2201
|
Monsurrò V, Nielsen MB, Perez-Diez A, Dudley ME, Wang E, Rosenberg SA, Marincola FM. Kinetics of TCR use in response to repeated epitope-specific immunization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5817-25. [PMID: 11313426 DOI: 10.4049/jimmunol.166.9.5817] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selection of T cell-directed immunization strategies is based extensively on discordant information derived from preclinical models. We characterized the kinetics of T cell selection in response to repeated antigenic challenge. By enumerating with epitope/HLA tetrameric complexes (tHLA) vaccine-elicited T cell precursor frequencies (Tc-pf) in melanoma patients exposed to the modified gp100 epitope gp100:209-217 (g209-2M) we observed in most patients that the Tc-pf increased with number of immunizations. One patient's kinetics were further characterized. Dissociation kinetics of g209-2M/tHLA suggested enrichment of T cell effector populations expressing TCR with progressively higher affinity. Furthermore, vaccine-elicited T cells maintained the ability to express IFN-gamma ex vivo and proliferate in vitro. Thus, repeated exposure to immunogenic peptides benefited immune competence. These results provide a rationale for immunization strategies.
Collapse
Affiliation(s)
- V Monsurrò
- HLA Laboratory, Department of Transfusion Medicine, Clinical Center, and Surgery Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
2202
|
Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ. CD45: new jobs for an old acquaintance. Nat Immunol 2001; 2:389-96. [PMID: 11323691 DOI: 10.1038/87687] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identified as the first and prototypic transmembrane protein tyrosine phosphatase (PTPase), CD45 has been extensively studied for over two decades and is thought to be important for positively regulating antigen-receptor signaling via the dephosphorylation of Src kinases. However, new evidence indicates that CD45 can function as a Janus kinase PTPase that negatively controls cytokine-receptor signaling. A point mutation in CD45, which appears to affect CD45 dimerization, and a genetic polymorphism that affects alternative CD45 splicing are implicated in autoimmunity in mice and multiple sclerosis in humans. CD45 is expressed in multiple isoforms and the modulation of specific CD45 splice variants with antibodies can prevent transplant rejections. In addition, loss of CD45 can affect microglia activation in a mouse model for Alzheimer's disease. Thus, CD45 is moving rapidly back into the spotlight as a drug target and central regulator involved in differentiation of multiple hematopoietic cell lineages, autoimmunity and antiviral immunity.
Collapse
Affiliation(s)
- J M Penninger
- Amgen Research Institute and Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Toronto, ON M5G 2C1, Canada.
| | | | | | | |
Collapse
|
2203
|
Chakraborty AK, Golumbfskie AJ. Polymer adsorption-driven self-assembly of nanostructures. Annu Rev Phys Chem 2001; 52:537-73. [PMID: 11326074 DOI: 10.1146/annurev.physchem.52.1.537] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.
Collapse
Affiliation(s)
- A K Chakraborty
- Department of Chemical Engineering University of California, Lawrence Berkeley National Laboratory Berkeley, California 94720, USA.
| | | |
Collapse
|
2204
|
Van Den Berg HA, Rand DA, Burroughs NJ. A reliable and safe T cell repertoire based on low-affinity T cell receptors. J Theor Biol 2001; 209:465-86. [PMID: 11319895 DOI: 10.1006/jtbi.2001.2281] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antigens are presented to T cells as short peptides bound to MHC molecules on the surface of body cells. The binding between MHC/peptides and T cell receptors (TCRs) has a low affinity and is highly degenerate. Nevertheless, TCR-MHC/peptide recognition results in T cell activation of high specificity. Moreover, the immune system is able to mount a cellular response when only a small fraction of the MHC molecules on an antigen-presenting cell is occupied by foreign peptides, while autoimmunity remains relatively rare. We consider how to reconcile these seemingly contradictory facts using a quantitative model of TCR signalling and T cell activation. Taking into account the statistics of TCR recognition and antigen presentation, we show that thymic selection can produce a working T cell repertoire which will produce safe and effective responses, that is, recognizes foreign antigen presented at physiological levels while tolerating self. We introduce "activation curves" as a useful tool to study the repertoire's statistical activation properties.
Collapse
Affiliation(s)
- H A Van Den Berg
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
2205
|
Chambers CA, Allison JP. CTLA-4--the costimulatory molecule that doesn't: regulation of T-cell responses by inhibition. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:303-12. [PMID: 11232300 DOI: 10.1101/sqb.1999.64.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C A Chambers
- Howard Hughes Research Institute, Division of Immunology, Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
2206
|
van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN, van de Winkel JG. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 2001; 97:2478-86. [PMID: 11290613 DOI: 10.1182/blood.v97.8.2478] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.
Collapse
Affiliation(s)
- A B van Spriel
- Immunotherapy Laboratory and Medarex Europe, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
2207
|
Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 2001. [PMID: 11160430 DOI: 10.1523/jneurosci.21-02-00504.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-permeable neurotransmitter receptors are concentrated into structurally and biochemically isolated cellular compartments to localize calcium-mediated events during neurotransmission. The cytoplasmic membrane contains lipid microdomains called lipid rafts, which can gather into microscopically visible clusters, and thus the association of a particular protein with lipid rafts can result in its redistribution on the cell surface. The present study asks whether lipid rafts participate in the formation and maintenance of the calcium-permeable alpha7-subunit nicotinic acetylcholine receptor (alpha7nAChR) clusters found in somatic spines of ciliary neurons. Lipid rafts and alpha7nAChR become progressively colocalized within somatic spines during synaptogenesis. To determine whether these rafts are required for the maintenance of alpha7nAChR aggregates, cholesterol was extracted from dissociated ciliary neurons by treatment with methyl-beta-cyclodextrin. This treatment caused the dispersion of lipid rafts and the redistribution of alpha7nAChR into small clusters over the cell surface, suggesting that the integrity of lipid rafts is required to maintain the receptor clustering. However, lipid raft dispersion also caused the depolymerization of the F-actin cytoskeleton, which can also tether the receptor at specific sites. To assess whether interaction between rafts and alpha7nAChR is independent of F-actin filaments, the lipid raft patches were stabilized with a combination of the cholera toxin B subunit (CTX), which specifically binds to the raft component ganglioside GM1, and an antibody against CTX. The stabilized rafts were then treated with latrunculin-A to depolymerize F-actin. Under these conditions, large patches of CTX persisted and were colocalized with alpha7nAChR, indicating that the aggregates of receptors can be maintained independently of the underlying F-actin cytoskeleton. Moreover, it was found that the alpha7nAChR is resistant to detergent extraction at 4 degrees C and floats with the caveolin-containing lipid-rich fraction during density gradient centrifugation, properties that are consistent with a direct association between the receptor and the membrane microdomains.
Collapse
|
2208
|
Sanjuán MA, Jones DR, Izquierdo M, Mérida I. Role of diacylglycerol kinase alpha in the attenuation of receptor signaling. J Cell Biol 2001; 153:207-20. [PMID: 11285286 PMCID: PMC2185527 DOI: 10.1083/jcb.153.1.207] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diacylglycerol kinase (DGK) is suggested to attenuate diacylglycerol-induced cell responses through the phosphorylation of this second messenger to phosphatidic acid. Here, we show that DGKalpha, an isoform highly expressed in T lymphocytes, translocates from cytosol to the plasma membrane in response to two different receptors known to elicit T cell activation responses: an ectopically expressed muscarinic type I receptor and the endogenous T cell receptor. Translocation in response to receptor stimulation is rapid, transient, and requires calcium and tyrosine kinase activation. DGKalpha-mediated phosphatidic acid generation allows dissociation of the enzyme from the plasma membrane and return to the cytosol, as demonstrated using a pharmacological inhibitor and a catalytically inactive version of the enzyme. The NH(2)-terminal domain of the protein is shown to be responsible for receptor-induced translocation and phosphatidic acid-mediated membrane dissociation. After examining induction of the T cell activation marker CD69 in cells expressing a constitutively active form of the enzyme, we present evidence of the negative regulation that DGKalpha exerts on diacylglycerol-derived cell responses. This study is the first to describe DGKalpha as an integral component of the signaling cascades that link plasma membrane receptors to nuclear responses.
Collapse
Affiliation(s)
- Miguel Angel Sanjuán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - David R. Jones
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Biología y Genética Molecular, Facultad de Medicina, CSIC-Universidad de Valladolid, E-47005 Valladolid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| |
Collapse
|
2209
|
Abstract
SIV and HIV Nef proteins disrupt T-cell receptor machinery by down-modulating cell surface expression of CD4 and expression or signaling of CD3-TCR. Nef also down-modulates class I major histocompatibility complex (MHC) surface expression. We show that SIV and HIV-1 Nefs down-modulate CD28, a major co-stimulatory receptor that mediates effective T-cell activation, by accelerating CD28 endocytosis. The effects of Nef on CD28, CD4, CD3 and class I MHC expression are all genetically separable, indicating that all are selected independently. In cells expressing a Nef-green fluorescent protein (GFP) fusion, CD28 co-localizes with the AP-2 clathrin adaptor and Nef-GFP. Mutations that disrupt Nef interaction with AP-2 disrupt CD28 down-regulation. Furthermore, HIV and SIV Nefs use overlapping but distinct target sites in the membrane-proximal region of the CD28 cytoplasmic domain. Thus, Nef probably induces CD28 endocytosis via the AP-2 pathway, and this involves a ternary complex containing Nef, AP-2 and CD28. The likely consequence of the concerted down-regulation of CD28, CD4 and/or CD3 by Nef is disruption of antigen-specific signaling machineries in infected T cells following a productive antigen recognition event.
Collapse
Affiliation(s)
| | | | - Jacek Skowronski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Corresponding author e-mail:
| |
Collapse
|
2210
|
Wu B, Wu JM, Miagkov A, Adams RN, Levitsky HI, Drachman DB. Specific immunotherapy by genetically engineered APCs: the "guided missile" strategy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4773-9. [PMID: 11254740 DOI: 10.4049/jimmunol.166.7.4773] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that APCs genetically engineered to present an Ag and to express Fas ligand (FasL) simultaneously can target and eliminate Ag-specific T cells. Transgenic T cells specific for influenza hemagglutinin (HA) were used as targets. We prepared recombinant vaccinia virus vectors (VVV) to transfer the gene constructs individually or simultaneously into APCs. We prevented unwanted viral replication by attenuating the VVVs with psoralen-UV light treatment. For presentation of the HA Ag, APCs were transduced with cDNA for HA flanked by sequences of the lysosome-associated membrane protein that direct efficient processing and presentation of the Ag by APCs. As a "warhead" for the APCs, we transduced them with the gene for FasL, which induces apoptosis of Fas-expressing activated T cells. To protect the transduced APCs from self-destruction by FasL, we transferred cDNA for a truncated form of Fas-associated death domain, which inhibits Fas-mediated cell death. Our results show that the engineered APCs effectively expressed the genes of interest. APCs transduced with VVV carrying all three gene constructs specifically killed HA-transgenic T cells in culture. Coculture with T cells specific for an unrelated Ag (OVA) had no significant effect. Our in vitro findings show that APCs can be genetically engineered to target and kill Ag-specific T cells and represent a promising novel strategy for the specific treatment of autoimmune diseases.
Collapse
Affiliation(s)
- B Wu
- Neuromuscular Research Laboratory, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
2211
|
Leitenberg D, Balamuth F, Bottomly K. Changes in the T cell receptor macromolecular signaling complex and membrane microdomains during T cell development and activation. Semin Immunol 2001; 13:129-38. [PMID: 11308296 DOI: 10.1006/smim.2000.0304] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initiation and propagation of T cell receptor signaling pathways involves the mobilization and aggregation of a variety of signaling intermediates with the T cell receptor and associated molecules into specialized signaling complexes. Accumulating evidence suggests that differential regulation of the formation and composition of the T cell receptor macromolecular signaling complex may affect the different biological consequences of T cell activation. The regulatory mechanisms involved in the assembly of these complexes remains poorly understood, but in part is affected by the avidity of the T cell receptor ligand, co-stimulatory signals, and by the differentiation state of the T cell.
Collapse
Affiliation(s)
- D Leitenberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
2212
|
Abstract
The molecular interactions between the T-cell receptor (TCR) and peptide-MHC (pMHC) have been elucidated in recent years. Nevertheless, the fact that binding of only slightly different ligands by a TCR, or ligation of the same pMHC at different developmental stages of the T cell, can have opposing consequences, continues to pose intellectual challenges. Kinetic proofreading models, which have at their core the dissociation rates of pMHC from the TCR, are best suited to account for these observations. However, T cells can be triggered by peptides with often minimal homology to the primary immunogenic peptide. This cross-reactivity of the TCR is manifest at several levels, from positive selection of immature thymocytes to homeostasis and antigen-cross- reactive immune responses of mature peripheral T cells. The implications of the high cross-reactivity of T-cell antigen recognition for self-tolerance and T-cell memory are discussed.
Collapse
Affiliation(s)
- M Regner
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra.
| |
Collapse
|
2213
|
Chau LA, Tso JY, Melrose J, Madrenas J. HuM291(NUVION), A HUMANIZED Fc RECEPTOR-NONBINDING ANTIBODY AGAINST CD3, ANERGIZES PERIPHERAL BLOOD T CELLS AS PARTIAL AGONIST OF THE T CELL RECEPTOR1. Transplantation 2001; 71:941-50. [PMID: 11349730 DOI: 10.1097/00007890-200104150-00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Humanized Fc receptor (FcR)-nonbinding antibodies against CD3 are promising immunosuppressive agents that may overcome both the neutralizing response to and the cytokine release syndrome seen with conventional monoclonal antibodies against CD3. In addition, evidence from several murine models suggests that these recombinant antibodies may actively induce T cell unresponsiveness by a mechanism other than modulation of the T cell receptor (TCR) or T cell depletion. We hypothesized that FcR-nonbinding antibodies against CD3 could induce T cell unresponsiveness by acting as partial agonist ligands of the TCR and thus, inducing T cell anergy. METHODS To test this hypothesis, we examined the signaling and functional effects of HuM291 (Nuvion), a FcR-nonbinding humanized antibody against CD3, on primary human T cells. RESULTS Short exposure of human peripheral blood T lymphocytes to HuM291 caused a partial agonist type of signaling through the TCR characterized by incomplete phosphorylation of TCR zeta, failure to activate ZAP-70 and to phosphorylate LAT but activation of ERK-1/-2 and subsequent up-regulation of CD69 expression. These changes correlated with a dose-dependent induction of anergy in human, primary resting T cells, which was reversed by exogenous interleukin-2. CONCLUSIONS The tolerogenic properties of FcR-nonbinding monoclonal antibodies against CD3 correlate with its ability to reproduce the biochemical and functional effects of TCR partial agonist ligands. Thus, generation of engineered antibodies against CD3 with low TCR oligomerization potential may provide a clinically applicable partial agonist-based strategy for the prevention of polyclonal T cell responses.
Collapse
Affiliation(s)
- L A Chau
- Transplantation and Immunobiology Group, The John P. Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
2214
|
Miceli MC, Moran M, Chung CD, Patel VP, Low T, Zinnanti W. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin Immunol 2001; 13:115-28. [PMID: 11308295 DOI: 10.1006/smim.2000.0303] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor (TCR) antigen recognition induces the formation of a specialized 'immunological synapse' at the T cell : antigen presenting cell (APC) junction. This junction is generated by the recruitment and exclusion of particular proteins from the contact area and is required for T cell activation. We and others have hypothesized that lipid raft/non-raft partitioning provides a molecular basis for protein sorting which organizes the TCR, co-stimulators, signal transducers and the actin cytoskeleton at the T cell : APC interface. Here we discuss the emerging paradigm that co-stimulators induce the directional transport and clustering of lipid rafts at the T cell : APC interface, thus generating platform(s) specialized for processive and sustained TCR signal transduction and T cell activation. We also discuss recent data implicating the involvement of 'counter-stimulators' and other negative regulators which prevent optimal raft clustering at the TCR contact site and, thus, facilitate T cell inactivation and tolerance induction.
Collapse
Affiliation(s)
- M C Miceli
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095-1570, USA.
| | | | | | | | | | | |
Collapse
|
2215
|
Abstract
The coordination of T-cell migration and antigen recognition is crucial for an effective immune response. We have proposed that this coordination is achieved by formation of an immunological synapse between the T cell and the antigen-presenting cell (APC). Our view contrasts with the serial encounter model also proposed in this issue of Trends in Immunology, which is based on transient T cell-APC interactions when surrounded by collagen. Here, we propose a model that reconciles immunological synapse formation and serial encounters based on environmental control of immunological synapse formation.
Collapse
Affiliation(s)
- M L Dustin
- Center for Immunology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
2216
|
Reichert P, Reinhardt RL, Ingulli E, Jenkins MK. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4278-81. [PMID: 11254679 DOI: 10.4049/jimmunol.166.7.4278] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR aggregation at the point of contact with an APC is thought to play an important role in T cell signal transduction. However, this potentially important phenomenon has never been documented during an immune response in vivo. Here we used immunohistology to show that the TCR on naive Ag-specific CD4 T cells in the lymph nodes of mice injected with Ag redistributed to one side of the cell. In cases where the APC could be identified, the TCR was concentrated on the side of the T cell facing the APC. In those T cells that produced IL-2, the TCR and IL-2 localized to the same side of the cell. In vivo IL-2 production depended on costimulatory signaling through CD28, whereas TCR redistribution did not. These results show that Ag-stimulated CD4 T cells produce IL-2 in a polarized fashion and undergo CD28-independent TCR redistribution in vivo.
Collapse
Affiliation(s)
- P Reichert
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
2217
|
Abstract
Primary immune responses are initiated by specific physical interaction of antigen-specific T cells and professional antigen-presenting cells (APCs). Productive interactions can be a dynamic process that combines physical T-cell binding to APCs with vigorous crawling across and scanning of the APC surface, resulting in signal induction. After T-cell detachment, subsequent migratory contacts to the same or neighboring dendritic cells (DCs) allow the accumulation of sequential signals and interaction time. Here, we develop a serial encounter model of T-cell activation and discuss how the summation of multiple signals provides an efficient strategy to control an ongoing immune response.
Collapse
Affiliation(s)
- P Friedl
- Cell Migration Laboratory, Dept of Dermatology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | |
Collapse
|
2218
|
Abstract
Productive T cell activation depends on the assembly of a highly ordered and compartmentalized immunological synapse or supramolecular activation complex (SMAC). Reorganization of the actin cytoskeleton and clustering of specialized membrane microdomains, or lipid rafts, occur early following TCR/CD3 and costimulatory receptor ligation. Many key signaling molecules localize in lipid raft patches during T cell activation. Lipid raft reorganization is required for T cell activation, where it plays an apparently important role in stabilizing the T cell synapse. Here we review recent evidence supporting the role of lipid rafts in T cell activation. Particular emphasis is placed on the coupling of protein kinase C-theta(PKCtheta), which is selectively expressed in T cells and is known to function as an essential signal for T cell activation, and lipid rafts.
Collapse
Affiliation(s)
- K Bi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | |
Collapse
|
2219
|
Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 2001; 410:608-11. [PMID: 11279502 DOI: 10.1038/35069118] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optimal immune responses require both an antigen-specific and a co-stimulatory signal. The shared ligands B7-1 and B7-2 on antigen-presenting cells deliver the co-stimulatory signal through CD28 and CTLA-4 on T cells. Signalling through CD28 augments the T-cell response, whereas CTLA-4 signalling attenuates it. Numerous animal studies and recent clinical trials indicate that manipulating these interactions holds considerable promise for immunotherapy. With the consequences of these signals well established, and details of the downstream signalling events emerging, understanding the molecular nature of these extracellular interactions becomes crucial. Here we report the crystal structure of the human CTLA-4/B7-1 co-stimulatory complex at 3.0 A resolution. In contrast to other interacting cell-surface molecules, the relatively small CTLA-4/B7-1 binding interface exhibits an unusually high degree of shape complementarity. CTLA-4 forms homodimers through a newly defined interface of highly conserved residues. In the crystal lattice, CTLA-4 and B7-1 pack in a strikingly periodic arrangement in which bivalent CTLA-4 homodimers bridge bivalent B7-1 homodimers. This zipper-like oligomerization provides the structural basis for forming unusually stable signalling complexes at the T-cell surface, underscoring the importance of potent inhibitory signalling in human immune responses.
Collapse
Affiliation(s)
- C C Stamper
- Departments of Biological Chemistry and Musculoskeletal Sciences, Wyeth Research, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2220
|
McVicar DW, Burshtyn DN. Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752646 DOI: 10.1126/stke.2001.75.re1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Once thought to be promiscuous killers, it is now known that natural killer (NK) cells possess an elaborate array of receptors that regulate NK cytotoxic and secretory functions upon interaction with target cell MHC class I proteins. These receptors, known as killer cell immunoglobulin-like receptors (KIRs) in humans, and Ly49 receptors in the mouse, have become the focus of intense study in an effort to discern the underlying biology of these large receptor families. These receptor families include both inhibitory and activating receptors. Interrogation of a target expressing KIR ligands leads to coengagement of the inhibitory receptor with as-yet poorly defined activation receptors. Kinases activated during engagement mediate the phosphorylation of the KIR or Ly49 cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The phosphorylated ITIMs serve as efficient recruitment points for the cytosolic protein tyrosine phosphatases, SHP-1 and SHP-2, resulting in the dephosphorylation of substrates critical for cellular activation. In contrast, some KIRs and Ly49s lack the ITIM and possess a charged residue in their transmembrane domains that mediates interaction with the DAP12 signal transduction chain. DAP12 uses its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) to mediate cellular activation. Engagement of a DAP12 coupled KIR or Ly49 results in phosphorylation of DAP12, and other key substrates, including the Syk tryosine kinase, phospholipase C, and c-Cbl. DAP12 activation then leads to the Mapk cascade and ultimately to enhanced degranulation, and production of cytokines and chemokines. Although the context in which inhibitory and activating KIR and Ly49s function is not yet known, the dissection of the activating and inhibitory signal transduction pathways should shed light on their method of integration into the activation sequela of NK cells. Ultimately, this work will lead to concrete understanding of the immunobiology of these seemingly antagonistic receptor systems.
Collapse
Affiliation(s)
- D W McVicar
- Laboratory of Experimental Immunology, Division of Basic Sciences, National Cancer Institute, NCI-FCRDC Building 560/Rm 31-93, Frederick, MD 21702, USA.
| | | |
Collapse
|
2221
|
Abstract
Almost all of the key molecules involved in the innate and adaptive immune response are glycoproteins. In the cellular immune system, specific glycoforms are involved in the folding, quality control, and assembly of peptide-loaded major histocompatibility complex (MHC) antigens and the T cell receptor complex. Although some glycopeptide antigens are presented by the MHC, the generation of peptide antigens from glycoproteins may require enzymatic removal of sugars before the protein can be cleaved. Oligosaccharides attached to glycoproteins in the junction between T cells and antigen-presenting cells help to orient binding faces, provide protease protection, and restrict nonspecific lateral protein-protein interactions. In the humoral immune system, all of the immunoglobulins and most of the complement components are glycosylated. Although a major function for sugars is to contribute to the stability of the proteins to which they are attached, specific glycoforms are involved in recognition events. For example, in rheumatoid arthritis, an autoimmune disease, agalactosylated glycoforms of aggregated immunoglobulin G may induce association with the mannose-binding lectin and contribute to the pathology.
Collapse
Affiliation(s)
- P M Rudd
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
2222
|
Föger N, Marhaba R, Zöller M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J Cell Sci 2001; 114:1169-78. [PMID: 11228160 DOI: 10.1242/jcs.114.6.1169] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell activation is accompanied by actin-mediated receptor clustering and reorganization of lipid rafts. It has been suggested that costimulatory molecules might be involved in these processes. We here provide evidence that engagement of the adhesion molecule CD44 initiates cytoskeletal rearrangement and membrane reorganization in T cells. Cross-linking of CD44 on a T helper line was accompanied by adhesion, spreading and actin bundle formation. These processes were energy dependent and required an intact actin and microtubule system. They involved the small GTPase Rac as evidenced by the absence of spreading in cells overexpressing a dominant negative form of Rac. The CD44 initiated reorganization of the cytoskeleton was associated with the recruitment of CD44 and the associated tyrosine phosphokinases p56(lck) and p59(fyn) into glycolipid enriched membrane microdomains (GEM). We interpret the data in the sense that CD44 functions as a costimulatory molecule in T cell activation by inducing actin cytoskeletal rearrangements and membrane protein and lipid reorganization including its association with GEMs. Due to the association of CD44 with lck and fyn this colocalization with the TCR allows an abundant provision of these kinases, which are essential to initiate the TCR signaling cascade.
Collapse
Affiliation(s)
- N Föger
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
2223
|
Wu JM, Wu B, Miagkov A, Adams RN, Drachman DB. Specific immunotherapy of experimental myasthenia gravis in vitro: the "guided missile" strategy. Cell Immunol 2001; 208:137-47. [PMID: 11333146 DOI: 10.1006/cimm.2001.1778] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe a strategy for specific immunotherapy of myasthenia gravis (MG) based on genetic engineering of antigen presenting cells (APCs) to present the autoantigen acetylcholine receptor (AChR) and express the "warhead" Fas ligand (FasL). For transduction of APCs we prepared recombinant attenuated vaccinia virus vectors carrying the following three gene constructs: (i) AChR fused to LAMP1 to present AChR and target AChR-specific T cells; (ii) FasL to eliminate the targeted T cells; and (iii) truncated FADD to protect APCs from self-destruction by FasL. The engineered APCs effectively expressed the genes of interest and killed AChR-specific T cells in culture by the Fas/FasL pathway. T cells specific for an unrelated antigen were spared. Our in vitro demonstration that engineered APCs target and kill antigen-specific T cells represents a promising novel strategy for specific immunotherapy of MG and other autoimmune diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigen-Presenting Cells/immunology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cell Line
- Fas Ligand Protein
- Fas-Associated Death Domain Protein
- Female
- Gene Expression
- Genetic Vectors
- Immunotherapy
- Lysosomal-Associated Membrane Protein 1
- Lysosomal Membrane Proteins
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/therapy
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Vaccinia virus
- fas Receptor/immunology
Collapse
Affiliation(s)
- J M Wu
- Neuromuscular Research Laboratory, Johns Hopkins School of Medicine, Baltimore, Maryland, 21287-7519, USA
| | | | | | | | | |
Collapse
|
2224
|
Sasaki K, Johkura K, Ogiwara N, Liang Y, Cui L, Teng R, Okouchi Y, Asanuma K, Ishida O, Maruyama K. Three-dimensional morphological analysis of antigen-antibody reaction in hepatic sinusoids preserved in hypothermic UW solution. Cryobiology 2001; 42:145-50. [PMID: 11448117 DOI: 10.1006/cryo.2001.2316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ICAM-1 antigen-antibody reaction was visualized by three-dimensional immunoscanning electron microscopy of hepatic sinusoids in rat liver treated with hypothermic University of Wisconsin (UW) organ preservation solution. The results were compared with similar antigen-antibody reactions carried out with immunoliposomes injected in vivo. Morphologically, the hepatic sinusoids were preserved well during the hypothermic procedure. Endothelial cells had a large number of fenestrations, which partly aggregated and formed sieve plates. ICAM-1 expression was induced by injection of LPS and detected by monoclonal antibody in the UW solution followed by gold-labeled secondary antibody. ICAM-1 was restricted mostly to the unique areas of sieve plates with immature, small fenestrations. A similar distribution of ICAM-1 was present when detected by in vivo injection of immunoliposomes containing the monoclonal ICAM-1 antibody. The results showed that antigen-antibody reactions can take place in livers preserved in hypothermic UW solution. Further, the reaction is similar to that which could occur in vivo during transplantation. This suggests that it may be possible to block potentially harmful antigen-antibody reactions by addition of appropriate antibodies to hypothermic UW solution prior to transplantation.
Collapse
Affiliation(s)
- K Sasaki
- Department of Anatomy & Organ Technology, School of Medicine, and Graduate School of Medicine, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2225
|
Garcia GG, Miller RA. Single-cell analyses reveal two defects in peptide-specific activation of naive T cells from aged mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3151-7. [PMID: 11207267 DOI: 10.4049/jimmunol.166.5.3151] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Confocal fluorescent microscopy was used to study redistribution of membrane-associated proteins in naive T cells from young and old mice from a transgenic stock whose T cells express a TCR specific for a peptide derived from pigeon cytochrome C. About 50% of the T cells from young mice that formed conjugates with peptide-pulsed APC were found to form complexes, at the site of binding to the APC, containing CD3epsilon, linker for activation of T cells (LAT), and Zap-70 in a central area and c-Cbl, p95(vav), Grb-2, PLC gamma, Fyn, and Lck distributed more uniformly across the interface area. Two-color staining showed that those cells that were able to relocalize c-Cbl, LAT, CD3epsilon, or PLC gamma typically relocalized all four of these components of the activation complex. About 75% of conjugates that rearranged LAT, c-Cbl, or PLC gamma also exhibited cytoplasmic NF-AT migration to the T cell nucleus. Aging had two effects. First, it led to a diminution of approximately 2-fold in the proportion of T cell/APC conjugates that could relocalize any of the nine tested proteins to the immune synapse. Second, aging diminished by approximately 2-fold the frequency of cytoplasmic NF-AT migration among cells that could generate immune synapses containing LAT, c-Cbl, or PLC gamma. Thus naive CD4 T cells from old mice exhibit at least two separable defects in the earliest stages of activation induced by peptide/MHC complexes.
Collapse
Affiliation(s)
- G G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
2226
|
Kalergis AM, Boucheron N, Doucey MA, Palmieri E, Goyarts EC, Vegh Z, Luescher IF, Nathenson SG. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2001; 2:229-34. [PMID: 11224522 DOI: 10.1038/85286] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.
Collapse
Affiliation(s)
- A M Kalergis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
2227
|
|
2228
|
Kersh GJ, Miley MJ, Nelson CA, Grakoui A, Horvath S, Donermeyer DL, Kappler J, Allen PM, Fremont DH. Structural and functional consequences of altering a peptide MHC anchor residue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3345-54. [PMID: 11207290 DOI: 10.4049/jimmunol.166.5.3345] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To better understand TCR discrimination of multiple ligands, we have analyzed the crystal structures of two Hb peptide/I-E(k) complexes that differ by only a single amino acid substitution at the P6 anchor position within the peptide (E73D). Detailed comparison of multiple independently determined structures at 1.9 A resolution reveals that removal of a single buried methylene group can alter a critical portion of the TCR recognition surface. Significant variance was observed in the peptide P5-P8 main chain as well as a rotamer difference at LeuP8, approximately 10 A distal from the substitution. No significant variations were observed in the conformation of the two MHC class II molecules. The ligand alteration results in two peptide/MHC complexes that generate bulk T cell responses that are distinct and essentially nonoverlapping. For the Hb-specific T cell 3.L2, substitution reduces the potency of the ligand 1000-fold. Soluble 3.L2 TCR binds the two peptide/MHC complexes with similar affinity, although with faster kinetics. These results highlight the role of subtle variations in MHC Ag presentation on T cell activation and signaling.
Collapse
Affiliation(s)
- G J Kersh
- Department of Pathology and Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2229
|
Slavik JM, Lim DG, Burakoff SJ, Hafler DA. Uncoupling p70(s6) kinase activation and proliferation: rapamycin-resistant proliferation of human CD8(+) T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3201-9. [PMID: 11207273 DOI: 10.4049/jimmunol.166.5.3201] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapamycin is a fungal macrolide that inhibits the proliferation of T cells. Studies in both animals and humans have found that rapamycin significantly reduces graft rejection. However, though CD8(+) T cells are involved in graft infiltration and rejection, little is known regarding the effects of rapamycin on CD8(+) human T cell responses. In this study, we examined the mechanism of rapamycin-induced inhibition of Ag-driven activation of CD8(+) T cells. Surprisingly, a heterogeneous proliferative response in the presence of rapamycin was observed among different Ag-specific CD8(+) T cell clones; this was also observed in CD8(+) peripheral blood T cells activated with TCR cross-linking ex vivo. Inhibition of T cell proliferation by rapamycin was controlled by both the strength of signal delivered through the Ag receptor as well as the specific costimulatory signals received by the T cell. Rapamycin-resistant proliferation occurred despite inhibition of p70(s6) kinase activity. Moreover, rapamycin-resistant proliferation of the CD8(+) T cell clones was blocked by anti-IL-2 Abs, suggesting that while some of the parallel pathways triggered by IL-2R signaling are sensitive to the effects of rapamycin, others account for the Ag-driven rapamycin resistance. These data provide a new framework for examining the specific mechanism of action of rapamycin in human disease.
Collapse
Affiliation(s)
- J M Slavik
- Laboratory of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
2230
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
2231
|
Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 2001; 14:315-29. [PMID: 11290340 DOI: 10.1016/s1074-7613(01)00112-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell activation induces functional changes in cell shape and cytoskeletal architecture. To facilitate the collection of dynamic, high-resolution images of activated T cells, we plated T cells on coverslips coated with antibodies to the T cell receptor (TCR). Using these images, we were able to quantitate the morphological responses of individual cells over time. Here, we show that TCR engagement triggers the formation and expansion of contacts bounded by continuously remodeled actin-rich rings. These processes are associated with the extension of lamellipodia and require actin polymerization, tyrosine kinase activation, cytoplasmic calcium increases, and LAT, an important hematopoietic adaptor. In addition, the maintenance of the resulting contact requires sustained calcium influxes, an intact microtubule cytoskeleton, and functional LAT.
Collapse
Affiliation(s)
- S C Bunnell
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
2232
|
|
2233
|
Abstract
To characterize the ligand binding properties of a naive T cell repertoire capable of responding to a foreign antigen, we analyzed T cell populations from T cell receptor (TCR) beta transgenic mice using a novel, single cell peptide/major histocompatibility complex (MHC) tetramer dissociation assay. The largely CD4+CD8(-/low) antigen-specific thymocyte repertoire exhibited a broad, bimodal distribution of tetramer binding half-lives (t(1/2)s), with a significant underrepresentation in the intermediate half-life range in which the majority of the peripheral repertoire lies. Thus, cells with the potential to bind foreign antigen with the lowest and highest stability are likely to be selectively removed from the repertoire prior to their establishment in the periphery. These studies provide direct evidence that thymic selection biases the naive peripheral T cell repertoire toward TCR-ligand interactions that fall within a moderate half-life "window."
Collapse
Affiliation(s)
- P A Savage
- Program in Cancer Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
2234
|
Torgersen KM, Vaage JT, Rolstad B, Taskén K. A soluble LAT deletion mutant inhibits T-cell activation: reduced recruitment of signalling molecules to glycolipid-enriched microdomains. Cell Signal 2001; 13:213-20. [PMID: 11282460 DOI: 10.1016/s0898-6568(01)00131-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The type III transmembrane adaptor protein linker for activation of T cells (LAT) is essential for membrane recruitment of signalling molecules following TCR activation. Here we show that although LAT deleted in the transmembrane domain is completely soluble, it can be tyrosine phosphorylated after anti-CD3 stimulation or pervanadate treatment. Overexpression of this deletion mutant in transiently transfected Jurkat TAg cells inhibits transcriptional activation of nuclear factor of activated T cells (NF-AT)/AP-1 reporter construct in a concentration-dependent manner. Furthermore, by selection of transiently transfected cells, a clear reduction of TCR-induced CD69 expression was observed in cells expressing the mutant. These dominant negative effects seemed to be dependent both on the ability of the membrane deletion mutant to reduce phosphorylation of endogenous LAT and to reduce interaction of endogenous LAT with PLC-gamma1 and Grb2. Consistent with this, the redistribution of PLC-gamma1 and Grb2 to glycolipid-enriched microdomains, called lipid rafts, after stimulation was inhibited when the soluble form of LAT was overexpressed. We suggest that the dominant negative effect is caused by the ability of the mutant to sequester signalling molecules in cytosol and thereby inhibit redistribution of signalling molecules to lipid rafts upon T-cell activation.
Collapse
Affiliation(s)
- K M Torgersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
2235
|
Sasada T, Reinherz EL. A critical role for CD2 in both thymic selection events and mature T cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2394-403. [PMID: 11160298 DOI: 10.4049/jimmunol.166.4.2394] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To examine the function of CD2 in vivo, N15 TCR transgenic (tg) RAG-2(-/-) H-2(b) mice bearing a single TCR specific for the vesicular stomatitis virus octapeptide bound to the H-2K(b) molecule were compared on a wild-type or CD2(-/-) background. In N15tg RAG-2(-/-) CD2(-/-) mice, thymic dysfunction is evident by 6 wk with a pre-TCR block in the CD4(-)CD8(-) double-negative thymocytes at the CD25(+)CD44(-) stage. Moreover, mature N15tg RAG-2(-/-) CD2(-/-) T cells are approximately 100-fold less responsive to vesicular stomatitis virus octapeptide and unresponsive to weak peptide agonists, as judged by IFN-gamma production. Repertoire analysis shows substantial differences in Valpha usage between non-tg C57BL/6 (B6) and B6 CD2(-/-) mice. Collectively, these findings show that CD2 plays a role in pre-TCR function in double-negative thymocytes, TCR selection events during thymocyte development, and TCR-stimulated cytokine production in mature T cells.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- CD2 Antigens/biosynthesis
- CD2 Antigens/genetics
- CD2 Antigens/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cytotoxicity, Immunologic/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunophenotyping
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interleukin-12/physiology
- Killer Cells, Natural/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/immunology
- Spleen/pathology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- T Sasada
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
2236
|
Sabzevari H, Kantor J, Jaigirdar A, Tagaya Y, Naramura M, Hodge J, Bernon J, Schlom J. Acquisition of CD80 (B7-1) by T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2505-13. [PMID: 11160311 DOI: 10.4049/jimmunol.166.4.2505] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of T cells usually requires two signals. Signal 1 is mediated via a peptide-MHC on the APC; signal 2 is mediated via a costimulatory molecule on the APC surface. We demonstrate here that naive CD4(+) T cells actually acquire the costimulatory molecule CD80 (B7-1) from syngeneic APCs after activation. This phenomenon was demonstrated showing acquisition of CD80 by T cells from CD80/CD86 (B7-2) knockout mice, and by treating T cells with cyclohexamide to further rule out endogenous expression of CD80 by T cells. Moreover, no CD80 mRNA could be detected in T cells that had acquired CD80. The amount of acquisition of CD80 by T cells was shown to be directly related to both the strength of signal 1 and the amount of CD80 on the APC. Specificity of this acquisition was also shown by the lack of acquisition by T cells from CD28 knockout mice (implicating CD28 in this process), the lack of acquisition of CD40 (another molecule on the APC surface) by T cells, and confocal microscopy studies. We demonstrate for the first time that 1) naive T cells, following acquisition of CD80 from APCs, were themselves shown to be capable of acting as APCs; and 2) memory T cells that have acquired CD80 from APCs undergo apoptosis in the presence of increased levels of signal 1. Thus we demonstrate both immunostimulatory and immunoregulatory functions as a result of CD80 acquisition by different T cell populations.
Collapse
Affiliation(s)
- H Sabzevari
- Laboratory of Tumor Immunology and Biology, Division of Basic Sciences, National Cancer Institute, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
2237
|
Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104:441-51. [PMID: 11239401 DOI: 10.1016/s0092-8674(01)00231-8] [Citation(s) in RCA: 495] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.
Collapse
Affiliation(s)
- E S Barton
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2238
|
Abstract
The serial engagement model provides an attractive and plausible explanation for how a typical antigen presenting cell, exhibiting a low density of peptides recognized by a T cell, can initiate T cell responses. If a single peptide displayed by a major histocompatibility complex (MHC) can bind, sequentially, to different T cell receptors (TCR), then a few peptides can activate many receptors. To date, arguments supporting and questioning the prevalence of serial engagement have centered on the down-regulation of TCR after contact of T cells with antigen presenting cells. Recently, the existence of serial engagement has been challenged by the demonstration that engagement of TCR can down-regulate nonengaged bystander TCR. Here we show that for binding and dissociation rates that characterize interactions between T cell receptors and peptide-MHC, substantial serial engagement occurs. The result is independent of mechanisms and measurements of receptor down-regulation. The conclusion that single peptide-MHC engage many TCR, before diffusing out of the contact region between the antigen-presenting cell and the T cell, is based on a general first passage time calculation for a particle alternating between states in which different diffusion coefficients govern its transport.
Collapse
Affiliation(s)
- C Wofsy
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
2239
|
|
2240
|
Al-Alwan MM, Rowden G, Lee TD, West KA. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1452-6. [PMID: 11160183 DOI: 10.4049/jimmunol.166.3.1452] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The binding of a T cell to an APC results in T cell actin cytoskeletal rearrangement leading to the formation of an immunological synapse. The APC cytoskeleton has been thought to play a passive role in this process. In this study, we demonstrate that dendritic cells (DC), unlike other APC, actively polarize their actin cytoskeleton during interaction with T cells. DC cytoskeletal rearrangement was critical for both the clustering and the activation of resting T cells. This study provides compelling evidence that the APC cytoskeleton plays an active role in the immunological synapse and may explain the unique ability of DC to activate resting T cells.
Collapse
Affiliation(s)
- M M Al-Alwan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
2241
|
Patel VP, Moran M, Low TA, Miceli MC. A molecular framework for two-step T cell signaling: Lck Src homology 3 mutations discriminate distinctly regulated lipid raft reorganization events. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:754-64. [PMID: 11145647 DOI: 10.4049/jimmunol.166.2.754] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulation by CD28 or lipid-raft-associated CD48 potentiate TCR-induced signals, cytoskeletal reorganization, and IL-2 production. We and others have proposed that costimulators function to construct a raft-based platform(s) especially suited for TCR engagement and sustained and processive signal transduction. Here, we characterize TCR/CD48 and TCR/CD28 costimulation in T cells expressing Lck Src homology 3 (SH3) mutants. We demonstrate that Lck SH3 functions after initiation of TCR-induced tyrosine phosphorylation and concentration of transducers within rafts, to regulate the costimulation-dependent migration of rafts to the TCR contact site. Expression of kinase-active/SH3-impaired Lck mutants disrupts costimulation-dependent raft recruitment, sustained TCR protein tyrosine phosphorylation, and IL-2 production. However, TCR-induced apoptosis, shown only to require "partial" TCR signals, is unaffected by expression of kinase-active/SH3-impaired Lck mutants. Therefore, two distinctly regulated raft reorganization events are required for processive and sustained "complete" TCR signal transduction and T cell activation. Together with recent characterization of CD28 and CD48 costimulatory activities, these findings provide a molecular framework for two signal models of T cell activation.
Collapse
Affiliation(s)
- V P Patel
- Department of Microbiology, Immunology, and Molecular Genetics and The Molecular Biology Institute, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
2242
|
Tsoukas CD, Grasis JA, Ching KA, Kawakami Y, Kawakami T. Itk/Emt: a link between T cell antigen receptor-mediated Ca2+ events and cytoskeletal reorganization. Trends Immunol 2001; 22:17-20. [PMID: 11286686 DOI: 10.1016/s1471-4906(00)01795-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Itk/Emt, a tec family tyrosine kinase, is important for T-cell development and activation through the antigen receptor. Here, we review data suggesting that Itk/Emt is involved in the generation of critical second messengers (Ca(2+), PKC) whose duration it modulates by regulation of cytoskeletal reorganization. We propose that Itk/Emt constitutes an important link between these critical signaling events.
Collapse
Affiliation(s)
- C D Tsoukas
- Department of Biology and the Molecular Biology Institute, San Diego State University, CA 92182, USA.
| | | | | | | | | |
Collapse
|
2243
|
Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M, King PD. Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:197-206. [PMID: 11123293 DOI: 10.4049/jimmunol.166.1.197] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR and CD28 costimulatory receptor-cooperative induction of T cell IL-2 secretion is dependent upon activation of mitogen-activated protein (MAP) kinases. Using yeast-hybrid technology, we cloned a novel CD28 cytoplasmic tail (CD28 CYT) interacting protein, MAP kinase phosphatase-6 (MKP6), which we demonstrate inactivates MAP kinases. Several lines of evidence indicate that MKP6 plays an important functional role in CD28 costimulatory signaling. First, in human peripheral blood T cells (PBT), expression of MKP6 is strongly up-regulated by CD28 costimulation. Second, transfer of dominant-negative MKP6 to PBT with the use of retroviruses primes PBT for the secretion of substantially larger quantities of IL-2, specifically in response to CD28 costimulation. A similar enhancement of IL-2 secretion is observed neither in response to TCR plus CD2 costimulatory receptor engagement nor in response to other mitogenic stimuli such as phorbol ester and ionomycin. Furthermore, this hypersensitivity to CD28 costimulation is associated with CD28-mediated hyperactivation of MAP kinases. Third, a retroviral transduced chimeric receptor with a CD28 CYT that is specifically unable to bind MKP6 costimulates considerably larger quantities of IL-2 from PBT than a similar transduced chimeric receptor that contains a wild-type CD28 CYT. Taken together, these results suggest that MKP6 functions as a novel negative-feedback regulator of CD28 costimulatory signaling that controls the activation of MAP kinases.
Collapse
Affiliation(s)
- F Marti
- T Cell Signal Transduction Laboratory, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
2244
|
Abstract
The germinal center reaction is one critical outcome of helper T-cell-dependent antigen-specific B-cell responses. Germinal center reactions are the culmination of an orchestrated series of intercellular information exchanges discussed here as the serial synapsis model of adaptive immunity. The main purpose of the germinal center reaction is the development of B-cell memory through iterative cycles of somatic antigen receptor diversification and the selection of B cells with receptors of best fit. Recent studies provide insight into the regulation of these complex processes in vivo with new information on the cellular organization of the memory B-cell compartment.
Collapse
Affiliation(s)
- L J McHeyzer-Williams
- Duke University Medical Center, Department of Immunology, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
2245
|
Hakonarson H, Kim C, Whelan R, Campbell D, Grunstein MM. Bi-directional activation between human airway smooth muscle cells and T lymphocytes: role in induction of altered airway responsiveness. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:293-303. [PMID: 11123305 DOI: 10.4049/jimmunol.166.1.293] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.
Collapse
Affiliation(s)
- H Hakonarson
- Division of Pulmonary Medicine, The Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
2246
|
Abstract
Human CD38 is the mammalian prototype of a family of proteins which share structural similarities and an ectoenzymatic activity involved in the production of calcium mobilizing compounds. Besides the enzymatic activity, the molecule performs as a receptor, ruling adhesion and signaling in leukocytes. These functions are exerted through the interaction with surface ligands, one of which was identified as CD31. Recently, CD38 has gained attention as a prognostic marker and a pathogenetic agent in leukemias and in other diseases. Together these insights have produced a model of an as yet unique family of molecules, which act independently as receptors and enzymes.
Collapse
Affiliation(s)
- S Deaglio
- Laboratory of Cell Biology, Department of Biology, Genetics and Biochemistry, University of Torino Medical School, via Santena 19, 10126, Torino, Italy
| | | | | |
Collapse
|
2247
|
Metzler DE, Metzler CM, Sauke DJ. Biochemical Defense Mechanisms. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2248
|
Kessels HW, van Den Boom MD, Spits H, Hooijberg E, Schumacher TN. Changing T cell specificity by retroviral T cell receptor display. Proc Natl Acad Sci U S A 2000; 97:14578-83. [PMID: 11121060 PMCID: PMC18961 DOI: 10.1073/pnas.97.26.14578] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2000] [Accepted: 10/24/2000] [Indexed: 01/17/2023] Open
Abstract
The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T cell variants is generated in vitro and introduced into a TCR-negative murine T cell line by retroviral transfer. We document the value of TCR display by the creation of a library of an influenza A-specific TCR and the subsequent in vitro selection of TCRs that either recognize the parental influenza epitope or that have acquired a specificity for a different influenza A strain. The resulting in vitro selected TCRs induce efficient T cell activation after ligand recognition and are of equal or higher potency than the in vivo generated parent receptor. TCR display should prove a useful strategy for the generation of high-affinity tumor-specific TCRs for gene transfer purposes.
Collapse
Affiliation(s)
- H W Kessels
- Department of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
2249
|
Khoshnan A, Bae D, Tindell CA, Nel AE. The physical association of protein kinase C theta with a lipid raft-associated inhibitor of kappa B factor kinase (IKK) complex plays a role in the activation of the NF-kappa B cascade by TCR and CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6933-40. [PMID: 11120819 DOI: 10.4049/jimmunol.165.12.6933] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the role of protein kinase C theta (PKCtheta) in the activation of the NF-kappaB cascade in primary human CD4(+) lymphocytes. Among six or so PKC isoforms expressed in T cells, only PKCtheta participates in the assembly of the supramolecular activation clusters at the contact site of the TCR with Ag. Signaling via both the TCR and CD28 is required for optimal activation of the multisubunit IkappaB kinase (IKK) complex in primary human T lymphocytes; this activation could be inhibited by a Ca(2+)-independent PKC isoform inhibitor, rottlerin. Moreover, endogenous PKCtheta physically associates with activated IKK complexes in CD3/CD28-costimulated primary CD4(+) T cells. The same set of stimuli also induced relocation of endogenous PKCtheta and IKKs to a GM1 ganglioside-enriched, detergent-insoluble membrane compartment in primary T cells. IKKs recruited to these lipid rafts were capable of phosphorylating a recombinant IkappaBalpha sustrate. Confocal microscopy further demonstrated that exogenously expressed PKCtheta and IKKss colocalize in the membrane of CD3/CD28-costimulated Jurkat T cells. Constitutively active but not kinase-inactive PKCtheta activated IKKbeta in Jurkat T cells. Expression of dominant-active PKCtheta also had stimulatory effects on the CD28 response element of the IL-2 promoter. Taken together, these data show that the activation of PKCtheta by the TCR and CD28 plays an important role in the assembly and activation of IKK complexes in the T cell membrane.
Collapse
Affiliation(s)
- A Khoshnan
- Division of Clinical Immunology and Allergy, Department of Medicine, Center for Health Sciences, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
2250
|
Balasa B, La Cava A, Van Gunst K, Mocnik L, Balakrishna D, Nguyen N, Tucker L, Sarvetnick N. A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7330-7. [PMID: 11120869 DOI: 10.4049/jimmunol.165.12.7330] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal islet-specific expression of IL-10 in nonobese diabetic (NOD) mice accelerates the onset of diabetes, whereas systemic treatment of young NOD mice with IL-10 prevents diabetes. The mechanism for acceleration of diabetes in IL-10-NOD mice is not known. Here we show, by adoptive transfers, that prediabetic or diabetic NOD splenocytes upon encountering IL-10 in the pancreatic islets readily promoted diabetes. This outcome suggests that the compartment of exposure, not the timing, confers proinflammatory effects on this molecule. Moreover, injection of IL-10-deficient NOD splenocytes into transgenic IL-10-NOD.scid/scid mice elicited accelerated disease, demonstrating that pancreatic IL-10 but not endogenous IL-10 is sufficient for the acceleration of diabetes. Immunohistochemical analysis revealed hyperexpression of ICAM-1 on the vascular endothelium of IL-10-NOD mice. The finding suggests that IL-10 may promote diabetes via an ICAM-1-dependent pathway. We found that introduction of ICAM-1 deficiency into IL-10-NOD mice as well as into NOD mice prevented accelerated insulitis and diabetes. Failure to develop insulitis and diabetes was preceded by the absence of GAD65-specific T cell responses. The data suggest that ICAM-1 plays a role in the formation of the "immunological synapse", thereby affecting the generation and/or expansion of islet-specific T cells. In addition, ICAM-1 also played a role in the effector phase of autoimmune diabetes because adoptive transfer of diabetogenic BDC2.5 T cells failed to elicit clinical disease in ICAM-1-deficient IL-10-NOD and NOD mice. These findings provide evidence that pancreatic IL-10 is sufficient to drive pathogenic autoimmune responses and accelerates diabetes via an ICAM-1-dependent pathway.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Autoantigens/immunology
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Glutamate Decarboxylase/immunology
- Immunity, Innate/genetics
- Intercellular Adhesion Molecule-1/biosynthesis
- Intercellular Adhesion Molecule-1/genetics
- Interleukin-10/biosynthesis
- Interleukin-10/deficiency
- Interleukin-10/genetics
- Interleukin-10/physiology
- Islets of Langerhans/pathology
- Isoenzymes/immunology
- Lymphocyte Activation
- Lymphocyte Transfusion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Pancreas/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/transplantation
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- B Balasa
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|