101
|
Pedersen J, Koumakpayi IH, Babuadze G, Baz M, Ndiaye O, Faye O, Diagne CT, Dia N, Naghibosadat M, McGeer A, Muberaka S, Moukandja IP, Ndidi S, Tauil CB, Lekana-Douki JB, Loucoubar C, Faye O, Sall A, Magalhães KG, Weis N, Kozak R, Kobinger GP, Fausther-Bovendo H. Cross-reactive immunity against SARS-CoV-2 N protein in Central and West Africa precedes the COVID-19 pandemic. Sci Rep 2022; 12:12962. [PMID: 35902675 PMCID: PMC9333058 DOI: 10.1038/s41598-022-17241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/22/2022] [Indexed: 12/22/2022] Open
Abstract
Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.
Collapse
Affiliation(s)
- Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada
| | | | - Giorgi Babuadze
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mariana Baz
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada
| | | | - Oumar Faye
- Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Ndongo Dia
- Institut Pasteur de Dakar, Dakar, Senegal
| | - Maedeh Naghibosadat
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Samira Muberaka
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | - Stella Ndidi
- Centre Hospitalier Universitaire de Libreville, Libreville, Gabon
| | - Carlos B Tauil
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Jean-Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | | | | | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Kozak
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Gary P Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Hugues Fausther-Bovendo
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada. .,Global Urgent and Advanced Research and Development, 911 Rue Principale, Unit 100, Batiscan, QC, G0X 1A0, Canada.
| |
Collapse
|
102
|
Ng KW, Faulkner N, Finsterbusch K, Wu M, Harvey R, Hussain S, Greco M, Liu Y, Kjaer S, Swanton C, Gandhi S, Beale R, Gamblin SJ, Cherepanov P, McCauley J, Daniels R, Howell M, Arase H, Wack A, Bauer DLV, Kassiotis G. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci Transl Med 2022; 14:eabn3715. [PMID: 35895836 DOI: 10.1126/scitranslmed.abn3715] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Katja Finsterbusch
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yafei Liu
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Sonia Gandhi
- Neurodegradation Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Cherepanov
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rodney Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David L V Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK
| |
Collapse
|
103
|
Elko EA, Nelson GA, Mead HL, Kelley EJ, Carvalho ST, Sarbo NG, Harms CE, Le Verche V, Cardoso AA, Ely JL, Boyle AS, Piña A, Henson SN, Rahee F, Keim PS, Celona KR, Yi J, Settles EW, Bota DA, Yu GC, Morris SR, Zaia JA, Ladner JT, Altin JA. COVID-19 vaccination elicits an evolving, cross-reactive antibody response to epitopes conserved with endemic coronavirus spike proteins. Cell Rep 2022; 40:111022. [PMID: 35753310 PMCID: PMC9188999 DOI: 10.1016/j.celrep.2022.111022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.
Collapse
Affiliation(s)
- Evan A Elko
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Georgia A Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Heather L Mead
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Erin J Kelley
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Sophia T Carvalho
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Nathan G Sarbo
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Caroline E Harms
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Virginia Le Verche
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Angelo A Cardoso
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jennifer L Ely
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Alejandra Piña
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Sierra N Henson
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Paul S Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Erik W Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniela A Bota
- Alpha Stem Cell Clinic, University of California at Irvine, Irvine, CA, USA
| | | | - Sheldon R Morris
- Alpha Stem Cell Clinic, University of California at San Diego, La Jolla, CA, USA
| | - John A Zaia
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA.
| |
Collapse
|
104
|
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23:1008-1020. [PMID: 35761083 DOI: 10.1038/s41590-022-01248-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Two and a half years into the COVID-19 pandemic, we have gained many insights into the human antibody response to the causative SARS-CoV-2 virus. In this Review, we summarize key observations of humoral immune responses in people with COVID-19, discuss key features of infection- and vaccine-induced neutralizing antibodies, and consider vaccine designs for inducing antibodies that are broadly protective against different variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China. .,Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
105
|
Lima NS, Musayev M, Johnston TS, Wagner DA, Henry AR, Wang L, Yang ES, Zhang Y, Birungi K, Black WP, O’Dell S, Schmidt SD, Moon D, Lorang CG, Zhao B, Chen M, Boswell KL, Roberts-Torres J, Davis RL, Peyton L, Narpala SR, O’Connell S, Wang J, Schrager A, Talana CA, Leung K, Shi W, Khashab R, Biber A, Zilberman T, Rhein J, Vetter S, Ahmed A, Novik L, Widge A, Gordon I, Guech M, Teng IT, Phung E, Ruckwardt TJ, Pegu A, Misasi J, Doria-Rose NA, Gaudinski M, Koup RA, Kwong PD, McDermott AB, Amit S, Schacker TW, Levy I, Mascola JR, Sullivan NJ, Schramm CA, Douek DC. Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.28.486152. [PMID: 35378757 PMCID: PMC8978934 DOI: 10.1101/2022.03.28.486152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.
Collapse
Affiliation(s)
- Noemia S. Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Timothy S. Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Danielle A. Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kevina Birungi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Walker P. Black
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Cynthia G. Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rachel L. Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alexander Schrager
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rawan Khashab
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Zilberman
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joshua Rhein
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sara Vetter
- Minnesota Department of Health, St Paul, MN 55164, USA
| | - Afeefa Ahmed
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Mercy Guech
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 5262112, Israel
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| |
Collapse
|
106
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
107
|
Wang G, Xiang Z, Wang W, Chen Z. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B 2022; 23:451-460. [PMID: 35686525 PMCID: PMC9198228 DOI: 10.1631/jzus.b2200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
108
|
He WT, Musharrafieh R, Song G, Dueker K, Tse LV, Martinez DR, Schäfer A, Callaghan S, Yong P, Beutler N, Torres JL, Volk RM, Zhou P, Yuan M, Liu H, Anzanello F, Capozzola T, Parren M, Garcia E, Rawlings SA, Smith DM, Wilson IA, Safonova Y, Ward AB, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nat Immunol 2022; 23:960-970. [PMID: 35654851 PMCID: PMC10083051 DOI: 10.1038/s41590-022-01222-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Reid M Volk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephen A Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Departments of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
109
|
Ma Y, Wang Y, Dong C, Gonzalez GX, Zhu W, Kim J, Wei L, Kang S, Wang B. SARS-CoV-2 Spike Stem Protein Nanoparticles Elicited Broad ADCC and Robust Neutralization against Variants in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200836. [PMID: 35607768 PMCID: PMC9233155 DOI: 10.1002/smll.202200836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic. The virus is rapidly evolving, characterized by the emergence of several major variants. Stable prefusion spike protein (Pre) is the immunogen in current vaccines but is limited in protecting against different variants. Here, the immune responses induced by the relatively conserved stem subunit (S2) of spike protein versus Pre are investigated. Pre generates the most robust neutralization responses against SARS-CoV-2 variants in vesicular stomatitis virus pseudovirus-based assessment but elicits less antibody-dependent cellular cytotoxicity (ADCC) activity than S2. By contrast, S2 induces the most balanced immunoglobulin G (IgG) antibodies with potent and broad ADCC activity although produces weaker neutralization. The immunogenicity of S2 and Pre improves by incorporating the two proteins into double-layered protein nanoparticles. The resulting protein nanoparticles Pre/S2 elicit higher neutralizing antibodies than Pre alone, and stronger ADCC than S2 alone. Moreover, nanoparticles produce more potent and balanced serum IgG antibodies than the corresponding soluble protein mixture, and the immune responses are sustained for at least four months after the immunization. Thus, the double-layered protein nanoparticles have the potential to be developed into broader SARS-CoV-2 vaccines with excellent safety profiles.
Collapse
Affiliation(s)
- Yao Ma
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Ye Wang
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Chunhong Dong
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Gilbert X. Gonzalez
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Wandi Zhu
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Joo Kim
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Lai Wei
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Sang‐Moo Kang
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| | - Bao‐Zhong Wang
- Center for InflammationImmunity & InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGA30302USA
| |
Collapse
|
110
|
Vishweshwaraiah YL, Hnath B, Rackley B, Wang J, Gontu A, Chandler M, Afonin KA, Kuchipudi SV, Christensen N, Yennawar NH, Dokholyan NV. Adaptation-proof SARS-CoV-2 vaccine design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.17.492310. [PMID: 35611332 PMCID: PMC9128779 DOI: 10.1101/2022.05.17.492310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface spike glycoprotein - a major antibody target - is critical for virus entry via engagement of human angiotensin-converting enzyme 2 (ACE2) receptor. Despite successes with existing vaccines and therapies that primarily target the receptor binding domain (RBD) of the spike protein, the susceptibility of RBD to mutations provides escape routes for the SARS-CoV-2 from neutralizing antibodies. On the other hand, structural conservation in the spike protein can be targeted to reduce escape mutations and achieve broad protection. Here, we designed candidate stable immunogens that mimic surface features of selected conserved regions of spike protein through 'epitope grafting,' in which we present the target epitope topology on diverse heterologous scaffolds that can structurally accommodate the spike epitopes. Structural characterization of the epitope-scaffolds showed stark agreement with our computational models and target epitopes. The sera from mice immunized with engineered designs display epitope-scaffolds and spike binding activity. We also demonstrated the utility of the designed epitope-scaffolds in diagnostic applications. Taken all together, our study provides important methodology for targeting the conserved, non-RBD structural motifs of spike protein for SARS-CoV-2 epitope vaccine design and demonstrates the potential utility of 'epitope grafting' in rational vaccine design.
Collapse
|
111
|
Bangaru S, Antanasijevic A, Kose N, Sewall LM, Jackson AM, Suryadevara N, Zhan X, Torres JL, Copps J, de la Peña AT, Crowe JE, Ward AB. Structural mapping of antibody landscapes to human betacoronavirus spike proteins. SCIENCE ADVANCES 2022; 8:eabn2911. [PMID: 35507649 PMCID: PMC9067923 DOI: 10.1126/sciadv.abn2911] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Preexisting immunity against seasonal coronaviruses (CoVs) represents an important variable in predicting antibody responses and disease severity to severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infections. We used electron microscopy-based polyclonal epitope mapping (EMPEM) to characterize the antibody specificities against β-CoV spike proteins in prepandemic (PP) sera or SARS-CoV-2 convalescent (SC) sera. We observed that most PP sera had antibodies specific to seasonal human CoVs (HCoVs) OC43 and HKU1 spike proteins while the SC sera showed reactivity across all human β-CoVs. Detailed molecular mapping of spike-antibody complexes revealed epitopes that were differentially targeted by preexisting antibodies and SC serum antibodies. Our studies provide an antigenic landscape to β-HCoV spikes in the general population serving as a basis for cross-reactive epitope analyses in SARS-CoV-2-infected individuals.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiaoyan Zhan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
112
|
Lin JJ, Tien CF, Kuo YP, Lin EJ, Tsai WH, Chen MY, Tsai PJ, Su YW, Pathak N, Yang JM, Yu CY, Chuang ZS, Wu HC, Tsai WT, Dai SS, Liao HC, Chai KM, Su YS, Chuang TH, Liu SJ, Chen HW, Dou HY, Chen FJ, Chen CT, Liao CL, Yu GY. Furin and TMPRSS2 Resistant Spike Induces Robust Humoral and Cellular Immunity Against SARS-CoV-2 Lethal Infection. Front Immunol 2022; 13:872047. [PMID: 35585971 PMCID: PMC9108258 DOI: 10.3389/fimmu.2022.872047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.
Collapse
Affiliation(s)
- Jhe-Jhih Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Feng Tien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - En-Ju Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Hsiang Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Nikhil Pathak
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Syong Dai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Siang Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Guann-Yi Yu,
| |
Collapse
|
113
|
Gruell H, Vanshylla K, Weber T, Barnes CO, Kreer C, Klein F. Antibody-Mediated Neutralization of SARS-CoV-2. Immunity 2022; 55:925-944. [PMID: 35623355 PMCID: PMC9118976 DOI: 10.1016/j.immuni.2022.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Neutralizing antibodies can block infection, clear pathogens, and are essential to provide long-term immunity. Since the onset of the pandemic, SARS-CoV-2 neutralizing antibodies have been comprehensively investigated and critical information on their development, function, and potential use to prevent and treat COVID-19 have been revealed. With the emergence of SARS-CoV-2 immune escape variants, humoral immunity is being challenged, and a detailed understanding of neutralizing antibodies is essential to guide vaccine design strategies as well as antibody-mediated therapies. In this review, we summarize some of the key findings on SARS-CoV-2 neutralizing antibodies, with a focus on their clinical application.
Collapse
Affiliation(s)
- Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
114
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
115
|
Hancock TJ, Hickman P, Kazerooni N, Kennedy M, Kania SA, Dennis M, Szafranski N, Gerhold R, Su C, Masi T, Smith S, Sparer TE. Possible Cross-Reactivity of Feline and White-Tailed Deer Antibodies against the SARS-CoV-2 Receptor Binding Domain. J Virol 2022; 96:e0025022. [PMID: 35352999 PMCID: PMC9044950 DOI: 10.1128/jvi.00250-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.
Collapse
Affiliation(s)
- Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Peyton Hickman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Niloo Kazerooni
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa Kennedy
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Michelle Dennis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Nicole Szafranski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tom Masi
- Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Stephen Smith
- MEDIC Regional Blood Center, Knoxville, Tennessee, USA
| | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
116
|
de Oliveira-Filho EF, de Carvalho OV, Carneiro IO, Fernandes FD, Vaz SN, Pedroso C, Gonzalez-Auza L, Urbieta VC, Kühne A, Mayoral R, Jo WK, Moreira-Soto A, Reusken CBEM, Drosten C, Brites C, Osterrieder K, Netto EM, Ristow LE, Maia RDC, Vogel FSF, de Almeida NR, Franke CR, Drexler JF. Frequent Infection of Cats With SARS-CoV-2 Irrespective of Pre-Existing Enzootic Coronavirus Immunity, Brazil 2020. Front Immunol 2022; 13:857322. [PMID: 35450070 PMCID: PMC9016337 DOI: 10.3389/fimmu.2022.857322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Carnivores such as cats and minks are highly susceptible to SARS-CoV-2. Brazil is a global COVID-19 hot spot and several cases of human-to-cat transmission have been documented. We investigated the spread of SARS-CoV-2 by testing 547 domestic cats sampled between July-November 2020 from seven states in southern, southeastern, and northeastern Brazil. Moreover, we investigated whether immune responses elicited by enzootic coronaviruses affect SARS-CoV-2 infection in cats. We found infection with significantly higher neutralizing antibody titers against the Gamma variant of concern, endemic in Brazil during 2020, than against an early SARS-CoV-2 B.1 isolate (p<0.0001), validating the use of Gamma for further testing. The overall SARS-CoV-2 seroprevalence in Brazilian cats during late 2020 validated by plaque reduction neutralization test (PRNT90) was 7.3% (95% CI, 5.3-9.8). There was no significant difference in SARS-CoV-2 seroprevalence in cats between Brazilian states, suggesting homogeneous infection levels ranging from 4.6% (95% CI, 2.2-8.4) to 11.4% (95% CI, 6.7-17.4; p=0.4438). Seroprevalence of the prototypic cat coronavirus Feline coronavirus (FCoV) in a PRNT90 was high at 33.3% (95% CI, 24.9-42.5) and seroprevalence of Bovine coronavirus (BCoV) was low at 1.7% (95% CI, 0.2-5.9) in a PRNT90. Neutralizing antibody titers were significantly lower for FCoV than for SARS-CoV-2 (p=0.0001), consistent with relatively more recent infection of cats with SARS-CoV-2. Neither the magnitude of SARS-CoV-2 antibody titers (p=0.6390), nor SARS-CoV-2 infection status were affected by FCoV serostatus (p=0.8863). Our data suggest that pre-existing immunity against enzootic coronaviruses neither prevents, nor enhances SARS-CoV-2 infection in cats. High SARS-CoV-2 seroprevalence already during the first year of the pandemic substantiates frequent infection of domestic cats and raises concerns on potential SARS-CoV-2 mutations escaping human immunity upon spillback.
Collapse
Affiliation(s)
- Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Ianei O Carneiro
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | | | - Sara Nunes Vaz
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Célia Pedroso
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Lilian Gonzalez-Auza
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Carvalho Urbieta
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rafaela Mayoral
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Wendy K Jo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrés Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Brites
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Martins Netto
- Disease Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | - Rita de Cassia Maia
- Veterinary Medicine Department, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Nadia Rossi de Almeida
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Carlos Roberto Franke
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany
| |
Collapse
|
117
|
Boland BS, Goodwin B, Zhang Z, Bloom N, Kato Y, Neill J, Le H, Tysl T, Collins AE, Dulai PS, Singh S, Nguyen NH, Grifoni A, Sette A, Weiskopf D, Chang JT, Dan JM. Preserved SARS-CoV-2 Vaccine Cell-Mediated Immunogenicity in Patients With Inflammatory Bowel Disease on Immune-Modulating Therapies. Clin Transl Gastroenterol 2022; 13:e00484. [PMID: 35347100 PMCID: PMC9038482 DOI: 10.14309/ctg.0000000000000484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Immune-modulating medications for inflammatory bowel diseases (IBDs) have been associated with suboptimal vaccine responses. There are conflicting data with SARS-CoV-2 vaccination. We therefore assessed SARS-CoV-2 vaccine immunogenicity at 2 weeks after second mRNA vaccination in 29 patients with IBD compared with 12 normal healthy donors. We observed reduced humoral immunity in patients with IBD on infliximab. However, we observed no difference in humoral and cell-mediated immunity in patients with IBD on infliximab with a thiopurine or vedolizumab compared with normal healthy donors. This is the first study to demonstrate comparable cell-mediated immunity with SARS-CoV-2 vaccination in patients with IBD treated with different immune-modulating medications.
Collapse
Affiliation(s)
- Brigid S. Boland
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Nathaniel Bloom
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Yu Kato
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Jennifer Neill
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Helen Le
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Tiffani Tysl
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Angelina E. Collins
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Parambir S. Dulai
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Siddharth Singh
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Nghia H. Nguyen
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - John T. Chang
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
118
|
Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, He WT, Zhu X, Callaghan S, Yong P, Anzanello F, Peng L, Ricketts J, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Teijaro JR, Rogers TF, Wilson IA, Burton DR, Andrabi R. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med 2022; 14:eabi9215. [PMID: 35133175 PMCID: PMC8939767 DOI: 10.1126/scitranslmed.abi9215] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human β-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in β-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on β-CoV spike proteins for protective antibodies that may facilitate the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
119
|
Ercanoglu MS, Gieselmann L, Dähling S, Poopalasingam N, Detmer S, Koch M, Korenkov M, Halwe S, Klüver M, Di Cristanziano V, Janicki H, Schlotz M, Worczinski J, Gathof B, Gruell H, Zehner M, Becker S, Vanshylla K, Kreer C, Klein F. No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. iScience 2022; 25:103951. [PMID: 35224466 PMCID: PMC8857777 DOI: 10.1016/j.isci.2022.103951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults. Comprehensive analysis of the B cell response to SARS-CoV-2 in pre-pandemic samples No substantial plasma and IgG reactivity against SARS-CoV-2 MAbs isolated from pre-pandemic samples showed no SARS-CoV-2 neutralizing activity No indication of competent preexisting B cell immunity against SARS-CoV-2
Collapse
Affiliation(s)
- Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Susanne Detmer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michael Klüver
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Veronica Di Cristanziano
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johanna Worczinski
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
120
|
Pattinson D, Jester P, Guan L, Yamayoshi S, Chiba S, Presler R, Rao H, Iwatsuki-Horimoto K, Ikeda N, Hagihara M, Uchida T, Mitamura K, Halfmann P, Neumann G, Kawaoka Y. A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs. Viruses 2022; 14:562. [PMID: 35336970 PMCID: PMC8955134 DOI: 10.3390/v14030562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Collapse
Affiliation(s)
- David Pattinson
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter Jester
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lizheng Guan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
- The Research Center for Global Viral Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8665, Japan
| | - Shiho Chiba
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Presler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hongyu Rao
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Nobuhiro Ikeda
- Department of General Internal Medicine, Eiju General Hospital, Tokyo 104-0045, Japan
| | - Masao Hagihara
- Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan
| | - Tomoyuki Uchida
- Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan
| | - Keiko Mitamura
- Division of Infection Control, Eiju General Hospital, Tokyo 104-0045, Japan
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| |
Collapse
|
121
|
Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.04.479488. [PMID: 35291291 PMCID: PMC8923106 DOI: 10.1101/2022.03.04.479488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
122
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
123
|
Spencer AJ, Morris S, Ulaszewska M, Powers C, Kailath R, Bissett C, Truby A, Thakur N, Newman J, Allen ER, Rudiansyah I, Liu C, Dejnirattisai W, Mongkolsapaya J, Davies H, Donnellan FR, Pulido D, Peacock TP, Barclay WS, Bright H, Ren K, Screaton G, McTamney P, Bailey D, Gilbert SC, Lambe T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine 2022; 77:103902. [PMID: 35228013 PMCID: PMC8881183 DOI: 10.1016/j.ebiom.2022.103902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.
Collapse
Affiliation(s)
- Alexandra J Spencer
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Susan Morris
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Powers
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Reshma Kailath
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Cameron Bissett
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Adam Truby
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nazia Thakur
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Elizabeth R Allen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Indra Rudiansyah
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Chang Liu
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Wanwisa Dejnirattisai
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Juthathip Mongkolsapaya
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hannah Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Francesca R Donnellan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Helen Bright
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Kuishu Ren
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Gavin Screaton
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Patrick McTamney
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| |
Collapse
|
124
|
Ruggiero A, Piubelli C, Calciano L, Accordini S, Valenti MT, Carbonare LD, Siracusano G, Temperton N, Tiberti N, Longoni SS, Pizzato M, Accordini S, Fantoni T, Lopalco L, Beretta A, Bisoffi Z, Zipeto D. SARS-CoV-2 vaccination elicits unconventional IgM specific responses in naïve and previously COVID-19-infected individuals. EBioMedicine 2022; 77:103888. [PMID: 35196644 PMCID: PMC8858081 DOI: 10.1016/j.ebiom.2022.103888] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Currently, evaluation of the IgG antibodies specific for the SARS-CoV-2 Spike protein following vaccination is used worldwide to estimate vaccine response. Limited data are available on vaccine-elicited IgM antibodies and their potential implication in immunity to SARS-CoV-2. METHODS We performed a longitudinal study to quantify anti-S SARS-CoV-2 IgG and IgM (IgG-S and IgM-S) in health care worker (HCW) recipients of the BNT162b2 vaccine. Samples were collected before administration (T0), at the second dose (T1) and three weeks after T1 (T2). The cohort included 1584 immunologically naïve to SARS-CoV-2 (IN) and 289 with history of previous infection (PI). FINDINGS IN showed three patterns of responses: (a) IgG positive/IgM negative (36.1%), (b) coordinated IgM-S/IgG-S responses appearing at T1 (37.4%) and (c) IgM appearing after IgG (26.3%). Coordinated IgM-S/IgG-S responses were associated with higher IgG titres. In IgM-S positive PI, 64.5% were IgM-S positive before vaccination, whereas 32% and 3.5% developed IgM-S after the first and second vaccine dose, respectively. IgM-S positive sera had higher pseudovirus neutralization titres compared to the IgM-S negative. INTERPRETATION Coordinated expression of IgG-S and IgM-S after vaccination was associated with a significantly more efficient response in both antibody levels and virus-neutralizing activity. The unconventional IgG-S positive/IgM-S negative responses may suggest a recruitment of cross coronaviruses immunity by vaccination, warranting further investigation. FUNDING Italian Ministry of Health under "Fondi Ricerca Corrente"- L1P5 and "Progetto Ricerca Finalizzata COVID-2020-12371675"; FUR 2020 Department of Excellence 2018-2022, MIUR, Italy; The Brain Research Foundation Verona.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Lucia Calciano
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Simone Accordini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, UK
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo (TN), Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo (TN), Italy
| | - Tobia Fantoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy; Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
125
|
SARS-CoV-2 cross-reactive B and T cell responses in kidney-transplant patients. Transplant Proc 2022; 54:1455-1464. [PMID: 35489983 PMCID: PMC8923882 DOI: 10.1016/j.transproceed.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
Background Immune responses to seasonal endemic coronaviruses might have a pivotal role in protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Those SARS-CoV-2-crossreactive T cells were recently described in immunocompetent individuals. Still, data on cross-reactive humoral and cellular immunity in kidney transplant recipients is currently lacking. Methods The pre-existing, cross-reactive antibody B and T cell immune responses against SARS-CoV-2 in unexposed adults with kidney transplantation (Tx, n = 14) and without (non-Tx, n = 12) sampled before the pandemic were compared with 22 convalescent patients with COVID-19 (Cp) applying enzyme-linked immunosorbent assay and flow cytometry. Results In both unexposed groups, SARS-CoV-2 IgG antibodies were not detectable. Memory B cells binding spike (S) protein SARS-CoV-2 were detected in unexposed individuals (64% among Tx; 50% among non-Tx) and higher frequencies after infection (80% Cp). The numbers of SARS-CoV-2-reactive T cells were comparable between patients who had undergone Tx and those who had not. SARS-CoV-2-reactive follicular T helper cells were present in 61% of the unexposed cohort in both patients who had undergone Tx and those who had not. Conclusions Cross-reactive memory B and T cells against SARS-CoV-2 exist also in transplanted adults, suggesting a primed adaptive immunity. The effect on the disease course may depend on the concomitant immunosuppressive drugs.
Collapse
|
126
|
Kotagiri P, Mescia F, Rae WM, Bergamaschi L, Tuong ZK, Turner L, Hunter K, Gerber PP, Hosmillo M, Hess C, Clatworthy MR, Goodfellow IG, Matheson NJ, McKinney EF, Wills MR, Gupta RK, Bradley JR, Bashford-Rogers RJM, Lyons PA, Smith KGC. B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Rep 2022; 38:110393. [PMID: 35143756 PMCID: PMC8801326 DOI: 10.1016/j.celrep.2022.110393] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.
Collapse
Affiliation(s)
- Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - William M Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Zewen K Tuong
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1RQ, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Kelvin Hunter
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Pehuén P Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland; Botnar Research Centre for Child Health (BRCCH) University Basel and ETH Zurich, Basel 4059, Switzerland
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1RQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge CB2 1PT, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | | | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
127
|
Uprichard SL, O’Brien A, Evdokimova M, Rowe CL, Joyce C, Hackbart M, Cruz-Pulido YE, Cohen CA, Rock ML, Dye JM, Kuehnert P, Ricks KM, Casper M, Linhart L, Anderson K, Kirk L, Maggiore JA, Herbert AS, Clark NM, Reid GE, Baker SC. Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-naïve and Experienced Individuals. Viruses 2022; 14:370. [PMID: 35215962 PMCID: PMC8878640 DOI: 10.3390/v14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer-BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Susan L. Uprichard
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Monika Evdokimova
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Cynthia L. Rowe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Cara Joyce
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Matthew Hackbart
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Yazmin E. Cruz-Pulido
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
| | - Courtney A. Cohen
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
- The Geneva Foundation, Tacoma, WA 98042, USA
| | - Michelle L. Rock
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
- The Geneva Foundation, Tacoma, WA 98042, USA
| | - John M. Dye
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
| | - Paul Kuehnert
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (P.K.); (K.M.R.)
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (P.K.); (K.M.R.)
| | - Marybeth Casper
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Lori Linhart
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Katrina Anderson
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Laura Kirk
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
| | - Jack A. Maggiore
- Department of Pathology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Andrew S. Herbert
- Viral Immunology Branch, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA; (C.A.C.); (M.L.R.); (J.M.D.); (A.S.H.)
| | - Nina M. Clark
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gail E. Reid
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.C.); (L.L.); (K.A.); (L.K.); (N.M.C.); (G.E.R.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (A.O.); (M.E.); (C.L.R.); (M.H.); (Y.E.C.-P.); (S.C.B.)
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
128
|
He WT, Musharrafieh R, Song G, Dueker K, Tse LV, Martinez DR, Schäfer A, Callaghan S, Yong P, Beutler N, Torres JL, Volk RM, Zhou P, Yuan M, Liu H, Anzanello F, Capozzola T, Parren M, Garcia E, Rawlings SA, Smith DM, Wilson IA, Safonova Y, Ward AB, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Targeted isolation of panels of diverse human protective broadly neutralizing antibodies against SARS-like viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.09.08.459480. [PMID: 35169804 PMCID: PMC8845431 DOI: 10.1101/2021.09.08.459480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M. Volk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 9203
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
129
|
Zimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ With Age?: Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection. Pediatr Infect Dis J 2022; 41:e36-e45. [PMID: 34966142 PMCID: PMC8740029 DOI: 10.1097/inf.0000000000003413] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
130
|
Narowski TM, Raphel K, Adams LE, Huang J, Vielot NA, Jadi R, de Silva AM, Baric RS, Lafleur JE, Premkumar L. SARS-CoV-2 mRNA vaccine induces robust specific and cross-reactive IgG and unequal neutralizing antibodies in naive and previously infected people. Cell Rep 2022; 38:110336. [PMID: 35090596 PMCID: PMC8769879 DOI: 10.1016/j.celrep.2022.110336] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.
Collapse
Affiliation(s)
- Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kristin Raphel
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Huang
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ramesh Jadi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John E Lafleur
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA.
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
131
|
Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC, Zatta F, Zepeda SK, Bowen JE, Sprouse KR, Joshi A, Giurdanella M, Guarino B, Noack J, Abdelnabi R, Foo SYC, Rosen LE, Lempp FA, Benigni F, Snell G, Neyts J, Whelan SPJ, Virgin HW, Bloom JD, Corti D, Pizzuto MS, Veesler D. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 2022; 375:449-454. [PMID: 34990214 PMCID: PMC9400459 DOI: 10.1126/science.abm8143] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023]
Abstract
Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Betacoronavirus/immunology
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- Broadly Neutralizing Antibodies/therapeutic use
- COVID-19/immunology
- COVID-19/therapy
- Cross Reactions
- Cryoelectron Microscopy
- Epitopes
- Humans
- Immune Evasion
- Mesocricetus
- Models, Molecular
- Molecular Mimicry
- Mutation
- Protein Conformation
- Protein Domains
- Receptors, Coronavirus/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Giurdanella
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesse D. Bloom
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
132
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
133
|
Lawrenz J, Xie Q, Zech F, Weil T, Seidel A, Krnavek D, van der Hoek L, Münch J, Müller JA, Kirchhoff F. SARS-CoV-2 Vaccination boosts Neutralizing Activity against Seasonal Human Coronaviruses. Clin Infect Dis 2022; 75:e653-e661. [PMID: 35079775 PMCID: PMC8807272 DOI: 10.1093/cid/ciac057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. Methods We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. Results All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. Conclusions Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.
Collapse
Affiliation(s)
- Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
134
|
Elko EA, Nelson GA, Mead HL, Kelley EJ, Verche VL, Cardoso AA, Ely JL, Boyle AS, Piña A, Henson SN, Rahee F, Keim PS, Celona KR, Yi J, Settles EW, Yu GC, Morris SR, Zaia JA, Ladner JT, Altin JA. COVID-19 vaccination recruits and matures cross-reactive antibodies to conserved epitopes in endemic coronavirus Spike proteins.. [PMID: 35118479 PMCID: PMC8811912 DOI: 10.1101/2022.01.24.22269542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Most vaccinated subjects are naïve to SARS-CoV-2, however almost all have previously encountered other coronaviruses (CoVs) and the role of this immunity in shaping the vaccine response remains uncharacterized. Here we use longitudinal samples and highly-multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes and in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes showed a delayed but progressive increase following vaccination, we observed distinct kinetics for the endemic CoV homologs at two conserved sites in Spike S2: these became detectable sooner, and decayed at later timepoints. Using homolog-specific depletion and alanine-substitution experiments, we show that these distinctly-evolving specificities result from cross-reactive antibodies as they mature against rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.
Collapse
|
135
|
Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, He WT, Zhu X, Callaghan S, Yong P, Anzanello F, Peng L, Ricketts J, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Teijaro JR, Rogers TF, Wilson IA, Burton DR, Andrabi R. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.03.30.437769. [PMID: 33821273 PMCID: PMC8020973 DOI: 10.1101/2021.03.30.437769] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and, importantly, as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a coronavirus disease 2019 (COVID-19)-convalescent donor that exhibits broad reactivity with human beta-coronaviruses (β-CoVs). Here, we showed that CC40.8 targets the conserved S2 stem-helix region of the coronavirus spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem-peptide at 1.6 Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in β-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted CC40.8-like bnAbs are relatively rare in human COVID-19 infection and therefore their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on β-CoV spike proteins for protective antibodies that may facilitate the development of pan-β-CoV vaccines. SUMMARY A human mAb isolated from a COVID-19 donor defines a protective cross-neutralizing epitope for pan-β-CoV vaccine design strategies.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
136
|
Vanshylla K, Fan C, Wunsch M, Poopalasingam N, Meijers M, Kreer C, Kleipass F, Ruchnewitz D, Ercanoglu MS, Gruell H, Münn F, Pohl K, Janicki H, Nolden T, Bartl S, Stein SC, Augustin M, Dewald F, Gieselmann L, Schommers P, Schulz TF, Sander LE, Koch M, Łuksza M, Lässig M, Bjorkman PJ, Klein F. Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host Microbe 2022; 30:69-82.e10. [PMID: 34973165 PMCID: PMC8683262 DOI: 10.1016/j.chom.2021.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023]
Abstract
A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kanika Vanshylla
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie Wunsch
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthijs Meijers
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Franziska Kleipass
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Friederike Münn
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Hanna Janicki
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Simone Bartl
- Vira Therapeutics GmbH, 6063 Rum, Austria; Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Max Augustin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Felix Dewald
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Marta Łuksza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
137
|
Li W, Chen Y, Prévost J, Ullah I, Lu M, Gong SY, Tauzin A, Gasser R, Vézina D, Anand SP, Goyette G, Chaterjee D, Ding S, Tolbert WD, Grunst MW, Bo Y, Zhang S, Richard J, Zhou F, Huang RK, Esser L, Zeher A, Côté M, Kumar P, Sodroski J, Xia D, Uchil PD, Pazgier M, Finzi A, Mothes W. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep 2022; 38:110210. [PMID: 34971573 PMCID: PMC8673750 DOI: 10.1016/j.celrep.2021.110210] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here, we elucidate the structural basis and mode of action for two potent SARS-CoV-2 spike (S)-neutralizing monoclonal antibodies, CV3-1 and CV3-25, which remain effective against emerging variants of concern in vitro and in vivo. CV3-1 binds to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the "RBD-up" position and triggers potent shedding of the S1 subunit. In contrast, CV3-25 inhibits membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among β-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in the RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rick K Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Esser
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zeher
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
138
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
139
|
Vanderheijden N, Stevaert A, Xie J, Ren X, Barbezange C, Noppen S, Desombere I, Verhasselt B, Geldhof P, Vereecke N, Stroobants V, Oh D, Vanhee M, Naesens LMJ, Nauwynck HJ. Functional Analysis of Human and Feline Coronavirus Cross-Reactive Antibodies Directed Against the SARS-CoV-2 Fusion Peptide. Front Immunol 2022; 12:790415. [PMID: 35069571 PMCID: PMC8766817 DOI: 10.3389/fimmu.2021.790415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
To face the continuous emergence of SARS-CoV-2 variants, broadly protective therapeutic antibodies are highly needed. We here focused on the fusion peptide (FP) region of the viral spike antigen since it is highly conserved among alpha- and betacoronaviruses. First, we found that coronavirus cross-reactive antibodies are commonly formed during infection, being omnipresent in sera from COVID-19 patients, in ~50% of pre-pandemic human sera (rich in antibodies against endemic human coronaviruses), and even in feline coronavirus-infected cats. Pepscan analyses demonstrated that a confined N-terminal region of the FP is strongly immunogenic across diverse coronaviruses. Peptide-purified human antibodies targeting this conserved FP epitope exhibited broad binding of alpha- and betacoronaviruses, besides weak and transient SARS-CoV-2 neutralizing activity. Being frequently elicited by coronavirus infection, these FP-binding antibodies might potentially exhibit Fc-mediated effector functions and influence the kinetics or severity of coronavirus infection and disease.
Collapse
Affiliation(s)
- Nathalie Vanderheijden
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Stevaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | - Jiexiong Xie
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cyril Barbezange
- National Influenza Centre and Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sam Noppen
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | | | - Bruno Verhasselt
- Laboratory for Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Veerle Stroobants
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Merijn Vanhee
- Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende, Bruges, Belgium
| | - Lieve M. J. Naesens
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven – University of Leuven, Leuven, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
140
|
Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, Liang KH, Hsieh TY, Wu HC. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci 2022; 29:1. [PMID: 34983527 PMCID: PMC8724751 DOI: 10.1186/s12929-021-00784-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tzung-Yang Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
141
|
Abstract
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
142
|
Qiang M, Ma P, Li Y, Liu H, Harding A, Min C, Wang F, Liu L, Yuan M, Ji Q, Tao P, Shi X, Li Z, Li T, Wang X, Zhang Y, Wu NC, Lee CD, Zhu X, Gilbert‐Jaramillo J, Zhang C, Saxena A, Huang X, Wang H, James W, Dwek RA, Wilson IA, Yang G, Lerner RA. Neutralizing Antibodies to SARS-CoV-2 Selected from a Human Antibody Library Constructed Decades Ago. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102181. [PMID: 34716683 PMCID: PMC8646600 DOI: 10.1002/advs.202102181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Binding Sites
- Binding, Competitive
- Cell Surface Display Techniques
- Chlorocebus aethiops
- HEK293 Cells
- Humans
- Peptide Library
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- Somatic Hypermutation, Immunoglobulin
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vero Cells
Collapse
|
143
|
Zhou D, Zhou R, Chen Z. Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 2:ltab027. [PMID: 35915816 PMCID: PMC8755319 DOI: 10.1093/immadv/ltab027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concern. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients' plasma has generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.
Collapse
Affiliation(s)
- Dongyan Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
144
|
Dayanand D, Irudhayanathan I, Kundu D, Manesh A, Abraham V, Abhilash KP, Chacko B, Moorthy M, Samuel P, Peerawaranun P, Mukaka M, Joseph J, Sivaprakasam M, Varghese GM. Community seroprevalence and risk factors for SARS CoV-2 infection in different subpopulations in Vellore, India and its implications for future prevention. Int J Infect Dis 2021; 116:138-146. [PMID: 34971822 PMCID: PMC8712712 DOI: 10.1016/j.ijid.2021.12.356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives The aim of this study was to inform public health policy decisions through the assessment of IgG antibody seroprevalence in the population and the risk factors for SARS-CoV-2 infection. Methods The seroprevalence of IgG antibodies among different subpopulations at the end of the first and second waves of the pandemic was estimated. Various risk factors associated with seropositivity, including sociodemography, IgG antibodies against endemic human coronavirus, and vaccination status, were also assessed. Results For all 2433 consenting participants, the overall estimated seroprevalences at the end of first and second waves were 28.5% (95% CI 22.3–33.7%) and 71.5% (95% CI 62.8–80.5%), respectively. The accrual of IgG positivity was heterogeneous, with the highest seroprevalences found in urban slum populations (75.1%). Vaccine uptake varied among the subpopulations, with low rates (< 10%) among rural and urban slum residents. The majority of seropositive individuals (75%) were asymptomatic. Residence in urban slums (OR 2.02, 95% CI 1.57–2.6; p < 0.001), middle socioeconomic status (OR 1.77, 95% CI 1.17–2.67; p = 0.007), presence of diabetes (OR 1.721, 95% CI 1.148–2.581; p = 0.009), and hypertension (OR 1.75, 95% CI 1.16–2.64; p = 0.008) were associated with seropositivity in multivariable analyses. Conclusion Although considerable population immunity has been reached, with more than two-thirds seropositive, improved vaccination strategies among unreached subpopulations and high-risk individuals are suggested for better preparedness in future.
Collapse
Affiliation(s)
- Divya Dayanand
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Indhuja Irudhayanathan
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Debasree Kundu
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vinod Abraham
- Department of Community Health, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Binila Chacko
- Department of Critical Care Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Prasanna Samuel
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pimnara Peerawaranun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, UK
| | - Jayaraj Joseph
- Department of Electrical Engineering, Indian Institute of TechnologyMadras, Tamil Nadu, India; Healthcare Technology Innovation Centre (HTIC), Indian Institute of Technology Madras, Tamil Nadu, India
| | - Mohanasankar Sivaprakasam
- Department of Electrical Engineering, Indian Institute of TechnologyMadras, Tamil Nadu, India; Healthcare Technology Innovation Centre (HTIC), Indian Institute of Technology Madras, Tamil Nadu, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
145
|
Lavinder JJ, Ippolito GC. Boosted immunity to the common cold might protect children from COVID-19. Nat Immunol 2021; 23:8-10. [PMID: 34937927 DOI: 10.1038/s41590-021-01094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
146
|
Reyes RA, Clarke K, Gonzales SJ, Cantwell AM, Garza R, Catano G, Tragus RE, Patterson TF, Bol S, Bunnik EM. SARS-CoV-2 spike-specific memory B cells express higher levels of T-bet and FcRL5 after non-severe COVID-19 as compared to severe disease. PLoS One 2021; 16:e0261656. [PMID: 34936684 PMCID: PMC8694470 DOI: 10.1371/journal.pone.0261656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kathleen Clarke
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - S. Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Angelene M. Cantwell
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gabriel Catano
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, Texas, United States of America
| | - Robin E. Tragus
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, Texas, United States of America
| | - Thomas F. Patterson
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, Texas, United States of America
- The South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
147
|
Bowen JE, Walls AC, Joshi A, Sprouse KR, Stewart C, Tortorici MA, Franko NM, Logue JK, Mazzitelli IG, Tiles SW, Ahmed K, Shariq A, Snell G, Iqbal NT, Geffner J, Bandera A, Gori A, Grifantini R, Chu HY, Van Voorhis WC, Corti D, Veesler D. SARS-CoV-2 spike conformation determines plasma neutralizing activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.19.473391. [PMID: 34981060 PMCID: PMC8722597 DOI: 10.1101/2021.12.19.473391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous safe and effective COVID-19 vaccines have been developed that utilize various delivery technologies and engineering strategies. The influence of the SARS-CoV-2 spike (S) glycoprotein conformation on antibody responses induced by vaccination or infection in humans remains unknown. To address this question, we compared plasma antibodies elicited by six globally-distributed vaccines or infection and observed markedly higher binding titers for vaccines encoding a prefusion-stabilized S relative to other groups. Prefusion S binding titers positively correlated with plasma neutralizing activity, indicating that physical stabilization of the prefusion conformation enhances protection against SARS-CoV-2. We show that almost all plasma neutralizing activity is directed to prefusion S, in particular the S 1 subunit, and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants and longer durability than current technologies.
Collapse
Affiliation(s)
- John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Ignacio G. Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Sasha W Tiles
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kumail Ahmed
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Asefa Shariq
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, 20122 Milan, Italy
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
148
|
Giannotta G, Giannotta N. mRNA COVID-19 Vaccines and Long-Lived Plasma Cells: A Complicated Relationship. Vaccines (Basel) 2021; 9:1503. [PMID: 34960249 PMCID: PMC8703557 DOI: 10.3390/vaccines9121503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
mRNA COVID-19 vaccines have hegemonized the world market, and their administration to the population promises to stop the pandemic. However, the waning of the humoral immune response, which does not seem to last so many months after the completion of the vaccination program, has led us to study the molecular immunological mechanisms of waning immunity in the case of mRNA COVID-19 vaccines. We consulted the published scientific literature and from the few articles we found, we were convinced that there is an immunological memory problem after vaccination. Although mRNA vaccines have been demonstrated to induce antigen-specific memory B cells (MBCs) in the human population, there is no evidence that these vaccines induce the production of long-lived plasma cells (LLPCs), in a SARS-CoV-2 virus naïve population. This obstacle, in our point of view, is caused by the presence, in almost all subjects, of a cellular T and B cross-reactive memory produced during past exposures to the common cold coronaviruses. Due to this interference, it is difficult for a vaccination with the Spike protein alone, without adjuvants capable of prolonging the late phase of the generation of the immunological memory, to be able to determine the production of protective LLPCs. This would explain the possibility of previously and completely vaccinated subjects to become infected, already 4-6 months after the completion of the vaccination cycle.
Collapse
Affiliation(s)
| | - Nicola Giannotta
- Medical and Surgery Sciences, Faculty of Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| |
Collapse
|
149
|
Walls AC, Sprouse KR, Joshi A, Bowen JE, Franko N, Navarro MJ, Stewart C, McCallum M, Goecker EA, Degli-Angeli EJ, Logue J, Greninger A, Chu H, Veesler D. Delta breakthrough infections elicit potent, broad and durable neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.08.471707. [PMID: 34931192 PMCID: PMC8687475 DOI: 10.1101/2021.12.08.471707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin A Goecker
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Emily J Degli-Angeli
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
150
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Herlands L, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. eLife 2021; 10:e73027. [PMID: 34874007 PMCID: PMC8651292 DOI: 10.7554/elife.73027] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
- Department of Chemistry, St. John’s UniversityQueensUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | | | | | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Division of Pulmonary and Sleep Medicine, Seattle Children’s HospitalSeattleUnited States
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|