201
|
Podar K, Richardson PG, Chauhan D, Anderson KC. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Expert Rev Anticancer Ther 2007; 7:551-66. [PMID: 17428175 DOI: 10.1586/14737140.7.4.551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple myeloma is a clonal plasma cell malignancy within the bone marrow associated with bone loss, renal disease and immunodeficiency. Despite new insights into the pathogenesis of multiple myeloma and novel targeted therapies, the median survival remains 3-5 years. It is now well established that the intimate relation between the tumor cells and components of the microenvironment plays a key role in multiple myeloma pathogenesis. Specifically, tumor cells impact the bone marrow and thereby cause immune suppression and lytic bone lesions; conversely, components of the bone marrow provide signals that influence the behavior of multiple myeloma cells, including tumor cell growth, survival, migration and drug resistance. Important contributing effectors are tumor cell-stroma cell and cell-extracellular matrix contacts, the bone marrow vasculature, and a variety of cytokines and growth factors in the bone marrow milieu.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
202
|
Wilkinson L, Gilbert T, Kinna G, Ruta LA, Pennisi D, Kett M, Little MH. Crim1KST264/KST264Mice Implicate Crim1 in the Regulation of Vascular Endothelial Growth Factor-A Activity during Glomerular Vascular Development. J Am Soc Nephrol 2007; 18:1697-708. [PMID: 17460146 DOI: 10.1681/asn.2006091012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Crim1, a transmembrane cysteine-rich repeat-containing protein that is related to chordin, plays a role in the tethering of growth factors at the cell surface. Crim1 is expressed in the developing kidney; in parietal cells, podocytes, and mesangial cells of the glomerulus; and in pericytes that surround the arterial vasculature. A gene-trap mouse line with an insertion in the Crim1 gene (Crim1(KST264/KST264)) displayed perinatal lethality with defects in multiple organ systems. This study further analyzed the defects that are present within the kidneys of these mice. Crim1(KST264/KST264) mice displayed abnormal glomerular development, illustrated by enlarged capillary loops, podocyte effacement, and mesangiolysis. When outbred, homozygotes that reached birth displayed podocyte and glomerular endothelial cell defects and marked albuminuria. The podocytic co-expression of Crim1 with vascular endothelial growth factor-A (VEGF-A) suggested a role for Crim1 in the regulation of VEGF-A action. Crim1 and VEGF-A were shown to interact directly, providing evidence that cysteine-rich repeat-containing proteins can bind to non-TGF-beta superfamily ligands. Crim1(KST264/KST264) mice display a mislocalization of VEGF-A within the developing glomerulus, as assessed by immunogold electron microscopy and increased activation of VEGF receptor 2 (Flk1) in the glomerular endothelial cells, suggesting that Crim1 regulates the delivery of VEGF-A by the podocytes to the endothelial cells. This is the first in vivo demonstration of regulation of VEGF-A delivery and supports the hypothesis that Crim1 functions to regulate the release of growth factors from the cell of synthesis.
Collapse
Affiliation(s)
- Lorine Wilkinson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 4072
| | | | | | | | | | | | | |
Collapse
|
203
|
Inder MK, Ueda N, Mercer AA, Fleming SB, Wise LM. Bovine papular stomatitis virus encodes a functionally distinct VEGF that binds both VEGFR-1 and VEGFR-2. J Gen Virol 2007; 88:781-791. [PMID: 17325350 DOI: 10.1099/vir.0.82582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bovine papular stomatitis virus (BPSV), a member of the genus Parapoxvirus, causes proliferative dermatitis in cattle and humans. Other species of the genus cause similar lesions, the nature of which has been attributed, at least in part, to a viral-encoded vascular endothelial growth factor (VEGF) that induces vascularization and dermal oedema through VEGF receptor-2 (VEGFR-2). The results of this study showed that BPSV strain V660 encodes a novel VEGF and that the predicted BPSV protein showed only 33-52% amino acid identity to VEGFs encoded by the other species of the genus. BPSV VEGF showed higher identity to mammalian VEGF-A (51%) than the other parapoxviral VEGFs (31-46%). Assays of the purified BPSV VEGF (BPSVV660VEGF) demonstrated that it was also functionally more similar to VEGF-A, as it showed significant binding to VEGFR-1 and induced monocyte migration. Like VEGF-A and the other viral VEGFs, BPSVV660VEGF bound VEGFR-2 with high affinity. Sequence analysis and structural modelling of BPSVV660VEGF revealed specific residues, outside the known receptor-binding face, that are predicted either to influence VEGF structure or to mediate binding directly to the VEGFRs. These results indicate that BPSVV660VEGF is a biologically active member of the VEGF family and that, via its interaction with VEGFR-2, it is likely to contribute to the proliferative and highly vascularized nature of BPSV lesions. This is also the first example of a viral VEGF acting via VEGFR-1 and influencing haematopoietic cell function. These data suggest that BPSVV660VEGF is an evolutionary and functional intermediate between VEGF-A and the other parapoxviral VEGFs.
Collapse
Affiliation(s)
- Marie K Inder
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Norihito Ueda
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Lyn M Wise
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
204
|
Brown MC, Calvete JJ, Staniszewska I, Walsh EM, Perez-Liz G, Del Valle L, Lazarovici P, Marcinkiewicz C. VEGF-related protein isolated from Vipera palestinae venom, promotes angiogenesis. Growth Factors 2007; 25:108-17. [PMID: 17852405 DOI: 10.1080/08977190701532385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic angiogenesis is one of the major approaches in designing new therapies for cardiovascular diseases. vpVEGF was purified from Vipera palestinae venom using two steps of reverse-phase HPLC. Structurally, vpVEGF belongs to the VEGF-F1 family of snake venom proteins, and potently stimulated dHMVEC proliferation in a VEGFR-2 dependent manner. This growth factor appeared to be a chemoattractant for migration of these cells and stimulated their radial migration in a collagen gel. The stimulatory effect on dHMVEC was correlated with activation of the MAPK Erk1/2 signaling pathway. In vivo vpVEGF induced angiogenesis in a Japanese quail assay and in a Matrigel plug assay in mice. Although in the quail assay vpVEGF showed lower activity than hrVEGF-A165 in mammalian-related systems there were no significant differences. The experiments with dHMVEC, as well as angiogenesis in vivo suggest that the pro-angiogenic effect of vpVEGF is related to its interaction with VEGFR-2 (flk-1).
Collapse
Affiliation(s)
- Meghan C Brown
- Department of Neuroscience, Center for Neurovirology, School of Medicine, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Lo HM, Hung CF, Tseng YL, Chen BH, Jian JS, Wu WB. Lycopene binds PDGF-BB and inhibits PDGF-BB-induced intracellular signaling transduction pathway in rat smooth muscle cells. Biochem Pharmacol 2007; 74:54-63. [PMID: 17449016 DOI: 10.1016/j.bcp.2007.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 01/12/2023]
Abstract
Cardiovascular diseases (CVDs) result from the sub-endothelial accumulation of inflammatory cells and smooth muscle cells (SMCs). Lycopene, a natural compound from tomato, has been suggested to play a role in CVD prevention. However, its action mechanism is still largely unknown. In this study, we examined the effect of lycopene on SMCs. We found that preincubation of PDGF-BB with lycopene resulted in a marked inhibition on PDGF-BB-induced PDGF receptor-beta (PDGFR-beta), PLCgamma, and ERK1/2 phosphorylation in rat A10 SMCs and primary cultured aortic SMCs. In striking contrast, lycopene did not influence EGF-induced ERK1/2 phosphorylation. Surprisingly, further analysis indicates that lycopene could directly bind PDGF-BB and inhibit PDGF-BB-SMC interaction, as determined by dot binding assay and Western blotting. In functional studies, lycopene inhibited PDGF-BB-induced SMC proliferation and migration toward gelatin and collagen at concentrations ranging from 2 to 10 microM. On the contrary, lycopene did not inhibit bFGF- and VEGF-induced endothelial cell migration. Gelatin zymography demonstrated that lycopene's effect on SMC migration was not due to the inhibition of matrix metalloproteinases (MMPs). Taken together, our results provide the first evidence showing that lycopene inhibits PDGF-BB-induced signaling, proliferation and migration in rat A10 and aortic SMCs. One of the action mechanisms is that lycopene is capable of binding PDGF-BB and inhibiting its interaction with SMC, which is quite different from those previously developed PDGFR-beta antagonists. The results presented here may help us to better understand the beneficial effects of lycopene in CVD prevention.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Becaplermin
- Carotenoids/metabolism
- Carotenoids/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Humans
- Lycopene
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/metabolism
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-sis
- Rats
- Rats, Sprague-Dawley
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction/drug effects
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Huey-Ming Lo
- School of Medicine, Fu-Jen Catholic University, Taipei County, Taiwan
| | | | | | | | | | | |
Collapse
|
206
|
Roskoski R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62:179-213. [PMID: 17324579 DOI: 10.1016/j.critrevonc.2007.01.006] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 01/01/2007] [Accepted: 01/29/2007] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells are ordinarily quiescent in adult humans and divide less than once per decade. When tumors reach a size of about 0.2-2.0mm in diameter, they become hypoxic and limited in size in the absence of angiogenesis. There are about 30 endogenous pro-angiogenic factors and about 30 endogenous anti-angiogenic factors. In order to increase in size, tumors undergo an angiogenic switch where the action of pro-angiogenic factors predominates, resulting in angiogenesis and tumor progression. One mechanism for driving angiogenesis results from the increased production of vascular endothelial growth factor (VEGF) following up-regulation of the hypoxia-inducible transcription factor. The human VEGF family consists of VEGF (VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). The VEGF family of receptors consists of three protein-tyrosine kinases and two non-protein kinase receptors (neuropilin-1 and -2). Owing to the importance of angiogenesis in tumor progression, inhibition of VEGF signaling represents an attractive cancer treatment.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116A, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
207
|
Gerber HP, Wu X, Yu L, Wiesmann C, Liang XH, Lee CV, Fuh G, Olsson C, Damico L, Xie D, Meng YG, Gutierrez J, Corpuz R, Li B, Hall L, Rangell L, Ferrando R, Lowman H, Peale F, Ferrara N. Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proc Natl Acad Sci U S A 2007; 104:3478-83. [PMID: 17360669 PMCID: PMC1805509 DOI: 10.1073/pnas.0611492104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
VEGF-A is important in tumor angiogenesis, and a humanized anti-VEGF-A monoclonal antibody (bevacizumab) has been approved by the FDA as a treatment for metastatic colorectal and nonsquamous, non-small-cell lung cancer in combination with chemotherapy. However, contributions of both tumor- and stromal-cell derived VEGF-A to vascularization of human tumors grown in immunodeficient mice hindered direct comparison between the pharmacological effects of anti-VEGF antibodies with different abilities to block host VEGF. Therefore, by gene replacement technology, we engineered mice to express a humanized form of VEGF-A (hum-X VEGF) that is recognized by many anti-VEGF antibodies and has biochemical and biological properties comparable with WT mouse and human VEGF-A. The hum-X VEGF mouse model was then used to compare the activity and safety of a panel of VEGF Mabs with different affinities for VEGF-A. Although in vitro studies clearly showed a correlation between binding affinity and potency at blocking endothelial cell proliferation stimulated by VEGF, in vivo experiments failed to document any consistent correlation between antibody affinity and the ability to inhibit tumor growth and angiogenesis in most animal models. However, higher-affinity antibodies were more likely to result in glomerulosclerosis during long-term treatment.
Collapse
Affiliation(s)
| | - Xiumin Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Lanlan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | | | | | | | - Germaine Fuh
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | | | - Lisa Damico
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - David Xie
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Y. Gloria Meng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | | | - Racquel Corpuz
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Bing Li
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Linda Hall
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Linda Rangell
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Ron Ferrando
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Henry Lowman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Franklin Peale
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Napoleone Ferrara
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
208
|
Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K. Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 2007; 14:249-50. [PMID: 17293873 DOI: 10.1038/nsmb1202] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 01/12/2007] [Indexed: 11/09/2022]
Abstract
Receptor tyrosine kinases are activated upon ligand-induced dimerization. Here we show that the monomeric extracellular domain of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) has a flexible structure. Binding of VEGF to membrane-distal immunoglobulin-like domains causes receptor dimerization and promotes further interaction between receptor monomers through the membrane-proximal immunoglobulin-like domain 7. By this mechanism, ligand-induced dimerization of VEGFR-2 can be communicated across the membrane, activating the intracellular tyrosine kinase domains.
Collapse
Affiliation(s)
- Claudia Ruch
- Paul Scherrer Institut, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen-PSI, Switzerland
| | | | | | | | | |
Collapse
|
209
|
Horta BAC, Cirino JJV, de Alencastro RB. Dynamical behavior of the vascular endothelial growth factor: Biological implications. Proteins 2007; 67:517-25. [PMID: 17285631 DOI: 10.1002/prot.21306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vascular endothelial growth factor (VEGF) seems to be the most important regulator of physiological and pathological angiogenesis, being, for this reason, a favorite target for therapies against angiogenesis-related diseases. VEGF is a homodimer in which the monomers are formed by beta-strands interconnected on the poles by three loops. A recent work showed that an intimate relationship between loops-1 and -3 is required for high affinity binding to the receptors (Kiba et al., J Biol Chem 2003;278:13453-13461). In this work, we report the results of a 10-ns molecular dynamics simulation of VEGF. We analyzed the dynamical behavior of the protein (using a dynamical cross-correlation map) and found that it is governed by a high degree of correlation between the motions of the loops. We also performed a principal component analysis and found an overall motion in which the opposite poles are projected against each other, just like the movement of the wings of a butterfly. From the biological point of view, it is likely that this motion would facilitate receptor binding since VEGF must enter a restricted cavity formed by the two subunits of the receptor.
Collapse
Affiliation(s)
- Bruno A C Horta
- Physical Organic Chemistry Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
210
|
Kiselyov A, Balakin KV, Tkachenko SE. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs 2007; 16:83-107. [PMID: 17155856 DOI: 10.1517/13543784.16.1.83] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
VEGFs and a respective family of tyrosine kinases receptors (VEGFRs) are key proteins modulating angiogenesis, the formation of new vasculature from an existing vascular network. There has been considerable evidence in vivo, including clinical observations, that abnormal angiogenesis is implicated in a number of disease conditions, which include rheumatoid arthritis, inflammation, cancer, psoriasis, degenerative eye conditions and others. Antiangiogenic therapies based on inhibition of VEGF/VEGFR signalling were reported to be powerful clinical strategies in oncology and ophthalmology. Current efforts have yielded promising clinical data for several antiangiogenic therapeutics. In this review, the authors elucidate key aspects of VEGFR signalling, as well as clinically relevant strategies for the inhibition of VEGF-induced angiogenesis, with an emphasis on small-molecule VEGFR inhibitors.
Collapse
Affiliation(s)
- Alex Kiselyov
- ChemDiv, Inc., 11558 Sorrento Valley Road, Suite 5, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
211
|
Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH. Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 2006; 7:2362-7. [PMID: 16903683 DOI: 10.1021/bm060362k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Core/shell nanoparticles with lipid core, were prepared and characterized as a sustained delivery system for protein. The lipid core is composed of protein-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of protein-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. Cryo-TEM (transmittance electron microscopy) and a particle size analyzer were used to observe the formation of stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and vascular endothelial growth factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction, and the drug release pattern was observed by manipulating the polymeric shell.
Collapse
Affiliation(s)
- Keun Sang Oh
- Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Ku, Taejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Members of the vascular endothelial growth factor (VEGF) family are crucial regulators of neovascularization and are classified as cystine knot growth factors that specifically bind cellular receptor tyrosine kinases VEGFR-1, VEGFR-2, and VEGFR-3 with high but variable affinity and selectivity. The VEGF family has recently been expanded and currently comprises seven members: VEGF-A, VEGF-B, placenta growth factor (PlGF), VEGF-C, VEGF-D, viral VEGF (also known as VEGF-E), and snake venom VEGF (also known as VEGF-F). Although all members are structurally homologous, there is molecular diversity among the subtypes, and several isoforms, such as VEGF-A, VEGF-B, and PlGF, are generated by alternative exon splicing. These splicing isoforms exhibit differing properties, particularly in binding to co-receptor neuropilins and heparin. VEGF family proteins play multiple physiological roles, such as angiogenesis and lymphangiogenesis, while exogenous members (viral and snake venom VEGFs) display activities that are unique in physiology and function. This review will highlight the molecular and functional diversity of VEGF family proteins.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, Japan
| | | |
Collapse
|
213
|
Pieren M, Prota AE, Ruch C, Kostrewa D, Wagner A, Biedermann K, Winkler FK, Ballmer-Hofer K. Crystal Structure of the Orf Virus NZ2 Variant of Vascular Endothelial Growth Factor-E. J Biol Chem 2006; 281:19578-87. [PMID: 16672228 DOI: 10.1074/jbc.m601842200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian vascular endothelial growth factors constitute a family of polypeptides, vascular endothelial growth factor (VEGF)-A, -B, -C, -D and placenta growth factor (PlGF), that regulate blood and lymphatic vessel development. VEGFs bind to three types of receptor tyrosine kinases, VEGF receptors 1, 2, and 3, that are predominantly expressed on endothelial and some hematopoietic cells. Pox viruses of the Orf family encode highly related proteins called VEGF-E that show only 25-35% amino acid identity with VEGF-A but bind with comparable affinity to VEGFR-2. The crystal structure of VEGF-E NZ2 described here reveals high similarity to the known structural homologs VEGF-A, PlGF, and the snake venoms Vammin and VR-1, which are all homodimers and contain the characteristic cysteine knot motif. Distinct conformational differences are observed in loop L1 and particularly in L3, which contains a highly flexible GS-rich motif that differs from all other structural homologs. Based on our structure, we created chimeric proteins by exchanging selected segments in L1 and L3 with the corresponding sequences from PlGF. Single loop mutants did not bind to either receptor, whereas a VEGF-E mutant in which both L1 and L3 were replaced gained affinity for VEGFR-1, illustrating the possibility to engineer receptor-specific chimeric VEGF molecules. In addition, changing arginine 46 to isoleucine in L1 significantly increased the affinity of VEGF-E for both VEGF receptors.
Collapse
Affiliation(s)
- Michel Pieren
- Molecular Cell Biology, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006; 7:359-71. [PMID: 16633338 DOI: 10.1038/nrm1911] [Citation(s) in RCA: 2360] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth-factor receptors (VEGFRs) regulate the cardiovascular system. VEGFR1 is required for the recruitment of haematopoietic precursors and migration of monocytes and macrophages, whereas VEGFR2 and VEGFR3 are essential for the functions of vascular endothelial and lymphendothelial cells, respectively. Recent insights have shed light onto VEGFR signal transduction and the interplay between different VEGFRs and VEGF co-receptors in development, adult physiology and disease.
Collapse
Affiliation(s)
- Anna-Karin Olsson
- Department of Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldv. 20, 751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
215
|
Iyer S, Scotney PD, Nash AD, Ravi Acharya K. Crystal structure of human vascular endothelial growth factor-B: identification of amino acids important for receptor binding. J Mol Biol 2006; 359:76-85. [PMID: 16616187 DOI: 10.1016/j.jmb.2006.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 01/13/2023]
Abstract
The development of blood vessels (angiogenesis) is critical throughout embryogenesis and in some normal postnatal physiological processes. Pathological angiogenesis has a pivotal role in sustaining tumour growth and chronic inflammation. Vascular endothelial growth factor-B (VEGF-B) is a member of the VEGF family of growth factors that regulate blood vessel and lymphatic angiogenesis. VEGF-B is closely related to VEGF-A and placenta growth factor (PlGF), but unlike VEGF-A, which binds to two receptor tyrosine kinases VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), VEGF-B and PlGF bind to VEGFR-1 and not VEGFR-2. There is growing evidence of a role for VEGF-B in physiological and pathological blood vessel angiogenesis. VEGF-B may provide novel therapeutic strategies for the treatment of vascular disease and be a potential therapeutic target in aberrant vessel formation. To help understand at the molecular level the differential receptor binding profile of the VEGF family of growth factors we have determined the crystal structure of human VEGF-B(10-108) at 2.48 Angstroms resolution. The overall structure is very similar to that of the previously determined cysteine-knot motif growth factors: VEGF-A, PlGF and platelet-derived growth factor-B (PDGF-B). We also present a predicted model for the association of VEGF-B with the second domain of its receptor, VEGFR-1. Based on this interaction and the present structural data of the native protein, we have identified several putative residues that could play an important role in receptor recognition and specificity.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, UK
| | | | | | | |
Collapse
|
216
|
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63:601-15. [PMID: 16465447 PMCID: PMC2773843 DOI: 10.1007/s00018-005-5426-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation.
Collapse
Affiliation(s)
- S. Cébe-Suarez
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A. Zehnder-Fjällman
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - K. Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
217
|
Jeltsch M, Karpanen T, Strandin T, Aho K, Lankinen H, Alitalo K. Vascular endothelial growth factor (VEGF)/VEGF-C mosaic molecules reveal specificity determinants and feature novel receptor binding patterns. J Biol Chem 2006; 281:12187-95. [PMID: 16505489 DOI: 10.1074/jbc.m511593200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors play key roles in angiogenesis and lymphangiogenesis. VEGF activates VEGF receptor-1 (VEGFR-1) and VEGFR-2, whereas VEGF-C activates VEGFR-2 and VEGFR-3. We have created a library of VEGF/VEGF-C mosaic molecules that contains factors with novel receptor binding profiles, notably proteins binding to all three VEGF receptors ("super-VEGFs"). The analyzed super-VEGFs show both angiogenic and lymphangiogenic effects in vivo, although weaker than the parental molecules. The composition of the VEGFR-3 binding molecules and scanning mutagenesis revealed determinants of receptor binding and specificity. VEGFR-2 and VEGFR-3 showed striking differences in their requirements for VEGF-C binding; extracellular domain 2 of VEGFR-2 was sufficient, whereas in VEGFR-3, both domains 1 and 2 were necessary.
Collapse
Affiliation(s)
- Michael Jeltsch
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki, Haartman Institute and Helsinki University Central Hospital, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
Angiogenesis refers to the process of remodeling the vascular tissue characterized by the branching out of a new blood vessel from a pre-existing vessel. Angiogenesis is particularly active during embryogenesis, while during adult life it is quiescent and limited to particular physiologic phenomena. Recently, the study of molecular mechanisms of angiogenesis has stirred renewed interest due to the recognition of the role played by angiogenesis in several pathologies of significant medical impact, such as cancer and cardiovascular disease, and due to the pharmacologic interest rising from the possibility of modulating these phenomena. Antibodies, peptides and small molecules targeting active endothelial cells represent an innovative tool in therapeutic and diagnostic fields. In this study, we reviewed the literature of peptide and peptidomimetics in angiogenesis and their potential applications. Two specific protein systems, namely the vascular endothelial growth factor and its receptor and integrins, will be discussed in detail.
Collapse
Affiliation(s)
- Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging, CNR and Department of Biological Sciences, CIRPEB, University of Napoli Federico II, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | |
Collapse
|
219
|
Fuh G, Wu P, Liang WC, Ultsch M, Lee CV, Moffat B, Wiesmann C. Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J Biol Chem 2005; 281:6625-31. [PMID: 16373345 DOI: 10.1074/jbc.m507783200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the quest to discover new research tools and to develop better agents in the fight against cancer, two antibodies, G6 and B20-4, were isolated from synthetic antibody phage libraries. Unlike the AVASTINtrade mark antibody, a recently approved agent for the treatment of patients with colorectal cancer, B20-4 and G6 bind and block both human and murine vascular endothelial growth factor (VEGF). Here we have analyzed and compared the binding epitopes on VEGF for these three antibodies using alanine-scanning mutagenesis and structural analyses. The epitopes recognized by both synthetic antibodies are conserved between human and mouse VEGF, and they match closely to the receptor epitopes both structurally and functionally. In contrast, the Avastin epitope overlaps minimally with the receptor binding surface and centers around a residue that is not conserved in mouse. Our structural and functional analyses elucidate the cross-species reactivity of all three antibodies and emphasize the potential advantages of antibody generation using phage display as the resulting antibodies do not depend on sequence differences across species and preferentially target natural protein-protein interaction surfaces.
Collapse
Affiliation(s)
- Germaine Fuh
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005; 109:227-41. [PMID: 16104843 DOI: 10.1042/cs20040370] [Citation(s) in RCA: 661] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The VEGF (vascular endothelial growth factor) family and its receptors are essential regulators of angiogenesis and vascular permeability. Currently, the VEGF family consists of VEGF-A, PlGF (placenta growth factor), VEGF-B, VEGF-C, VEGF-D, VEGF-E and snake venom VEGF. VEGF-A has at least nine subtypes due to the alternative splicing of a single gene. Although the VEGF165 isoform plays a central role in vascular development, recent studies have demonstrated that each VEGF isoform plays distinct roles in vascular patterning and arterial development. VEGF-A binds to and activates two tyrosine kinase receptors, VEGFR (VEGF receptor)-1 and VEGFR-2. VEGFR-2 mediates most of the endothelial growth and survival signals, but VEGFR-1-mediated signalling plays important roles in pathological conditions such as cancer, ischaemia and inflammation. In solid tumours, VEGF-A and its receptor are involved in carcinogenesis, invasion and distant metastasis as well as tumour angiogenesis. VEGF-A also has a neuroprotective effect on hypoxic motor neurons, and is a modifier of ALS (amyotrophic lateral sclerosis). Recent progress in the molecular and biological understanding of the VEGF/VEGFR system provides us with novel and promising therapeutic strategies and target proteins for overcoming a variety of diseases.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Division of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | | |
Collapse
|
221
|
Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 2005; 281:951-61. [PMID: 16278208 DOI: 10.1074/jbc.m508199200] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To fully assess the role of VEGF-A in tumor angiogenesis, antibodies that can block all sources of vascular endothelial growth factor (VEGF) are desired. Selectively targeting tumor-derived VEGF overlooks the contribution of host stromal VEGF. Other strategies, such as targeting VEGF receptors directly or using receptor decoys, result in inhibiting not only VEGF-A but also VEGF homologues (e.g. placental growth factor, VEGF-B, and VEGF-C), which may play a role in angiogenesis. Here we report the identification of novel anti-VEGF antibodies, B20 and G6, from synthetic antibody phage libraries, which block both human and murine VEGF action in vitro. Their affinity-improved variants completely inhibit three human tumor xenografts in mice of skeletal muscle, colorectal, and pancreatic origins (A673, HM-7, and HPAC). Avastin, which only inhibits the tumor-derived human VEGF, is approximately 90% effective at inhibiting HM-7 and A673 growth but is <50% effective at inhibiting HPAC growth. Indeed, HPAC tumors contain more host stroma invasion and stroma-derived VEGF than other tumors. Thus, the functional contribution of stromal VEGF varies greatly among tumors, and systemic blockade of both tumor and stroma-derived VEGF is sufficient for inhibiting the growth of tumor xenografts.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal, Humanized
- Bevacizumab
- Cell Line, Tumor
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunoglobulin G/chemistry
- Kinetics
- Mice
- Mice, Nude
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Neoplasm Transplantation
- Neovascularization, Pathologic
- Peptide Library
- Protein Binding
- Species Specificity
- Umbilical Veins/cytology
- Vascular Endothelial Growth Factor A/chemistry
- Vascular Endothelial Growth Factor A/immunology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wei-Ching Liang
- Department of Protein Engineering, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J 2005; 272:5723-41. [PMID: 16279938 DOI: 10.1111/j.1742-4658.2005.04989.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor (PDGF) family was for more than 25 years assumed to consist of only PDGF-A and -B. The discovery of the novel family members PDGF-C and PDGF-D triggered a search for novel activities and complementary fine tuning between the members of this family of growth factors. Since the expansion of the PDGF family, more than 60 publications on the novel PDGF-C and PDGF-D have been presented, highlighting similarities and differences to the classical PDGFs. In this paper we review the published data on the PDGF family covering structural (gene and protein) similarities and differences among all four family members, with special focus on PDGF-C and PDGF-D expression and functions. Little information on the protein structures of PDGF-C and -D is currently available, but the PDGF-C protein may be structurally more similar to VEGF-A than to PDGF-B. PDGF-C contributes to normal development of the heart, ear, central nervous system (CNS), and kidney, while PDGF-D is active in the development of the kidney, eye and brain. In adults, PDGF-C is active in the kidney and the central nervous system. PDGF-D also plays a role in the lung and in periodontal mineralization. PDGF-C is expressed in Ewing family sarcoma and PDGF-D is linked to lung, prostate and ovarian cancers. Both PDGF-C and -D play a role in progressive renal disease, glioblastoma/medulloblastoma and fibrosis in several organs.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Codon, Initiator
- Codon, Terminator
- Cysteine/chemistry
- Dimerization
- Disulfides/chemistry
- Exons
- Humans
- Introns
- Lymphokines/chemistry
- Lymphokines/genetics
- Lymphokines/physiology
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Platelet-Derived Growth Factor/chemistry
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Sequence Homology, Amino Acid
Collapse
|
223
|
D'Andrea LD, Iaccarino G, Fattorusso R, Sorriento D, Carannante C, Capasso D, Trimarco B, Pedone C. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc Natl Acad Sci U S A 2005; 102:14215-20. [PMID: 16186493 PMCID: PMC1242306 DOI: 10.1073/pnas.0505047102] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modulating angiogenesis is an attractive goal because many pathological conditions depend on the growth of new vessels. Angiogenesis is mainly regulated by the VEGF, a mitogen specific for endothelial cells. In the last years, many efforts have been pursued to modulate the angiogenic response targeting VEGF and its receptors. Based on the x-ray structure of VEGF bound to the receptor, we designed a peptide, QK, reproducing a region of the VEGF binding interface: the helix region 17-25. NMR conformation analysis of QK revealed that it adopts a helical conformation in water, whereas the peptide corresponding to the alpha-helix region of VEGF, VEGF15, is unstructured. Biological assays in vitro and on bovine aorta endothelial cells suggested that QK binds to the VEGF receptors and competes with VEGF. VEGF15 did not bind to the receptors indicating that the helical structure is necessary for the biological activity. Furthermore, QK induced endothelial cells proliferation, activated cell signaling dependent on VEGF, and increased the VEGF biological response. QK promoted capillary formation and organization in an in vitro assay on matrigel. These results suggested that the helix region 17-25 of VEGF is involved in VEGF receptor activation. The peptide designed to resemble this region shares numerous biological properties of VEGF, thus suggesting that this region is of potential interest for biomedical applications, and molecules mimicking it could be attractive for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Luca Domenico D'Andrea
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Gonçalves M, Estieu-Gionnet K, Berthelot T, Laïn G, Bayle M, Canron X, Betz N, Bikfalvi A, Déléris G. Design, synthesis, and evaluation of original carriers for targeting vascular endothelial growth factor receptor interactions. Pharm Res 2005; 22:1411-21. [PMID: 16078152 DOI: 10.1007/s11095-005-5265-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Angiogenesis is a key event in tumor growth and metastasis, chronic inflammatory disease, and cardiovascular disease. It is controlled by positive and negative regulators, which include vascular endothelial growth factor (VEGF) as the most active of these. VEGF/VEGF receptors are important targets not only for therapy but also for imaging. Based on the structural study of VEGF, we developed a novel cyclopeptide (cyclo-VEGI) that exhibits powerful antitumor properties. We herein report the design of novel molecules derived from cyclo-VEGI as potential targeting agents in cancer and other angiogenesis-related diseases. METHODS We performed selective chemical modification of the most active VEGF-derived cyclopeptide (cyclo-VEGI). Original hydrophilic linkers were synthesized and coupled to cyclo-VEGI. These reactions provide nanocarriers for delivery. The inhibitory effect of the different compounds on VEGF binding was evaluated in competition assays with 125I-VEGF. A fluorescent cyclo-VEGI peptide was synthezised to assess direct binding and internalization of cyclo-VEGI. RESULTS Chemical modifications of cyclo-VEGI do not diminish the biological activity of cyclo-VEGI as measured in competition assays; in fact, it is even increased. Moreover there is a strong cellular accumulation of the fluorescent-labeled cyclo-VEGI. Conjugates synthesized in this study may be useful leads to design delivery systems for targeting approaches in cancer and other angiogenesis-related diseases. CONCLUSION The modified cyclo-VEGIs may have a wide range of applications and represent a useful tool to develop delivery/carrier systems for therapeutic targeting or imaging.
Collapse
Affiliation(s)
- Mario Gonçalves
- CEA Saclay, DSM/DRECAM/LSI/LPI, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005:209-31. [PMID: 15617481 DOI: 10.1007/3-7643-7311-3_15] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
226
|
May D, Itin A, Gal O, Kalinski H, Feinstein E, Keshet E. Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene 2005; 24:1011-20. [PMID: 15592500 DOI: 10.1038/sj.onc.1208325] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen is the ultimate source of oxidizing power for disulfide bond formation, suggesting that under limiting oxygen proper protein folding might be compromised. We show that secretion of vascular endothelial growth factor (VEGF), a protein with multiple disulfide bonds, was indeed impeded under hypoxia and was partially restored by artificial increase of oxidizing equivalents with diamide. Physiologically, the oxireductase endoplasmic reticulum oxidoreductin-1 (Ero1)-L alpha, but not other proteins in the relay of disulfide formation, was strongly upregulated by hypoxia and independently by hypoglycemia, two known accompaniments of tumors. Further, we provide genetic evidence that induction of Ero1-L alpha by hypoxia and hypoglycemia is mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1) but is independent of p53. In natural human tumors, Ero1-L alpha mRNA was specifically induced in hypoxic microenvironments coinciding with that of upregulated VEGF expression. To establish a physiological relevance to modulations in Ero1-L alpha levels, we showed that even a modest, two- to three-fold reduction in Ero1-L alpha production via siRNA leads to significant inhibition of VEGF secretion, a compromised proliferation capacity and enhanced apoptosis. Together, these findings demonstrate that hypoxic induction of Ero1-L alpha is the key adaptive response in a previously unrecognized HIF-1-mediated pathway that operates to improve protein secretion under hypoxia and might be harnessed for inhibiting tumor growth via inhibiting VEGF-driven angiogenesis.
Collapse
Affiliation(s)
- Dalit May
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
227
|
Holmes DIR, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 2005; 6:209. [PMID: 15693956 PMCID: PMC551528 DOI: 10.1186/gb-2005-6-2-209] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.
Collapse
Affiliation(s)
- David IR Holmes
- BHF Laboratories and The Rayne Institute, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
- Ark Therapeutics Ltd, 1 Fitzroy Mews, London W1T 6DE, UK
| | - Ian Zachary
- BHF Laboratories and The Rayne Institute, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
228
|
Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 2005; 15:197-204. [PMID: 15207811 DOI: 10.1016/j.cytogfr.2004.03.007] [Citation(s) in RCA: 564] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) were discovered more than two decades ago. Today the PDGF family of growth factors consists of five different disulphide-linked dimers built up of four different polypeptide chains encoded by four different genes. These isoforms, PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD, act via two receptor tyrosine kinases, PDGF receptors alpha and beta. The classic PDGFs, PDGF-A and PDGF-B, undergo intracellular activation during transport in the exocytic pathway for subsequent secretion, while the novel PDGFs, PDGF-C and PDGF-D, are secreted as latent factors that require activation by extracellular proteases. The classical PDGF polypeptide chains, PDGF-A and PDGF-B, are well studied and they regulate several physiological and pathophysiological processes, mainly using cells of mesenchymal or neuroectodermal origin as their targets. The discovery of two additional ligands for the two PDGF receptors suggests that PDGF-mediated cellular signaling is more complex than previously thought.
Collapse
Affiliation(s)
- Linda Fredriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
229
|
Affiliation(s)
- Ian Zachary
- Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
230
|
Suto K, Yamazaki Y, Morita T, Mizuno H. Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. J Biol Chem 2004; 280:2126-31. [PMID: 15542594 DOI: 10.1074/jbc.m411395200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A(165)) exerts multiple effects upon binding to the fms-like tyrosine kinase-1 (Flt-1) and the kinase insert domain-containing receptor (KDR). We recently identified two novel snake venom VEGFs (vammin and VR-1) having unique properties. These VEGFs, designated VEGF-Fs, are highly specific ligands for the kinase insert domain-containing receptor and exhibit potent biological activity both in vitro and in vivo when compared with VEGF-A(165). Here, we solved the crystal structures of vammin and VR-1 at 1.9 and 2.0 A resolutions, respectively. Both structures are very similar to each other, and these structures exhibit similar but significantly different features from the known structures of other VEGFs. These differences include a conformational difference in receptor-binding loop 3 caused by an amino acid residue insertion and a difference in surface potential on the possible binding surface for domain 3 of the receptor. These structural differences may be related to the highly selective ligand properties of VEGF-F.
Collapse
Affiliation(s)
- Kyoko Suto
- Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|
231
|
Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2004; 105:1383-95. [PMID: 15471951 DOI: 10.1182/blood-2004-07-2909] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Besides its role as an essential regulator of physiologic and pathologic angiogenesis, vascular endothelial growth factor (VEGF) triggers growth, survival, and migration of leukemia and multiple myeloma cells; plays a pivotal role in hematopoiesis; inhibits maturation of dendritic cells; and increases osteoclastic bone-resorbing activity as well as osteoclast chemotaxis. Dysregulation of VEGF expression and signaling pathways therefore plays an important role in the pathogenesis and clinical features of hematologic malignancies, in particular multiple myeloma. Direct and indirect targeting of VEGF and its receptors therefore may provide a potent novel therapeutic approach to overcome resistance to therapies and thereby improve patient outcome.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA
| | | |
Collapse
|
232
|
Takahashi H, Hattori S, Iwamatsu A, Takizawa H, Shibuya M. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem 2004; 279:46304-14. [PMID: 15328352 DOI: 10.1074/jbc.m403687200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)/vascular permeability factor induces both angiogenesis and vascular permeability mainly through VEGF receptor (VEGFR)-2 activation. VEGF binds VEGFR-1 as well, but the importance of VEGFR-1 signaling in vascular permeability has been largely neglected. Here, we report the purification and characterization of a novel VEGF-like protein from Trimeresurus flavoviridis Habu snake venom. The Habu snake has a venom-specific VEGF-like molecule, T. flavoviridis snake venom VEGF (TfsvVEGF), in addition to VEGF-A. TfsvVEGF has almost 10-fold less mitotic activity than VEGF(165), a predominant isoform of human VEGF-A, but a similar effect on vascular permeability. TfsvVEGF bound VEGFR-1 and induced its autophosphorylation to almost the same extent as VEGF(165), but bound VEGFR-2 weakly and induced its autophosphorylation almost 10-fold less effectively than VEGF(165). This unique binding affinity for VEGFR-1 and VEGFR-2 leads to the vascular permeability-dominant activity of TfsvVEGF. These results suggest that Habu snakes have acquired a highly purposive molecule for a toxin, which enhances the toxicity in envenomation without inducing effective angiogenesis and the following regeneration of damaged tissues, taking advantage of the difference in signaling properties involving VEGFR-1 and VEGFR-2 between vascular permeability and angiogenesis. TfsvVEGF is thus a potent inducing factor selective for vascular permeability through preferential signaling via VEGFR-1. These data strongly indicate the importance of VEGFR-1 signaling in vascular permeability.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Division of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
233
|
Sun J, Blaskovich MA, Jain RK, Delarue F, Paris D, Brem S, Wotoczek-Obadia M, Lin Q, Coppola D, Choi K, Mullan M, Hamilton AD, Sebti SM. Blocking angiogenesis and tumorigenesis with GFA-116, a synthetic molecule that inhibits binding of vascular endothelial growth factor to its receptor. Cancer Res 2004; 64:3586-92. [PMID: 15150116 DOI: 10.1158/0008-5472.can-03-2673] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A small synthetic library of cyclohexapeptidomimetic calixarenes was prepared to identify disrupters of vascular endothelial growth factor (VEGF) binding to its receptor that inhibits angiogenesis. From this library, we discovered GFA-116, which potently inhibits (125)I-VEGF binding to Flk-1 in Flk-1-overexpressing NIH 3T3 cells and human prostate tumor cells with an IC(50) of 750 nM. This inhibition is highly selective for VEGF in that (125)I- platelet-derived growth factor binding to its receptor is not affected. GFA-116 inhibits VEGF-stimulated Flk-1 tyrosine phosphorylation and subsequent activation of Erk1/2 mitogen-activated protein kinases. Furthermore, epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor-dependent stimulation of Erk1/2 phosphorylation are not affected at concentrations as high as 10 microM. In vitro, GFA-116 inhibits angiogenesis as measured by inhibition of migration and formation of capillary-like structures by human endothelial cells as well as suppression of microvessel outgrowth in rat aortic rings and rat cornea angiogenesis. In vivo, GFA-116 (50 mpk/day) inhibits tumor growth and angiogenesis as measured by CD31 staining of A-549 human lung tumors in nude mice. Furthermore, GFA-116 is also effective at inhibiting tumor growth and metastasis to the lung of B16-F10 melanoma cells injected into immunocompetent mice. Taken together, these results demonstrate that a synthetic molecule capable of disrupting the binding of VEGF to its receptor selectively inhibits VEGF-dependent signaling and suppresses angiogenesis and tumorigenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Benzoates/pharmacology
- Brain/blood supply
- Cell Line, Tumor
- Cornea/blood supply
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Male
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- NIH 3T3 Cells
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic/drug effects
- Peptides, Cyclic/pharmacology
- Phosphorylation
- Prostatic Neoplasms/blood supply
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Rats
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jiazhi Sun
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Sebald W, Nickel J, Zhang JL, Mueller TD. Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction. Biol Chem 2004; 385:697-710. [PMID: 15449706 DOI: 10.1515/bc.2004.086] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBone morphogenetic proteins (BMPs) and other members of the TGF-β superfamily are secreted signalling proteins determining the development, maintenance and regeneration of tissues and organs. These dimeric proteins bind, via multiple epitopes, two types of signalling receptor chains and numerous extracellular modulator proteins that stringently control their activity. Crystal structures of free ligands and of complexes with type I and type II receptor extracellular domains and with the modulator protein Noggin reveal structural epitopes that determine the affinity and specificity of the interactions. Modelling of a ternary complex BMP/(BMPR-IAEC)2/(ActR-IIEC)2suggests a mechanism of receptor activation that does not rely on direct contacts between extracellular domains of the receptors. Mutational and interaction analyses indicate that the large hydrophobic core of the interface of BMP-2 (wrist epitope) with the type I receptor does not provide a hydrophobic hot spot for binding. Instead, main chain amide and carbonyl groups that are completely buried in the contact region represent major binding determinants. The affinity between ligand and receptor chains is probably strongly increased by two-fold interactions of the dimeric ligand and receptor chains that exist as homodimers in the membrane (avidity effects). BMP muteins with disrupted epitopes for receptor chains or modulator proteins provide clues for drug design and development.
Collapse
Affiliation(s)
- Walter Sebald
- Physiologische Chemie II, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
235
|
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
- Napoleone Ferrara
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
236
|
Stroud RM, Wells JA. Mechanistic diversity of cytokine receptor signaling across cell membranes. Sci Signal 2004; 2004:re7. [PMID: 15126678 DOI: 10.1126/stke.2312004re7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circulating cytokines bind to specific receptors on the cell outer surface to evoke responses inside the cell. Binding of cytokines alters the association between receptor molecules that often cross the membrane only once in a single alpha-helical segment. As a consequence, association of protein domains on the inside of the membrane are also altered. Increasing evidence suggests that an initial "off-state" of associated receptors is perturbed, and brought to an activated state that leads to intracellular signaling and eventually effects a change in DNA transcription. The initial detection event that transduces the change in receptor association is sensitive to both proximity and orientation of the receptors, and probably also to the time that the activated state or receptor association is maintained. Ultimately, a cascade of phosphorylation events is triggered. The initial kinases are sometimes part of the intracellular domains of the receptors. The kinases can also be separate proteins that may be pre-associated with intracellular domains of the receptors, or can be recruited after the intracellular association of the activated receptors. We focus here on each of the cases for which structures of the activated cytokine-receptor complexes are known, in a search for underlying mechanisms. The variations in modes of association, stoichiometries of receptors and cytokines, and orientations before and after activation of these receptors are almost as great as the number of complexes themselves. The principles uncovered nevertheless illustrate the basis for high specificity and fidelity in cytokine-mediated signaling.
Collapse
Affiliation(s)
- Robert M Stroud
- Department of Biochemistry and Biophysics, UCSF Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143-2240, USA
| | | |
Collapse
|
237
|
Erdağ B, Balcioğlu BK, Kumbasar A, Cirakoğlu B. Detection of phage displayed peptides with blocking ability in vascular endothelial growth factor (VEGF) model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 534:327-34. [PMID: 12903730 DOI: 10.1007/978-1-4615-0063-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Berrin Erdağ
- The Scientific and Technical Research Council of Turkey (TUBITAK), Research Institute for Genetic Engineering and Biotechnology, Gebze, Kocaeli, Turkey
| | | | | | | |
Collapse
|
238
|
Abstract
Perlecan is a major heparan sulfate proteoglycan (HSPG) of basement membranes (BMs) and connective tissues. The core protein of perlecan is divided into five domains based on sequence homology to other known proteins. Commonly, the N-terminal domain I of mammalian perlecan is substituted with three HS chains that can bind a number of matrix molecules, cytokines, and growth factors. Perlecan is essential for metazoan life, as shown by genetic manipulations of nematodes, insects, and mice. There are also known human mutations that can be lethal. In vertebrates, new functions of perlecan emerged with the acquisition of a closed vascular system and skeletal connective tissues. Many of perlecan's functions may be related to the binding and presentation of growth factors to high-affinity tyrosine kinase (TK) receptors. Data are accumulating, as discussed here, that similar growth factor-mediated processes may have unwanted promoting effects on tumor cell proliferation and tumor angiogenesis. Understanding of these attributes at the molecular level may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Xinnong Jiang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, and Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - John R. Couchman
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, and Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
- Correspondence to: Dr. John R. Couchman, Div. of Biomedical Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK. E-mail:
| |
Collapse
|
239
|
Yamazaki Y, Takani K, Atoda H, Morita T. Snake Venom Vascular Endothelial Growth Factors (VEGFs) Exhibit Potent Activity through Their Specific Recognition of KDR (VEGF Receptor 2). J Biol Chem 2003; 278:51985-8. [PMID: 14600159 DOI: 10.1074/jbc.c300454200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF165) exhibits multiple effects via the activation of two distinct endothelial receptor tyrosine kinases: Flt-1 (fms-like tyrosine kinase-1) and KDR (kinase insert domain-containing receptor). KDR shows strong ligand-dependent tyrosine phosphorylation in comparison with Flt-1 and mainly mediates the mitogenic, angiogenic, and permeability-enhancing effects of VEGF165. Here we show the isolation of two VEGFs from viper venoms and the characterization of their unique biological properties. Snake venom VEGFs strongly stimulated proliferation of vascular endothelial cells in vitro. Interestingly, the maximum activities were almost twice that of VEGF165. They also induced strong hypotension on rat arterial blood pressure compared with VEGF165 in vivo. A receptor binding assay revealed that snake venom VEGFs bound to KDR-IgG with high affinity (Kd = approximately 0.1 nm) as well as to VEGF165 but did not interact with Flt-1, Flt-4, or neuropilin-1 at all. Our data clearly indicate that snake venom VEGFs act through the specific activation of KDR and show potent effects. Snake venom VEGFs are a highly specific ligand to KDR and form a new group of the VEGF family.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | |
Collapse
|
240
|
Dorafshar AH, Angle N, Bryer-Ash M, Huang D, Farooq MM, Gelabert HA, Freischlag JA. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J Surg Res 2003; 114:179-86. [PMID: 14559444 DOI: 10.1016/s0022-4804(03)00254-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Delivery of vascular endothelial growth factor (VEGF) protein or gene transfer has been shown to accelerate re-endothelialization and attenuate neointimal hyperplasia in various arterial injury models, including balloon injury, stent implantation, and vein grafts. In addition to stimulating re-endothelialization, we hypothesize that VEGF has further vascular protective functions to prevent neointimal hyperplasia by directly inhibiting mitogen-induced proliferation of vascular smooth muscle cells (VSMCs) via the mitogen-activated protein kinase pathway. MATERIALS AND METHODS Human aortic VSMCs were seeded and serum starved for 24 h. The cells were then stimulated with a mitogen, recombinant human platelet derived growth factor at 20 ng/mL together with 0, 10, 20, 30, 40, 50 ng/mL recombinant human VEGF. A proliferation assay was used to quantitate bromodeoxyuridine uptake into newly synthesized DNA. Western immunoassay was used to quantify extracellular signal-regulated kinase (ERK) 2 protein and phosphorylation of retinoblastoma and ERK 1/2 protein. RESULTS VEGF inhibited bromodeoxyuridine incorporation into mitogen-induced VSMC in a dose-dependent manner, reaching statistical significance at concentrations of 30 (P < 0.05), 40 (P < 0.05), and 50 ng/mL (P < 0.01). Densitometry of western immunoblots revealed an inhibition of phosphorylation of retinoblastoma at VEGF concentrations of 40 and 50 ng/mL and ERK 1/2 phosphorylation at concentrations of 30, 40 and 50 ng/mL. CONCLUSION In addition to stimulating re-endothelialization, VEGF appears to have a vascular protective function by directly inhibiting VSMC proliferation. This effect occurs in the absence of endothelial cells and via the mitogen-activated protein kinase pathway. VEGF may serve as an important modulator of mitogen-induced VSMC proliferation after vascular injury.
Collapse
Affiliation(s)
- Amir H Dorafshar
- Division of Vascular Surgery and UCLA Gonda (Goldschmird) Diabetes Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmökel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA. Cell‐demanded release of VEGF from synthetic, biointeractive cell‐ingrowth matrices for vascularized tissue growth. FASEB J 2003; 17:2260-2. [PMID: 14563693 DOI: 10.1096/fj.02-1041fje] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Local, controlled induction of angiogenesis remains a challenge that limits tissue engineering approaches to replace or restore diseased tissues. We present a new class of bioactive synthetic hydrogel matrices based on poly(ethylene glycol) (PEG) and synthetic peptides that exploits the activity of vascular endothelial growth factor (VEGF) alongside the base matrix functionality for cellular ingrowth, that is, induction of cell adhesion by pendant RGD-containing peptides and provision of cell-mediated remodeling by cross-linking matrix metalloproteinase substrate peptides. By using a Michael-type addition reaction, we incorporated variants of VEGF121 and VEGF165 covalently within the matrix, available for cells as they invade and locally remodel the material. The functionality of the matrix-conjugated VEGF was preserved and was critical for in vitro endothelial cell survival and migration within the matrix environment. Consistent with a scheme of locally restricted availability of VEGF, grafting of these VEGF-modified hydrogel matrices atop the chick chorioallontoic membrane evoked strong new blood vessel formation precisely at the area of graft-membrane contact. When implanted subcutaneously in rats, these VEGF-containing matrices were completely remodeled into native, vascularized tissue. This type of synthetic, biointeractive matrix with integrated angiogenic growth factor activity, presented and released only upon local cellular demand, could become highly useful in a number of clinical healing applications of local therapeutic angiogenesis.
Collapse
Affiliation(s)
- Andreas H Zisch
- Department of Materials Science and Institute for Biomedical Engineering, Swiss Federal Institute of Technology Zurich and University of Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA. Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J Biol Chem 2003; 278:38004-14. [PMID: 12867434 DOI: 10.1074/jbc.m301194200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Infections of humans and ungulates by parapoxviruses result in skin lesions characterized by extensive vascular changes that have been linked to viral-encoded homologues of vascular endothelial growth factor (VEGF). VEGF acts via a family of receptors (VEGFRs) to mediate endothelial cell proliferation, vascular permeability, and angiogenesis. The VEGF genes from independent parapoxvirus isolates show an extraordinary degree of inter-strain sequence variation. We conducted functional comparisons of five representatives of the divergent viral VEGFs. These revealed that despite the sequence divergence, all were equally active mitogens, stimulating proliferation of human endothelial cells in vitro and vascularization of sheep skin in vivo with potencies equivalent to VEGF. This was achieved even though the viral VEGFs bound VEGFR-2 less avidly than did VEGF. Surprisingly the viral VEGFs varied in their ability to cross-link VEGFR-2, induce vascular permeability and bind neuropilin-1. Correlations between these three activities were detected. In addition it was possible to correlate these functional variations with certain sequence and structural motifs specific to the viral VEGFs. In contrast to the conserved ability to bind human VEGFR-2, the viral growth factors did not bind either VEGFR-1 or VEGFR-3. We propose that the extensive sequence divergence seen in the viral VEGFs was generated primarily by selection against VEGFR-1 binding.
Collapse
Affiliation(s)
- Lyn M Wise
- Virus Research Unit, Department of Microbiology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Zilberberg L, Shinkaruk S, Lequin O, Rousseau B, Hagedorn M, Costa F, Caronzolo D, Balke M, Canron X, Convert O, Laïn G, Gionnet K, Goncalvès M, Bayle M, Bello L, Chassaing G, Deleris G, Bikfalvi A. Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J Biol Chem 2003; 278:35564-73. [PMID: 12837752 DOI: 10.1074/jbc.m304435200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. We describe here the structure and the biological action of a new cyclic peptide derived from vascular endothelial growth factor (VEGF). This 17-amino acid molecule designated cyclopeptidic vascular endothelial growth inhibitor (cyclo-VEGI, CBO-P11) encompasses residues 79-93 of VEGF which are involved in the interaction with VEGF receptor-2. In aqueous solution, cyclo-VEGI presents a propensity to adopt a helix conformation that was largely unexpected because only beta-sheet structures or random coil conformations have been observed for macrocyclic peptides. Cyclo-VEGI inhibits binding of iodinated VEGF165 to endothelial cells, endothelial cells proliferation, migration, and signaling induced by VEGF165. This peptide also exhibits anti-angiogenic activity in vivo on the differentiated chicken chorioallantoic membrane. Furthermore, cyclo-VEGI significantly blocks the growth of established intracranial glioma in nude and syngeneic mice and improves survival without side effects. Taken together, these results suggest that cyclo-VEGI is an attractive candidate for the development of novel angiogenesis inhibitor molecules useful for the treatment of cancer and other angiogenesis-related diseases.
Collapse
MESH Headings
- Allantois/drug effects
- Amino Acid Sequence
- Angiogenesis Inhibitors/chemistry
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Capillaries
- Cattle
- Cell Division/drug effects
- Chick Embryo
- Chorion/drug effects
- Endothelial Growth Factors/chemistry
- Endothelial Growth Factors/pharmacology
- Endothelial Growth Factors/therapeutic use
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Glioma/blood supply
- Glioma/drug therapy
- Humans
- Intercellular Signaling Peptides and Proteins/chemistry
- Lymphokines/chemistry
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Neovascularization, Physiologic/drug effects
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/therapeutic use
- Phosphorylation
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1/drug effects
- Vascular Endothelial Growth Factor Receptor-1/physiology
- Vascular Endothelial Growth Factor Receptor-2/drug effects
- Vascular Endothelial Growth Factor Receptor-2/physiology
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Lior Zilberberg
- Molecular Angiogenesis Laboratory, INSERM E 0113, Université de Bordeaux 1, 33405 Talence, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Bell SL, Xu G, Khatri IA, Wang R, Rahman S, Forstner JF. N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem J 2003; 373:893-900. [PMID: 12744721 PMCID: PMC1223556 DOI: 10.1042/bj20030096] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Revised: 04/16/2003] [Accepted: 05/13/2003] [Indexed: 11/17/2022]
Abstract
Within the C-terminal domain of many secretory mucins is a 'cystine knot' (CK), which is needed for dimer formation in the endoplasmic reticulum. Previous studies indicate that in addition to an unpaired cysteine, the three intramolecular cystine bonds of the knot are important for stability of the dimers formed by rat intestinal mucin Muc2. The present study was undertaken to determine whether the two N-glycans N9 and N10, located near the first and second cysteines of the knot, also play a role in dimer formation. The C-terminal domain of rat Muc2 (RMC), a truncated RMC mutant containing the CK, and mutants lacking N9 and N10 sites, were expressed in COS-1 cells and the products monitored by radioactive [(35)S]Met/Cys metabolic pulse-chase and immunoprecipitation. Mutation of N9, but not N10, caused increased synthesis of dimers over a 2-h chase period. The N9 mutant remained associated with calreticulin for a prolonged period. About 34-38% of the total labelled products of RMC and its mutants was secreted into the media by 2 h, but the proportion in dimer form was dramatically reduced for the N9 mutant, suggesting lower dimer stability relative to RMC or its N10 mutant. We conclude that under normal conditions the presence of the N9 glycan functions to maintain a folding rate for mucin monomers that is sufficiently slow to allow structural maturation and stability of Muc2 dimers. To our knowledge this report is the first demonstration that a specific N-glycan plays a definitive role in mucin dimer formation.
Collapse
Affiliation(s)
- Sherilyn L Bell
- Division of Structural Biology & Biochemistry, Research Institute, The Hospital for Sick Children and the University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
245
|
Reigstad LJ, Sande HM, Fluge Ø, Bruland O, Muga A, Varhaug JE, Martinez A, Lillehaug JR. Platelet-derived growth factor (PDGF)-C, a PDGF family member with a vascular endothelial growth factor-like structure. J Biol Chem 2003; 278:17114-20. [PMID: 12598536 DOI: 10.1074/jbc.m301728200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factor (PDGF)-C is a novel member of the PDGF family that binds to PDGF alphaalpha and alphabeta receptors. The growth factor domain of PDGF-C (GFD-PDGF-C) was expressed in high yields in Escherichia coli and was purified and refolded from inclusion bodies obtaining a biologically active growth factor with dimeric structure. The GFD-PDGF-C contains 12 cysteine residues, and Ellman assay analysis indicates that it contains three intramonomeric disulfide bonds, which is in accordance with GFD-PDGF-C being a member of the cystine knot superfamily of growth factors. The recombinant GFD-PDGF-C was characterized by CD, fluorescence, NMR, and infrared spectroscopy. Together, our data indicate that GFD-PDGF-C is a highly thermostable protein that contains mostly beta-sheet secondary structure and some (6%) alpha-helix structure. The structural model of PDGF-C, obtained by homology-based molecular modeling using the structural representatives of this family of growth factors, shows that GFD-PDGF-C has a higher structural homology to the vascular endothelial growth factor than to PDGF-B. The modeled structure can give further insights into the function and specificity of this molecule.
Collapse
Affiliation(s)
- Laila J Reigstad
- Department of Molecular Biology, University of Bergen, Bergen 5009, Norway
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Kiba A, Yabana N, Shibuya M. A set of loop-1 and -3 structures in the novel vascular endothelial growth factor (VEGF) family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling. J Biol Chem 2003; 278:13453-61. [PMID: 12551914 DOI: 10.1074/jbc.m210931200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family plays important roles in angiogenesis and vascular permeability. Novel members of the VEGF family encoded in the Orf virus genome, VEGF-E, function as potent angiogenic factors by specifically binding and activating VEGFR-2 (KDR). VEGF-E is about 45% homologous to VEGF-A at amino acid levels, however, the amino acid residues in VEGF-A crucial for the VEGFR-2-binding are not conserved in VEGF-E. To understand the molecular basis of the biological activity of VEGF-E, we have functionally mapped residues important for interaction of VEGF-E with VEGFR-2 by exchanging the domains between VEGF-E(NZ-7) and PlGF, which binds only to VEGFR-1 (Flt-1). Exchange on the amino- and carboxyl-terminal regions had no suppressive effect on biological activity. However, exchange on either the loop-1 or -3 region of VEGF-E(NZ-7) significantly reduced activities. On the other hand, introduction of the loop-1 and -3 of VEGF-E(NZ-7) to placenta growth factor rescued the biological activities. The chimera between VEGF-A and VEGF-E(NZ-7) gave essentially the same results. These findings strongly suggest that a common rule exists for VEGFR-2 ligands (VEGF-E(NZ-7) and VEGF-A) that they build up the binding structure for VEGFR-2 through the appropriate interaction between loop-1 and -3 regions.
Collapse
Affiliation(s)
- Atsushi Kiba
- Division of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
247
|
Ueda N, Wise LM, Stacker SA, Fleming SB, Mercer AA. Pseudocowpox virus encodes a homolog of vascular endothelial growth factor. Virology 2003; 305:298-309. [PMID: 12573575 DOI: 10.1006/viro.2002.1750] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a gene encoding a homolog of vascular endothelial growth factor (VEGF) in the Pseudocowpox virus (PCPV) genome. The predicted protein shows 27% amino acid identity to human VEGF-A. It also shows 41 and 61% amino acid identity to VEGFs encoded by orf virus (ORFV) strains NZ2 and NZ7, respectively. Assays of the expressed VEGF-like protein of PCPV (PCPV(VR634)VEGF) demonstrated that PCPV(VR634)VEGF is mitogenic for endothelial cells and is capable of inducing vascular permeability. PCPV(VR634)VEGF bound VEGF receptor-2 (VEGFR-2) but did not bind VEGFR-1 or VEGFR-3. These results indicate that PCPV(VR634)VEGF is a biologically active member of the VEGF family which shares with the ORFV-encoded VEGFs a receptor binding profile that differs from those of all cellular members of the VEGF family. It seems likely that the biological activities of PCPV(VR634)VEGF contribute to the proliferative and highly vascularized nature of PCPV lesions.
Collapse
Affiliation(s)
- Norihito Ueda
- Virus Research Unit, Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
248
|
Abstract
Protein-protein interactions mediate essentially all biological processes. A detailed understanding of these interactions is thus a major goal of modern biological chemistry. In recent years, genome sequencing efforts have revealed tens of thousands of novel genes, but the benefits of genome sequences will only be realized if these data can be translated to the level of protein function. While genome databases offer tremendous opportunities to expand our knowledge of protein-protein interactions, they also present formidable challenges to traditional protein chemistry methods. Indeed, it has become apparent that efficient analysis of proteins on a proteome-wide scale will require the use of rapid combinatorial approaches. In this regard, phage display is an established combinatorial technology that is likely to play an even greater role in the future of biology. This article reviews recent applications of phage display to the analysis of protein-protein interactions. With combinatorial mutagenesis strategies, it is now possible to rapidly map the binding energetics at protein-protein interfaces through statistical analysis of phage-displayed protein libraries. In addition, naïve phage-displayed peptide libraries can be used to obtain small peptide ligands to essentially any protein of interest, and in many cases, these binding peptides act as antagonists or even agonists of natural protein functions. These methods are accelerating the pace of research by enabling the study of complex protein-protein interactions with simple molecular biology methods. With further optimization and automation, it may soon be possible to study hundreds of different proteins in parallel with efforts comparable to those currently expended on the analysis of individual proteins.
Collapse
Affiliation(s)
- Sachdev S Sidhu
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
249
|
Bodian DL, Leung S, Chiu H, Govind S. Cytokines in Drosophila Hematopoiesis and Cellular Immunity. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:27-46. [PMID: 14979663 DOI: 10.1007/978-3-642-18670-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoiesis is a complex, multistep process in which progenitor cells undergo distinct cellular changes of proliferation and differentiation to give rise to mature blood cells in circulation. Many of the genetic and molecular events that drive these changes have been characterized in mammals, frogs, and zebra fish, and more recently in the insect model system Drosophila melanogaster. Blood cells in Drosophila are actively involved in fighting infections and the cellular immune responses are intimately tied to the process of hematopoiesis. In this article, we briefly review the fundamental similarities in Drosophila and mammalian hematopoiesis and highlight the potential roles of four cytokines/growth factors in Drosophila hematopoiesis and cellular immunity.
Collapse
Affiliation(s)
- D L Bodian
- Department of Biology J526, City College, Graduate Center of the City University of New York, 138th Street and Convent Avenue, New York, New York 10031, USA
| | | | | | | |
Collapse
|
250
|
von Tiedemann B, Bilitewski U. Characterization of the vascular endothelial growth factor-receptor interaction and determination of the recombinant protein by an optical receptor sensor. Biosens Bioelectron 2002; 17:983-91. [PMID: 12392947 DOI: 10.1016/s0956-5663(02)00090-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) is one of the most important factors controlling angiogenesis. It is a homodimeric glycoprotein belonging to the family of cysteine-knot proteins. The biological activity is transduced via membrane-spanning receptors of the tyrosine kinase receptor family. Each biologically active VEGF has two receptor binding sites leading to receptor dimerization as first step following ligand binding. The ligand-binding site of the receptor is localized on extracellular Ig-like domains. The extracellular part of the receptor Flt-1 (VEGFR-1) was expressed as soluble protein and was used as receptor in an optical affinity sensor system (BIAcore). Suitable conditions allowed the determination of the association and dissociation rate constants as k(a)=4+/-1.2 x 10(6) M(-1) s(-1) and k(d)=3+/-0.8 x 10(-5) s(-1), respectively, leading to an affinity constant of K(D)=7.5+/-3 pM, which is within the range published already from other investigations and methods. Increasing receptor loadings of the sensor surface decreased the binding efficiency, as the ratio of bound VEGF-molecules to theoretically available binding sites increased from 1:1.5 to 1:2.6. Increasing the surface loading further, allowed the establishment of a quantitative assay with the analytical performance being influenced by the receptor loading and the contact time between sample and immobilized receptor, i.e. sample volume. This assay was used for VEGF determination during the cultivation of a recombinant Pichia pastoris strain.
Collapse
Affiliation(s)
- Birgit von Tiedemann
- Division of Biochemical Engineering, German Research Center for Biotechnology Ltd. (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | |
Collapse
|