101
|
Makhaola K, Moyo S, Kebaabetswe LP. Next generation sequencing of near-full length genome of norovirus GII.4 from Botswana. Virus Res 2021; 302:198491. [PMID: 34147552 DOI: 10.1016/j.virusres.2021.198491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Noroviruses are highly diverse, with genotype GII.4 causing most epidemics. This study aimed to investigate the evolutionary dynamics of norovirus genogroup GII strains among acutely infected children under 5 years in Botswana, between 2016 and 2018. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to amplify the whole norovirus genome, followed by next-generation sequencing using Oxford Nanopore technology. Twelve samples were successfully analyzed, with 11 identified as norovirus GII.4 Sydney [P31] and one as GII.4 Sydney [P13]. This study generated the first near-full length norovirus sequences in Botswana (93-95% coverage). Our results show that the norovirus GII.4 strains circulating in Botswana are under evolution through recombination and antigenic drift. Recombination in the GII.4 Sydney [P31] and GII.4 Sydney [P13] strains occurred in the ORF1/ORF2 junction and within ORF1, respectively. This study provides the first description of the GII.4 Sydney [P13] recombinant. Amino acid variation in the immunogenic sites was analyzed. Mutations in epitope A correlate with the emergence of novel norovirus GII.4 strains with altered antigenicity. In this study, we identified 43 unique amino acid substitutions in the VP1 region, with six occurring in epitopes, A (G295N, and E368Q) and E (S40T, N412D, N412K and T413H). The shell subdomain of the GII.4 Sydney [P13] variant was closely related to norovirus GII.17. Lastly, we also observed several mutations in the T cell restricted epitopes of both strains. Our study has made a novel contribution to understanding the evolution of norovirus GII.4 in Botswana.
Collapse
Affiliation(s)
- Kgomotso Makhaola
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, MA, Boston, United States
| | - Lemme P Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| |
Collapse
|
102
|
Chan MCW, Roy S, Bonifacio J, Zhang LY, Chhabra P, Chan JCM, Celma C, Igoy MA, Lau SL, Mohammad KN, Vinjé J, Vennema H, Breuer J, Koopmans M, de Graaf M. Detection of Norovirus Variant GII.4 Hong Kong in Asia and Europe, 2017-2019. Emerg Infect Dis 2021; 27:289-293. [PMID: 33350912 PMCID: PMC7774557 DOI: 10.3201/eid2701.203351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report a new norovirus GII.4 variant, GII.4 Hong Kong, with low-level circulation in 4 Eurasia countries since mid-2017. Amino acid substitutions in key residues on the virus capsid associated with the emergence of pandemic noroviruses suggest that GII.4 Hong Kong has the potential to become the next pandemic variant.
Collapse
|
103
|
Reyes Y, González F, Gutierrez L, Blandon P, Centeno E, Zepeda O, Toval-Ruíz C, Lindesmith LC, Baric RS, Vielot N, Diez-Valcarce M, Vinjé J, Svensson L, Becker-Dreps S, Nordgren J, Bucardo F. Secretor status strongly influences the incidence of symptomatic norovirus infection in a genotype-dependent manner in a Nicaraguan birth cohort. J Infect Dis 2021; 225:105-115. [PMID: 34129046 DOI: 10.1093/infdis/jiab316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of histo-blood group on the burden and severity of norovirus gastroenteritis in young infants has not been well documented. METHODS Norovirus gastroenteritis was assessed in 443 Nicaraguan children followed from birth until 3 years of age. Stool samples were tested for norovirus by RT-qPCR and histo-blood group antigens (HBGA) were determined by phenotyping of saliva and blood. Hazards ratios (95% CI) and predictors of norovirus AGE outcome stratified by HBGA were estimated using Cox proportional hazards models. RESULTS Of 1,353 AGE episodes experienced by children, 229 (17%) tested positive for norovirus with an overall incidence of 21.9/100 child-years. Secretor children were infected as early as 2 months old and had a higher incidence of norovirus GII compared to non-secretor children (15.4 vs 4.1/100 child-years, P = 0.006). Furthermore, all GII.4 AGE episodes occurred in secretor children. Children infected with GI (adjusted OR=0.09, 95% CI 0.02-0.33) or non-GII.4 viruses (adjusted OR=0.2, 95% CI: 0.07-0.6) were less likely to have severe AGE compared to GII.4 infected children. CONCLUSION Secretor status in children strongly influences the incidence of symptomatic norovirus infection in a genogroup or genotype-dependent manner and provides evidence that clinical severity in children depends on norovirus genotypes.
Collapse
Affiliation(s)
- Yaoska Reyes
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua.,Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Fredman González
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Lester Gutierrez
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Patricia Blandon
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Edwing Centeno
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Omar Zepeda
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Christian Toval-Ruíz
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nadja Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Marta Diez-Valcarce
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States of America.,Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, United States of America
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden.,Division of Medicine, Karolinska Institute, Sweden
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Filemón Bucardo
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua - León, León, Nicaragua
| |
Collapse
|
104
|
Norovirus passive surveillance as an alternative strategy for genetic diversity assessment in developing countries. J Infect Public Health 2021; 14:990-993. [PMID: 34153730 DOI: 10.1016/j.jiph.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
In developing countries, the acute gastroenteritis outbreaks submitted for viral testing are limited due to deficient surveillance programs. The aim of this study was to analyze a passive surveillance strategy for monitoring the molecular epidemiology of norovirus (NV) and counterbalance the genetic diversity data gap. Laboratory-confirmed rotavirus negative sporadic stool samples (N = 523) collected between 2010 and 2017 from children were selected from our archival collection and were tested for NV and sequencing was performed on the positive samples. Passive surveillance information was compared with the genetic diversity data that was available from local norovirus-confirmed gastroenteritis outbreaks. Each year, norovirus detection in the sporadic samples ranged from 12 to 29%. GI and GII norovirus were detected in 7 (1.3%) and 101 (19.3%) of the specimens, respectively. Four GI and six GII capsid genotypes were identified. Six out of 9 strains detected in the NV outbreaks panel were also identified in the set of sporadic samples either coincidently in the same year, the previous or the later year. Also, this set of samples depicted even better the circulating epidemic strain. Thus, implementing norovirus testing and genotyping in stool samples collected with other purposes represent a suitable strategy for providing genetic diversity information.
Collapse
|
105
|
Chhabra P, Rouhani S, Browne H, Peñataro Yori P, Siguas Salas M, Paredes Olortegui M, Moulton LH, Kosek MN, Vinjé J. Homotypic and Heterotypic Protection and Risk of Reinfection Following Natural Norovirus Infection in a Highly Endemic Setting. Clin Infect Dis 2021; 72:222-229. [PMID: 33501947 PMCID: PMC7840104 DOI: 10.1093/cid/ciaa019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Norovirus is a leading cause of acute gastroenteritis worldwide, yet there is limited information on homotypic or heterotypic protection following natural infection to guide vaccine development. METHODS A total of 6020 stools collected from 299 Peruvian children between 2010 and 2014 were tested by norovirus real-time reverse-transcription polymerase chain reaction followed by sequence-based genotyping. Cox proportional hazards models were used to derive adjusted hazard ratios (HRs) of infection among children with vs without prior exposure. RESULTS Norovirus was detected in 1288 (21.3%) samples. GII.4 (26%), GII.6 (19%), and GI.3 (9%) viruses accounted for 54% of infections. Homotypic protection for GI.3 (HR, 0.35; P = .015), GI.7 (HR, 0.19; P = .022), GII.4 (HR, 0.39; P < .001), and GII.6 (HR, 0.52; P = .006) infections was observed. Hazard analysis showed that children with prior GII.4 infection exhibited heterotypic protection with a 48% reduction of subsequent GI.3 infection (HR, 0.52; P = .005). Prior exposure to GI.3, GII.2, and GII.17 infections enhanced susceptibility to subsequent infections with several other norovirus genotypes. CONCLUSIONS Children up to 2 years of age infected with GII.4 noroviruses demonstrated both homotypic and heterotypic protection to reinfection with other genotypes. These data support the need for ongoing vaccine development efforts with GII.4 as the main component and caution the inclusion of genotypes that may enhance susceptibility to infections.
Collapse
Affiliation(s)
- Preeti Chhabra
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saba Rouhani
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Browne
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA.,Investigaciones Biomédicas, AB PRISMA, Iquitos, Peru
| | | | | | - Lawrence H Moulton
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA.,Investigaciones Biomédicas, AB PRISMA, Iquitos, Peru
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
106
|
Bonura F, Urone N, Bonura C, Mangiaracina L, Filizzolo C, Sciortino G, Sanfilippo GL, Martella V, Giammanco GM, De Grazia S. Recombinant GII.P16 genotype challenges RT-PCR-based typing in region A of norovirus genome. J Infect 2021; 83:69-75. [PMID: 33887286 DOI: 10.1016/j.jinf.2021.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/21/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In latest years GII.4[P16] and GII.2[P16] noroviruses have become predominant in some temporal/geographical settings. In parallel with the emergence of the GII.P16 polymerase type, norovirus surveillance activity in Italy experienced increasing difficulties in generating sequence data on the RNA polymerase genomic region A, using the widely adopted JV12A/JV13B primer set. Two sets of modified primers (Deg1 and Deg2) were tested in order to improve amplification and typing of the polymerase gene. METHODS Amplification and typing performance of region A primers was assessed in RT-PCR on 452 GII norovirus positive samples obtained from 2194 stool samples collected in 2016-2019 from children hospitalized with acute gastroenteritis. RESULTS The use of Deg1 increased the rate of samples types in region A from 49.5% to 81.4% and from 21.9% to 69.7% in 2016 and 2017, respectively. The rate of Deg1 typed samples remained high in 2018 (90.1%), but sharply decreased to 11.8% in 2019. The second primers set, Deg2, was able to increase to 64.9% the rate of 2019 samples typed in region A, while typing efficiently 73.2%, 69%, and 86.4% of samples collected in 2016, 2017 and 2018, respectively. CONCLUSIONS The plasticity of norovirus genomes requires continuous updates of the primers used for strain characterization.
Collapse
Affiliation(s)
- Floriana Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Noemi Urone
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Celestino Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Leonardo Mangiaracina
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Chiara Filizzolo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Giuseppa Sciortino
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Giuseppa L Sanfilippo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Giovanni M Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy.
| | - Simona De Grazia
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| |
Collapse
|
107
|
Ai J, Zhang M, Jin F, Xie Z. Recombinant GII.4[P31] Was Predominant Norovirus Circulating in Beijing Area, China, 2018-2020. Virol Sin 2021; 36:1245-1247. [PMID: 33835390 PMCID: PMC8034047 DOI: 10.1007/s12250-021-00381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Fang Jin
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
108
|
Costantini VP, Cooper EM, Hardaker HL, Lee LE, DeBess EE, Cieslak PR, Hall AJ, Vinjé J. Humoral and Mucosal Immune Responses to Human Norovirus in the Elderly. J Infect Dis 2021; 221:1864-1874. [PMID: 31957785 DOI: 10.1093/infdis/jiaa021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most information on mucosal and systemic immune response to norovirus infection is derived from human challenge studies, birth cohort studies, or vaccine trials in healthy adults. However, few data are available on immune responses to norovirus in the elderly. METHODS To study the mucosal and systemic immune response against norovirus, 43 long-term care facilities were enrolled prospectively in 2010-2014. Baseline saliva samples from 17 facilities, cases and controls up to day 84 from 10 outbreaks, as well as acute and convalescent sera were collected. RESULTS Norovirus-specific immunoglobulin A (IgA) levels in baseline saliva samples were low and increased in both symptomatic patients and asymptomatic shedders at day 5 after onset during outbreaks. Receiver operating characteristics analysis correctly assigned prior norovirus infection in 23 (92%) of 25 participants. Cases and asymptomatic shedders showed seroconversion for IgG (80%), IgA (78%), and blockade antibodies (87%). Salivary IgA levels strongly correlated with increased convalescent serum IgA titers and blockade antibodies. CONCLUSIONS Salivary IgA levels strongly correlated with serum IgA titers and blockade antibodies and remained elevated 3 months after a norovirus outbreak. A single salivary sample collected on day 14 could be used to identify recent infection in a suspected outbreak or to monitor population salivary IgA.
Collapse
Affiliation(s)
- Veronica P Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Emilie M Cooper
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Hope L Hardaker
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Lore E Lee
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Emilio E DeBess
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Paul R Cieslak
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
109
|
Spano LC, Guerrieri CG, Volpini LPB, Schuenck RP, Goulart JP, Boina E, Recco CRN, Ribeiro-Rodrigues R, Dos Santos LF, Fumian TM. EHEC O111:H8 strain and norovirus GII.4 Sydney [P16] causing an outbreak in a daycare center, Brazil, 2019. BMC Microbiol 2021; 21:95. [PMID: 33781202 PMCID: PMC8008580 DOI: 10.1186/s12866-021-02161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background This study describes the investigation of an outbreak of diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) at a daycare center in southeastern Brazil, involving fourteen children, six staff members, six family members, and one nurse. All bacterial and viral pathogens detected were genetically characterized. Results Two isolates of a strain of enterohemorrhagic Escherichia coli (EHEC) serotype O111:H8 were recovered, one implicated in a case of HUS and the other in a case of uncomplicated diarrhea. These isolates had a clonal relationship of 94% and carried the stx2a and eae virulence genes and the OI-122 pathogenicity island. The EHEC strain was determined to be a single-locus variant of sequence type (ST) 327. EHEC isolates were resistant to ofloxacin, doxycycline, tetracycline, ampicillin, and trimethoprim-sulfamethoxazole and intermediately resistant to levofloxacin and ciprofloxacin. Rotavirus was not detected in any samples, and norovirus was detected in 46.7% (14/30) of the stool samples, three of which were from asymptomatic staff members. The noroviruses were classified as the recombinant GII.4 Sydney [P16] by gene sequencing. Conclusion In this outbreak, it was possible to identify an uncommon stx2a + EHEC O111:H8 strain, and the most recent pandemic norovirus strain GII.4 Sydney [P16]. Our findings reinforce the need for surveillance and diagnosis of multiple enteric pathogens by public health authorities, especially during outbreaks. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02161-x.
Collapse
Affiliation(s)
- Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.
| | | | - Lays Paula Bondi Volpini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Elizabeth Boina
- State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | | | - Rodrigo Ribeiro-Rodrigues
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil.,State Health Secretariat, Central Public Health Laboratory, Vitoria, Espírito Santo, Brazil
| | - Luís Fernando Dos Santos
- Adolfo Lutz Institute, Centre of Bacteriology, National Reference Laboratory for Escherichia coli Enteric Infections, São Paulo, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
110
|
Application of whole-genome sequencing for norovirus outbreak tracking and surveillance efforts in Orange County, CA. Food Microbiol 2021; 98:103796. [PMID: 33875224 DOI: 10.1016/j.fm.2021.103796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Noroviruses are the leading cause of acute gastroenteritis and foodborne illness in the United States. Traditional Sanger sequencing of short genomic regions (~300-600 bp) is the primary method for differentiation of this pathogen; however, whole-genome sequencing (WGS) offers a valuable approach to further characterize strains of this virus. The objective of this study was to investigate the ability of WGS compared to Sanger sequencing to differentiate norovirus strains and enhance outbreak investigation and surveillance efforts. WGS results for 41 norovirus-positive stool samples from 15 different outbreaks occurring from 2012 to 2019 in Orange County, CA, were analyzed for this study. All samples were genotyped with both WGS and Sanger sequencing based on the B-C region. WGS generated nearly full-length viral genome sequences (7029-7768 bp) with 4x to 35,378x coverage. Phylogenetic analysis of WGS data enabled differentiation of genotypically similar strains from separate outbreaks. Single nucleotide variation (SNV) analysis on a subset of strains revealed nucleotide variations (15-79 nt) among isolates from multiple outbreaks of GII.4 Sydney_2015[P31] and GII.17[P17]. Overall, the results demonstrated that coupling norovirus genotype identification with WGS enables enhanced genetic differentiation of strains and provides valuable information for outbreak investigation and surveillance efforts.
Collapse
|
111
|
Cho SR, Chae SJ, Jung S, Choi W, Han MG, Yoo CK, Lee DY. Trends in acute viral gastroenteritis among children aged ≤5 years through the national surveillance system in South Korea, 2013-2019. J Med Virol 2021; 93:4875-4882. [PMID: 33219526 PMCID: PMC8360024 DOI: 10.1002/jmv.26685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Acute gastroenteritis is a global public health concern. This study aimed to analyze the trend and characteristics of acute viral gastroenteritis through a national surveillance network. Enteric viruses were detected in 9510 of 31,750 (30.1%) cases assessed from 2013 to 2019 by EnterNet. The most prevalent pathogens were norovirus (15.2%) and group A rotavirus (9.7%); most infections were reported in 2017 (34.0%). Norovirus and rotavirus coinfections were the most common. Norovirus infections were prevalent among 1‐year‐old children (1835 out of 9510 cases) during winter, and group A rotavirus infections were common during spring. Seasonality was not observed among enteric adenovirus, astrovirus, and sapovirus. The prevalent viral genotypes detected included norovirus GII.4, enteric adenovirus F41, astrovirus genotype 1, and sapovirus GI.1. However, changes in enteric virus trends were noted during the study period. Norovirus prevalence extended into spring, and new genotypes of enteric adenovirus, astrovirus, and sapovirus were identified. These surveillance data elucidate enteric virus epidemiological characteristics.
Collapse
Affiliation(s)
- Seung-Rye Cho
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Su-Jin Chae
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sunyoung Jung
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Wooyoung Choi
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Myung-Guk Han
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Cheon-Kwon Yoo
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Deog-Yong Lee
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
112
|
McCall C, Wu H, O'Brien E, Xagoraraki I. Assessment of enteric viruses during a hepatitis outbreak in Detroit MI using wastewater surveillance and metagenomic analysis. J Appl Microbiol 2021; 131:1539-1554. [PMID: 33550682 DOI: 10.1111/jam.15027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
AIMS This study investigates enteric viruses in wastewater during an outbreak of acute hepatitis caused by hepatitis A virus (HAV) in a large metropolitan area. Emphasis is given to caliciviruses and HAV. METHODS AND RESULTS Metagenomic analysis was performed to characterize enteric viruses excreted by the population of Detroit MI, during a hepatitis A outbreak that occurred in 2017 and 2018. Additionally, HAV, norovirus GII, and sapovirus were quantified, using qPCR, in 54 untreated wastewater samples collected over the course of 4 months. Correlation analysis was performed to identify associations between the number of disease cases and HAV concentrations in wastewater. HAV obtained the highest relative abundance among other enteric viruses detected in wastewater metagenomes. Metagenomic analysis also detected several other enteric viruses including astrovirus, enterovirus and hepatitis E virus. Average sapovirus concentrations of 1·36 × 106 gc l-1 were significantly greater than norovirus GII concentrations (2·94 × 104 gc l-1 ). Additionally, norovirus GI and GII along with sapovirus GI.1 were detected using metagenomics. HAV loads in wastewater were significantly correlated with the number of disease cases reported 1 week after wastewater sampling. CONCLUSIONS Surveying untreated wastewater is a promising method for detecting early signs of hepatitis A outbreaks and for routine environmental monitoring of enteric viruses circulating in the environment. SIGNIFICANCE AND IMPACT OF THE STUDY Authors demonstrate the usefulness of metagenomics for genogrouping and enteric viral surveillance.
Collapse
Affiliation(s)
- C McCall
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - H Wu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - E O'Brien
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - I Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
113
|
Jin M, Wu S, Kong X, Xie H, Fu J, He Y, Feng W, Liu N, Li J, Rainey JJ, Hall AJ, Vinjé J, Duan Z. Norovirus Outbreak Surveillance, China, 2016-2018. Emerg Infect Dis 2021; 26:437-445. [PMID: 32091361 PMCID: PMC7045832 DOI: 10.3201/eid2603.191183] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CaliciNet China, a network of provincial, county, and city laboratories coordinated by the Chinese Centers for Disease Control and Prevention, was launched in October 2016 to monitor the epidemiology and genotype distribution of norovirus outbreaks in China. During October 2016–September 2018, a total of 556 norovirus outbreaks were reported, and positive fecal samples from 470 (84.5%) outbreaks were genotyped. Most of these outbreaks were associated with person-to-person transmission (95.1%), occurred in childcare centers or schools (78.2%), and were reported during November–March of each year (63.5%). During the 2-year study period, 81.2% of all norovirus outbreaks were typed as GII.2[P16]. In China, most norovirus outbreaks are reported by childcare centers or schools; GII.2[P16] is the predominant genotype. Ongoing surveillance by CaliciNet China will provide information about the evolving norovirus genotype distribution and outbreak characteristics important for the development of effective interventions, including vaccines.
Collapse
|
114
|
Satter SM, Abdullah Z, Cardemil CV, Flora MS, Gurley ES, Rahman M, Talha M, Islam MD, Hossain ME, Balachandran N, Lopman B, Rahman M, Vinjé J, Hall AJ, Parashar UD. Hospital-based Surveillance for Pediatric Norovirus Gastroenteritis in Bangladesh, 2012-2016. Pediatr Infect Dis J 2021; 40:215-219. [PMID: 33264214 PMCID: PMC9006183 DOI: 10.1097/inf.0000000000002989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Globally, noroviruses are recognized as an important cause of acute gastroenteritis (AGE), but data from low and middle-income countries are limited. AIMS To examine the epidemiology and strain diversity of norovirus infections among children hospitalized for AGE in Bangladesh. METHODS We implemented active surveillance of children <5 years of age hospitalized with AGE at 8 geographically dispersed tertiary care hospitals in Bangladesh from July 2012 to June 2016. We tested random samples of AGE cases stratified by site and age group for norovirus by real-time RT-PCR. Noro-positive specimens were genotyped. Coinfection with rotavirus was assessed based on prior EIA testing. RESULTS We enrolled 5622 total AGE cases, of which 1008 were tested for norovirus. Total of 137 (14%) AGE cases tested positive for norovirus (range, 11%-17% by site). Most (94%) norovirus-associated hospitalizations were among children less than 2 years of age. Norovirus was detected year-round, with higher detection from March to June (20%-38%) and November to January (9%-18%). Genogroup II (GII) noroviruses were detected in 96% of cases, and the most frequent genotypes were GII.4 Sydney [P4 New Orleans] (33%), GII.3 [P16] (20%), and GII.4 Sydney [P16] (11%). The proportion of norovirus-positive specimens was significantly greater among rotavirus-negative AGE patients compared with rotavirus-positive AGE patients (27% vs. 5%, P < 0.001). As measured by the Vesikari severity score, a similar proportion of norovirus and rotavirus positive AGE patients were considered severe (68% vs. 70%, P = 0.86). CONCLUSIONS Norovirus is an important cause of AGE hospitalization in Bangladeshi children with most infections caused by GII viruses.
Collapse
Affiliation(s)
- Syed M. Satter
- icddr,b, Mohakhali, Dhaka, Bangladesh
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Zarin Abdullah
- icddr,b, Mohakhali, Dhaka, Bangladesh
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | | | - Meerjady S. Flora
- Institute of Epidemiology, Disease Control & Research, Dhaka, Bangladesh
| | - Emily S. Gurley
- icddr,b, Mohakhali, Dhaka, Bangladesh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | | | | | - Neha Balachandran
- Centers for Disease Control and Prevention, Atlanta, GA
- Cherokee Nation Assurance, Arlington, VA
| | - Benjamin Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA
| | | | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Aron J. Hall
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
115
|
Hasing ME, Pang XL. Norovirus: Molecular Epidemiology, Viral Culture, Immunity, and Vaccines. CLINICAL MICROBIOLOGY NEWSLETTER 2021; 43:33-43. [DOI: 10.1016/j.clinmicnews.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
116
|
Epidemiology of norovirus gastroenteritis in hospitalized children under five years old in western China, 2015-2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:918-925. [PMID: 33531203 DOI: 10.1016/j.jmii.2021.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Norovirus is associated with one-fifth of all gastroenteritis cases, but basic epidemiological data is lacking, especially in developing countries. As long-term surveillance on norovirus gastroenteritis is scarce in western China, this study aims to update the epidemiological knowledge of norovirus gastroenteritis and to characterize the genotypes of norovirus strains. METHODS Stool samples were collected from hospitalized children under 5 years old with gastroenteritis in Chengdu, China. All samples were tested for norovirus as well as rotavirus, sapovirus, enteric adenovirus, and astrovirus by real-time RT-PCR. RdRp and VP1 genes were sequenced in norovirus-positive samples to investigate viral phylogenies. RESULTS Of the 1181 samples collected from 2015 to 2019, 242 (20.5%) were positive for norovirus. Among norovirus-positive cases, 65 cases had co-infection with another virus; norovirus/enteric adenovirus was most frequently detected (50.8%, 33/65). The highest positive rate was observed in children aged 13-18 months (23.7%, 68/287). Norovirus infection peaked in autumn (36.6%, 91/249), followed by summer (20.3%, 70/345). Pearson correlation analysis showed significant correlation between the norovirus-positive rate and humidity (r = 0.773, P < 0.05). GII.4 Sydney 2012 [P31] (48.5%, 79/163) and GII.3 [P12] (35.6%, 58/163) were the dominant norovirus strains. CONCLUSIONS Norovirus has become one of the most common causes of viral gastroenteritis in children under 5 years old in western China. Continuous monitoring is imperative for predicting the emergence of new epidemic strains and for current vaccine development.
Collapse
|
117
|
Chan JC, Mohammad KN, Zhang LY, Wong SH, Chan MCW. Targeted Profiling of Immunological Genes during Norovirus Replication in Human Intestinal Enteroids. Viruses 2021; 13:v13020155. [PMID: 33494515 PMCID: PMC7910953 DOI: 10.3390/v13020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. The pathogenesis of norovirus and the induced immune response remain poorly understood due to the lack of a robust virus culture system. The monolayers of two secretor-positive Chinese human intestinal enteroid (HIE) lines were challenged with two norovirus pandemic GII.4 Sydney strains. Norovirus RNA replication in supernatants and cell lysates were quantified by RT-qPCR. RNA expression levels of immune-related genes were profiled using PCR arrays. The secreted protein levels of shortlisted upregulated genes were measured in supernatants using analyte-specific enzyme-linked immunosorbent assay (ELISA). Productive norovirus replications were achieved in three (75%) out of four inoculations. The two most upregulated immune-related genes were CXCL10 (93-folds) and IFI44L (580-folds). Gene expressions of CXCL10 and IFI44L were positively correlated with the level of norovirus RNA replication (CXCL10: Spearman’s r = 0.779, p < 0.05; IFI44L: r = 0.881, p < 0.01). The higher level of secreted CXCL10 and IFI44L proteins confirmed their elevated gene expression. The two genes have been reported to be upregulated in norovirus volunteer challenges and natural human infections by other viruses. Our data suggested that HIE could mimic the innate immune response elicited in natural norovirus infection and, therefore, could serve as an experimental model for future virus-host interaction and antiviral studies.
Collapse
Affiliation(s)
- Jenny C.M. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Kirran N. Mohammad
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Lin-Yao Zhang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
| | - Sunny H. Wong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin Chi-Wai Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (J.C.M.C.); (K.N.M.); (L.-Y.Z.)
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Correspondence:
| |
Collapse
|
118
|
Pairing of Parental Noroviruses with Unequal Competitiveness Provides a Clear Advantage for Emergence of Progeny Recombinants. Appl Environ Microbiol 2021; 87:AEM.02015-20. [PMID: 33187997 PMCID: PMC7848925 DOI: 10.1128/aem.02015-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Genetic recombination plays a pivotal role in the appearance of human norovirus recombinants that cause global epidemics. However, the factors responsible for the appearance of these recombinants remains largely unknown. In this study, we revealed a selective pressure that restricts parental combinations leading to the emergence of norovirus recombinants. To investigate traces of emerging novel recombinants and their parents in the human population, we isolated mass nucleotide sequence clones of human norovirus genogroups I and II in sewage-affected waters over a 4-year sampling period. Fourteen different phylogenetic combinations of recombinants and their parents were defined from the dozens of phylogenetic lineages circulating in the human population. To evaluate the probability of these combinations, parental lineages of each recombinant were categorized into two groups as HP (relatively higher-competitiveness parents) and LP (relatively lower-competitiveness parents), according to their relative detection frequency. Strong categorization of HP and LP was confirmed by tests with modified data and additional variables. An algorithm that was developed in this study to visualize the chance of mixed infection between parents revealed that HP lineages have a higher chance of mixed infection than LP lineages in the human population. Three parental pairing types in recombinants were defined: HP-HP, HP-LP, and LP-LP. Among these, most recombinants were identified as HP-LP, despite the prediction of dominant emergence of HP-HP-type recombinants. These results suggest that nature favors recombinants of human norovirus that originate from parental pairing of heterogeneous competitiveness.IMPORTANCE Novel recombinants, generated from inter- and intraspecies recombination of norovirus lineages, often emerge and pose a threat to public health. However, the factors determining emergence of these particular recombinants from all possible combinations of parental lineages remain largely unknown. Therefore, current investigations on these recombinants are inevitably limited to postepidemic analyses, which merely identify genetic or phenotypic changes in the newly emerged recombinants compared to their parents. Here, we provide a new theoretical concept that emergence of novel recombinants could be explained by a combination of parental noroviruses thriving in the human population and those circulating at lower levels. This study could provide an additional and important rationale for the proactive environmental monitoring of potential future epidemics due to viral recombinants.
Collapse
|
119
|
Tatusov RL, Chhabra P, Diez-Valcarce M, Barclay L, Cannon JL, Vinjé J. Human Calicivirus Typing tool: A web-based tool for genotyping human norovirus and sapovirus sequences. J Clin Virol 2020; 134:104718. [PMID: 33360859 DOI: 10.1016/j.jcv.2020.104718] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The family Caliciviridae consists of a genetically diverse group of RNA viruses that infect a wide range of host species including noroviruses and sapoviruses which cause acute gastroenteritis in humans. Typing of these viruses relies on sequence-based approaches, and therefore there is a need for rapid and accurate web-based typing tools. OBJECTIVE To develop and evaluate a web-based tool for rapid and accurate genotyping of noroviruses and sapoviruses. METHODS The Human Calicivirus Typing (HuCaT) tool uses a set of curated reference sequences that are compared to query sequences using a k-mer (DNA substring) based algorithm. Outputs include alignments and phylogenetic trees of the 12 top matching reference sequences for each query. RESULTS The HuCaT tool was validated with a set of 1310 norovirus and 239 sapovirus sequences covering all known human norovirus and sapovirus genotypes. HuCaT tool assigned genotypes to all queries with 100 % accuracy and was much faster (17 s) than BLAST (150 s) or phylogenetic analyses approaches. CONCLUSIONS The web-based HuCaT tool supports rapid and accurate genotyping of human noroviruses and sapoviruses.
Collapse
Affiliation(s)
- Roman L Tatusov
- Cherokee Nation Assurance, Arlington, VA, 22202, USA; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Preeti Chhabra
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marta Diez-Valcarce
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Leslie Barclay
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer L Cannon
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
120
|
Characterization of a hospital-based gastroenteritis outbreak caused by GII.6 norovirus in Jinshan, China. Epidemiol Infect 2020; 148:e289. [PMID: 33292874 PMCID: PMC7770467 DOI: 10.1017/s0950268820002538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Collapse
|
121
|
Xie D, Chen J, Yu J, Pei F, Koroma MM, Wang L, Qiu M, Hou Y, Yu D, Zhang XF, Dai YC. Characterization of Antigenic Relatedness Among GI Norovirus Genotypes Using Serum Samples From Norovirus-Infected Patients and Mouse Sera. Front Microbiol 2020; 11:607723. [PMID: 33363528 PMCID: PMC7752868 DOI: 10.3389/fmicb.2020.607723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Characterizing diversity and the antigenic relatedness of norovirus remains a primary focus in understanding its biological properties and vaccine designs. The precise antigenic and serological features of GI genotypes have not been studied. The study represented an investigation on a gastroenteritis outbreak related to GI.3 norovirus and the three most detected GI genotypes, GI.2 (belonging to immunotype B), GI.3 and GI.9 (belonging to immunotype C), were selected to characterize their phylogenetic relationship, HBGA binding profiles and antigenic relatedness within (intra-immunotype), and between (inter-immunotypes) genotypes using mouse sera and patient’s serum samples from the GI.3 related outbreak. Wide HBGA binding profiles and evolution of binding affinity were observed in the three GI genotypes studied. A low specific blockade antibody to GI.3 in the population generated the pool of susceptible individuals and supported virus spread in the outbreak. We found strong blockade immune response in homologous strains, moderate intra-immunotype blockade but weak inter-immunotypes blockade in humans following GI.3 norovirus infections. These findings further support the immunotypes grouping and will be valuable for optimizing the design of norovirus vaccine.
Collapse
Affiliation(s)
- Dongjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junrui Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingrong Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengsi Qiu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuzhen Hou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dexian Yu
- Guangzhou Military Command Center for Disease Control and Prevention, Guangzhou, China
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
122
|
Félix-Valenzuela L, Molina-Chavarria A, Enríquez-Hernández CI, Bolado-Martínez E, Durazo-Arvizu MDLÁ, Dórame-Castillo R, Cano-Rangel MA, Mata-Haro V. Molecular Characterization of Norovirus Circulating in Northwest Mexico During 2013-2014. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:355-360. [PMID: 33029763 DOI: 10.1007/s12560-020-09446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Norovirus (NoV) is an important etiological agent of diarrhea in children and adults. In Mexico, NoV screening is not routinely performed. NoV is highly infectious and is responsible for massive outbreaks due to the consumption of contaminated food. The study was a cross-sectional design. Samples of diarrheal stools were collected from (62) children and (38) adults with acute gastroenteritis during 2013-2014. The circulating genogroups of NoV were detected by amplifying the RdRp gene fragment, and for the genotyping, the capsid and polymerase fragments were sequenced. Seventy-seven percent of the analyzed samples were positive for NoV. Genotyping was possible for 51 samples; for polymerase GII.P2, GII.P31, GII.P4, GII.P7, GII.P40, and GI.P14 were identified, whereas for capsid, genotypes GI.3, GII.2, GII.4, GII.5, GII.14, and GII.17. In conclusion, there is a high prevalence of gastroenteritis due to NoV in the northwest of Mexico, including genotypes that have not been reported previously in Mexico.
Collapse
Affiliation(s)
- Leticia Félix-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, CP 83304, Hermosillo, Sonora, Mexico
| | - Alejandro Molina-Chavarria
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, CP 83304, Hermosillo, Sonora, Mexico
| | - Carmen Itzé Enríquez-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, CP 83304, Hermosillo, Sonora, Mexico
| | - Enrique Bolado-Martínez
- Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000, Hermosillo, SON, Mexico
| | | | - Roberto Dórame-Castillo
- Hospital Infantil del Estado de Sonora, Reforma 355, Col. Ley 57, 83100, Hermosillo, SON, Mexico
| | | | - Verónica Mata-Haro
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, CP 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
123
|
Chhabra P, Browne H, Huynh T, Diez-Valcarce M, Barclay L, Kosek MN, Ahmed T, Lopez MR, Pan CY, Vinjé J. Single-step RT-PCR assay for dual genotyping of GI and GII norovirus strains. J Clin Virol 2020; 134:104689. [PMID: 33260046 PMCID: PMC7816162 DOI: 10.1016/j.jcv.2020.104689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Noroviruses are the major cause of acute gastroenteritis (AGE) in people of all ages globally. Standardized genotyping is key for outbreak investigations and surveillance networks. OBJECTIVE Here we describe the validation of a one-step conventional RT-PCR assay for sequence-based dual typing of GI and GII noroviruses. This polymerase (P) and capsid (C) dual typing assay uses a combination of previously published oligonucleotide primers amplifying a genomic region spanning the 3'-end of ORF1 and 5'end of ORF2 resulting in a 579 bp product for GI and 570 bp product for GII viruses. RESULTS The limit of detection of the assay ranged from 5 to 50 copies of viral RNA per reaction for GI and GII. To validate the assay, we tested 2,663 noroviruspositive stool samples from outbreaks and sporadic cases of AGE in Bangladesh, Guatemala, Peru, and USA collected between 2010-2019, of which 2,392 (90 %) were genotyped successfully. Most of the known genotypes infecting humans (GI (n = 9) and GII (n = 23)) and P types (GI (n = 15), GII, (n = 20)) could be detected. The remaining 270 samples had low viral load (Ct > 30) by real-time RT-PCR. A panel of 166 samples positive for other enteric viruses (rotavirus, astrovirus, sapovirus, adenovirus type 40/41) tested negative. CONCLUSION The use of broadly reactive genotyping assays greatly strengthens exchange of standardized genotype data globally to monitor trends in genotype diversity which is important for both the development of vaccines and to measure their impact.
Collapse
Affiliation(s)
- Preeti Chhabra
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Hannah Browne
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, USA
| | - Thalia Huynh
- California Department of Public Health, Richmond, CA, USA
| | | | - Leslie Barclay
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Margaret N Kosek
- University of Virginia Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Chao-Yang Pan
- California Department of Public Health, Richmond, CA, USA
| | - Jan Vinjé
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
124
|
Understanding Pediatric Norovirus Epidemiology: A Decade of Study among Ghanaian Children. Viruses 2020; 12:v12111321. [PMID: 33217894 PMCID: PMC7698731 DOI: 10.3390/v12111321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Understanding the epidemiology of human norovirus infection in children within Ghana and the entire sub-Saharan African region, where future norovirus vaccines would have the greatest impact, is essential. We analyzed 1337 diarrheic stool samples collected from children <5 years from January 2008 to December 2017 and found 485 (36.2%) shedding the virus. GII.4 (54.1%), GII.3 (7.7%), GII.6 (5.3%), GII.17 (4.7%), and GII.5 (4.7%) were the most common norovirus genotypes. Although norovirus GII.4 remained the predominant capsid genotype throughout the study period, an increase in GII.6 and GII.3 capsid genotypes was observed in 2013 and 2014, respectively. The severity of clinical illness in children infected with GII.4 norovirus strains was similar to illness caused by non-GII.4 strains. Since the epidemiology of norovirus changes rapidly, establishment of systematic surveillance within sentinel sites across the country would enhance the monitoring of circulating norovirus strains and allow continuous understanding of norovirus infection in Ghana.
Collapse
|
125
|
Villabruna N, Izquierdo Lara RW, Szarvas J, Koopmans MPG, de Graaf M. Phylogenetic Investigation of Norovirus Transmission between Humans and Animals. Viruses 2020; 12:v12111287. [PMID: 33182775 PMCID: PMC7698157 DOI: 10.3390/v12111287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Norovirus infections are a leading cause of acute gastroenteritis worldwide, affecting people of all ages. There are 10 norovirus genogroups (GI-GX) that infect humans and animals in a host-specific manner. New variants and genotypes frequently emerge, and their origin is not well understood. One hypothesis is that new human infections may be seeded from an animal reservoir, as human noroviruses have occasionally been detected in animal species. The majority of these sequences were identified as older GII.4 variants, but a variety of other GIIs and GIs have been detected as well. While these sequences share at least 94% nt similarity with human strains, most of them are >98% identical to human strains. The fact that these strains were detected in animals after they had been detected through human surveillance to be already circulating in humans suggests human-to-animal transmission.
Collapse
Affiliation(s)
- Nele Villabruna
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (N.V.); (R.W.I.L.); (M.P.G.K.)
| | - Ray W. Izquierdo Lara
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (N.V.); (R.W.I.L.); (M.P.G.K.)
| | - Judit Szarvas
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (N.V.); (R.W.I.L.); (M.P.G.K.)
| | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (N.V.); (R.W.I.L.); (M.P.G.K.)
- Correspondence:
| |
Collapse
|
126
|
|
127
|
Mattioli MC, Benedict KM, Murphy J, Kahler A, Kline KE, Longenberger A, Mitchell PK, Watkins S, Berger P, Shanks OC, Barrett CE, Barclay L, Hall AJ, Hill V, Weltman A. Identifying septic pollution exposure routes during a waterborne norovirus outbreak - A new application for human-associated microbial source tracking qPCR. J Microbiol Methods 2020; 180:106091. [PMID: 33137355 DOI: 10.1016/j.mimet.2020.106091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
In June 2017, the Pennsylvania Department of Health (PADOH) was notified of multiple norovirus outbreaks associated with 179 ill individuals who attended separate events held at an outdoor venue and campground over a month period. Epidemiologic investigations were unable to identify a single exposure route and therefore unable to determine whether there was a persistent contamination source to target for exposure mitigation. Norovirus was detected in a fresh recreational water designated swimming area and a drinking water well. A hydrogeological site evaluation suggested a nearby septic leach field as a potential contamination source via ground water infiltration. Geological characterization revealed a steep dip of the bedrock beneath the septic leach field toward the well, providing a viral transport pathway in a geologic medium not previously documented as high risk for viral ground water contamination. The human-associated microbial source tracking (MST) genetic marker, HF183, was used as a microbial tracer to demonstrate the hydrogeological connection between the malfunctioning septic system, drinking water well, and recreational water area. Based on environmental investigation findings, venue management and local public health officials implemented a series of outbreak prevention strategies including discontinuing the use of the contaminated well, issuing a permit for a new drinking water well, increasing portable toilet and handwashing station availability, and promoting proper hand hygiene. Despite the outbreaks at the venue and evidence of ground water contamination impacting nearby recreational water and the drinking water well, no new norovirus cases were reported during a large event one week after implementing prevention practices. This investigation highlights a new application for human-associated MST methods to trace hydrological connections between multiple fecal pollutant exposure routes in an outbreak scenario. In turn, pollutant source information can be used to develop effective intervention practices to mitigate exposure and prevent future outbreaks associated with human fecal contaminated waters.
Collapse
Affiliation(s)
- Mia C Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA.
| | - Katharine M Benedict
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Jennifer Murphy
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Amy Kahler
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Kelly E Kline
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Allison Longenberger
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Patrick K Mitchell
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA; Epidemic Intelligence Service, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon Watkins
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Philip Berger
- U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water, Washington, DC, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Catherine E Barrett
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Leslie Barclay
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA
| | - Aron J Hall
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA
| | - Vincent Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Andre Weltman
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| |
Collapse
|
128
|
Diversity of Noroviruses throughout Outbreaks in Germany 2018. Viruses 2020; 12:v12101157. [PMID: 33066195 PMCID: PMC7602084 DOI: 10.3390/v12101157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Human norovirus accounts for the majority of viral gastroenteritis cases worldwide. It is a fast evolving virus generating diversity via mutation and recombination. Therefore, new variants and new recombinant strains emerge in the norovirus population. We characterized norovirus positive stool samples from one intensively studied district Märkisch-Oderland state Brandenburg with the samples from other states of Germany in order to understand the molecular epidemiological dynamics of norovirus outbreaks in Germany 2018. PCR systems, Sanger sequencing, and phylogenetic analyses were used for genotyping. Noroviruses of 250 outbreaks in Germany were genotyped, including 39 outbreaks for the district Märkisch-Oderland. Viral diversity in Märkisch-Oderland as compared to Germany was similar, but not identical. The predominant genogroup in Germany was GII with predominate genotype GII.P16-GII.4 Sydney, whereas GII.P31-GII.4 Sydney was the most frequent in Märkisch-Oderland. Genogroup I viruses were less frequently detected, regional and national. Within the sequences of GII.4 recombinants, two distinct clusters were identified with outbreaks from Märkisch-Oderland. Further analysis of sequence data and detailed epidemiological data are needed in order to understand the link between outbreaks in such clusters. Molecular surveillance should be based on samples collected nationally in order to trace comprehensive virus distribution and recombination events in virus population.
Collapse
|
129
|
Bhatta MR, Marsh Z, Newman KL, Rebolledo PA, Huey M, Hall AJ, Leon JS. Norovirus outbreaks on college and university campuses. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2020; 68:688-697. [PMID: 31084526 PMCID: PMC11268439 DOI: 10.1080/07448481.2019.1594826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Objective: To describe norovirus outbreaks at colleges and universities. Participants: None. Conducted September 2016 to March 2018. Methods: College and university norovirus outbreaks reported to the US National Outbreak Reporting System (NORS, 2009-2016) or published and indexed by EMBASE, PubMed, and Web of Science (1985-2017) were analyzed. Results: Seventy-seven norovirus outbreaks were reported to NORS and 23 were identified in the systematic literature review. Outbreaks occurred more frequently during the beginning of the school year (September-February). NORS outbreaks were more often spread by person-to-person transmission (61%) and, in published outbreaks, by food (57%). The reported exposures of published outbreaks were campus dining (n = 8) and ill food service workers (n = 7). Higher attack rates were associated with smaller on-campus population size, social networks or residences, and specific food exposures. Common control measures were communal area disinfection and health/hygiene education. Conclusions: Recommendations summarized to prevent and control norovirus outbreaks at colleges or universities.
Collapse
Affiliation(s)
- Manasa R Bhatta
- College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Zach Marsh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kira L Newman
- Internal Medicine Residency Program, University of Washington, Seattle, Washington, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Huey
- Student Health Services, Emory University and Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Juan S Leon
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
130
|
Mallory ML, Lindesmith LC, Brewer-Jensen PD, Graham RL, Baric RS. Bile Facilitates Human Norovirus Interactions with Diverse Histoblood Group Antigens, Compensating for Capsid Microvariation Observed in 2016-2017 GII.2 Strains. Viruses 2020; 12:E989. [PMID: 32899556 PMCID: PMC7552067 DOI: 10.3390/v12090989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Human norovirus (HuNoV) is the leading cause of global infectious acute gastroenteritis, causing ~20% of reported diarrheal episodes. Typically, GII.4 strains cause 50-70% of yearly outbreaks, and pandemic waves of disease approximately every 2-7 years due to rapid evolution. Importantly, GII.4 dominance is occasionally challenged by the sudden emergence of other GII strains, most recently by GII.2 strains which peaked in 2016-2017, dramatically increasing from 1% to 20% of total HuNoV outbreaks. To determine if viral capsid evolution may account for the sudden rise in GII.2 outbreaks, Virus Like Particles (VLPs) of two 2016-2017 GII.2 strains were compared by antigenic and histo blood group antigen (HBGA) binding profiles to the prototypic 1976 GII.2 Snow Mountain Virus (SMV) strain. Despite >50 years of GII.2 strain persistence in human populations, limited sequence diversity and antigenic differences were identified between strains. However, capsid microvariation did affect HBGA binding patterns, with contemporary strains demonstrating decreased avidity for type A saliva. Furthermore, bile salts increased GII.2 VLP avidity for HBGAs, but did not alter antigenicity. These data indicate that large changes in antigenicity or receptor binding are unlikely to explain GII.2 emergence, in contrast to the pandemic GII.4 strains, and indicate that host factors such as waning or remodeling of serum or mucosal immunity likely contributed to the surge in GII.2 prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.L.M.); (L.C.L.); (P.D.B.-J.); (R.L.G.)
| |
Collapse
|
131
|
Efficacy of an intramuscular bivalent norovirus GI.1/GII.4 virus-like particle vaccine candidate in healthy US adults. Vaccine 2020; 38:6442-6449. [DOI: 10.1016/j.vaccine.2020.07.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022]
|
132
|
Randazzo W, Costantini V, Morantz EK, Vinjé J. Human Intestinal Enteroids to Evaluate Human Norovirus GII.4 Inactivation by Aged-Green Tea. Front Microbiol 2020; 11:1917. [PMID: 32973702 PMCID: PMC7461803 DOI: 10.3389/fmicb.2020.01917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are the leading cause of epidemic and sporadic acute gastroenteritis worldwide and the most common cause of foodborne illness in the United States. Several natural compounds, such as aged-green tea extract (aged-GTE), have been suggested as ingestible antiviral agents against human norovirus based on data using murine norovirus and feline calicivirus as surrogates. However, in vitro data showing their effectiveness against infectious human norovirus are lacking. We tested the activity of aged-GTE to inhibit human norovirus in a human intestinal enteroids (HIEs) model and Tulane virus in LLC-monkey kidney (LLC-MK2) cell culture. HIE monolayers pretreated with aged-GTE at different temperatures showed complete inhibition of human norovirus GII.4 replication at concentrations as low as 1.0 mg/ml for 37°C, 1.75 mg/ml for 21°C, and 2.5 mg/ml for 7°C. In contrast, a moderate decrease in Tulane virus infectivity of 0.85, 0.75, and 0.65 log TCID50/ml was observed for 2.5 mg/ml aged-GTE at 37, 21, and 7°C, respectively. Our findings demonstrate that GTE could be an effective natural compound against human norovirus GII.4, while only minimally effective against Tulane virus.
Collapse
Affiliation(s)
- Walter Randazzo
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Veronica Costantini
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Esther K Morantz
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Cherokee Nation Assurance, Arlington, VA, United States
| | - Jan Vinjé
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
133
|
Hernandez JM, Silva LD, Sousa Junior EC, Cardoso JF, Reymão TKA, Portela ACR, de Lima CPS, Teixeira DM, Lucena MSS, Nunes MRT, Gabbay YB. Evolutionary and Molecular Analysis of Complete Genome Sequences of Norovirus From Brazil: Emerging Recombinant Strain GII.P16/GII.4. Front Microbiol 2020; 11:1870. [PMID: 32849456 PMCID: PMC7423841 DOI: 10.3389/fmicb.2020.01870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10-3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011-2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future.
Collapse
Affiliation(s)
- Juliana Merces Hernandez
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luciana Damascena Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Jedson Ferreira Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tammy Kathlyn Amaral Reymão
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
134
|
Cantelli CP, Fumian TM, Malta FC, da Cunha DC, Brasil P, Nordgren J, Svensson L, Miagostovich MP, de Moraes MTB, Leite JPG. Norovirus infection and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 82:104280. [PMID: 32165242 DOI: 10.1016/j.meegid.2020.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/29/2022]
Abstract
Norovirus has emerged as an important viral agent of acute pediatric gastroenteritis, with a growing genetic diversity reported in the last decades. Histo-blood group antigens (HBGAs) present on the surface of enterocytes are susceptibility factors for norovirus infection and differ between populations which could affects the epidemiology and evolution of these viruses. This study investigated the frequency, incidence and genetic diversity of noroviruses in a cohort of rotavirus A vaccinated children in association to the host HBGA (Secretor/Lewis) genetic susceptibility profile. Norovirus genogroups I and II (GI/GII) were screened by RT-qPCR in 569 stool samples from 132 children followed-up from birth to 11 months of age during 2014--2018. Noroviruses were identified in 21.2% of children enrolled in this study, with a norovirus detection rate of 5.6% (32/569), in 17.1% and 4.7% of acute diarrheic episodes (ADE) and non-ADE, respectively. The norovirus incidence was 5.8 infections per 100 child-months. Partial nucleotide sequencing characterized six different norovirus genotypes, with GII.4 Sydney 2012 being detected in 50% associated with three different polymerase genotypes (GII·P31, GII·P16 and GII·P4 New Orleans 2009). FUT3 genotyping was yielded seven new mutations in this population. A significant association between symptomatic norovirus infection and secretor profile could be inferred.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil; Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Denise Cotrim da Cunha
- Sérgio Arouca Public Health National School, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
135
|
Esposito S, Principi N. Norovirus Vaccine: Priorities for Future Research and Development. Front Immunol 2020; 11:1383. [PMID: 32733458 PMCID: PMC7358258 DOI: 10.3389/fimmu.2020.01383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Soon after its identification, norovirus (NoV) has been indicated as one of the most common causes of outbreaks of acute gastroenteritis (AGE) and sporadic acute diarrhea episodes in subjects of any age. In 2016 the World Health Organization stated that the development of a NoV vaccine should be considered an absolute priority. Unfortunately, the development of an effective NoV vaccine has proven extremely difficult, and only in recent years, some preparations have been tested in humans in advanced clinical trials. In this paper, reasons that justify efforts to develop a NoV vaccine, difficulties encountered during NoV vaccine development, and NoV vaccine candidates will be discussed. In recent years, identification of some NoV antigens that alone or in combination with other viral antigens can induce a potentially protective immune response has led to the development of a large series of preparations that seem capable of coping with the problems related to NoV infection. Epidemiological and immunological studies have shown that multivalent vaccines, including both GI and GII NoV, are the only solution to induce sufficiently broad protection. However, even if the road to formulation of an effective and safe NoV vaccine seems to be definitively traced, many problems still need to be solved before the total burden of NoV infections can be adequately controlled. Whether currently available vaccines are able to protect against all the heterologous NoV strains and the variants of the most common serotypes that frequently emerge and cause outbreaks must be defined. Moreover, as performed clinical trials have mainly enrolled adults, it is mandatory to know whether vaccines are effective in all age groups, including younger children. Finally, we must know the immune response of immunocompromised patients and the duration of protection induced by NoV vaccines. Only when all these problems have been solved will it be possible to establish an effective immunization schedule against NoV infection and calculate whether systematic vaccination can be cost effective.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | | |
Collapse
|
136
|
Cardemil CV, Balachandran N, Kambhampati A, Grytdal S, Dahl RM, Rodriguez-Barradas MC, Vargas B, Beenhouwer DO, Evangelista KV, Marconi VC, Meagley KL, Brown ST, Perea A, Lucero-Obusan C, Holodniy M, Browne H, Gautam R, Bowen MD, Vinjé J, Parashar UD, Hall AJ. Incidence, etiology, and severity of acute gastroenteritis among prospectively enrolled patients in 4 Veterans Affairs hospitals and outpatient centers, 2016-18. Clin Infect Dis 2020; 73:e2729-e2738. [PMID: 32584956 DOI: 10.1093/cid/ciaa806] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute gastroenteritis (AGE) burden, etiology, and severity in adults is not well-characterized. We implemented a multisite AGE surveillance platform in 4 Veterans Affairs Medical Centers (Atlanta, Bronx, Houston and Los Angeles), collectively serving >320,000 patients annually. METHODS From July 1, 2016-June 30, 2018, we actively identified AGE inpatient cases and non-AGE inpatient controls through prospective screening of admitted patients and passively identified outpatient cases through stool samples submitted for clinical diagnostics. We abstracted medical charts and tested stool samples for 22 pathogens via multiplex gastrointestinal PCR panel followed by genotyping of norovirus- and rotavirus-positive samples. We determined pathogen-specific prevalence, incidence, and modified Vesikari severity scores. RESULTS We enrolled 724 inpatient cases, 394 controls, and 506 outpatient cases. Clostridioides difficile and norovirus were most frequently detected among inpatients (cases vs controls: C. difficile, 18.8% vs 8.4%; norovirus, 5.1% vs 1.5%; p<0.01 for both) and outpatients (norovirus: 10.7%; C. difficile: 10.5%). Incidence per 100,000 population was highest among outpatients (AGE: 2715; C. difficile: 285; norovirus: 291) and inpatients ≥65 years old (AGE: 459; C. difficile: 91; norovirus: 26). Clinical severity scores were highest for inpatient norovirus, rotavirus, and Shigella/EIEC cases. Overall, 12% of AGE inpatient cases had ICU stays and 2% died; 3 deaths were associated with C. difficile and 1 with norovirus. C. difficile and norovirus were detected year-round with a fall/winter predominance. CONCLUSIONS C. difficile and norovirus were leading AGE pathogens in outpatient and hospitalized US Veterans, resulting in severe disease. Clinicians should remain vigilant for bacterial and viral causes of AGE year-round.
Collapse
Affiliation(s)
- Cristina V Cardemil
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Neha Balachandran
- Cherokee Nation Assurance, Arlington, VA, contracting agency to the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, GA
| | - Anita Kambhampati
- Cherokee Nation Assurance, Arlington, VA, contracting agency to the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, GA
| | - Scott Grytdal
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Rebecca M Dahl
- Maximus Federal, contracting agency to the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, GA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Blanca Vargas
- Infectious Diseases Section, Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David O Beenhouwer
- VA Greater Los Angeles Healthcare System, Los Angeles, CA.,David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Karen V Evangelista
- VA Greater Los Angeles Healthcare System, Los Angeles, CA.,David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vincent C Marconi
- Atlanta VA Medical Center, Atlanta, GA.,Emory University School of Medicine, Atlanta, GA
| | | | - Sheldon T Brown
- James J. Peters VA Medical Center, Bronx, NY.,Icahn School of Medicine at Mt. Sinai, NY, NY
| | | | - Cynthia Lucero-Obusan
- Public Health Surveillance and Research, Department of Veterans Affairs, Washington, DC.,VA Palo Alto Health Care System, Palo Alto, CA
| | - Mark Holodniy
- Public Health Surveillance and Research, Department of Veterans Affairs, Washington, DC.,VA Palo Alto Health Care System, Palo Alto, CA.,Stanford University, Stanford, CA
| | - Hannah Browne
- Cherokee Nation Assurance, Arlington, VA, contracting agency to the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, GA
| | - Rashi Gautam
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
137
|
Desdouits M, de Graaf M, Strubbia S, Oude Munnink BB, Kroneman A, Le Guyader FS, Koopmans MPG. Novel opportunities for NGS-based one health surveillance of foodborne viruses. ONE HEALTH OUTLOOK 2020; 2:14. [PMID: 33829135 PMCID: PMC7993515 DOI: 10.1186/s42522-020-00015-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 05/15/2023]
Abstract
Foodborne viral infections rank among the top 5 causes of disease, with noroviruses and hepatitis A causing the greatest burden globally. Contamination of foods by infected food handlers or through environmental pollution are the main sources of foodborne illness, with a lesser role for consumption of products from infected animals. Viral partial genomic sequencing has been used for more than two decades to track foodborne outbreaks and whole genome or metagenomics next-generation-sequencing (NGS) are new additions to the toolbox of food microbiology laboratories. We discuss developments in the field of targeted and metagenomic NGS, with an emphasis on application in food virology, the challenges and possible solutions towards future routine application.
Collapse
Affiliation(s)
- Marion Desdouits
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Miranda de Graaf
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sofia Strubbia
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Bas B. Oude Munnink
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annelies Kroneman
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Marion P. G. Koopmans
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
138
|
Saupe AA, Rounds J, Sorenson A, Hedeen N, Bagstad E, Reinberg R, Wagley AG, Cebelinski E, Smith K. Outbreak of Norovirus Gastroenteritis Associated with Ice Cream Contaminated by Frozen Raspberries from China; Minnesota, USA, 2016. Clin Infect Dis 2020; 73:e3701-e3707. [PMID: 32564069 DOI: 10.1093/cid/ciaa821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Noroviru is the etiology for about 60% of foodborne outbreaks identified in Minnesota. Contamination of food during preparation by food handlers is by far the most common cause of these outbreaks. Norovirus outbreaks due to commercially distributed foods are rarely reported in the United States, and only two have been previously identified in Minnesota, both due to oysters. METHODS In August 2016, we investigated an outbreak of norovirus gastroenteritis in Minnesota that was linked to consumption of commercially distributed ice cream at multiple venues. Sanitarians from local public health agencies visited the facilities involved for follow-up, and case-control studies were conducted. The outbreak was identified by linking multiple independent illness reports to a centralized foodborne illness complaint system and subsequently confirmed though genotyping of stool specimens. RESULTS A total of 15 cases from four venues were reported. Raspberry chocolate chip ice cream was statistically associated with illness in two analytic studies (6 of 7 cases vs. 0 of 7 controls; odds ratio, undefined; p = 0.005). Norovirus GII.17[P17] (GII.17 Kawasaki) strains from case stool specimens matched norovirus found in frozen raspberries imported from China that were used to make the implicated ice cream. CONCLUSIONS To our knowledge, this is the first norovirus outbreak due to commercially distributed frozen berries identified in the United States. To detect norovirus outbreaks associated with commercially distributed food vehicles, investigators should thoroughly investigate all norovirus outbreaks (including stool testing and genotyping), coordinate complaint and response activities across agencies and jurisdictions, and consider testing food for norovirus when appropriate.
Collapse
Affiliation(s)
- Amy A Saupe
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Joshua Rounds
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Alida Sorenson
- Minnesota Department of Agriculture, St. Paul, Minnesota, USA
| | - Nicole Hedeen
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Erica Bagstad
- Hennepin County Human Services and Public Health Department, Hopkins, Minnesota, USA
| | - Roee Reinberg
- City of Minneapolis Health Department, Minneapolis, Minnesota, USA
| | - A Gail Wagley
- United States Food and Drug Administration, Atlanta, Georgia, USA
| | | | - Kirk Smith
- Minnesota Department of Health, St. Paul, Minnesota, USA
| |
Collapse
|
139
|
Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts. Viruses 2020; 12:v12060619. [PMID: 32516960 PMCID: PMC7354526 DOI: 10.3390/v12060619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Noroviruses are a leading cause of gastroenteritis worldwide. Although infections in healthy individuals are self-resolving, immunocompromised individuals are at risk for chronic disease and severe complications. Chronic norovirus infections in immunocompromised hosts are often characterized by long-term virus shedding, but it is unclear whether this shed virus remains infectious. We investigated the prevalence, genetic heterogeneity, and temporal aspects of norovirus infections in 1140 patients treated during a 6-year period at a pediatric research hospital. Additionally, we identified 20 patients with chronic infections lasting 37 to >418 days. Using a new human norovirus in vitro assay, we confirmed the continuous shedding of infectious virus for the first time. Shedding lasted longer in male patients and those with diarrheal symptoms. Prolonged shedding of infectious norovirus in immunocompromised hosts can potentially increase the likelihood of transmission, highlighting the importance of isolation precautions to prevent nosocomial infections.
Collapse
|
140
|
Chhabra P, de Graaf M, Parra GI, Chan MCW, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinjé J. Updated classification of norovirus genogroups and genotypes. J Gen Virol 2020; 100:1393-1406. [PMID: 31483239 DOI: 10.1099/jgv.0.001318] [Citation(s) in RCA: 572] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noroviruses are genetically diverse RNA viruses associated with acute gastroenteritis in mammalian hosts. Phylogenetically, they can be segregated into different genogroups as well as P (polymerase)-groups and further into genotypes and P-types based on amino acid diversity of the complete VP1 gene and nucleotide diversity of the RNA-dependent RNA polymerase (RdRp) region of ORF1, respectively. In recent years, several new noroviruses have been reported that warrant an update of the existing classification scheme. Using previously described 2× standard deviation (sd) criteria to group sequences into separate clusters, we expanded the number of genogroups to 10 (GI-GX) and the number of genotypes to 48 (9 GI, 27 GII, 3 GIII, 2 GIV, 2 GV, 2 GVI and 1 genotype each for GVII, GVIII, GIX [formerly GII.15] and GX). Viruses for which currently only one sequence is available in public databases were classified into tentative new genogroups (GNA1 and GNA2) and genotypes (GII.NA1, GII.NA2 and GIV.NA1) with their definitive assignment awaiting additional related sequences. Based on nucleotide diversity in the RdRp region, noroviruses can be divided into 60 P-types (14 GI, 37 GII, 2 GIII, 1 GIV, 2 GV, 2 GVI, 1 GVII and 1 GX), 2 tentative P-groups and 14 tentative P-types. Future classification and nomenclature updates will be based on complete genome sequences and will be coordinated and disseminated by the international norovirus classification-working group.
Collapse
Affiliation(s)
- Preeti Chhabra
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gabriel I Parra
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Martin Chi-Wai Chan
- Department of Microbiology, Stanley Ho Centre for Emerging Infectious Diseases and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Kim Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Qiuhong Wang
- Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney 2052, Australia
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Harry Vennema
- Division for Virology, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
141
|
Cates JE, Vinjé J, Parashar U, Hall AJ. Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev Vaccines 2020; 19:539-548. [PMID: 32500763 PMCID: PMC10760411 DOI: 10.1080/14760584.2020.1777860] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Noroviruses are a leading cause of acute gastroenteritis worldwide. An estimated 21 million illnesses in the United States and upwards of 684 million illnesses worldwide are attributed to norovirus infection. There are no licensed vaccines to prevent norovirus, but several candidates are in development. AREAS COVERED We review recent advances in molecular epidemiology of noroviruses, immunology, and in-vitro cultivation of noroviruses using human intestinal enteroids. We also provide an update on the status of norovirus vaccine candidates. EXPERT OPINION Molecular epidemiological studies confirm the tremendous genetic diversity of noroviruses, the continuous emergence of new recombinant strains, and the predominance of GII.4 viruses worldwide. Duration of immunity, extent of cross protection between different genotypes, and differences in strain distribution for young children compared with adults remain key knowledge gaps. Recent discoveries regarding which epitopes are targeted by neutralizing antibodies using the novel in vitro culture of human noroviruses in human intestinal enteroids are enhancing our understanding of mechanisms of protection and providing guidance for vaccine development. A future norovirus vaccine has the potential to substantially reduce the burden of illnesses due to this ubiquitous virus.
Collapse
Affiliation(s)
- Jordan E Cates
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Aron J Hall
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| |
Collapse
|
142
|
Marine RL, Magaña LC, Castro CJ, Zhao K, Montmayeur AM, Schmidt A, Diez-Valcarce M, Ng TFF, Vinjé J, Burns CC, Nix WA, Rota PA, Oberste MS. Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. J Virol Methods 2020; 280:113865. [PMID: 32302601 PMCID: PMC9119587 DOI: 10.1016/j.jviromet.2020.113865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing is a powerful tool for virological surveillance. While Illumina® and Ion Torrent® sequencing platforms are used extensively for generating viral RNA genome sequences, there is limited data comparing different platforms. The Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5 platforms were evaluated using a panel of sixteen specimens containing picornaviruses and human caliciviruses (noroviruses and sapoviruses). The specimens were processed, using combinations of three library preparation and five sequencing kits, to assess the quality and completeness of assembled viral genomes, and an estimation of cost per sample to generate the data was calculated. The choice of library preparation kit and sequencing platform was found to impact the breadth of genome coverage and accuracy of consensus viral genomes. The Ion Torrent S5 510 chip runs produced more reads at a lower cost per sample than the highest output Ion Torrent PGM 318 chip run, and generated the highest proportion of reads for enterovirus D68 samples. However, indels at homopolymer regions impacted the accuracy of consensus genome sequences. For lower throughput sequencing runs (i.e., Ion Torrent 510 and Illumina MiSeq Nano V2), the cost per sample was lower on the MiSeq platform, whereas with higher throughput runs (Ion Torrent 530 and Illumina MiSeq V2) there is less of a difference in the cost per sample between the two sequencing platforms ($5.47-$10.25 more per sample for an Ion Torrent 530 chip run when multiplexing 24 samples). These findings suggest that the Ion Torrent S5 and Illumina MiSeq platforms are both viable options for genomic sequencing of RNA viruses, each with specific advantages and tradeoffs.
Collapse
Affiliation(s)
- Rachel L Marine
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Laura C Magaña
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Christina J Castro
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kun Zhao
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Marta Diez-Valcarce
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
143
|
Ahmed K, Dony JJF, Mori D, Haw LY, Giloi N, Jeffree MS, Iha H. An outbreak of gastroenteritis by emerging norovirus GII.2[P16] in a kindergarten in Kota Kinabalu, Malaysian Borneo. Sci Rep 2020; 10:7137. [PMID: 32346119 PMCID: PMC7189370 DOI: 10.1038/s41598-020-64148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Outbreaks of diarrhea in kindergartens are underreported and frequently go unnoticed in developing countries. To better understand the etiology this study was performed during an outbreak of diarrhea in a kindergarten in Sabah, Malaysia. Outbreak investigation was performed according to the standard procedures. In this outbreak a total of 34 (36.5%) children and 4 (30.8%) teachers suffered from gastroenteritis. Stool samples from seven children and 13 teachers were tested for rotavirus and norovirus. During the investigation stool samples were collected and sent in cold chain to the laboratory. The samples were subjected to rotavirus enzyme linked immunosorbent assay, and reverse transcription PCR for norovirus. All samples were negative for rotavirus but positive for norovirus. To determine the genogroup and genotype of norovirus, nucleotide sequencing of the amplicons was performed. All norovirus from the outbreak was of genotype GII.2[16]. To determine the relatedness of the strains phylogenetic analysis was done using neighbor-joining method. Phylogenetically these strains were highly related to GII.2[P16] noroviruses from China and Japan. This study provided evidence that a diarrheal outbreak in a kindergarten was caused by GII.2[P16] norovirus which is an emerging strain in East Asia and Europe.
Collapse
Affiliation(s)
- Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia. .,Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| | | | - Daisuke Mori
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Liaw Yun Haw
- KPJ Sabah Specialist Hospital, Kota Kinabalu, 88300, Sabah, Malaysia
| | - Nelbon Giloi
- Department of Community Medicine and Public Health, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Department of Community Medicine and Public Health, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, 879-5593, Oita, Japan
| |
Collapse
|
144
|
Lindesmith LC, Brewer-Jensen PD, Mallory ML, Jensen K, Yount BL, Costantini V, Collins MH, Edwards CE, Sheahan TP, Vinjé J, Baric RS. Virus-Host Interactions Between Nonsecretors and Human Norovirus. Cell Mol Gastroenterol Hepatol 2020; 10:245-267. [PMID: 32289501 PMCID: PMC7301201 DOI: 10.1016/j.jcmgh.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Human norovirus infection is the leading cause of acute gastroenteritis. Genetic polymorphisms, mediated by the FUT2 gene (secretor enzyme), define strain susceptibility. Secretors express a diverse set of fucosylated histoblood group antigen carbohydrates (HBGA) on mucosal cells; nonsecretors (FUT2-/-) express a limited array of HBGAs. Thus, nonsecretors have less diverse norovirus strain infections, including resistance to the epidemiologically dominant GII.4 strains. Because future human norovirus vaccines will comprise GII.4 antigen and because secretor phenotype impacts GII.4 infection and immunity, nonsecretors may mimic young children immunologically in response to GII.4 vaccination, providing a needed model to study cross-protection in the context of limited pre-exposure. METHODS By using specimens collected from the first characterized nonsecretor cohort naturally infected with GII.2 human norovirus, we evaluated the breadth of serologic immunity by surrogate neutralization assays, and cellular activation and cytokine production by flow cytometry. RESULTS GII.2 infection resulted in broad antibody and cellular immunity activation that persisted for at least 30 days for T cells, monocytes, and dendritic cells, and for 180 days for blocking antibody. Multiple cellular lineages expressing interferon-γ and tumor necrosis factor-α dominated the response. Both T-cell and B-cell responses were cross-reactive with other GII strains, but not GI strains. To promote entry mechanisms, inclusion of bile acids was essential for GII.2 binding to nonsecretor HBGAs. CONCLUSIONS These data support development of within-genogroup, cross-reactive antibody and T-cell immunity, key outcomes that may provide the foundation for eliciting broad immune responses after GII.4 vaccination in individuals with limited GII.4 immunity, including young children.
Collapse
Affiliation(s)
- Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Kara Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
145
|
Zhirakovskaia EV, Tikunov AY, Sokolov SN, Kravchuk BI, Krasnova EI, Tikunova NV. Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia. Vavilovskii Zhurnal Genet Selektsii 2020; 24:69-79. [PMID: 33659783 PMCID: PMC7716542 DOI: 10.18699/vj20.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII. Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/ GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia.
Collapse
Affiliation(s)
- E V Zhirakovskaia
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Y Tikunov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S N Sokolov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| | - B I Kravchuk
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Krasnova
- Novosibirsk State Medical University, Department of Infectious Diseases, Novosibirsk, Russia
| | - N V Tikunova
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
146
|
Snow Mountain Virus recovery by synthetic human histo-blood group antigens is heavily influenced by matrix effects. Sci Rep 2020; 10:4661. [PMID: 32170122 PMCID: PMC7069939 DOI: 10.1038/s41598-020-60639-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Noroviruses are known to bind to histo-blood group antigens (HBGAs) and the specific binding patterns depend on the virus genotype. However, the development of point-of-care diagnostic assays based on this binding has been challenging due to low assay sensitivity. This study utilized a well-defined stool collection from a GII.2 Snow Mountain Virus (SMV) human challenge study to investigate virus recovery from stool and emesis samples using HBGA-coated beads. SMV was recovered from H type III-coated beads for 13 stool specimens out of 27 SMV-positive specimens tested. After adjusting for non-specific binding to PEG-coated beads, the mean percent recovery by H type III-coated beads was 308.11% +/− 861.61. Recovery by H type III ligands was subject-specific and weakly correlated with stool consistency. Input virus titer was not correlated with SMV recovery. The results suggest that the generally low virus recovery we observed may be due to bead saturation or hindrance by existing glycans in the matrix that precluded the virus from being captured by the synthetic glycans. These results indicate a strong role for subject-specific and matrix effects in HBGA binding by SMV. Further investigation of the nature of this interference is needed to facilitate development of high sensitivity diagnostic assays.
Collapse
|
147
|
Mateo R, Lindesmith LC, Garg SJ, Gottlieb K, Lin K, Said S, Leon JS, Sims AC, Weber DJ, Baric RS, Tucker SN, Taylor DN. Production and Clinical Evaluation of Norwalk GI.1 Virus Lot 001-09NV in Norovirus Vaccine Development. J Infect Dis 2020; 221:919-926. [PMID: 31628848 PMCID: PMC7050988 DOI: 10.1093/infdis/jiz540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human noroviruses (HuNoV) are the leading cause of gastroenteritis. No vaccine is currently available to prevent norovirus illness or infection. Safe, infectious challenge strains are needed to assess vaccine efficacy in the controlled human infection model (CHIM). METHODS A stock of HuNoV strain Norwalk virus ([NV] GI.1) was prepared. Healthy, genetically susceptible adults were inoculated with NV Lot 001-09NV and monitored for infection, gastroenteritis symptoms, and immune responses. RESULTS Lot 001-09NV induced gastroenteritis in 9 (56%) and infection in 11 (69%) of 16 genetically susceptible subjects. All infected subjects developed strong immune responses to GI.1 with a 30-fold (geometric mean titer) increase in blocking titers (BT50) and a 161-fold increase in GI.1-specific immunoglobulin (Ig)G titers when compared with baseline. GI.1-specific cellular responses in peripheral blood were observed 9 days postchallenge with an average of 3253 IgA and 1227 IgG antibody-secreting cells per million peripheral blood mononuclear cells. CONCLUSIONS GI.1 Lot 001-09NV appears to be similar in virulence to previous passages of NV strain 8fIIa. The safety profile, attack rate, and duration of illness make GI.1 Lot 001-09NV a useful challenge strain for future vaccine studies aimed at establishing immune correlates.
Collapse
Affiliation(s)
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Karen Lin
- Vaxart, Inc., South San Francisco, California, USA
| | - Sara Said
- Vaxart, Inc., South San Francisco, California, USA
| | - Juan S Leon
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David J Weber
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
148
|
Sharma S, Hagbom M, Carlsson B, Nederby Öhd J, Insulander M, Eriksson R, Simonsson M, Widerström M, Nordgren J. Secretor Status is Associated with Susceptibility to Disease in a Large GII.6 Norovirus Foodborne Outbreak. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:28-34. [PMID: 31664650 PMCID: PMC7052033 DOI: 10.1007/s12560-019-09410-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/10/2019] [Indexed: 05/15/2023]
Abstract
Norovirus is commonly associated with food and waterborne outbreaks. Genetic susceptibility to norovirus is largely dependent on presence of histo-blood group antigens (HBGA), specifically ABO, secretor, and Lewis phenotypes. The aim of the study was to determine the association between HBGAs to norovirus susceptibility during a large norovirus foodborne outbreak linked to genotype GII.6 in an office-based company in Stockholm, Sweden, 2015. A two-episode outbreak with symptoms of diarrhea and vomiting occurred in 2015. An online questionnaire was sent to all 1109 employees that had worked during the first outbreak episode. Food and water samples were collected from in-house restaurant and tested for bacterial and viral pathogens. In addition, fecal samples were collected from 8 employees that had diarrhea. To investigate genetic susceptibility during the outbreak, 98 saliva samples were analyzed for ABO, secretor, and Lewis phenotypes using ELISA. A total of 542 of 1109 (49%) employees reported gastrointestinal symptoms. All 8 fecal samples tested positive for GII norovirus, which was also detected in coleslaw collected from the in-house restaurant. Eating at the in-house restaurant was significantly associated with risk of symptom development. Nucleotide sequencing was successful for 5/8 fecal samples and all belonged to the GII.6 genotype. HBGA characterization showed a strong secretor association to norovirus-related symptoms (P = 0.014). No association between norovirus disease and ABO phenotypes was observed. The result of this study shows that non-secretors were significantly less likely to report symptoms in a large foodborne outbreak linked to the emerging GII.6 norovirus strain.
Collapse
Affiliation(s)
- Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Hagbom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Carlsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joanna Nederby Öhd
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Mona Insulander
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
| | - Ronnie Eriksson
- European Union Reference Laboratory (EURL) for Foodborne Viruses, National Food Agency, Uppsala, Sweden
| | - Magnus Simonsson
- European Union Reference Laboratory (EURL) for Foodborne Viruses, National Food Agency, Uppsala, Sweden
| | - Micael Widerström
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
149
|
Molecular Epidemiology of GI.3 Norovirus Outbreaks from Acute Gastroenteritis Surveillance System in Taiwan, 2015-2019. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4707538. [PMID: 32104692 PMCID: PMC7040384 DOI: 10.1155/2020/4707538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
Norovirus is the leading cause of food-borne disease outbreaks. We conducted this study to examine the incidence and molecular characteristics of norovirus genogroup I infections from acute gastroenteritis outbreaks in Taiwan. Between January 2015 and June 2019, 2121 acute gastroenteritis clusters were reported to Taiwan CDC, of which 351 (16.5%) clusters were positive for NoV GI, and GI.3 was the most prevalent (36.8%) during the study period. The GI.3 infections were significantly higher than non-GI.3 infections in the age groups of 0-5 and 6-18 years. The phylogenetic analysis of the MCC tree revealed that VP1 genes were divided into 3 groups: the GI.P3-GI.3 strains in Taiwan were genetically close to Japan and the GI.Pd-GI.3 strains were segregated into 2 other groups which were genetically closely related to China. In addition, 7 GI.Pd-GI.3 recombinants were identified circulating in Taiwan between 2018 and 2019, and the prevalence of GI.Pd-GI.3 should be monitored to assess whether this could become the new predominant strains in neighboring Asian countries or other parts of the world. Both GI.P3-GI.3 and GI.Pd-GI.3 strains cocirculate, the recombination among these two lineages occurs frequently, contributing to the genetic diversity and multiple occurrences of different norovirus lineages, and their rapid evolution makes future control more difficult. Continued surveillance and timely interventions are critical to understand the complexity of norovirus gene variation and to monitor the new emerging norovirus strains.
Collapse
|
150
|
Kirby AE, Kienast Y, Zhu W, Barton J, Anderson E, Sizemore M, Vinje J, Moe CL. Norovirus Seroprevalence among Adults in the United States: Analysis of NHANES Serum Specimens from 1999-2000 and 2003-2004. Viruses 2020; 12:v12020179. [PMID: 32033378 PMCID: PMC7077181 DOI: 10.3390/v12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
Norovirus is the most common cause of epidemic and endemic acute gastroenteritis. However, national estimates of the infection burden are challenging. This study used a nationally representative serum bank to estimate the seroprevalence to five norovirus genotypes including three GII variants: GI.1 Norwalk, GI.4, GII.3, GII.4 US95/96, GII.4 Farmington Hills, GII.4 New Orleans, and GIV.1 in the USA population (aged 16 to 49 years). Changes in seroprevalence to the three norovirus GII.4 variants between 1999 and 2000, as well as 2003 and 2004, were measured to examine the role of population immunity in the emergence of pandemic GII.4 noroviruses. The overall population-adjusted seroprevalence to any norovirus was 90.0% (1999 to 2000) and 95.9% (2003 to 2004). Seroprevalence was highest to GI.1 Norwalk, GII.3, and the three GII.4 noroviruses. Seroprevalence to GII.4 Farmington Hills increased significantly between the 1999 and 2000, as well as the 2003 and 2004, study cycles, consistent with the emergence of this pandemic strain. Seroprevalence to GII.4 New Orleans also increased over time, but to a lesser degree. Antibodies against the GIV.1 norovirus were consistently detected (population-adjusted seroprevalence 19.1% to 25.9%), with rates increasing with age. This study confirms the high burden of norovirus infection in US adults, with most adults having multiple norovirus infections over their lifetime.
Collapse
Affiliation(s)
- Amy E. Kirby
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
- Correspondence:
| | - Yvonne Kienast
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| | - Wanzhe Zhu
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| | - Jerusha Barton
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| | - Emeli Anderson
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| | - Melissa Sizemore
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| | - Jan Vinje
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Christine L. Moe
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (Y.K.); (W.Z.); (J.B.); (E.A.); (M.S.); (C.L.M.)
| |
Collapse
|