM, Bennett J, Wilson JM, Tolentino MJ. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther 2002; 6:490-4. [PMID: 12377190 DOI: 10.1006/mthe.2002.0702] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neovascularization characterizes diabetic retinopathy and choroidal neovascularization associated with age-related macular degeneration, the most common causes of severe visual loss in the developed world. Gene transfer to the eye using adeno-associated viral (AAV) vectors is a promising new treatment for inherited and acquired ocular diseases. We used an AAV vector with rapid onset and high levels of gene expression in the retina to deliver three anti-angiogenic factors (pigment epithelium-derived factor, tissue inhibitor of metalloproteinase-3, and endostatin) to the eyes of mice in a mouse model of retinopathy of prematurity. All three vectors inhibited ischemia-induced neovascularization.
Collapse
Affiliation(s)
- Alberto Auricchio
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
|
124
|
Abstract
Vectors derived from adeno-associated virus serotype 2 (AAV-2) represent a most promising tool for human gene transfer because these vectors are neither pathogenic nor toxic to the target cell, and allow long-term gene expression in a large variety of tissues. However, they are rather inefficient at infecting a number of clinically relevant cell types, and transduction by these vectors is likely hampered by neutralizing antibodies that are highly prevalent in the human population. Therefore, an increasing number of researchers are currently turning their attention to the five other serotypes of AAV, to try and develop these as novel vectors for human gene transfer, hoping to overcome the problems associated with AAV-2 vectors. Here I describe and discuss the methodology to produce these alternative AAV vectors in tissue culture. In detail, two strategies are compared that rely on transfection of cells in culture with either two or three plasmids, containing the AAV vector genome and encoding AAV and adenoviral helper functions. Either of these protocols can be used to package a recombinant AAV genome into capsids of its own serotype (generation of "real" serotypes) or to "cross-package" this vector DNA into capsids derived from another AAV serotype ("pseudotyping"). As these approaches are still in their early stages, the existing limitations of current technology are discussed, and possible further improvements proposed.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Pediatrics, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
125
|
Okada T, Nomoto T, Shimazaki K, Lijun W, Lu Y, Matsushita T, Mizukami H, Urabe M, Hanazono Y, Kume A, Muramatsu SI, Nakano I, Ozawa K. Adeno-associated virus vectors for gene transfer to the brain. Methods 2002; 28:237-47. [PMID: 12413422 DOI: 10.1016/s1046-2023(02)00228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a novel method under investigation for the treatment of neurological disorders. Considerable interest has focused on the possibility of using viral vectors to deliver genes to the central nervous system. Adeno-associated virus (AAV) is a potentially useful gene transfer vehicle for neurologic gene therapies. The advantages of AAV vector include the lack of any associated disease with a wild-type virus, the ability to transduce nondividing cells, the possible integration of the gene into the host genome, and the long-term expression of transgenes. The development of novel therapeutic strategies for neurological disorder by using AAV vector has an increasing impact on gene therapy research. This article describes methods that can be used to generate rodent and nonhuman primate models for testing treatment strategies linked to pathophysiological events in the ischemic brain and neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Takashi Okada
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, 3311-1 Yakushiji, Minami-Kawachi, Kawachi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76:8769-75. [PMID: 12163597 PMCID: PMC136414 DOI: 10.1128/jvi.76.17.8769-8775.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although several human immunodeficiency virus (HIV) vaccine approaches have elicited meaningful antigen-specific T-cell responses in animal models, no single vaccine candidate has engendered antibodies that broadly neutralize primary isolates of HIV type 1 (HIV-1). Thus, there remains a significant gap in the design of HIV vaccines. To address this issue, we exploited the existence of rare human monoclonal antibodies that have been isolated from HIV-infected individuals. Such antibodies neutralize a wide array of HIV-1 field isolates and have been shown to be effective in vivo. However, practical considerations preclude the use of antibody preparations as a prophylactic passive immunization strategy in large populations. Our concept calls for an antibody gene of choice to be transferred to muscle where the antibody molecule is synthesized and distributed to the circulatory system. In these experiments, we used a recombinant adeno-associated virus (rAAV) vector to deliver the gene for the human antibody IgG1b12 to mouse muscle. Significant levels of HIV-neutralizing activity were found in the sera of mice for over 6 months after a single intramuscular administration of the rAAV vector. This approach allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein.
Collapse
Affiliation(s)
- Anne D Lewis
- Columbus Children's Research Institute, Children's Hospital, Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
127
|
Auricchio A, O’Connor E, Weiner D, Gao GP, Hildinger M, Wang L, Calcedo R, Wilson JM. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002. [DOI: 10.1172/jci0215780] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
128
|
Brown BD, Lillicrap D. Dangerous liaisons: the role of "danger" signals in the immune response to gene therapy. Blood 2002; 100:1133-40. [PMID: 12149189 DOI: 10.1182/blood-2001-11-0067] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies in gene transfer suggest that the innate immune system plays a significant role in impeding gene therapy. In this review, we examine factors that might influence the recruitment and activation of the innate system in the context of gene therapy. We have adopted a novel model of immunology that contends that the immune system distinguishes not between self and nonself, but between what is dangerous and what is not dangerous. In taking this perspective, we provide an alternative and complementary insight into some of the failures and successes of current gene therapy protocols.
Collapse
Affiliation(s)
- Brian D Brown
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
129
|
Auricchio A, O'Connor E, Weiner D, Gao GP, Hildinger M, Wang L, Calcedo R, Wilson JM. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110:499-504. [PMID: 12189244 PMCID: PMC150421 DOI: 10.1172/jci15780] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study evaluates the use of vectors based on adeno-associated viruses (AAVs) to noninvasively deliver genes to airway epithelial cells as a means for achieving systemic administration of therapeutic proteins. We intranasally delivered AAV vectors to mice in which the same AAV2 genome encoding a cellular marker was packaged in capsids from AAV1, 2, or 5 (AAV2/1, AAV2/2, or AAV2/5, respectively). Gene expression levels achieved in both airways and alveoli were higher with AAV2/5 than with AAV2/1 and were undetectable with AAV2/2. The same set of vectors encoding a secreted therapeutic protein, erythropoietin (Epo), under the control of a lung-specific promoter (CC10) was intranasally delivered to mice, resulting in polycythemia with the highest levels of serum Epo obtained with AAV2/5 vectors. After a single intranasal administration of this vector, secretion of Epo was documented for 150 days. Similarly, intranasal administration of an AAV2/5-CC10-factor IX vector resulted in secretion of functional recombinant protein in the bloodstream of hemophiliac, factor IX-deficient mice. In addition, we demonstrate successful readministration of AAV2/5 to the lung 5 months after the first delivery of the same vector. In conclusion, we show that intranasal administration of AAV vectors results in efficient gene transfer to the lung only when the vector contains the AAV5 capsid and that this noninvasive route of administration results in sustained secretion of therapeutic proteins in the bloodstream.
Collapse
Affiliation(s)
- Alberto Auricchio
- Institute for Human Gene Therapy, The Wistar Institute, Department of Medicine, and. Division of Pulmonary Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia 19104-4268, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Veldwijk MR, Topaly J, Laufs S, Hengge UR, Wenz F, Zeller WJ, Fruehauf S. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 2002; 6:272-8. [PMID: 12349826 DOI: 10.1006/mthe.2002.0659] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the clinical application of adeno-associated virus (AAV) gene therapy, the titration of viral stocks has not yet been standardized. This complicates the comparison of viral stocks between laboratories. Functional titering of AAV is time-consuming, requires the manipulation of hazardous material, and often has a high degree of variability. We established an optimized real-time quantitative polymerase chain reaction (RQ-PCR) titration assay to determine viral titers and compared it with a functional green fluorescent protein (GFP)-based titration method. With a combination of improved lysis procedures and RQ-PCR protocols we could decrease the intraexperimental coefficient of variation (CV) from 0.24 +/- 0.03 to 0.042 +/- 0.004 and the interexperimental CV from 0.34 +/- 0.06 to 0.093 +/- 0.028 following functional and RQPCR-based titration, respectively. This low variability conforms to even the strictest quality standards required, for example, in clinical laboratories. The highly standardized titration by RQPCR described here will be especially advantageous for groups working on AAV-based gene therapy in a good manufacturing practice setting.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- German Cancer Research Center, Im Neuenheimer Feld 280 D-69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Ulrich-Vinther M, Maloney MD, Goater JJ, Søballe K, Goldring MB, O'Keefe RJ, Schwarz EM. Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes. ARTHRITIS AND RHEUMATISM 2002; 46:2095-104. [PMID: 12209514 DOI: 10.1002/art.10433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the effects of ultraviolet (UV) light as an adjuvant for recombinant adeno-associated virus (rAAV) transduction in human articular chondrocytes. METHODS Primary articular chondrocytes and immortalized chondrocytes (tsT/AC62) were exposed to various doses of UV light (0-1,000 J/m(2)) and infected at various multiplicities of infection (MOIs) with rAAV containing the enhanced green fluorescent protein (EGFP) gene. Cells were analyzed for viability and EGFP expression by fluorescence-activated cell sorting on days 2, 4, and 8 following infection. To evaluate the transduction efficiency in intact articular cartilage, full-thickness explants were exposed to UV light (0-200 J/m(2)), infected with rAAV-eGFP, and analyzed for transduction via immunohistochemistry. RESULTS Toxicity from UV exposure was observed at doses > or =500 J/m(2) and > or =200 J/m(2) in primary and immortalized chondrocyte cultures, respectively. Transduction efficiency was dependent on the UV dose, MOI, and time. In the cell line, the adjuvant effect of UV on the percentage of cells transduced was modest, but 100 J/m(2) increased the mean fluorescence intensity (MFI) of the transduced cells 4-fold. In contrast, UV treatment had a profound effect on the transduction efficiency of primary chondrocytes, which reached approximately 100% after exposure to 100 J/m(2) of UV light and 10(3) MOIs for 8 days. Under the same conditions, 200 J/m(2) of UV light enhanced the MFI 7-fold. In cartilage explants, there was no difference in the number of transduced chondrocytes at the edge of the explants in the superficial, intermediate, or basal zones; however, 200 J/m(2) of UV light increased the transduction efficiency 2-fold at a low MOI. In the center of the explants, the superficial chondrocytes were efficiently transduced; those in the intermediate and basal zones could not be efficiently transduced under any condition. In the superficial chondrocytes, a low MOI and 200 J/m(2) of UV light increased the transduction efficiency 3-fold (to 100%). CONCLUSION UV light at doses of up to 200 J/m(2) (which do not significantly affect cell viability) significantly enhances the transduction efficiency and expression of the transduced gene in cultures of rAAV-infected primary chondrocytes and in chondrocytes in the superficial zone of intact articular cartilage. These findings support the concept that UV-activated gene transduction could be used as an adjuvant for in vivo rAAV articular cartilage gene therapy with low viral titers to prevent and/or treat arthritis.
Collapse
Affiliation(s)
- Michael Ulrich-Vinther
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K, Turunen P, Jeltsch M, Karkkainen MJ, Kerjaschki D, Bueler H, Ylä-Herttuala S, Alitalo K. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 2002; 16:1041-9. [PMID: 12087065 DOI: 10.1096/fj.01-1042com] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are important regulators of blood and lymphatic vessel growth and vascular permeability. The VEGF-C/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and heterozygous inactivating missense mutations of the VEGFR-3 gene are associated with hereditary lymphedema. However, VEGF-C can have potent effects on blood vessels because its receptor VEGFR-3 is expressed in certain blood vessels and because the fully processed form of VEGF-C also binds to the VEGFR-2 of blood vessels. To characterize the in vivo effects of VEGF-C on blood and lymphatic vessels, we have overexpressed VEGF-C via adenovirus- and adeno-associated virus-mediated transfection in the skin and respiratory tract of athymic nude mice. This resulted in dose-dependent enlargement and tortuosity of veins, which, along with the collecting lymphatic vessels were found to express VEGFR-2. Expression of angiopoietin 1 blocked the increased leakiness of the blood vessels induced by VEGF-C whereas vessel enlargement and lymphangiogenesis were not affected. However, angiogenic sprouting of new blood vessels was not observed in response to AdVEGF-C or AAV-VEGF-C. These results show that virally produced VEGF-C induces blood vessel changes, including vascular leak, but its angiogenic potency is much reduced compared with VEGF in normal skin.
Collapse
Affiliation(s)
- Anne Saaristo
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Enger PØ, Thorsen F, Lønning PE, Bjerkvig R, Hoover F. Adeno-associated viral vectors penetrate human solid tumor tissue in vivo more effectively than adenoviral vectors. Hum Gene Ther 2002; 13:1115-25. [PMID: 12067444 DOI: 10.1089/104303402753812511] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transduction efficiencies of adeno-associated viral vectors (AAV, serotype 2) and adenovirus vectors (ADV, serotype 5) were examined in three different models of cancer. First, we used flow cytometry to quantitate AAV-GFP or ADV-GFP transduction in 13 cell lines derived from malignant tissue (6 gliomas, 6 mammary cancers, and 1 leukemia). These experiments showed variable transduction efficiency (0%-81%) between the cell lines, with ADV being more effective compared to AAV in 9 of 13 cell lines. Second, spheroids prepared from human glioblastomas were infected with ADV or AAV expressing GFP or lacZ cassettes, and after 2 weeks, uniform reporter gene expression was observed on the spheroid. Whereas AAV produced consistent transduction throughout the spheroids, ADV infection was mainly limited to the outer cell layers of the spheroids, suggesting that AAV were more efficient at penetrating solid tumor tissue. Third, human biopsies from glioblastoma multiforme patients were xenografted into nude rats and grown for 4 weeks followed by viral vector injection. Combined use of high-resolution magnetic resonance imaging (MRI) and histologic analysis allowed the identification of transduced cells and their spatial distribution within the tumors. AAV-mediated transgene expression was observed in cell clusters through the entire tumor, while ADV-mediated transduction was restricted to cells at the tumor periphery. Thus, while AAV and ADV vectors may infect tumor-derived cell lines to a similar degree, AAV penetrated glioblastoma spheroids and xenografts more efficiently compared to ADV vectors. These results suggest that AAV may be suitable for therapeutic gene delivery to malignant tumors.
Collapse
Affiliation(s)
- Per Øyvind Enger
- Department of Anatomy and Cell Biology, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
134
|
Chao H, Sun L, Bruce A, Xiao X, Walsh CE. Expression of human factor VIII by splicing between dimerized AAV vectors. Mol Ther 2002; 5:716-22. [PMID: 12027555 DOI: 10.1006/mthe.2002.0607] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adeno-associated virus (AAV) is a useful vector for hemophilia gene therapy, but the limited effective packaging capacity of AAV (5 kb) appears to be incompatible with factor VIII (gene symbol F8) cDNA (7 kb). Although we previously demonstrated efficient packaging and expression of B-domain-deleted human F8 (BDD-F8) using a single AAV vector, the packaging limit still excludes the use of large/strong regulatory elements. Here we exploited the split AAV vector technology that expands the packaging capacity of AAV through head-to-tail dimerization. To test the feasibility of AAV heterodimerization for F8 expression, we generated a 5' vector that includes a large enhancer/promoter cassette linked with exons 1-12 of the F8 cDNA and a half-intron-carrying splice donor site. A complementing 3' vector contains another half-intron-carrying splice acceptor site linked with the remaining F8 cDNA and a polyadenylation signal. Following coinfection of 293 and HepG2 cells, the 5' and 3' vectors together produced functional human factor VIII protein at a level of 120 mU/ml (24 ng/ml). No factor VIII protein was detected if only one of the vectors was used. Correct head-to-tail vector dimerization as well as spliced BDD-F8 mRNA was detected by DNA PCR and RT-PCR, respectively. Furthermore, intraportal injection of two rAAV/F8 vectors in immunodeficient mice produced 2% of the normal level of factor VIII for four months. Our results demonstrate the potential use of AAV dimerization for F8 expression.
Collapse
Affiliation(s)
- Hengjun Chao
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
135
|
Miagkov AV, Varley AW, Munford RS, Makarov SS. Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints. J Clin Invest 2002; 109:1223-9. [PMID: 11994411 PMCID: PMC150962 DOI: 10.1172/jci14536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The treatment of chronic inflammatory diseases is complicated by their unpredictable, relapsing clinical course. Here, we describe a new strategy in which an inflammation-regulated therapeutic transgene is introduced into the joints to prevent recurrence of arthritis. To this end, we designed a recombinant adenoviral vector containing a two-component, inflammation-inducible promoter controlling the expression of human IL-10 (hIL-10) cDNA. When tested in vitro, this system had a low-level basal activity and was activated four to five orders of magnitude by various inflammatory stimuli, including TNF-alpha, IL-1 beta, IL-6, and LPS. When introduced in joints of rats with recurrent streptococcal cell wall-induced arthritis, the IL-10 transgene was induced in parallel with disease recurrence and effectively prevented the influx of inflammatory cells and the associated swelling of the joints. Levels of inflammation-inducible hIL-10 protein within the joints correlated closely with the severity of recurrence. An endogenously regulated therapeutic transgene can thus establish negative feedback and restore homeostasis in vivo while minimizing host exposure to the recombinant drug.
Collapse
Affiliation(s)
- A V Miagkov
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
136
|
Miagkov A, Varley A, Munford R, Makarov S. Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints. J Clin Invest 2002. [DOI: 10.1172/jci0214536] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
137
|
Düchler M, Pengg M, Schüller S, Pfneisl F, Bugingo C, Brem G, Wagner E, Schellander K, Müller M. Somatic gene transfer into the lactating ovine mammary gland. J Gene Med 2002; 4:282-91. [PMID: 12112645 DOI: 10.1002/jgm.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatic gene therapy requires safe and efficient techniques for the gene transfer procedure. The ovine mammary gland is described as a model system for the evaluation of somatic gene transfer methods. METHODS Different gene delivery formulations were retrogradely injected into the mammary gland of lactating sheep. The efficiency of the gene transfer was subsequently measured by the detection of the secreted transgene products in the milk. To counteract the milk flow in the lactating gland caused by the permanent milk production, a newly developed pretreatment of the mammary gland with hyperosmotic solutions was applied. In addition, in vivo electroporation of DNA into the mammary gland is described. RESULTS Gene transfer using naked DNA or simple complexes of DNA with polycations did not result in traceable amounts of reporter gene products. However, utilizing the complex cationic lipid DOSPER, a peak expression of about 400 ng/ml was observed 6 days after transfection. Maximum expression rates of more than 1 microg/ml were obtained by combining hyperosmotic pretreatment and receptor-mediated gene transfer. For the in vivo electroporation, the proof of principle for this technique in the mammary gland is reported. CONCLUSIONS The ovine mammary gland turned out to be a very well suited as a model system for evaluation and optimization of various gene transfer protocols.
Collapse
Affiliation(s)
- Markus Düchler
- Institute of Biotechnology in Animal Production, University of Veterinary Medicine, IFA Tulln, Konrad Lorenzstrasse 20, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD, Evans CH, Leboulch P, Ghivizzani SC. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 2002; 5:397-404. [PMID: 11945066 DOI: 10.1006/mthe.2002.0562] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The delivery of anti-arthritic genes to the synovial lining of joints is being explored as a strategy for the treatment of rheumatoid arthritis. In this study, we have investigated the use of VSV-G pseudotyped, HIV-1-based lentiviral vectors for gene delivery to articular tissues. Recombinant lentivirus containing a beta-galactosidase/neomycin resistance fusion gene under control of the elongation factor (EF) 1alpha promoter efficiently transduced human and rat synoviocytes and chondrocytes in cell culture. When directly injected into the knees of rats, this vector transduced synovial lining cells, but not other articular tissues such as cartilage. We also constructed a lentiviral vector containing the human interleukin-1 receptor antagonist (IL1RA) cDNA and examined transgene expression in vitro and in vivo following injection into the knee joints of rats. In immunocompetent animals, intra-articular IL1RA expression was high and persisted, at a sharply declining rate, for approximately 20 days. In immunocompromised rats, however, lentivirus-mediated intra-articular expression of human IL1RA was found to persist for at least 6 weeks. Extra-articular expression of the transgene was minimal. These results indicate that lentiviral vectors are capable of efficient in vivo gene transfer to synovium and merit further investigation as a means of providing long-term expression for gene-based treatments of arthritis.
Collapse
Affiliation(s)
- Elvire Gouze
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Hsich G, Sena-Esteves M, Breakefield XO. Critical issues in gene therapy for neurologic disease. Hum Gene Ther 2002; 13:579-604. [PMID: 11916483 DOI: 10.1089/10430340252837198] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene therapy for the nervous system is a newly emerging field with special issues related to modes of delivery, potential toxicity, and realistic expectations for treatment of this vital and highly complex tissue. This review focuses on the potential for gene delivery to the brain, as well as possible risks and benefits of these procedures. This includes discussion of appropriate vectors, such as adeno-associated virus, lentivirus, gutless adenovirus, and herpes simplex virus hybrid amplicons, and cell vehicles, such as neuroprogenitor cells. Routes of delivery for focal and global diseases are enumerated, including use of migratory cells, facilitation of vascular delivery across the blood-brain barrier, cerebrospinal fluid delivery, and convection injection. Attention is given to examples of diseases falling into different etiologic types: metabolic deficiency states, including Canavan disease and lysosomal storage disorders; and degenerative conditions, including Parkinson's disease and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gary Hsich
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
140
|
Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, Griese DP, Dell'Acqua G, Mann MJ, Oyama J, Yet SF, Layne MD, Perrella MA, Dzau VJ. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 2002; 105:602-7. [PMID: 11827926 DOI: 10.1161/hc0502.103363] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. METHODS AND RESULTS Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. CONCLUSIONS This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.
Collapse
Affiliation(s)
- Luis G Melo
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
van de Loo FAJ, van den Berg WB. Gene therapy for rheumatoid arthritis. Lessons from animal models, including studies on interleukin-4, interleukin-10, and interleukin-1 receptor antagonist as potential disease modulators. Rheum Dis Clin North Am 2002; 28:127-49. [PMID: 11840694 DOI: 10.1016/s0889-857x(03)00073-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Evidence from animal models convincingly supports the fact that gene therapy can be an advantageous strategy in the treatment of chronic destructive RA. In this article, we review the state of the art in anticytokine gene transfer into the synovial arthritic joint with the emphasis on IL-1Ra, IL-4, and IL-10 effects on CIA in mice. In CIA, only high and continuous release of IL-1Ra protein systemically by mini-osmotic pumps could prevent disease onset and was curative in mice. Local gene transfer seemed to be the obvious way to reach the high local levels that are demanded for protection. It was shown that local IL-1Ra overexpression reduced arthritis incidence and severity as well as tissue destruction. In line with observations about neutralizing antibodies and soluble receptors, gene therapy with TNF soluble receptors provided anti-inflammatory activity in early arthritis but not in advanced arthritis. The limited efficacy at later stages and poor protection against destruction imply that the combination of gene constructs for TNF and IL-1 inhibitors is the obvious direction for future therapy. Apart from targeting of proinflammatory cytokines, adenoviral overexpression of IL-10 and IL-4 may have therapeutic applicability. Local injection of AdIL-10 in the knee joint was effective at the site, but also highly reduced spreading to ipsilateral sites. High local dosages caused suppression in contralateral sites as well. The reports on the anti-inflammatory effect of AdIL-4 are conflicting; however, all present data showed that IL-4 overexpression provides impressive protection against cartilage and bone erosion. Apart from the local effects in the injected joint, it is becoming more and more clear that local treatment also affects arthritis in nearby joints. This is an intriguing general finding, which may enlarge the therapeutic applicability of gene transfer in human arthritis. Proving the feasibility of gene therapy in experimental arthritis, most research efforts are now focused on improving local gene delivery by enhanced viral infection of synovial cells, using RGD-modified adenovirus, or achieving prolonged persistence and regulated expression with AAV. Elegant future alternatives are the application of in vitro engineered T cells as a vehicle capable of specific homing to joint tissues. The feasibility of viral transduction of chondrocytes to obtain a tissue-specific approach to treat articular cartilage damage in arthritis needs further attention.
Collapse
Affiliation(s)
- Fons A J van de Loo
- Department of Rheumatology, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
142
|
Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76:791-801. [PMID: 11752169 PMCID: PMC136844 DOI: 10.1128/jvi.76.2.791-801.2002] [Citation(s) in RCA: 590] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The serotypes of adeno-associated virus (AAV) have the potential to become important resources for clinical gene therapy. In an effort to compare the role of serotype-specific virion shells on vector transduction, we cloned each of the serotype capsid coding domains into a common vector backbone containing AAV type 2 replication genes. This strategy allowed the packaging of AAV2 inverted terminal repeat vectors into each serotype-specific virions. Each of these helper plasmids (pXR1 through pXR5) efficiently replicated the transgene DNA and expressed helper proteins at nearly equivalent levels. In this study, we observed a correlation between the amount of transgene replication and packaging efficiency. The physical titer of these hybrid vectors ranged between 1.3 x 10(11) and 9.8 x 10(12)/ml (types 1 and 2, respectively). Of the five serotype vectors, only types 2 and 3 were efficiently purified by heparin-Sepharose column chromatography, illustrating the high degree of similarity between these virions. We analyzed vector transduction in reference and mutant Chinese hamster ovary cells deficient in heparan sulfate proteoglycan and saw a correlation between transduction and heparan sulfate binding data. In this analysis, types 1 and 5 were most consistent in transduction efficiency across all cell lines tested. In vivo each serotype was ranked after comparison of transgene levels by using different routes of injection and strains of rodents. Overall, in this analysis, type 1 was superior for efficient transduction of liver and muscle, followed in order by types 5, 3, 2, and 4. Surprisingly, this order changed when vector was introduced into rat retina. Types 5 and 4 were most efficient, followed by type 1. These data established a hierarchy for efficient serotype-specific vector transduction depending on the target tissue. These data also strongly support the need for extending these analyses to additional animal models and human tissue. The development of these helper plasmids should facilitate direct comparisons of serotypes, as well as begin the standardization of production for further clinical development.
Collapse
Affiliation(s)
- Joseph E Rabinowitz
- Gene Therapy Center. Laboratoire de Thérapie Génique, CHU Hotel-DIEU, 44035 Nantes Cedex 01, France
| | | | | | | | | | | | | |
Collapse
|
143
|
Francis SC, Raizada MK, Mangi AA, Melo LG, Dzau VJ, Vale PR, Isner JM, Losordo DW, Chao J, Katovich MJ, Berecek KH. Genetic targeting for cardiovascular therapeutics: are we near the summit or just beginning the climb? Physiol Genomics 2001; 7:79-94. [PMID: 11773594 DOI: 10.1152/physiolgenomics.00073.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is based on an Experimental Biology symposium held in April 2001 and presents the current status of gene therapy for cardiovascular diseases in experimental studies and clinical trials. Evidence for the use of gene therapy to limit neointimal hyperplasia and confer myocardial protection was presented, and it was found that augmenting local nitric oxide (NO) production using gene transfer (GT) of NO synthase or interruption of cell cycle progression through a genetic transfer of cell cycle regulatory genes limited vascular smooth muscle hyperplasia in animal models and infra-inguinal bypass patients. The results of application of vascular endothelial growth factor (VEGF) GT strategies for therapeutic angiogenesis in critical limb and myocardial ischemia in pilot clinical trials was reviewed. In addition, experimental evidence was presented that genetic manipulation of peptide systems (i.e., the renin-angiotensin II system and the kallikrein-kinin system) was effective in the treatment of systemic cardiovascular diseases such as hypertension, heart failure, and renal failure. Although, as of yet, there are no well controlled human trials proving the clinical benefits of gene therapy for cardiovascular diseases, the data presented here in animal models and in human subjects show that genetic targeting is a promising and encouraging modality, not only for the treatment and long-term control of cardiovascular diseases, but for their prevention as well.
Collapse
Affiliation(s)
- S C Francis
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida Brain Institute, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Metcalfe BL, Sellers KW, Jeng MJ, Huentelman MJ, Katovich MJ, Raizada MK. Gene therapy for cardiovascular disorders: is there a future? Ann N Y Acad Sci 2001; 953:31-42. [PMID: 11795421 DOI: 10.1111/j.1749-6632.2001.tb11358.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incidence of cardiovascular disease has reached epidemic proportions in spite of recent advances in improving the efficacy of pharmacotherapeutics. This has led many to conclude that drug therapy has reached a plateau in its effectiveness. As a result, our efforts have been diverted to explore the use of gene transfer approaches for long-term control of these pathophysiological conditions. The purpose of this review is to present various approaches that are being undertaken to provide "proof of principle" for gene therapy for cardiovascular diseases. Finally, we will discuss the future of gene therapy and other new technologies that may further advance this field of therapeutics.
Collapse
Affiliation(s)
- B L Metcalfe
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
Type 1 diabetes, along with its long-term complications, imposes a serious impact on public health. In spite of the development and application of various insulin formulations, exogenous insulin neither achieves the same degree of glycemic control as that provided by endogenous insulin, nor prevents the long-term complications associated with type 1 diabetes. As an alternative strategy, insulin gene transfer is being explored to restore endogenous insulin production in type 1 diabetes. Sustained hepatic insulin production has been shown to reverse ketonuria, prevent ketoacidosis, improve body weight gain and significantly ameliorate the adverse effects of insulin deficiency in diabetic animals. However, to achieve adequately regulated insulin production in response to changes in blood glucose concentrations remains a major hurdle. This article will review the most recent advances made to address this crucial limitation. In addition, based on the significance of maintaining basal plasma insulin for management of type 1 diabetes, we discuss the feasibility of developing basal hepatic insulin production as an auxiliary treatment to current insulin therapy for achieving tight glycemic control in type 1 diabetes.
Collapse
Affiliation(s)
- H Dong
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, PO Box 1496, New York, NY 10029, USA
| | | |
Collapse
|
146
|
Smith PG, Coletta PL, Markham AF, Whitehouse A. In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther 2001; 8:1762-9. [PMID: 11803395 DOI: 10.1038/sj.gt.3301595] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2001] [Accepted: 10/09/2001] [Indexed: 11/09/2022]
Abstract
Herpesvirus saimiri (HVS) has several properties that make it amenable to development as a gene delivery vector. HVS offers the potential to incorporate large amounts of heterologous DNA and infect a broad range of human cell lines. Upon infection the viral genome can persist by virtue of episomal maintenance and stably maintains heterologous gene expression. Here we report an evaluation of the in vivo properties of HVS, with a view to its development as a gene delivery system. We demonstrate for the first time, the long-term persistence of the HVS genome in tumour xenografts generated from HVS-infected human carcinoma cell lines. The HVS-based vector remained latent in the xenograft without spreading to other organs. Moreover, the long-term in vivo maintenance of the HVS genome, as a nonintegrated circular episome, provided efficient sustained expression of a heterologous transgene. These in vivo results suggest that HVS-based vectors have potential for gene therapy applications.
Collapse
Affiliation(s)
- P G Smith
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, UK
| | | | | | | |
Collapse
|
147
|
Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla-Herttuala S, Finegold DN, Ferrell RE, Alitalo K. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98:12677-82. [PMID: 11592985 PMCID: PMC60113 DOI: 10.1073/pnas.221449198] [Citation(s) in RCA: 446] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary human lymphedema (Milroy's disease), characterized by a chronic and disfiguring swelling of the extremities, is associated with heterozygous inactivating missense mutations of the gene encoding vascular endothelial growth factor C/D receptor (VEGFR-3). Here, we describe a mouse model and a possible treatment for primary lymphedema. Like the human patients, the lymphedema (Chy) mice have an inactivating Vegfr3 mutation in their germ line, and swelling of the limbs because of hypoplastic cutaneous, but not visceral, lymphatic vessels. Neuropilin (NRP)-2 bound VEGF-C and was expressed in the visceral, but not in the cutaneous, lymphatic endothelia, suggesting that it may participate in the pathogenesis of lymphedema. By using virus-mediated VEGF-C gene therapy, we were able to generate functional lymphatic vessels in the lymphedema mice. Our results suggest that growth factor gene therapy is applicable to human lymphedema and provide a paradigm for other diseases associated with mutant receptors.
Collapse
Affiliation(s)
- M J Karkkainen
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, P.O.B. 63 (Haartmaninkatu 8), 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Lowenstein PR, Castro MG. Genetic engineering within the adult brain: implications for molecular approaches to behavioral neuroscience. Physiol Behav 2001; 73:833-9. [PMID: 11566216 DOI: 10.1016/s0031-9384(01)00520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Currently, the most popular technology used to modify the molecular makeup of the nervous system is through germline modifications of early embryos. This allows to construct gene 'knock-ins' (gene overexpression) or 'knock-outs' (gene deletions). This technology leads to gene additions or deletions from the earliest developmental stages. This can potentially lead to compensatory genetic changes. The technology to achieve inducible and cell-type-specific changes in gene expression in transgenic animals has been established. However, it is not yet possible, to reliably turn a particular gene 'on' or 'off' exclusively in adult animals. Alternatively, the use of gene transfer technology in fully mature animals could overcome many of these shortcomings. Gene therapy is the use of nucleic acids as drugs, and uses gene transfer technology to genetically engineer adult animals. Viral and nonviral vectors have been modified to serve as vectors for nucleic acid sequences of interest. Thus, over the last two decades, methods have been developed to deliver particular nucleic acids directly to target tissues. Further technological advances allow delivery of transgenes or antisense mRNAs directly to predetermined cell types, as well as their delivery under the control of inducible promoter elements. Combined transgenic (i.e., germline modifications) and viral vector technology will also be very powerful in allowing the genetic modification of selected neuronal populations in adult animals. In this review, we discuss the potential of gene delivery to the brain to analyze the effect of genetic engineering of particular neuronal groups on behavior, as well as recent developments and applications of newly engineered vector systems to allow transgenesis within nervous structures of adult animals.
Collapse
Affiliation(s)
- P R Lowenstein
- Molecular Medicine and Gene Therapy Unit, School of Medicine, University of Manchester, Room 1.302, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
149
|
Abstract
As of summer 2000, more than 400 protocols developed for human gene therapy have been reported, and there have been recent successful applications in some diseases such as arteriosclerosis obliterance, immunodeficiency X-1 (SCID-X1) and hemophilia B. However, complications have also occurred. Successful gene therapy is dependent on the development of an effective gene delivery system. One approach is development of chimeric vector systems that combine at least two different vector systems. However, a perfect vector system has not yet been constructed. Difficulties of in vivo gene transfer appear to result from resistance of living cells to invasion by foreign materials and from interference of cellular functions. We should reevaluate what barriers in tissues affect in vivo gene transfection and how to solve these problems for gene therapy. Moreover, in Japan, there should be more extensive preparation of social systems to promote clinical trials based on basic research.
Collapse
Affiliation(s)
- Y Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
150
|
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7:33-40. [PMID: 11135613 DOI: 10.1038/83324] [Citation(s) in RCA: 892] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Considered by some to be among the simpler forms of life, viruses represent highly evolved natural vectors for the transfer of foreign genetic information into cells. This attribute has led to extensive attempts to engineer recombinant viral vectors for the delivery of therapeutic genes into diseased tissues. While substantial progress has been made, and some clinical successes are over the horizon, further vector refinement and/or development is required before gene therapy will become standard care for any individual disorder.
Collapse
Affiliation(s)
- M A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|