151
|
Dowd E, Dunnett SB. Movement without dopamine: striatal dopamine is required to maintain but not to perform learned actions. Biochem Soc Trans 2007; 35:428-32. [PMID: 17371292 DOI: 10.1042/bst0350428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The different populations of dopaminergic neurons located in the ventral mesencephalon have long been associated with distinct functional roles. The nigrostriatal projection is considered necessary for efficient motor performance, while the mesolimbocortical projection is usually associated with reward signalling. However, a number of recent studies in our laboratory suggest that the divergence between these two functions of dopamine is not as delineated as it may once have seemed. In these experiments, we have been developing improved behavioural methods for assessing the nature of the deficit in rats with unilateral dopamine lesions, as well as the efficacy of various experimental cell and gene therapies for Parkinson's disease. The behavioural task we selected is a lateralized nose-poking task in which rats are trained to respond to stimulus lights on either side of their heads. This task not only allows us to accurately measure aspects of motor performance, but, because it requires extensive training, it also allows us to assess aspects of motor learning. The concurrence of motor performance parameters (which are considered to be dependent on striatal dopamine) and motor learning parameters (which are thought to be dependent on mesolimbocortical reward signalling) within the same task has revealed some surprising consequences of dopamine lesions and neuroprotective/neuroreparative approaches to repair in rat models of Parkinson's disease. The data generated using this task suggest that the motor deficits that occur as a consequence of dopamine lesions may be downstream of a deficit in reward signalling. If so, this could redefine our perception of the role of dopamine in controlling motor function.
Collapse
Affiliation(s)
- E Dowd
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
152
|
Lindvall O, Wahlberg LU. Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson's disease? Exp Neurol 2007; 209:82-8. [PMID: 17963752 DOI: 10.1016/j.expneurol.2007.08.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 12/29/2022]
Abstract
The main pathology underlying disease symptoms in Parkinson's disease (PD) is a progressive degeneration of nigrostriatal dopamine (DA) neurons. No effective disease-modifying treatment currently exists. Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective and neuroregenerative effects and it enhances dopaminergic function in animal models of PD. These findings raise the possibility that intrastriatal administration of GDNF might be developed into a new clinical strategy for functional preservation and restoration also in PD patients. Gene therapy is a novel tool to increase local levels of GDNF. Transplantation of encapsulated, GDNF-secreting cells is one strategy for ex vivo cell-based gene delivery which has the advantage to allow for removal of the cells if untoward effects occur. Here we summarize studies with such cells in animals, and discuss the results from previous trials with GDNF in PD patients and their implications for the further development of neuroprotective/neuroregenerative therapies. Finally, we describe the different scientific and regulatory issues that need to be addressed in order to reach the clinic and start the first trial in patients.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, SE-221 84, Lund, Sweden.
| | | |
Collapse
|
153
|
Wong HL, Wang MX, Cheung PT, Yao KM, Chan BP. A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials 2007; 28:5369-80. [PMID: 17764735 DOI: 10.1016/j.biomaterials.2007.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 08/09/2007] [Indexed: 11/17/2022]
Abstract
Mammalian cell culture technology has been used for decades in mass production of therapeutic proteins. However, unrestricted cell proliferation usually results in low-protein productivity. Controlled proliferation technologies such as metabolism intervention and genetic manipulation are therefore applied to enhance the productivity. Nevertheless, these strategies induced growth arrest with reduced viability and increased apoptosis. In this study, we report a new controlled proliferation technology by encapsulating human embryonic kidney (HEK) 293 cells over-expressing glial-derived neurotrophic factor (GDNF) in 3D collagen microspheres for extended culture. We investigated the viability, proliferation, cell cycle and GDNF productivity of HEK293 cells in microspheres as compared to monolayer culture. This system provides a physiologically relevant tissue-like environment for cells to grow and exerts proliferation control throughout the culture period without compromising the viability. A significant increase in the production rate of GDNF was found in the 3D microsphere system comparing with the monolayer culture. GDNF productivity was also significantly affected by the initial cell number and the serum concentration. The secreted GDNF was still bioactive as it induced neurite extension in PC12 cells. In summary, the 3D collagen microsphere system presents a cost-effective controlled growth technology for protein production in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Hoi-Ling Wong
- Medical Engineering Program, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | |
Collapse
|
154
|
Maruyama J, Miller JM, Ulfendahl M. Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiol Dis 2007; 29:14-21. [PMID: 17870569 PMCID: PMC2680080 DOI: 10.1016/j.nbd.2007.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022] Open
Abstract
Cochlear implant surgery is currently the therapy of choice for profoundly deaf patients. However, the functionality of cochlear implants depends on the integrity of the auditory spiral ganglion neurons. This study assesses the combined efficacy of two classes of agents found effective in preventing degeneration of the auditory nerve following deafness, neurotrophic factors, and antioxidants. Guinea pigs were deafened and treated for 4 weeks with either local administration of GDNF or a combination of GDNF and systemic injections of the antioxidants ascorbic acid and Trolox. The density of surviving spiral ganglion cells was significantly enhanced and the thresholds for eliciting an electrically evoked brain stem response were significantly reduced in GDNF treated animals compared to deafened-untreated. The addition of antioxidants significantly enhanced the evoked responsiveness over that observed with GDNF alone. The results suggest multiple sites of intervention in the rescue of these cells from deafferentation-induced cell death.
Collapse
Affiliation(s)
- Jun Maruyama
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Ehime University School of Medicine, Matsuyama, Japan
| | - Josef M. Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| | - Mats Ulfendahl
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Karolinska University Hospital – Solna, Stockholm, Sweden
- Corresponding author. Address for correspondence: Mats Ulfendahl, PhD, Center for Hearing and Communication Research, Building M1, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden, Phone: +46 8 51776307 Fax: +46 8 301876,
| |
Collapse
|
155
|
Chen YH, Harvey BK, Hoffman AF, Wang Y, Chiang YH, Lupica CR. MPTP-induced deficits in striatal synaptic plasticity are prevented by glial cell line-derived neurotrophic factor expressed via an adeno-associated viral vector. FASEB J 2007; 22:261-75. [PMID: 17690153 DOI: 10.1096/fj.07-8797com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study determined the consequences of dopamine denervation of the striatum on synaptic plasticity and prevention of these changes with gene therapy using an adeno-associated viral vector (AAV) expressing glial cell line-derived neurotrophic factor (GDNF). C57BL6/J mice were injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP); long-term depression (LTD) or potentiation (LTP) were measured in vitro. Fast-scan cyclic voltammetry measured electrically released dopamine from a functionally relevant pool in these same striatal slices. After MPTP, dopamine release and uptake were greatly diminished, and LTP and LTD were blocked in the striatal slices. The loss of plasticity resulted directly from the loss of dopamine since its application rescued synaptic plasticity. Striatal GDNF expression via AAV, before MPTP, significantly protected against the loss of dopamine and prevented the blockade of corticostriatal LTP. These data demonstrate that dopamine plays a role in supporting several forms of striatal plasticity and that GDNF expression via AAV prevents the loss of dopamine and striatal plasticity caused by MPTP. We propose that impairment of striatal plasticity after dopamine denervation plays a role in the symptomology of Parkinson's disease and that AAV expression of neurotrophic factors represents a tenable approach to protecting against or slowing these neurobiological deficits.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Program of Clinical Medicine, Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
156
|
Borgal L, Hong M, Sadi D, Mendez I. Differential effects of glial cell line-derived neurotrophic factor on A9 and A10 dopamine neuron survival in vitro. Neuroscience 2007; 147:712-9. [PMID: 17583436 DOI: 10.1016/j.neuroscience.2007.03.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/08/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) enhances dopamine (DA) cell survival and fiber outgrowth, and may be beneficial in enhancing cell restorative strategies for Parkinson's disease (PD). However, GDNF may have different roles for transplanted DA cell sub-types. The present in vitro study investigated the effect of GDNF on the survival of rat DA cells displaying a phenotype consistent with either the substantia nigra [A9 cells immunopositive for tyrosine hydroxylase (TH) and G-protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2)] or with the ventral tegmental area [A10 cells immunopositive for TH and calbindin]. It was found that a single exposure of GDNF enhanced the number of DA cells of an A9 phenotype, without affecting DA cells of an A10 phenotype. Conversely, repeated GDNF exposure did not alter the survival of A9 phenotypic cells, but doubled the percentage of A10 cells. It was concluded that GDNF administration may affect dopaminergic cells differently depending on time and degree of GDNF exposure. For cell transplantation in PD, long-term GDNF administration may result in detrimental effects for transplanted A9 TH+ cells as this may introduce competition with A10 TH+ cells for survival and fiber outgrowth into the host striatum. These results may have important implications for clinical neural transplantation in PD.
Collapse
Affiliation(s)
- L Borgal
- Cell Restoration Laboratory, Brain Repair Centre, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|
157
|
Yasuda T, Fukuda-Tani M, Nihira T, Wada K, Hattori N, Mizuno Y, Mochizuki H. Correlation between levels of pigment epithelium-derived factor and vascular endothelial growth factor in the striatum of patients with Parkinson's disease. Exp Neurol 2007; 206:308-17. [PMID: 17604022 DOI: 10.1016/j.expneurol.2007.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/07/2007] [Accepted: 05/13/2007] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is caused by progressive degeneration of nigrostriatal dopaminergic neurons and can potentially be treated by intrastriatal delivery of neurotrophic factors. Pigment epithelium-derived factor (PEDF), which exhibits protective effects on various neuronal populations, is up-/down-regulated in the cerebrospinal fluid in some neurodegenerative conditions. Here we investigated the level of PEDF protein in the striatum and immunoreactivity for PEDF in the substantia nigra (SN) of patients with PD to assess its role in the pathophysiology of PD. We also studied changes in PEDF expression in the striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found a transient and rapid up-regulation of PEDF transcripts and a marked increase in immunoreactivity for PEDF protein in response to MPTP administration in mice. However, there were no significant changes in striatal levels of PEDF and immunoreactivity for PEDF in the SN of PD patients compared with age-matched non-PD patients. Intriguingly, the striatal levels of PEDF and vascular endothelial growth factor (VEGF), which has opposite functions to PEDF in terms of angiogenesis and vascular permeability, correlated positively in PD patients. Our results suggest up-regulation of PEDF in response to acute insult to the dopaminergic pathway, but such response might be disturbed in patients with advanced PD. The correlation between PEDF and VEGF striatal levels in PD patients suggests that concerted neurotrophic functions of these factors or structural changes in blood vessel walls play an important role in the pathophysiology of PD.
Collapse
Affiliation(s)
- Toru Yasuda
- Research Institute for Diseases of Old Ages, Juntendo University, Japan
| | | | | | | | | | | | | |
Collapse
|
158
|
Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. ACTA ACUST UNITED AC 2007; 54:80-91. [PMID: 17229467 DOI: 10.1016/j.brainresrev.2006.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 12/24/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is a physiological relevant neurotrophic factor in the nigrostriatal system and hence a promising candidate for the establishment of alternative therapeutic strategies in Parkinson's disease. FGF-2 and its high-affinity receptors (FGFR) display an expression in the developing, postnatal, and adult substantia nigra (SN) and in the striatum. Exogenous application promoted survival, neurite outgrowth and protection from neurotoxin-induced death of dopaminergic (DA) neurons both in vitro and in vivo. In animal models of Parkinson's disease, co-transplantation of fetal DA cells with FGF-2 expressing cells increased survival and functional integration of the grafted DA neurons resulting in improved behavioral performance. Analyzing the physiological function of the endogenous FGF-2 system during development and after neurotoxin-induced lesion revealed for the DA neurons of the SNpc a dependence on FGFR3 signaling during development. In addition, in the absence of FGF-2 an increased number of DA neurons was found, whereas enhanced levels of FGF-2 resulted in a reduced DA cell density. Following neurotoxin-induced lesion of DA neurons, FGF-2-deleted mice displayed a higher extent of DA neuron death whereas in FGF-2 overexpressing mice more DA neurons were protected. According to the data, FGF-2 seems to promote DA neuron survival via FGFR3 during development, whereas absence of this ligand could be compensated by other members of the FGF family. In contrast, in the adult organism, FGF-2 cannot be compensated by other factors under lesion conditions suggesting a central role for this molecule in the nigrostriatal system.
Collapse
Affiliation(s)
- Claudia Grothe
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Center for Systems Neuroscience Hannover (ZSN), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
159
|
Affiliation(s)
- Sun-Joon Min
- The Department of Chemistry, Columbia University, Havemeyer Hall, New York, NY 10027, USA
| | | |
Collapse
|
160
|
|
161
|
Paillé V, Henry V, Lescaudron L, Brachet P, Damier P. Rat model of Parkinson's disease with bilateral motor abnormalities, reversible with levodopa, and dyskinesias. Mov Disord 2007; 22:533-9. [PMID: 17230470 DOI: 10.1002/mds.21308] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the bilateral degeneration of the midbrain dopamine-containing neurons with the most severe lesion in the posterolateral part of the substantia nigra pars compacta (SNpc). In humans, such lesions lead to specific motor abnormalities (i.e., akinesia, rigidity, and tremor) that are greatly improved by levodopa treatment. After a few years, the beneficial effect of the treatment is frequently offset by the development of dyskinesias. To improve treatment strategies, an animal model showing most of the histological and clinical characteristics of the human disease is mandatory. Ten rats received a bilateral injection of small doses of 6-OHDA in the medial forebrain bundle (MFB) and were compared with five sham-lesioned rats. The 6-OHDA-lesioned rats progressively developed abnormal motor behavior (assessed by the stepping test) compared with the sham-lesioned rats. The lesioned rats greatly improved under levodopa treatment, but developed concomitant dyskinesias. All 6-OHDA-lesioned animals had bilateral partial lesions of the SNpc, with the most severe lesion being in its posterolateral part. There was a significant correlation between the severity of the dopaminergic cell loss and the severity of the levodopa-induced dyskinesias. These rats constitute an interesting model of PD, sharing some of the main characteristics of the human disease.
Collapse
Affiliation(s)
- Vincent Paillé
- INSERM, UMR 643 and Institut de Transplantation et de Recherche en Transplantation, CHU, Nantes, France
| | | | | | | | | |
Collapse
|
162
|
Abstract
Gene transfer is being rigorously evaluated in the laboratory in the preparation for the development of clinical therapies. Many CNS diseases, which have proved more challenging to treat than peripheral disorders, are prime candidates for gene therapy. However, there are numerous considerations in the development of gene therapy, including delivery, maintenance of expression, transgene level regulation, toxicity of the viral vector system and safety of the gene product. The authors review these issues and discuss various approaches used in preclinical studies. Alzheimer's and Parkinson's disease are employed as models, in which much research has already been performed, to address disease-specific questions about gene therapy approaches.
Collapse
Affiliation(s)
- Deborah A Ryan
- University of Rochester School of Medicine & Dentistry, Interdepartmental Graduate Program in Neuroscience, Rochester, New York, USA
| | | |
Collapse
|
163
|
Timmer M, Cesnulevicius K, Winkler C, Kolb J, Lipokatic-Takacs E, Jungnickel J, Grothe C. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 2007; 27:459-71. [PMID: 17234579 PMCID: PMC6672785 DOI: 10.1523/jneurosci.4493-06.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
| | | | - Christian Winkler
- Neurology, Hannover Medical School, Center for Systems Neuroscience Hannover, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
164
|
Abstract
Neurotrophic factors (NTFs) have the unique potential to support neuronal survival and to augment neuronal function in the injured and diseased nervous system. Numerous studies conducted over the last 20 years have provided evidence for the potent therapeutic potential of NTFs in animal models of neurodegenerative diseases. However, major obstacles for the therapeutic use of NTFs are the inability to deliver proteins across the blood-brain-barrier, and dose-limiting adverse effects resulting from the broad exposure of nontargeted structures to NTFs. Two recent developments have allowed NTFs' promise to be truly tested for the first time: first, recent improvements in viral vectors that allow the targeted delivery of NTFs while providing a long-lasting supply and sufficient therapeutic doses of NTFs; and second, improved animal models developed in recent years. In this review, we will discuss some of the potential therapeutic applications of NTFs in neurodegenerative diseases and the potential contribution of disturbed neurotrophic factor signaling to neurodegenerative diseases.
Collapse
Affiliation(s)
- Armin Blesch
- Department of Neurosciences-0626, Center for Neural Repair, University of California, San Diego, La Jolla, California 92093-0626, USA.
| |
Collapse
|
165
|
Hodaie M, Neimat JS, Lozano AM. THE DOPAMINERGIC NIGROSTRIATAL SYSTEMAND PARKINSON'S DISEASE. Neurosurgery 2007; 60:17-28; discussion 28-30. [PMID: 17228250 DOI: 10.1227/01.neu.0000249209.11967.cb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For several decades, the clinical study of Parkinson's disease has driven an increasingly sophisticated understanding of the dopaminergic system and its complex role in modulating motor behavior. This article reviews salient areas of research in this field, commencing with the molecular biology of the development of the mesencephalic dopaminergic system. We then discuss events thought to be crucial in the cellular and molecular pathology of Parkinson's disease, proposed mechanisms of cell death, and relevant toxin models. These advancements are used as a template to review emerging therapeutic techniques, including neuroprotection strategies, surgical treatment of trophic factors, gene therapy, and neural transplantation.
Collapse
Affiliation(s)
- Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
166
|
Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis 2006; 25:378-91. [PMID: 17141511 DOI: 10.1016/j.nbd.2006.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/22/2006] [Accepted: 10/09/2006] [Indexed: 12/27/2022] Open
Abstract
GDNF is a potent neurotrophic factor for nigrostriatal dopaminergic neurons in vitro and in animal models of Parkinson's disease (PD), but has largely failed when tested in therapeutic applications in human PD. We report here that GDNF requires transforming growth factor-beta (TGF-beta) to elicit its neurotrophic activity. Lesioning the mouse nigrostriatal system with MPTP significantly upregulates striatal TGF-beta2 mRNA levels. As expected, GDNF protects against the destructive effects of MPTP, including losses of TH-ir nigral neurons, striatal dopamine and TH-ir fibers. Application of antibodies neutralizing all three TGF-beta isoforms to the MPTP-lesioned striatum abolishes the neurotrophic effect of GDNF. We show that TGF-beta antibodies are not toxic and do not interfere with retrograde transport of iodinated GDNF, suggesting that TGF-beta antibodies do not impair internalization and retrograde trafficking of GDNF. We conclude that striatal TGF-beta may be essential for permitting exogenous GDNF to act as a neuroprotective factor.
Collapse
Affiliation(s)
- Andreas Schober
- IZN, Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
167
|
Do Thi NA, Saillour P, Ferrero L, Paunio T, Mallet J. Does neuronal expression of GDNF effectively protect dopaminergic neurons in a rat model of Parkinson's disease? Gene Ther 2006; 14:441-50. [PMID: 17093508 DOI: 10.1038/sj.gt.3302844] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The transfer of the Glial cell line-derived neurotrophic factor (GDNF) gene to the central nervous system by a recombinant adenoviral vector (Ad) was studied. We constructed the adenovirus vector Ad-NSE-GDNF from which the E1, E3/E4 regions of Ad5 have been deleted and in which the GDNF gene was under the control of a neuron-specific enolase (NSE) promoter. The vector was injected into the striatum of a rat model of Parkinson's disease. We found that (i) the NSE promoter can restrict transgene expression in neurons; (ii) Ad-NSE-GDNF significantly protected dopaminergic (DA) neurons in the substantia nigra (SN) but did not reverse the impairments of amphetamine-induced rotational behavior in lesioned rats.
Collapse
Affiliation(s)
- N A Do Thi
- Laboratoire de Genetique Moleculaire de la Neurotransmission et des Processus Neurodegeneratifs, CNRS, UMR 7091, Bat. CERVI, Hopital Pitie-Salpetriere, Paris, France
| | | | | | | | | |
Collapse
|
168
|
Drège E, Tominiaux C, Morgant G, Desmaële D. Synthetic Studies on Cyathin Terpenoids: Enantioselective Synthesis of the Tricyclic Core of Cyathin through Intramolecular Heck Cyclisation. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
169
|
Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 2006; 17:1-9. [PMID: 16409120 DOI: 10.1089/hum.2006.17.1] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The management of disorders of the nervous system remains a medical challenge. The key goals are to understand disease mechanisms, to validate therapeutic targets, and to develop new therapeutic strategies. Viral vector-mediated gene transfer can meet these goals and vectors based on lentiviruses have particularly useful features. Lentiviral vectors can deliver 8 kb of sequence, they mediate gene transfer into any neuronal cell type, expression and therapy are sustained, and normal cellular functions in vitro and in vivo are not compromised. After delivery into the nervous system they induce no significant immune responses, there are no unwanted side effects of the vectors per se to date, and manufacturing and safety testing for clinical applications are well advanced. There are now numerous examples of effective long-term treatment of animal models of neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, motor neuron diseases, lysosomal storage diseases, and spinal injury, using a range of therapeutic genes expressed in lentiviral vectors. Significant issues remain in some areas of neural gene therapy including defining the optimum therapeutic gene(s), increasing the specificity of delivery, regulating expression of potentially toxic genes, and designing clinically relevant strategies. We discuss the applications of lentiviral vectors in therapy and research and highlight the essential features that will ensure their translation to the clinic in the near future.
Collapse
Affiliation(s)
- Liang-Fong Wong
- Oxford BioMedica (UK), Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | | | |
Collapse
|
170
|
Puskovic V, Wolfe D, Wechuck J, Krisky D, Collins J, Glorioso JC, Fink DJ, Mata M. HSV-mediated delivery of erythropoietin restores dopaminergic function in MPTP-treated mice. Mol Ther 2006; 14:710-5. [PMID: 16949343 DOI: 10.1016/j.ymthe.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 07/07/2006] [Accepted: 07/15/2006] [Indexed: 01/20/2023] Open
Abstract
To investigate the neuroprotective effects of erythropoietin (EPO) in a rodent model of Parkinson disease, we inoculated a nonreplicating herpes simplex virus-based vector expressing EPO (vector DHEPO) into the striatum of mice 1 week prior to, or 2 weeks after, the start of continual administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (4 mg/kg intraperitoneally, 5 of 7 days) for 6 weeks. Inoculation with DHEPO prior to MPTP intoxication preserved behavioral function measured by pellet retrieval and the histological markers of tyrosine hydroxylase-immunoreactive (TH-IR) neuronal cell bodies in the substantia nigra (SN) and TH-IR and dopamine transporter-immunoreactive (DAT-IR) terminals in striatum. Inoculation of DHEPO 2 weeks into a 6-week course of MPTP resulted in improvement of behavioral function and restoration of TH-IR cells in SN and TH- and DAT-IR in the striatum. The effects of vector-produced EPO were similar in magnitude to the effects of vector-mediated expression of glial-derived neurotrophic factor in the same model. These results demonstrate that vector-mediated EPO production may be used to reverse dopaminergic neurodegeneration in the face of continued toxic insult.
Collapse
Affiliation(s)
- Veljko Puskovic
- Department of Neurology, University of Michigan Health System and VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Jiang Q, Yan Z, Feng J. Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem 2006; 281:29391-400. [PMID: 16887804 DOI: 10.1074/jbc.m602740200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease is characterized by the selective degeneration of dopaminergic (DA) neurons in substantia nigra. Long term epidemiological studies have implicated exposure to agricultural pesticides as a significant risk factor. Systemic administration of rotenone, a widely used pesticide, causes selective degeneration of nigral DA neurons and Parkinson disease-like symptoms in rats. Our previous study has shown that the microtubule depolymerizing activity of rotenone plays a critical role in its selective toxicity on DA neurons. Rotenone toxicity is mimicked by the microtubule-depolymerizing drug colchicine and attenuated by the microtubule-stabilizing agent taxol. Here we show that nerve growth factor (NGF) significantly reduced rotenone toxicity on TH(+) neurons in midbrain neuronal cultures. The protective effect of NGF was completely abolished by inhibiting the microtubule-associated protein kinase kinase (MEK) and partially reversed by blocking phosphatidylinositol 3-kinase. In addition, NGF decreased colchicine toxicity on TH(+) neurons in a manner dependent on MEK but not phosphatidylinositol 3-kinase. The protective effect of NGF against rotenone toxicity was occluded by the microtubule-stabilizing drug taxol. In a MEK-dependent manner, NGF significantly attenuated rotenone- or colchicine-induced microtubule depolymerization and ensuing accumulation of vesicles in the soma and elevation in protein carbonyls. Moreover, other neurotrophic factors such as brain-derived neurotrophic factor and glia cell line-derived neurotrophic factor also reduced rotenone- or colchicine-induced microtubule depolymerization and death of TH(+) through a MEK-dependent mechanism. Thus, our results suggest that neurotrophic factors activate the microtubule-associated protein kinase pathway to stabilize microtubules, and this action significantly attenuates rotenone toxicity on dopaminergic neurons.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
172
|
Buch PK, MacLaren RE, Durán Y, Balaggan KS, MacNeil A, Schlichtenbrede FC, Smith AJ, Ali RR. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14:700-9. [PMID: 16872907 DOI: 10.1016/j.ymthe.2006.05.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022] Open
Abstract
While AAV- and lentivirus-mediated gene replacement therapy can produce structural and functional improvements in various animal models of inherited retinal degeneration, this approach often has very limited effects on the rate of photoreceptor cell loss. Neurotrophic factors such as ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) have been shown to prolong photoreceptor survival in rodent models of retinal degeneration, but AAV-mediated Cntf expression also results in suppression of electrophysiological responses from the retina. In this study using mice, we show that while the deleterious effects mediated by CNTF are dose-dependent, administering a dose of CNTF that does not adversely affect retinal function precludes its ability to delay photoreceptor cell death. In evaluating GDNF as a neuroprotective agent, we show that AAV-mediated Gdnf expression does not produce adverse effects similar to those of CNTF. In addition, we demonstrate the ability of AAV-mediated delivery of Gdnf to slow cell death in two rodent models of retinitis pigmentosa and to enhance retinal function in combination with the relevant gene replacement therapy. These data show for the first time that a combination of these approaches can provide enhanced rescue over gene replacement or growth factor therapy alone.
Collapse
Affiliation(s)
- Prateek K Buch
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|
173
|
McKay BS, Goodman B, Falk T, Sherman SJ. Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system. Exp Neurol 2006; 201:234-43. [PMID: 16764861 DOI: 10.1016/j.expneurol.2006.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 03/24/2006] [Accepted: 04/01/2006] [Indexed: 01/13/2023]
Abstract
Transplantation of retinal pigment epithelial (RPE) cells in the basal ganglia could provide a novel cell-based therapy for Parkinson's disease by providing a constant source of dopamine replacement via the melanin synthetic pathway enzyme tyrosinase. We now demonstrate that human RPE cells also produce a neurotrophic effect on primary cultures of rat striatal (enkephalinergic) and mesencephalic (dopaminergic) neurons. Differentiation of RPE cells to a pigmented monolayer using a Ca(++)-switch protocol increased the potency of the neurotrophic effect on dopaminergic neurons. Conditioned medium derived from differentiated RPE cells increased neurite outgrowth in dopaminergic neurons by 125% compared to 25% for undifferentiated RPE cells. The neurotrophic effect was not due to tyrosinase activity. Differentiation of RPE cells doubled the production of pigment-derived epithelial factor (PEDF). However, PEDF accounted for only a portion of the neurotrophic effect as determined by depletion experiments and dose-response comparisons with purified PEDF, indicating that differentiation increased the production of other trophic factors as well. Conditioned medium from differentiated RPE cells also provided a neurotrophic effect on a subset of enkephalinergic striatal neurons increasing neurite outgrowth by 78%. Survival of enkephalinergic neurons in vitro was increased by RPE conditioned medium. In untreated cultures the number of enkephalinergic neurons declined 62% over a 2-week period compared to a 29% decline in RPE-treated cultures. These results indicate that transplantation RPE cells could potentially provide a dual benefit in Parkinson's disease producing both dopamine and neurotrophic support of the basal ganglia.
Collapse
Affiliation(s)
- Brian S McKay
- Department of Ophthalmology and Vision Science, Cell Biology and Anatomy, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
174
|
Clavreul A, Sindji L, Aubert-Pouëssel A, Benoît JP, Menei P, Montero-Menei CN. Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts. Eur J Pharm Biopharm 2006; 63:221-8. [PMID: 16497494 DOI: 10.1016/j.ejpb.2005.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 11/11/2005] [Accepted: 11/16/2005] [Indexed: 11/16/2022]
Abstract
The transplantation of fetal ventral mesencephalic (FVM) cell suspensions into the brain striatal system is an alternative approach for the treatment of Parkinson's disease (PD). However, one objection to this procedure is the relatively poor survival of implanted cells. Attempts have been made to improve the survival of grafted dopaminergic neurons using glial cell line-derived neurotrophic factor (GDNF). Nevertheless, the clinical application of GDNF is limited, due to the difficulties in administering a protein to the brain tissue and due to the ubiquity of its receptor, thus leading to neurological side effects. A strategy to deliver GDNF in the brain based on the intracerebral implantation of biodegradable poly(D,L-lactic acid-co-glycolic acid) sustained release microspheres has been developed. Such microparticles can be easily implanted by sterotaxy in precise and functional areas of the brain without causing damage to the surrounding tissue. Moreover, the release profile of the GDNF-loaded microspheres showed a sustained release over 56 days of biologically active GDNF at clinically relevant doses. The present study shows that the implantation of GDNF-loaded microspheres at a distance to the site of FVM cells in the 6-hydroxydopamine-lesioned rat model of PD improves dopaminergic graft survival and function. Furthermore, the unloaded and the GDNF-loaded microspheres, when they are mixed with FVM cells, may provide a mechanical support and a 3D environment inducing differentiation and increased function of dopaminergic neurons. Taken together, these results show that GDNF microspheres represent an efficient delivery system for cell transplantation studies.
Collapse
|
175
|
|
176
|
Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 2006; 314:120-6. [PMID: 16529886 DOI: 10.1016/j.ijpharm.2005.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/09/2005] [Indexed: 12/28/2022]
Abstract
Several compounds that exhibit a therapeutic effect in experimental models of neurodegenerative diseases have been identified over recent years. Safe and effective drug delivery to the central nervous system is still one of the main obstacles in translating these experimental strategies into clinical therapies. Different approaches have been developed to enable drug delivery in close proximity to the desired site of action. In this review, we describe biodegradable polymeric systems as drug carriers in models of neurodegenerative diseases. Biomaterials described for intracerebral drug delivery are well tolerated by the host tissue and do not exhibit cytotoxic, immunologic, carcinogenic or teratogenic effects even after chronic exposure. Behavioral improvement and normalization of brain morphology have been observed following treatment using such biomaterials in animal models of Parkinson's, Alzheimer's and Huntington's diseases. Application of these devices for neuroactive drugs is still restricted due to the relatively small volume of tissue exposed to active compound. Further development of polymeric drug delivery systems will require that larger volumes of brain tissue are targeted, with a controlled and sustained drug release that is carefully controlled so it does not cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- N Popovic
- Neuronal Survival Unit, Department of Experimental Medical Science, BMC A10, 22 184 Lund, Sweden.
| | | |
Collapse
|
177
|
Cen X, Nitta A, Ohya S, Zhao Y, Ozawa N, Mouri A, Ibi D, Wang L, Suzuki M, Saito K, Ito Y, Kawagoe T, Noda Y, Ito Y, Furukawa S, Nabeshima T. An analog of a dipeptide-like structure of FK506 increases glial cell line-derived neurotrophic factor expression through cAMP response element-binding protein activated by heat shock protein 90/Akt signaling pathway. J Neurosci 2006; 26:3335-44. [PMID: 16554484 PMCID: PMC6674092 DOI: 10.1523/jneurosci.5010-05.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor that has therapeutic implications for neurodegenerative disorders. We previously showed that leucine-isoleucine (Leu-Ile), an analog of a dipeptide-like structure of FK506 (tacrolimus), induces GDNF expression both in vivo and in vitro. In this investigation, we sought to clarify the cellular mechanisms underlying the GDNF-inducing effect of this dipeptide. Leu-Ile transport was investigated using fluorescein isothiocyanate-Leu-Ile in cultured neurons, and the results showed the transmembrane mobility of this dipeptide. By liquid chromatography-mass spectrometry and quartz crystal microbalance assay, we identified heat shock cognate protein 70 as a protein binding specifically to Leu-Ile, and molecular modeling showed that the ATPase domain is the predicted binding site. Leu-Ile stimulated Akt phosphorylation, which was attenuated significantly by heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA). Moreover, enhanced interaction between phosphorylated Akt and Hsp90 was detected by immunoprecipitation. Leu-Ile elicited an increase in cAMP response element binding protein (CREB) phosphorylation, which was inhibited by GA, indicating that CREB is a downstream target of Hsp90/Akt signaling. Leu-Ile elevated the levels of GDNF mRNA and protein expression, whereas inhibition of CREB blocked such effects. Leu-Ile promoted the binding activity of phosphorylated CREB with cAMP response element. These findings show that CREB plays a key role in transcriptional regulation of GDNF expression induced by Leu-Ile. In conclusion, Leu-Ile activates Hsp90/Akt/CREB signaling, which contributes to the upregulation of GDNF expression. It may represent a novel lead compound for the treatment of dopaminergic neurons or motoneuron diseases.
Collapse
|
178
|
Jørgensen JR, Juliusson B, Henriksen KF, Hansen C, Knudsen S, Petersen TN, Blom N, Seiger A, Wahlberg LU. Identification of novel genes regulated in the developing human ventral mesencephalon. Exp Neurol 2006; 198:427-37. [PMID: 16473350 DOI: 10.1016/j.expneurol.2005.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/18/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
In the human embryo, from approximately 6 weeks gestational age (GA), dopaminergic (DA) neurons can be found in the ventral mesencephalon (VM). More specifically, the post-mitotic neurons are located in the ventral part of the tegmentum (VT), whereas no mature DA neurons are found in the neighboring dorsal part. We used Affymetrix HG-U133 GeneChip technology to compare genome-wide expression profiles of ventral and dorsal tegmentum from 8 weeks GA human embryos, in order to identify genes involved in specification, differentiation, and survival of mesencephalic DA (mDA) neurons. Known mDA marker genes including ALDH1A1, DAT1, VMAT2, TH, CALB1, NURR1, FOXA1, GIRK2, PITX3, RET, and DRD2 topped the list of 96 genes from HG-U133A with higher expression in VT, validating the experimental set-up. In addition, 28 probes from HG-U133B were identified whereof most are annotated to UniGene clusters with no gene associated or to genes of unknown function. Of these, the fifteen most regulated transcripts, representing changes down to 56% could be verified by quantitative real-time PCR (Q-PCR) on a developmental series of subdissected human embryonic and fetal brain material, resulting in not only a regional but also a temporal expression profile. This revealed a distinct DA-associated profile for in particular a putative transcription factor (FLJ45455) and the uncharacterized transmembrane proteins KIAA1145 and SLC10A4. The data presented here may help to device cell replacement and regenerative therapies for Parkinson's disease (PD).
Collapse
|
179
|
Sajadi A, Bensadoun JC, Schneider BL, Lo Bianco C, Aebischer P. Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiol Dis 2006; 22:119-29. [PMID: 16300956 DOI: 10.1016/j.nbd.2005.10.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/27/2005] [Accepted: 10/19/2005] [Indexed: 11/30/2022] Open
Abstract
Numerous studies have shown the neuroprotective and regenerative benefits of glial cell line-derived neurotrophic factor (GDNF) in animal models of PD. Brain delivery of GDNF can, however, be associated with limiting side-effects in both primates and PD patients, rendering the duration of delivery a critical factor. In the present study, the effects of transient vs. sustained GDNF delivery by encapsulated cells were evaluated in a bilateral animal model, closely mimicking advanced PD. One week following bilateral striatal 6-hydroxydopamine injections in rats, capsules loaded with human fibroblasts genetically engineered to release GDNF were bilaterally implanted in the striatum. GDNF delivery resulted in a significant improvement of movement initiation and swimming performance in the lesioned animals, associated with striatal reinnervation of dopaminergic fibers. To test the sustainability of the behavioral improvement, GDNF-secreting capsules were withdrawn in a subgroup of animals, 7 weeks post-implantation. Strikingly, both the behavioral and morphological improvements were maintained until the sacrifice of the animals 6 weeks post-GDNF withdrawal. The sustained cellular and behavioral benefits after GDNF washout suggest the need for temporary delivery of the trophic factor in PD. Retrievable encapsulated cells represent an attractive delivery tool to achieve this purpose.
Collapse
Affiliation(s)
- Ali Sajadi
- Ecole Polytechnique Fédérale de Lausanne, EPFL, Integrative Bioscience Institute, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
180
|
Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. ACTA ACUST UNITED AC 2006; 172:1081-91. [PMID: 16549499 PMCID: PMC2063765 DOI: 10.1083/jcb.200508156] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular basis of survival from neuronal injury is essential for the development of therapeutic strategy to remedy neurodegenerative disorders. In this study, we demonstrate that an EF-hand Ca2+-binding protein neuronal Ca2+ sensor-1 (NCS-1), one of the key proteins for various neuronal functions, also acts as an important survival factor. Overexpression of NCS-1 rendered cultured neurons more tolerant to cell death caused by several kinds of stressors, whereas the dominant-negative mutant (E120Q) accelerated it. In addition, NCS-1 proteins increased upon treatment with glial cell line-derived neurotrophic factor (GDNF) and mediated GDNF survival signal in an Akt (but not MAPK)-dependent manner. Furthermore, NCS-1 is significantly up-regulated in response to axotomy-induced injury in the dorsal motor nucleus of the vagus neurons of adult rats in vivo, and adenoviral overexpression of E120Q resulted in a significant loss of surviving neurons, suggesting that NCS-1 is involved in an antiapoptotic mechanism in adult motor neurons. We propose that NCS-1 is a novel survival-promoting factor up-regulated in injured neurons that mediates the GDNF survival signal via the phosphatidylinositol 3-kinase-Akt pathway.
Collapse
Affiliation(s)
- Tomoe Y Nakamura
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. A versatile tool for conditional gene expression and knockdown. Nat Methods 2006; 3:109-16. [PMID: 16432520 DOI: 10.1038/nmeth846] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 12/14/2005] [Indexed: 11/08/2022]
Abstract
Drug-inducible systems allowing the control of gene expression in mammalian cells are invaluable tools for genetic research, and could also fulfill essential roles in gene- and cell-based therapy. Currently available systems, however, often have limited in vivo functionality because of leakiness, insufficient levels of induction, lack of tissue specificity or prohibitively complicated designs. Here we describe a lentiviral vector-based, conditional gene expression system for drug-controllable expression of polymerase (Pol) II promoter-driven transgenes or Pol III promoter-controlled sequences encoding small inhibitory hairpin RNAs (shRNAs). This system has great robustness and versatility, governing tightly controlled gene expression in cell lines, in embryonic or hematopoietic stem cells, in human tumors xenotransplanted into nude mice, in the brain of rats injected intraparenchymally with the vector, and in transgenic mice generated by infection of fertilized oocytes. These results open up promising perspectives for basic or translational research and for the development of gene-based therapeutics.
Collapse
Affiliation(s)
- Jolanta Szulc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
182
|
Abstract
In vitro and in vivo studies conducted over the last 20 years have shown that neurotrophic factors can prevent neuronal cell death and augment neuronal function in rodent and nonhuman primate models of neurodegenerative diseases. The translation of these studies into clinical trials has, initially, been slowed by the inability to deliver growth factors in a localized manner at sufficiently high doses to obtain therapeutic effects in the adult brain, without significant adverse effects. Recent progress in the targeted delivery of neurotrophic factors by gene therapy allows investigators to determine for the first time, in clinical trials, whether growth factors can influence neuronal function in the diseased human nervous system. A Phase I study of cellular nerve growth factor delivery in subjects with Alzheimer’s disease has provided promising results. Additional studies examining the neuroprotective effects of glial cell-derived neurotrophic factor family ligands in Parkinson’s disease have been conducted, or are planned for the near future. Taken together, these studies might be able to determine whether therapeutic effects observed in animal models of neuronal degeneration can be translated into novel, neuroprotective treatments for neurological disease.
Collapse
Affiliation(s)
- Armin Blesch
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, CA 92093–0626, USA
| |
Collapse
|
183
|
Jakobsson J, Lundberg C. Lentiviral Vectors for Use in the Central Nervous System. Mol Ther 2006; 13:484-93. [PMID: 16403676 DOI: 10.1016/j.ymthe.2005.11.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/28/2005] [Accepted: 11/08/2005] [Indexed: 11/17/2022] Open
Abstract
Lentiviral vectors have been used extensively as gene transfer tools for the central nervous system throughout the past decade since they transduce most cell types in the brain, resulting in high-level and long-term transgene expression. This review discusses some of the recent progress in this field, including preclinical gene therapy experiments in disease models, development of regulated vectors, and the application of siRNA's using lentiviral vectors. We also describe some of the features that make lentiviral vectors a likely candidate for human gene therapy in the brain.
Collapse
Affiliation(s)
- Johan Jakobsson
- Department of Experimental Medical Research, CNS Gene Therapy Unit, Section for Neuroscience, Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden.
| | | |
Collapse
|
184
|
Villadiego J, Méndez-Ferrer S, Valdés-Sánchez T, Silos-Santiago I, Fariñas I, López-Barneo J, Toledo-Aral JJ. Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 2006; 25:4091-8. [PMID: 15843611 PMCID: PMC6724965 DOI: 10.1523/jneurosci.4312-04.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) exerts a notable protective effect on dopaminergic neurons in rodent and primate models of Parkinson's disease (PD). The clinical applicability of this therapy is, however, hampered by the need of a durable and stable GDNF source allowing the safe and continuous delivery of the trophic factor into the brain parenchyma. Intrastriatal carotid body (CB) autografting is a neuroprotective therapy potentially useful in PD. It induces long-term recovery of parkinsonian animals through a trophic effect on nigrostriatal neurons and causes amelioration of symptoms in some PD patients. Moreover, the adult rodent CB has been shown to express GDNF. Here we show, using heterozygous GDNF/lacZ knock-out mice, that unexpectedly CB dopaminergic glomus, or type I, cells are the source of CB GDNF. Among the neural or paraneural cells tested, glomus cells are those that synthesize and release the highest amount of GDNF in the adult rodent (as measured by standard and in situ ELISA). Furthermore, GDNF expression by glomus cells is maintained after intrastriatal grafting and in CB of aged and parkinsonian 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated animals. Thus, glomus cells appear to be prototypical abundant sources of GDNF, ideally suited to be used as biological pumps for the endogenous delivery of trophic factors in PD and other neurodegenerative diseases.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Carotid Body/cytology
- Carotid Body/metabolism
- Carotid Body/ultrastructure
- Cell Differentiation
- Cells, Cultured
- Corpus Striatum/transplantation
- Disease Models, Animal
- Dopamine/metabolism
- Enzyme-Linked Immunosorbent Assay/methods
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry/methods
- MPTP Poisoning/metabolism
- MPTP Poisoning/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Neurons/metabolism
- Neurons/transplantation
- Neurons/ultrastructure
- PC12 Cells
- Rats
- Rats, Wistar
- Time Factors
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Javier Villadiego
- Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología and Hospital Universitario Virgen del Rocío, Universidad de Sevilla, 41013 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
185
|
Ericson C, Georgievska B, Lundberg C. Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson's disease. Eur J Neurosci 2006; 22:2755-64. [PMID: 16324109 DOI: 10.1111/j.1460-9568.2005.04503.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes are, as normal constituents of the brain, promising vehicles for ex vivo gene delivery to the central nervous system. In the present study, we have used a lentiviral vector encoding glial cell line-derived neurotrophic factor (GDNF) to transduce rat-derived primary astrocytes, in order to evaluate their potential for long-term transgene expression in vivo and neuroprotection in a rat model of Parkinson's disease. Following transplantation of GDNF-transduced astrocytes to the intact striatum, the level of released GDNF was 2.93 +/- 0.28 ng/mg tissue at 1 week post-grafting, reduced to 0.42 +/- 0.12 ng/mg tissue at 4 weeks, and thereafter was maintained at this level throughout the experiment (12 weeks; 0.53 +/- 0.068 ng/mg tissue). Similarly, grafting to the substantia nigra (SN) resulted in a significant overexpression of GDNF ( approximately 0.20 ng/mg tissue) at 1 week. Intact animals receiving transplants of GDNF-transduced astrocytes displayed an increased contralateral turning (5.39 +/- 1.19 turns/min) in the amphetamine-induced rotation test, which significantly correlated with the GDNF tissue levels measured in the striatum, indicating a stimulatory effect of GDNF on the dopaminergic function. Transplantation of GDNF-transduced astrocytes to the SN 1 week prior to an intrastriatal 6-hydroxydopamine lesion provided a significant protection of nigral tyrosine hydroxylase-positive cells. By contrast, when the cells were transplanted to the striatum, the level of released GDNF was not sufficient to rescue the striatal fibers and, hence, to protect the nigral dopaminergic neurons. Overall, our results suggest that genetically modified astrocytes expressing GDNF can provide neuroprotection in a rat model of Parkinson's disease following transplantation to the SN.
Collapse
Affiliation(s)
- Cecilia Ericson
- Wallenberg Neuroscience Center, BMC A11, 221 84 Lund, Sweden
| | | | | |
Collapse
|
186
|
Waters SP, Tian Y, Li YM, Danishefsky SJ. Total synthesis of (-)-scabronine G, an inducer of neurotrophic factor production. J Am Chem Soc 2006; 127:13514-5. [PMID: 16190712 DOI: 10.1021/ja055220x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of (-)-scabronine G has been achieved in a concise manner from the (-)-Wieland-Miescher ketone. Scabronine G and its more potent methyl ester (also prepared) display activity as nonpeptidyl inducers of nerve growth factor production.
Collapse
Affiliation(s)
- Stephen P Waters
- Laboratory for Bioorganic Chemistry and Laboratory of Biochemistry and Pharmacology, Sloan-Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
187
|
Mandel RJ, Manfredsson FP, Foust KD, Rising A, Reimsnider S, Nash K, Burger C. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 2006; 13:463-83. [PMID: 16412695 DOI: 10.1016/j.ymthe.2005.11.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/12/2005] [Accepted: 11/13/2005] [Indexed: 12/11/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) is derived from a small human parvovirus with an excellent safety profile. In addition, this viral vector efficiently transduces and supports long-term transgene expression in the nervous system. These properties make rAAV a reasonable candidate vector for treating neurological disorders. Indeed, rAAV is currently being used in five early stage clinical trials for various neurodegenerative disorders. Therefore, we will review the currently available preclinical data using rAAV in animal models of central nervous system (CNS) disorders. Moreover, potential caveats for rAAV-based gene therapy in the CNS are also presented.
Collapse
Affiliation(s)
- Ronald J Mandel
- Department of Neuroscience, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
188
|
Winkler C, Georgievska B, Carlsson T, Lacar B, Kirik D. Continuous exposure to glial cell line-derived neurotrophic factor to mature dopaminergic transplants impairs the graft’s ability to improve spontaneous motor behavior in parkinsonian rats. Neuroscience 2006; 141:521-31. [PMID: 16697115 DOI: 10.1016/j.neuroscience.2006.03.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/20/2006] [Accepted: 03/22/2006] [Indexed: 11/23/2022]
Abstract
Functional recovery following intrastriatal transplantation of fetal dopaminergic neurons in animal models of Parkinson's disease is, at least in part, dependent on the number of surviving dopaminergic neurons and the degree of graft-derived dopaminergic reinnervation of the host striatum. In the present study, we analyzed whether continuous exposure of glial cell line-derived neurotrophic factor (GDNF) to mature dopaminergic grafts could further boost the functional outcome of widespread intrastriatal dopaminergic grafts. Rats with dopamine-denervating lesions received multiple intrastriatal transplants of fetal dopaminergic cells and graft-induced behavioral effects were analyzed in drug-induced and spontaneous motor behaviors. At three months after grafting, animals received intrastriatal injections of recombinant lentiviral vectors encoding for either human GDNF or the green fluorescent protein. Continuous exposure of GDNF to the grafts did not boost the functional recovery beyond what was observed in the control animals. Rather, in some of the spontaneous motor behaviors, animals in the GDNF-group showed deterioration as compared with control animals, and this negative effect of GDNF was associated with a down-regulation of the tyrosine hydroxylase enzyme. Based on these and our earlier results, we propose that intrastriatal administration of GDNF at the time of or shortly after grafting is highly effective in initially promoting the cell survival and fiber outgrowth from the grafts. However, once the grafts are mature, GDNF's ability to boost dopaminergic neurotransmission follows the same dynamics as for the native nigral dopaminergic neurons, which appears to be dependent on the concentration of GDNF. Since rather low doses of glial cell line-derived neurotrophic factor at nanogram levels appear to saturate these effects, it may be critical to adjust GDNF levels using tightly regulated gene expression systems.
Collapse
Affiliation(s)
- C Winkler
- Department of Experimental Medical Science, Section of Neuroscience, CNS Disease Modeling Unit, Lund University, BMCA11, S-22184 Lund, Sweden
| | | | | | | | | |
Collapse
|
189
|
Sharma R, McMillan CR, Tenn CC, Niles LP. Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Res 2006; 1068:230-6. [PMID: 16375867 DOI: 10.1016/j.brainres.2005.10.084] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 10/21/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
There is considerable evidence that pharmacological doses of the pineal hormone, melatonin, are neuroprotective in diverse models of neurodegeneration including Parkinson's disease. However, there is limited information about the effects of physiological doses of this hormone in similar models. In this study, rats were chronically treated with melatonin via drinking water following partial 6-hydroxydopamine lesioning in the striatum. The two doses of melatonin (0.4 microg/ml and 4.0 microg/ml) were within the reported physiological concentrations present in the serum and cerebrospinal fluid respectively. At 2 weeks after surgery, the higher dose of melatonin significantly attenuated rotational behavior in hemi-parkinsonian rats compared to similarly lesioned animals receiving either vehicle (P < 0.001) or the lower dose of melatonin (P < 0.01). Animals were perfused or sacrificed 10 weeks after commencing melatonin treatment for immunohistochemical or mRNA studies. Animals treated with 4.0 microg/ml melatonin exhibited normal tyrosine hydroxylase (TH) immunoreactivity in the lesioned striatum, whereas little or no TH immunofluorescence was visible in similarly lesioned animals receiving vehicle. In contrast, semiquantitative RT-PCR analysis revealed no group differences in TH mRNA, suggesting spontaneous recovery of this transcript as observed previously in partially lesioned animals. There were no significant differences in striatal GDNF mRNA levels between sham and lesioned animals. However, there was a significant (P < 0.01) increase in GDNF mRNA expression in the intact contralateral striata of lesioned animals treated with vehicle. Interestingly, melatonin treatment attenuated this novel compensatory contralateral increase in striatal GDNF expression, presumably due to its neuroprotective effect. These findings support a physiological role for melatonin in protecting against parkinsonian neurodegeneration in the nigrostriatal system.
Collapse
Affiliation(s)
- Rohita Sharma
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
190
|
Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. Lentivirus-Mediated Gene Transfer to the Central Nervous System: Therapeutic and Research Applications. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
191
|
Ralph GS, Binley K, Wong LF, Azzouz M, Mazarakis ND. Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin Sci (Lond) 2005; 110:37-46. [PMID: 16336203 DOI: 10.1042/cs20050158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy holds great promise for the treatment of a wide range of inherited and acquired disorders. The development of viral vector systems to mediate safe and long-lasting expression of therapeutic transgenes in specific target cell populations is continually advancing. Gene therapy for the nervous system is particularly challenging due to the post-mitotic nature of neuronal cells and the restricted accessibility of the brain itself. Viral vectors based on lentiviruses provide particularly attractive vehicles for delivery of therapeutic genes to treat neurological and ocular diseases, since they efficiently transduce non-dividing cells and mediate sustained transgene expression. Furthermore, novel routes of vector delivery to the nervous system have recently been elucidated and these have increased further the scope of lentiviruses for gene therapy application. Several studies have demonstrated convincing therapeutic efficacy of lentiviral-based gene therapies in animal models of severe neurological disorders and the push for progressing such vectors to the clinic is ongoing. This review describes the key features of lentiviral vectors that make them such useful tools for gene therapy to the nervous system and outlines the major breakthroughs in the potential use of such vectors for treating neurodegenerative and ocular diseases.
Collapse
Affiliation(s)
- G Scott Ralph
- Oxford Biomedica plc, The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | |
Collapse
|
192
|
Caumont AS, Octave JN, Hermans E. Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci Lett 2005; 394:196-201. [PMID: 16298481 DOI: 10.1016/j.neulet.2005.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 01/24/2023]
Abstract
Aminoadamantanes are commonly used in the treatment of Parkinson's and Alzheimer's diseases. While these drugs are shown to antagonise ionotropic glutamate receptors on neuronal cells, additional mechanisms could contribute to their neuroprotective properties. The aim of the present study was to investigate the effect of aminoadamantanes on the production of the glial cell line-derived neurotrophic factor (GDNF) in glial cells. For this purpose, we measured the modulation of GDNF release in C6 glioma cell cultures treated for 24 h with amantadine and memantine. Both drugs dose-dependently increased GDNF level in the culture medium with similar potency (submicromolar range) and efficacy (three to four-fold induction). RT-PCR studies revealed that both compounds also increased GDNF mRNA levels and their influence on the GDNF gene transcription was further evidenced using a rat GDNF promoter luciferase reporter assay. Together, these results demonstrate that the neuroprotective effect of amantadine and memantine could involve the regulation of GDNF production by glial cells.
Collapse
Affiliation(s)
- Anne-Sophie Caumont
- Laboratoire de Pharmacologie Expérimentale (FARL), Université catholique de Louvain, Avenue Hippocrate 54.10, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
193
|
Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res 2005; 1052:119-29. [PMID: 16018990 PMCID: PMC2581863 DOI: 10.1016/j.brainres.2005.05.072] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/29/2022]
Abstract
Both glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) can protect nigrostriatal dopaminergic neurons from neurotoxins in rodent and monkey models of Parkinson's disease (PD). These two neurotrophic factors are usually tested individually. This study was designed to compare GDNF, BDNF, or both, for their capabilities to correct behavioral deficits and protect nigrostriatal dopaminergic neurons in a rat model of PD. Gene transfer used a helper virus-free Herpes Simplex Virus (HSV-1) vector system and a modified neurofilament heavy gene promoter that supports long-term expression in forebrain neurons. Rats received unilateral intrastriatal injections of HSV-1 vectors that express either GDNF or BDNF, or both vectors, followed by intrastriatal injections of 6-hydroxydopamine (6-OHDA). Recombinant GDNF or BDNF was detected in striatal neurons in rats sacrificed at 7 months after gene transfer. Of note, GDNF was significantly more effective than BDNF for both correcting behavioral deficits and protecting nigrostriatal dopaminergic neurons. Expression of both neurotrophic factors was no more effective than expression of only GDNF. These results suggest that GDNF is more effective than BDNF for correcting the rat model of PD, and that there are no detectable benefits from expressing both of these neurotrophic factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfred I. Geller
- * Corresponding author. Fax: +1 617 363 5563. E-mail address: (A.I. Geller)
| |
Collapse
|
194
|
Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, Mosley RL, Gendelman HE. Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson's disease. J Neurosci 2005; 25:1691-700. [PMID: 15716405 PMCID: PMC6725925 DOI: 10.1523/jneurosci.4364-04.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nigrostriatal degeneration, the pathological hallmark of Parkinson's disease (PD), is mirrored by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. MPTP-treated animals show the common behavioral, motor, and pathological features of human disease. We demonstrated previously that adoptive transfer of Copaxone (Cop-1) immune cells protected the nigrostriatal dopaminergic pathway in MPTP-intoxicated mice. Herein, we evaluated this protection by quantitative proton magnetic resonance spectroscopic imaging (1H MRSI). 1H MRSI performed in MPTP-treated mice demonstrated that N-acetyl aspartate (NAA) was significantly diminished in the substantia nigra pars compacta (SNpc) and striatum, regions most affected in human disease. When the same regions were coregistered with immunohistochemical stains for tyrosine hydroxylase, numbers of neuronal bodies and termini were similarly diminished. MPTP-intoxicated animals that received Cop-1 immune cells showed NAA levels, in the SNpc and striatum, nearly equivalent to PBS-treated animals. Moreover, adoptive transfer of immune cells from ovalbumin-immunized to MPTP-treated mice failed to alter NAA levels or protect dopaminergic neurons and their projections. These results demonstrate that 1H MRSI can evaluate dopaminergic degeneration and its protection by Cop-1 immunization strategies. Most importantly, the results provide a monitoring system to assess therapeutic outcomes for PD.
Collapse
Affiliation(s)
- Michael D Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Annett L, Kirik D. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease. J Neurosci 2005; 25:769-77. [PMID: 15673656 PMCID: PMC6725622 DOI: 10.1523/jneurosci.4421-04.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) for Parkinson's disease is likely to depend on sustained delivery of the appropriate amount to the target areas. Recombinant adeno-associated viral vectors (rAAVs) expressing GDNF may be a suitable delivery system for this purpose. The aim of this study was to define a sustained level of GDNF that does not affect the function of the normal dopamine (DA) neurons but does provide anatomical and behavioral protection against an intrastriatal 6-hydroxydopamine (6-OHDA) lesion in the common marmoset. We found that unilateral intrastriatal injection of rAAV resulting in the expression of high levels of GDNF (14 ng/mg of tissue) in the striatum induced a substantial bilateral increase in tyrosine hydroxylase protein levels and activity as well as in DA turnover. Expression of low levels of GDNF (0.04 ng/mg of tissue), on the other hand, produced only minimal effects on DA synthesis and only on the injected side. In addition, the low level of GDNF provided approximately 85% protection of the nigral DA neurons and their projections to the striatum in the 6-OHDA-lesioned hemisphere. Furthermore, the anatomical protection was accompanied by a complete attenuation of sensorimotor neglect, head position bias, and amphetamine-induced rotation. We conclude that when delivered continuously, a low level of GDNF in the striatum (approximately threefold above baseline) is sufficient to provide optimal functional outcome.
Collapse
Affiliation(s)
- Andisheh Eslamboli
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D. Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease. Neuron 2005; 46:857-68. [PMID: 15953415 DOI: 10.1016/j.neuron.2005.05.010] [Citation(s) in RCA: 435] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 02/03/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022]
Abstract
Abnormal folding of alpha-synuclein (alpha-syn) is thought to lead to neurodegeneration and the characteristic symptoms of Lewy body disease (LBD). Since previous studies suggest that immunization might be a potential therapy for Alzheimer's disease, we hypothesized that immunization with human (h)alpha-syn might have therapeutic effects in LBD. For this purpose, halpha-syn transgenic (tg) mice were vaccinated with halpha-syn. In mice that produced high relative affinity antibodies, there was decreased accumulation of aggregated halpha-syn in neuronal cell bodies and synapses that was associated with reduced neurodegeneration. Furthermore, antibodies produced by immunized mice recognized abnormal halpha-syn associated with the neuronal membrane and promoted the degradation of halpha-syn aggregates, probably via lysosomal pathways. Similar effects were observed with an exogenously applied FITC-tagged halpha-syn antibody. These results suggest that vaccination is effective in reducing neuronal accumulation of halpha-syn aggregates and that further development of this approach might have a potential role in the treatment of LBD.
Collapse
Affiliation(s)
- Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Mourlevat S, Debeir T, Ferrario JE, Delbe J, Caruelle D, Lejeune O, Depienne C, Courty J, Raisman-Vozari R, Ruberg M. Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro. Exp Neurol 2005; 194:243-54. [PMID: 15899261 DOI: 10.1016/j.expneurol.2005.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
To better understand the particular vulnerability of mesencephalic dopaminergic neurons to toxins or gene mutations causing parkinsonism, we have taken advantage of a primary cell culture system in which these neurons die selectively. Antimitotic agents, such as cytosine arabinoside or cAMP, prevent the death of the neurons by arresting astrocyte proliferation. To identify factors implicated in either the death of the dopaminergic neurons or in the neuroprotective effect of cAMP, we constructed cDNA libraries enriched by subtractive hybridization and suppressive PCR in transcripts that are preferentially expressed in either control or cAMP-treated cultures. Differentially expressed transcripts were identified by hybridization of the enriched cDNAs with a commercially available cDNA expression array. The proteoglycan receptors syndecan-3 and the receptor protein tyrosine phosphatase zeta/beta were found among the transcripts preferentially expressed under control conditions, and their ligand, the cytokine pleiotrophin, was highly represented in the cDNA libraries for both conditions. Since pleiotrophin is expressed during embryonic and perinatal neural development and following lesions in the adult brain, we investigated its role in our cell culture model. Pleiotrophin was not responsible for the death of dopaminergic neurons under control conditions, or for their survival in cAMP-treated cultures. It was, however, implicated in the initial and cAMP-dependent enhancement of the differentiation of the dopaminergic neurons in our cultures. In addition, our experiments have provided evidence for a cAMP-dependent regulatory pathway leading to protease activation, and the identification of pleiotrophin as a target of this pathway.
Collapse
Affiliation(s)
- Sophie Mourlevat
- INSERM U679, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ridet JL, Bensadoun JC, Déglon N, Aebischer P, Zurn AD. Lentivirus-mediated expression of glutathione peroxidase: neuroprotection in murine models of Parkinson's disease. Neurobiol Dis 2005; 21:29-34. [PMID: 16023352 DOI: 10.1016/j.nbd.2005.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/09/2005] [Accepted: 06/12/2005] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species are considered to contribute to the pathogenesis of Parkinson's disease (PD). In order to study viral vector-mediated overexpression of the antioxidant enzyme glutathione peroxidase (GPX) as a potential neuroprotective approach in both an in vitro and in vivo model of PD, we have developed a lentiviral vector carrying the human GPX1 gene. Neuroblastoma cells infected with this vector showed a 2-fold increase in GPX activity compared to cells infected with a control vector. In addition, overexpression of GPX protected 83.0 +/- 14.2% of these cells against 6-hydroxydopamine (6-OHDA)-induced toxicity, while only 22.9 +/- 4.6% of the cells infected with a control vector survived. Furthermore, lentivirus-mediated expression of GPX1 in nigral dopaminergic neurons in vivo prior to intrastriatal injection of 6-OHDA led to a small, but significant protection of these cells against drug-induced toxicity. These results indicate that antioxidative gene therapy strategies may be relevant for PD.
Collapse
Affiliation(s)
- Jean-Luc Ridet
- Division of Surgical Research and Gene Therapy Center, Department of Experimental Surgery, Lausanne University Medical School, CHUV, Pavillon 4, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
199
|
Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line–derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 2005; 11:703-4. [PMID: 16015352 DOI: 10.1038/nm0705-703] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
200
|
Popovic N, Maingay M, Kirik D, Brundin P. Lentiviral gene delivery of GDNF into the striatum of R6/2 Huntington mice fails to attenuate behavioral and neuropathological changes. Exp Neurol 2005; 193:65-74. [PMID: 15817265 DOI: 10.1016/j.expneurol.2004.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 01/30/2023]
Abstract
Transgenic R6/2 mice, which express exon 1 of the human mutant Huntington disease gene, develop behavioral and neuropathological changes that bear some resemblance to the human disease. Several studies have shown that elevated glial cell line-derived neurotrophic factor (GDNF) levels can exert neuroprotective effects in animal models of Huntington disease that are based on intrastriatal injections of excitotoxins. Therefore, the aim of the present study was to examine whether intrastriatal delivery of the GDNF gene by lentivirus (LV-GDNF) could provide structural and functional protection in R6/2 transgenic mice. Four- to 5-week-old mice were left untreated or alternatively received intrastriatal injections of either LV-GDNF or the same viral vector encoding green fluorescent protein (GFP) (LV-GFP) as a control. During the 4-week follow-up period, there was the expected deterioration in performance of the R6/2 mice in paw clasping, rotarod, and open field tests, and the LV-GDNF treated mice showed no improvement over controls. ELISA showed that the LV-GDNF-injected animals had a significant increase in GDNF level in the striatum, and immunohistochemical analysis revealed that GDNF was also overexpressed in brain regions receiving striatal projections. However, GDNF overexpression had no effect on the neuropathological changes examined. Thus, there were no significant differences in the number of EM-48-positive intraneuronal huntingtin inclusions, number of BrdU-positive cells and size of striatal neuronal cross-sectional area. These results suggest that intrastriatal lentiviral vector transfer of GDNF, performed at 5 weeks of age, does not ameliorate neurological and behavioral impairments in the R6/2 transgenic mice model of HD. Further studies are, however, needed to investigate if GDNF given at earlier time points is beneficial.
Collapse
Affiliation(s)
- Natalija Popovic
- Section for Neuronal Survival, Division of Neurobiology, Department of Physiological Sciences, Wallenberg Neuroscience Center, Lund University, BMC A10, Sweden.
| | | | | | | |
Collapse
|