201
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
202
|
Solvent extraction of recombinant interferon alpha-2b from inclusion bodies and efficient refolding at high protein concentrations. Protein Expr Purif 2022; 197:106110. [DOI: 10.1016/j.pep.2022.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
|
203
|
RodanSarohan A, Akelma H, Araç E, Aslan Ö, Cen O. Retinol Depletion in COVID-19. CLINICAL NUTRITION OPEN SCIENCE 2022; 43:85-94. [PMID: 35664529 PMCID: PMC9142171 DOI: 10.1016/j.nutos.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aims COVID-19 has been a devastating pandemic. There are indications that vitamin A is depleted during infections. Vitamin A is important in development and immune homeostasis. It has been used successfully in measles, RSV and AIDS infections. In this study, we aimed to measure the serum retinol levels in severe COVID-19 patients to assess the importance of vitamin A in the COVID-19 pathogenesis. Methods The serum retinol level was measured in two groups of patients: the COVID-19 group, which consisted of 27 severe COVID-19 patients hospitalized in the intensive care unit with respiratory failure, and the control group, which consisted of 23 patients without COVID-19 symptoms. Results The mean serum retinol levels were 0.37 mg/L in the COVID-19 group and 0.52 mg/L in the control group. The difference between the serum retinol levels in the two groups was statistically significant. There was no significant difference in retinol levels between different ages and genders within the COVID-19 group. Comorbidity did not affect serum retinol levels. Conclusion The serum retinol level was significantly lower in patients with severe COVID-19, and this difference was independent of age or underlying comorbidity. Our data show that retinol and retinoic acid signaling might be important in immunopathogenesis of COVID-19.
Collapse
|
204
|
Jasinski-Bergner S, Blümke J, Bauer M, Skiebe SL, Mandelboim O, Wickenhauser C, Seliger B. Novel approach to identify putative Epstein-Barr-virus microRNAs regulating host cell genes with relevance in tumor biology and immunology. Oncoimmunology 2022; 11:2070338. [PMID: 35529676 PMCID: PMC9067544 DOI: 10.1080/2162402x.2022.2070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
The human Epstein-Barr virus is associated with several human solid and hematopoietic malignancies. However, the underlying molecular mechanisms including virus-encoded microRNAs (miRs), which lead to the malignant transformation of infected cells and immune evasion of EBV-associated tumors, have not yet been characterized. The expression levels of numerous known EBV-specific miRs and their suitability as diagnostic and/or prognostic markers were determined in different human EBV-positive tissues followed by in silico analyses to identify putative EBV-miR-regulated target genes, thereby offering a suitable screening strategy to overcome the limited available data sets of EBV-miRs and their targeted gene networks. Analysis of microarray data sets from healthy human B cells and malignant-transformed EBV-positive B cells of patients with Burkitt's lymphoma revealed statistically significant (p < 0.05) deregulated genes with known functions in oncogenic properties, immune escape and anti-tumoral immune responses. Alignments of in vivo and in silico data resulted in the prediction of putative candidate EBV-miRs and their target genes. Thus, a combinatorial approach of bioinformatics, transcriptomics and in situ expression analyses is a promising tool for the identification of EBV-miRs and their potential targets as well as their eligibility as markers for EBV detection in different EBV-associated human tissue.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Saskia Luise Skiebe
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem91120, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
205
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
206
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
207
|
Song X, Zhao M, Cao Q, Wang S, Li R, Zhang X, Zhang L, Shi K. Transcriptome provides insights into bovine mammary regulatory mechanisms during the lactation cycle. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2064865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xuyang Song
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Qiaoqiao Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Shengxuan Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Ranran Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Xuan Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Letian Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| |
Collapse
|
208
|
Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, Sofia Miranda Loiola Araújo A, de Aguiar Magalhães D, Vieira de Brito T, Barbosa ALDR. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022; 152:155826. [PMID: 35158258 PMCID: PMC8828414 DOI: 10.1016/j.cyto.2022.155826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the newly emerging lung disease pandemic COVID-19. This viral infection causes a series of respiratory disorders, and although this virus mainly infects respiratory cells, the small intestine can also be an important site of entry or interaction, as enterocytes highly express in angiotensin-2 converting enzyme (ACE) receptors. There are countless reports pointing to the importance of interferons (IFNs) with regard to the mediation of the immune system in viral infection by SARS-CoV-2. Thus, this review will focus on the main cells that make up the large intestine, their specific immunology, as well as the function of IFNs in the intestinal mucosa after the invasion of coronavirus-2.
Collapse
|
209
|
Tseng SH, Cheng MA, Farmer E, Ferrall L, Kung YJ, Lam B, Lim L, Wu TC, Hung CF. Albumin and interferon-β fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity. J Immunother Cancer 2022; 10:e004342. [PMID: 35459734 PMCID: PMC9036441 DOI: 10.1136/jitc-2021-004342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type I interferons (IFN) promote dendritic cells maturation and subsequently enhance generation of antigen-specific CD8 +T cell for the control of tumor. Using type I interferons as an adjuvant to vaccination could prove to be a potent strategy. However, type I interferons have a short half-life. Albumin linked to a protein will prolong the half-life of the linked protein. METHODS In this study, we explored the fusion of albumin to IFNβ (Alb-IFNβ) for its functional activity both in vitro and in vivo. We determined the half-life of Alb-IFNβ following treatment in the serum, tumor, and tumor draining lymph nodes in both wild type and FcRn knockout mice. We characterized the ability of Alb-IFNβ to enhance antigen-specific CD8+ T cells using ovalbumin (OVA) or human papillomavirus (HPV) E7 long peptides. Next, we evaluated the therapeutic antitumor effect of coadministration of AlbIFNβ with antigenic peptides against HPVE7 expressing tumor and the treatment's ability to generate HPVE7 antigen specific CD8+ T cells. The contribution of the antitumor effect by lymphocytes was also examined by an antibody depletion experiment. The ability of Alb-IFNβ to serve as an adjuvant was tested using clinical grade therapeutic protein-based HPV vaccine, TACIN. RESULTS Alb-IFNβ retains biological function and does not alter the biological activity of IFNβ. In addition, Alb-IFNβ extends half-life of IFNβ in serum, lymph nodes and tumor. The coadministration of Alb-IFNβ with OVA or HPVE7 antigenic peptides enhances antigen-specific CD8 +T cell immunity, and in a TC-1 tumor model results in a significant therapeutic antitumor effect. We found that CD8 +T cells and dendritic cells, but not CD4 +T cells, are important for the observed antitumor therapeutic effect mediated by Alb-IFNβ. Finally, Alb-IFNβ served as a potent adjuvant for TA-CIN for the treatment of HPV antigen expressing tumors. CONCLUSIONS Overall, Alb-IFNβ serves as a potent adjuvant for enhancement of strong antigen-specific CD8 +T cell antitumor immunity, reduction of tumor burden, and increase in overall survival. Alb-IFNβ potentially can serve as an innovative adjuvant for the development of vaccines for the control of infectious disease and cancer.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Max A Cheng
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Farmer
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Louise Ferrall
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yu Jui Kung
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Lam
- Stanford Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ling Lim
- Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - T-C Wu
- Pathology, Oncology, Obstetrics and Gynecology, Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chien-Fu Hung
- Pathology, Johns Hopkins Univ, Baltimore, Maryland, USA
- Oncology, Johns Hopkins University, Baltimore, MD, USA
- Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
210
|
Obesity and Leptin Resistance in the Regulation of the Type I Interferon Early Response and the Increased Risk for Severe COVID-19. Nutrients 2022; 14:nu14071388. [PMID: 35406000 PMCID: PMC9002648 DOI: 10.3390/nu14071388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the “Suppressor Of Cytokine Signaling 1 and 3” (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the “typical western” conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.
Collapse
|
211
|
Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life (Basel) 2022; 12:life12040478. [PMID: 35454970 PMCID: PMC9031737 DOI: 10.3390/life12040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, PMB 3452, Kano 700233, Nigeria;
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | | | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria;
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India;
| | - Maryam Abba Tor
- Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane, Mbabane H101, Hhohho, Eswatini;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro, Pelotas 96010-610, RS, Brazil;
| | - Marshall Gowere
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Kona Chowdhury
- Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
212
|
Savino F, Daprà V, Savino A, Calvi C, Montanari P, Galliano I, Bergallo M. Assessment of interferon gamma and indoleamine 2,3-dioxygenase 1 analysis during respiratory syncytial virus infection in infants in Italy: an observational case-control study. BMJ Open 2022; 12:e053323. [PMID: 35228282 PMCID: PMC8886424 DOI: 10.1136/bmjopen-2021-053323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The aim of this study was to measure interferon gamma (IFN-γ) and indoleamine 2,3-dioxygenase 1 (IDO1) values in the White blood cells of infants during respiratory tract infections and to compare these with healthy age-matched controls. DESIGN This was a prospective, observational case-control study conducted in 2019-2020. SETTING The study took place at Regina Margherita Children's Hospital, Turin, Italy. PARTICIPANTS The study comprised 63 infants, including 26 patients hospitalised for bronchiolitis due to a respiratory syncytial virus (RSV) infection and 37 age-matched controls. The inclusion criteria included a positive RSV test for an infant with bronchiolitis. METHODS We collected peripheral blood and measured the relative quantification of messenger RNA (mRNA) expression of IFN-γ and IDO1 with TaqMan real-time PCR amplification. The data were collected on the first day of admission. RESULTS The mean age of the 26 patients with RSV bronchiolitis (53.8% female) was 85 (9-346) days when they were admitted to the hospital. Their mean gestational age at birth was 38 weeks and their mean birth weight was 3100 (2780-3730) g. The expression of IFN-γ was significantly reduced in patients with bronchiolitis RSV compared with healthy controls (p=0.0132). However, there was no significant difference between the two groups when the IDO1 mRNA expression values in their WCC were measured (p=0.0642). CONCLUSION Our findings did not clarify whether IDO1 expression was related to the early stage of the disease or to the young age of the infants. The data provide evidence that IFN-γ was significantly reduced in infants with bronchiolitis due to RSV, compared with age-matched healthy controls, but the IDO1 was not different. New investigations that focus on subjects infected with RSV at different stages of infancy would help to clarify whether IDO1 expression can be related to age.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric care, Regina Margherita Children's Hospital, AOU, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Valentina Daprà
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Andrea Savino
- Post graduate School of Pediatrics, University of Turin. Piazza Polonia, 94 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| |
Collapse
|
213
|
Jia J, Zhang Y, Zhang H, Chen Z, Chen L, Zhou Q, Lv X, Wang Q. Hepcidin expression levels involve efficacy of pegylated interferon-α treatment in hepatitis B-infected liver. Int Immunopharmacol 2022; 107:108641. [PMID: 35217337 DOI: 10.1016/j.intimp.2022.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hepcidin is the master iron regulator hormone produced by the liver. The association of serum hepcidin with pegylated interferon therapy in patients with chronic hepatitis C infection has been studied. However, the role of serum hepcidin level in predicting the effect of pegylated interferon treatment in patients with chronic hepatitis B (CHB) infection is yet to be elucidated. Our study aims to investigate the correlation between hepcidin expression levels and the curative effect of interferon-alpha therapy in patients with CHB. METHODS A total of 47 patients with CHB who accepted pegylated interferon-α (PEG-IFN- α) treatment were recruited. The serum level of hepcidin was estimated by ELISA. The alternation in the gene expression level of hepcidin was detected by RT-PCR, and immunofluorescence cell staining was performed to detect hepcidin peptide. The induction of antiviral proteins was analyzed by Western blotting. The predictive value of early on-treatment variation in serum hepcidin during treatment progress was assessed by receiver operating characteristic analysis. RESULTS High levels of early on-treatment serum hepcidin were observed in patients who achieved a decline in HBsAg > 1 log10 IU/mL or HBV DNA > 1 log10 IU/mL. In vitro, an elevation of the hepcidin expression in HepG2.2.15 cells induced by PEG-IFN-α treatment was noted. Furthermore, combined treatment with hepcidin and PEG-IFN-α increased the levels of antiviral proteins. The predictive cut-off value of hepcidin for HBsAg decline > 1 log10 IU/mL was 239 pg/mL, and the sensitivity and specificity were 72.73% and 70.97%, respectively. The predictive cut-off value of hepcidin for the decline in HBV DNA > 1 log10 IU/mL was 190.4 pg/mL, and the sensitivity and specificity were 72.73% and 61.11%, respectively. Early-on treatment changes in the hepcidin level signified the predictive value of the PEG-IFN-α curative effect. CONCLUSIONS A higher early-on treatment hepcidin level indicates a higher possibility of HBsAg and HBV DNA decline in patients with CHB during PEG-IFN-α treatment. A high early-on treatment serum hepcidin level is significant in predicting the PEG-IFN-α therapeutic effect in patients with CHB.
Collapse
Affiliation(s)
- Jia Jia
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yunyun Zhang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Hao Zhang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhidong Chen
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Liwen Chen
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiongwen Lv
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032, China.
| | - Qin Wang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
214
|
Adrover JM, Carrau L, Daßler-Plenker J, Bram Y, Chandar V, Houghton S, Redmond D, Merrill JR, Shevik M, tenOever BR, Lyons SK, Schwartz RE, Egeblad M. Disulfiram inhibits neutrophil extracellular trap formation protecting rodents from acute lung injury and SARS-CoV-2 infection. JCI Insight 2022; 7:157342. [PMID: 35133984 PMCID: PMC8983145 DOI: 10.1172/jci.insight.157342] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute lung injury has few treatment options and a high mortality rate. Upon injury, neutrophils infiltrate the lungs and form neutrophil extracellular traps (NETs), damaging the lungs and driving an exacerbated immune response. Unfortunately, no drug preventing NET formation has completed clinical development. Here, we report that disulfiram — an FDA-approved drug for alcohol use disorder — dramatically reduced NETs, increased survival, improved blood oxygenation, and reduced lung edema in a transfusion-related acute lung injury (TRALI) mouse model. We then tested whether disulfiram could confer protection in the context of SARS-CoV-2 infection, as NETs are elevated in patients with severe COVID-19. In SARS-CoV-2–infected golden hamsters, disulfiram reduced NETs and perivascular fibrosis in the lungs, and it downregulated innate immune and complement/coagulation pathways, suggesting that it could be beneficial for patients with COVID-19. In conclusion, an existing FDA-approved drug can block NET formation and improve disease course in 2 rodent models of lung injury for which treatment options are limited.
Collapse
Affiliation(s)
- Jose M Adrover
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| | - Lucia Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Juliane Daßler-Plenker
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States of America
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States of America
| | - Sean Houghton
- Division of Regenerative Medicine, Weill Cornell Medicine, New York, United States of America
| | - David Redmond
- Division of Regenerative Medicine, Weill Cornell Medicine, New York, United States of America
| | - Joseph R Merrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| | - Margaret Shevik
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medical College, New York, United States of America
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States of America
| |
Collapse
|
215
|
Khan MA, Bin Islam S, Rakib MU, Alam D, Hossen MM, Tania M, Asad A. Major Drugs Used in COVID-19 Treatment: Molecular Mechanisms, Validation
and Current Progress in Trials. CORONAVIRUSES 2022; 3. [DOI: 10.2174/2666796701999201204122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/16/2020] [Accepted: 11/11/2020] [Indexed: 07/28/2024]
Abstract
Background:
Currently, the present world is facing a new deadly challenge against a pandemic disease called
COVID-19, which is caused by a coronavirus, named SARS-CoV-2. To date, there is no drug or vaccine that can treat
COVID-19 completely, but some drugs have been used primarily, and they are in different stages of clinical trials. This
review article discussed and compared those drugs which are running ahead in COVID-19 treatments.
Methods:
We have explored PUBMED, SCOPUS, WEB OF SCIENCE, as well as press release of WHO, NIH and FDA for
articles about COVID-19, and reviewed them.
Results:
Drugs like favipiravir, remdesivir, lopinavir/ritonavir, hydroxychloroquine, azithromycin, ivermectin,
corticosteroids and interferons have been found effective in some extents, and partially approved by FDA and WHO to treat
COVID-19 at different phases of pandemic. However, some of these drugs have been disapproved later, although clinical
trials are going on. In parallel, plasma therapy has been found fruitful in some extents too, and a number of vaccine trails are
going on.
Conclusions:
This review article discussed the epidemiologic and mechanistic characteristics of SARS-CoV-2, and how
drugs could act on this virus with the comparative discussion on progress and backwards of major drugs used till date,
which might be beneficial for choosing therapies against COVID-19 in different countries.
Collapse
Affiliation(s)
- Md. Asaduzzaman Khan
- The Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical
University, Luzhou, Sichuan 646000, China
| | - Shad Bin Islam
- Bachelor in Medicine and Surgery Program, Affiliated hospital of Southwest
Medical University, Luzhou, Sichuan 646000, China
| | - Mejbah Uddin Rakib
- Bachelor in Medicine and Surgery Program, Affiliated hospital of Southwest
Medical University, Luzhou, Sichuan 646000, China
| | - Didarul Alam
- Bachelor in Medicine and Surgery Program, Affiliated hospital of Southwest
Medical University, Luzhou, Sichuan 646000, China
| | - Md. Munnaf Hossen
- Department of Immunology, Health Science Center, Shenzhen,
University, Shenzhen, Guangdong 518060, China
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center,
Dhaka, Bangladesh
| | - Asaduzzaman Asad
- Department of Biochemistry and Molecular Biology, Jahangirnagar University; and International
Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
216
|
Démoulins T, Baron ML, Gauchat D, Kettaf N, Reed SJ, Charpentier T, Kalinke U, Lamarre A, Ahmed R, Sékaly RP, Sarkar S, Kalia V. Induction of thymic atrophy and loss of thymic output by type-I interferons during chronic viral infection. Virology 2022; 567:77-86. [PMID: 35032866 DOI: 10.1016/j.virol.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/β expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαβR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Dominique Gauchat
- Centre Hospitalier de l'Université de Montréal (CHUM), 1000, rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada
| | - Nadia Kettaf
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Montréal, QC, H2X 1P1, Canada
| | - Steven James Reed
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tania Charpentier
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Alain Lamarre
- Centre INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Rafi Ahmed
- Department of Microbiology & Immunology, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology, Emory University Winship Cancer Center, Atlanta, GA, USA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
217
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
218
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
219
|
Sharma L, Peng X, Qing H, Hilliard BK, Kim J, Swaminathan A, Tian J, Israni-Winger K, Zhang C, Habet V, Wang L, Gupta G, Tian X, Ma Y, Shin HJ, Kim SH, Kang MJ, Ishibe S, Young LH, Kotenko S, Compton S, Wilen CB, Wang A, Dela Cruz CS. Distinct Roles of Type I and Type III Interferons during a Native Murine β Coronavirus Lung Infection. J Virol 2022; 96:e0124121. [PMID: 34705554 PMCID: PMC8791255 DOI: 10.1128/jvi.01241-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiaohua Peng
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brandon K. Hilliard
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anush Swaminathan
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Justin Tian
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kavita Israni-Winger
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cuiling Zhang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Victoria Habet
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lin Wang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yina Ma
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hyeon-Jun Shin
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sergei Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, New Brunswick, New Jersey, USA
| | - Susan Compton
- Molecular and Serological Diagnostics, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Craig B. Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Wang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
220
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits IFN-β expression induced by dsRNA. Virus Res 2022; 307:198619. [PMID: 34742812 DOI: 10.1016/j.virusres.2021.198619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus that belongs to the Poxviridae family. Type I interferons (IFN) are critical in the host defence against viruses. They induce hundreds of interferon stimulated genes (ISGs) many of which have an antiviral role. The ability of ORFV to modulate type I IFN production was undertaken to investigate whether ORFV could inhibit IFN-β expression via dsRNA dependant signalling pathways. HEK293 cells are known to lack DNA pattern-recognition receptors and Toll-like receptors however, they do express the cytosolic dsRNA receptors RIG-I and MDA5. HEK293 cells were shown to produce high levels of IFN-β when cells were stimulated with poly(I:C) and this was shown to be predominantly via RIG-I-dependant signalling as confirmed by siRNA knock-down of RIG-I. Further we showed that HEK293 cells are permissive for ORFV and caused potent inhibition of IFN-β transcription when cells were stimulated with poly(I:C) post-viral infection. Studies using heat inactivated ORFV suggested that de novo synthesis of early genes was required. In addition our findings showed that the ORFV encoded factor ORF020, that is known to bind dsRNA, is involved in antagonising IFN expression. Overall, this study has shown for first time the ability of ORFV to counteract type I IFN expression by antagonising dsRNA-activated RIG-I signalling.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
221
|
Barrett LW, Fear VS, Foley B, Audsley K, Barnes S, Newnes H, McDonnell A, Wood FM, Fear MW, Waithman J. Non-severe burn injury increases cancer incidence in mice and has long-term impacts on the activation and function of T cells. BURNS & TRAUMA 2022; 10:tkac016. [PMID: 35505970 PMCID: PMC9054911 DOI: 10.1093/burnst/tkac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Background Recent evidence suggests that burn patients are at increased risk of hospital admission for infection, mental health conditions, cardiovascular disease and cancer for many years after discharge for the burn injury itself. Burn injury has also been shown to induce sustained immune system dysfunction. This change to immune function may contribute to the increased risk of chronic disease observed. However, the mechanisms that disrupt long-term immune function in response to burn trauma, and their link to long-term morbidity, remain unknown. In this study we investigated changes to immune function after burn injury using a murine model of non-severe injury. Methods An established mouse model of non-severe burn injury (full thickness burn equivalent to 8% total body surface area) was used in combination with an orthotopic model of B16 melanoma to investigate the link between burns and cancer. Considering that CD8+ T cells are important drivers of effective tumour suppression in this model, we also investigated potential dysregulation of this immune population using mouse models of burn injury in combination with herpes simplex virus infection. Flow cytometry was used to detect and quantify cell populations of interest and changes in immune function. Results We demonstrate that 4 weeks after a non-severe burn injury, mice were significantly more susceptible to tumour development than controls using an orthotopic model of B16 melanoma. In addition, our results reveal that CD8+ T cell expansion, differentiation and memory potential is significantly impaired at 1 month post-burn. Conclusions Our data suggests that CD8+ T cell-mediated immunity may be dysfunctional for a sustained period after even non-severe burn injury. Further studies in patients to validate these findings may support clinical intervention to restore or protect immunity in patients after burn injury and reduce the increased risk of secondary morbidities observed.
Collapse
Affiliation(s)
- Lucy W Barrett
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
- Fiona Wood Foundation, Fiona Stanley Hospital, MNH (B), Main Hospital, CD 15, Level 4, Burns Unit, 102-118 Murdoch Drive, Murdoch, WA, 6150, Australia
| | - Vanessa S Fear
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Katherine Audsley
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Hannah Newnes
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Alison McDonnell
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Fiona Wood Foundation, Fiona Stanley Hospital, MNH (B), Main Hospital, CD 15, Level 4, Burns Unit, 102-118 Murdoch Drive, Murdoch, WA, 6150, Australia
- Burns Service of Western Australia, WA Department of Health, Nedlands, WA, 6009, Australia
| | - Mark W Fear
- Fiona Wood Foundation, Fiona Stanley Hospital, MNH (B), Main Hospital, CD 15, Level 4, Burns Unit, 102-118 Murdoch Drive, Murdoch, WA, 6150, Australia
- Burns Service of Western Australia, WA Department of Health, Nedlands, WA, 6009, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia
| |
Collapse
|
222
|
Essentials of COVID-19 and treatment approaches. DATA SCIENCE FOR COVID-19 2022. [PMCID: PMC8988944 DOI: 10.1016/b978-0-323-90769-9.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The coronavirus family is as old as the 1930s when it first showed symptoms in chicken. The virus thereafter kept evolving and it has significantly taken over a large percentage of people worldwide in the form of this new pandemic. As of the present day, there is no treatment available for coronavirus disease 2019 (COVID-19) (caused by the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), although supportive therapy and preventive measures have shown a tremendous control rate among certain patients. Drugs like remdesivir, camostat, nafamostat, ritonavir/lopinavir, several monoclonal antibodies, and CPs are in their early phases of trials. There are approved by the WHO under an emergency use authorization program. Favipiravir has entered its phase 3 clinical trial and is supported by evidence to show no or less adverse effects in patients infected with SARS-CoV-2. Vaccine development is accelerating its pace, and vaccines will probably become available by the end of the year 2020.
Collapse
|
223
|
Cordeiro PAS, Assone T, Prates G, Tedeschi MRM, Fonseca LAM, Casseb J. The role of IFN-γ production during retroviral infections: an important cytokine involved in chronic inflammation and pathogenesis. Rev Inst Med Trop Sao Paulo 2022; 64:e64. [PMID: 36197425 PMCID: PMC9528752 DOI: 10.1590/s1678-9946202264064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Interferon-gamma (IFN-γ) plays a crucial role in viral infections by preventing viral replication and in the promotion of innate and adaptive immune responses. However, IFN-gamma can exert distinct effects in different persistent viral infections. The long-term overproduction of IFN-γ in retroviral infections, such as the human immunodeficiency virus (HIV), human T-lymphotropic virus type 1 (HTLV-1), and human endogenous retroviruses (HERVs), resulting in inflammation, may cause neuronal damage. This review is provocative about the role of IFN-γ during persistent retroviral infections and its relationship with the causation of some neurological disorders that are important for public health.
Collapse
|
224
|
Zhang R, Tang J. Evasion of I Interferon-Mediated Innate Immunity by Pseudorabies Virus. Front Microbiol 2022; 12:801257. [PMID: 34970252 PMCID: PMC8712723 DOI: 10.3389/fmicb.2021.801257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) mediated innate immunity serves as the first line of host defense against viral infection, ranging from IFN-I production upon viral detection, IFN-I triggered signaling pathway that induces antiviral gene transcription the antiviral effects of IFN-I induced gene products. During coevolution, herpesviruses have developed multiple countermeasures to inhibit the various steps involved to evade the IFN response. This mini-review focuses on the strategies used by the alphaherpesvirus Pseudorabies virus (PRV) to antagonize IFN-I mediated innate immunity, with a particular emphasis on the mechanisms inhibiting IFN-I induced gene transcription through the JAK-STAT pathway. The knowledge obtained from PRV enriches the current understanding of the alphaherpesviral immune evasion mechanisms and provides insight into the vaccine development for PRV control.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
225
|
Li X, Dong Z, Liu Y, Song W, Pu J, Jiang G, Wu Y, Liu L, Huang X. A Novel Role for the Regulatory Nod-Like Receptor NLRP12 in Anti-Dengue Virus Response. Front Immunol 2021; 12:744880. [PMID: 34956178 PMCID: PMC8695442 DOI: 10.3389/fimmu.2021.744880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
Dengue Virus (DENV) infection can cause severe illness such as highly fatality dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Innate immune activation by Nod-like receptors (NLRs) is a critical part of host defense against viral infection. Here, we revealed a key mechanism of NLRP12-mediated regulation in DENV infection. Firstly, NLRP12 expression was inhibited in human macrophage following DENV or other flaviviruses (JEV, YFV, ZIKV) infection. Positive regulatory domain 1 (PRDM1) was induced by DENV or poly(I:C) and suppressed NLRP12 expression, which was dependent on TBK-1/IRF3 and NF-κB signaling pathways. Moreover, NLRP12 inhibited DENV and other flaviviruses (JEV, YFV, ZIKV) replication, which relied on the well-conserved nucleotide binding structures of its NACHT domain. Furthermore, NLRP12 could interact with heat shock protein 90 (HSP90) dependent on its Walker A and Walker B sites. In addition, NLRP12 enhanced the production of type I IFNs (IFN-α/β) and interferon-stimulated genes (ISGs), including IFITM3, TRAIL and Viperin. Inhibition of HSP90 with 17-DMAG impaired the upregulation of type I IFNs and ISGs induced by NLRP12. Taken together, we demonstrated a novel mechanism that NLRP12 exerted anti-viral properties in DENV and other flaviviruses (JEV, YFV, ZIKV) infection, which brings up a potential target for the treatment of DENV infection.
Collapse
Affiliation(s)
- Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Dong
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weifeng Song
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jieying Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
226
|
Roh JH, Bui NA, Lee HS, Bui VN, Dao DT, Vu TT, Hoang TT, So KM, Yi SW, Kim E, Hur TY, Oh SI. Age-dependent immune response in pigs against foot-and-mouth disease virus in vitro. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1376-1385. [PMID: 34957451 PMCID: PMC8672249 DOI: 10.5187/jast.2021.e103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
Foot-and-mouth disease, one of the most contagious diseases in cloven-hoofed
animals, causes significant economic losses. The pathogenesis of foot-and-mouth
disease virus (FMDV) infection is known to differ with age of the animals. In
this study, we aimed to reveal the difference in immunological response in the
initial stage of FMDV infection between piglets and adult pigs. Peripheral blood
mononuclear cells (PBMCs) were isolated from 3 piglets (8 weeks old) and 3 pigs
(35 weeks old) that were not vaccinated against FMDV. O-type FMDV (2 ×
102 median tissue culture infectious dose) was inoculated into
porcine PBMCs and the cells were incubated at 37.0°C under 5%
CO2 for various time periods (0, 1, 3, 6, 12, 24, and 48 h). The
total RNA was obtained from the FMDV-inoculated PBMCs after each time point, and
the virus titer was investigated in these RNA samples. Furthermore, dynamics of
mRNA expression of the six tested cytokines (interferon [IFN]-α,
IFN-γ, interleukin [IL]-6, IL-8, IL-10, and tumor necrosis factor
[TNF]-α) in FMDV-inoculated porcine PBMCs were evaluated by time-series
analysis to determine the differences, if any, based on the age of the pigs. The
PBMCs of piglets contained the highest quantity of FMDV mRNA at 6 hours
post-inoculation (hpi), and the PBMCs of pigs had the highest quantity of FMDV
mRNA at 3 hpi. The mean cycle threshold-value in the PBMCs steadily decreased
after the peak time point in the piglets and pigs (6 and 3 hpi, respectively).
The dynamics of mRNA expression of all cytokines except TNF-α showed
age-dependent differences in FMDV-inoculated PBMCs. The mRNA expression of most
cytokines was more pronounced in the piglets than in the pigs, implying that the
immune response against FMDV showed an age-dependent difference in pigs. In
conclusion, within 48 hpi, the 8-week-old piglets responded more rapidly and
were more sensitive to FMDV infection than the 35-week-old pigs, which could be
associated with the difference in the pathogenesis of FMDV infection among the
pigs. These results provide valuable insights into the mechanisms underlying the
age-dependent differences in immune response in pigs against FMDV infection.
Collapse
Affiliation(s)
- Jae-Hee Roh
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.,Department of Pet Health, Kwangju Women's University, Gwangju 62396, Korea
| | - Ngoc Anh Bui
- Virology Department, National Institute of Veterinary Research, Hanoi 100000, Vietnam
| | - Hu Suk Lee
- International Livestock Research Institute (ILRI), Hanoi 111111, Vietnam
| | - Vuong Nghia Bui
- Virology Department, National Institute of Veterinary Research, Hanoi 100000, Vietnam
| | - Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi 100000, Vietnam
| | - Thanh Thi Vu
- Virology Department, National Institute of Veterinary Research, Hanoi 100000, Vietnam
| | - Thuy Thi Hoang
- Virology Department, National Institute of Veterinary Research, Hanoi 100000, Vietnam
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
227
|
Lyu M, Wang S, Gao K, Wang L, Zhu X, Liu Y, Wang M, Liu X, Li B, Tian L. Dissecting the Landscape of Activated CMV-Stimulated CD4+ T Cells in Humans by Linking Single-Cell RNA-Seq With T-Cell Receptor Sequencing. Front Immunol 2021; 12:779961. [PMID: 34950144 PMCID: PMC8691692 DOI: 10.3389/fimmu.2021.779961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.
Collapse
Affiliation(s)
- Menghua Lyu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Shiyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Kai Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Longlong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Ya Liu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Tian
- BGI-Shenzhen, Shenzhen, China.,Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
228
|
Mohamad MI, Desoky IA, Ahmed Zaki K, Sadek DR, Kamal Kassim S, Abdel-Wahab Mohamed D. Pterostilbene ameliorates the disrupted Adars expression and improves liver fibrosis in DEN-induced liver injury in Wistar rats: A novel potential effect. Gene 2021; 813:146124. [PMID: 34921950 DOI: 10.1016/j.gene.2021.146124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
The knowledge of RNA editing modifications and its subsequent proteomic diversity in is still limited and represents only the tip of the iceberg. Adenosine to inosine (A-to-I) RNA editing is the most prevalent in RNA editome with a rising role for ADARgene family as a major regulator of the dynamic landscape of RNA editing. This study aimed at evaluating the potential chemopreventive effects of the epigenetic regulator "pterostilbene" in diethylnitrosamine (DEN)-exposedrat model. Consequently, the hepatic Adars expression was investigated as a possible mechanism for mediation of the putative pterostilbene-induced chemopreventive effect. The effects of administration of pterostilbene were investigated on the structural changes, immunohistochemical staining, liver function test, serum alpha feto-protein (AFP), IL-6, and hepatic Adar1 and Adar2 relative gene expression at the beginning and at the 6th week of the study. Pterostilbene attenuated DEN-induced liver injury, improves hepatocyte parrafin-1 (Hep Par-1), decreases heat shock protein 70 (HSP70), improved AFP, serum albumin, transaminases, IL-6 with alleviation of disturbed hepatic Adar1 and Adar2 expression. This study spotlights the role of pterostilbene in attenuation of DEN-induced liver injury which could be mediated, at least partially, through the alleviation of the aberrant expression of Adar enzymes. Yet, more in-depth studies are needed to further elucidate the molecular mechanisms underlying the effects of pterostilbene on RNA editing enzymes.
Collapse
Affiliation(s)
- Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Islam A Desoky
- Department of Biochemistry, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Kamelia Ahmed Zaki
- Department of Biochemistry, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Doaa R Sadek
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar Kamal Kassim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dalia Abdel-Wahab Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
229
|
Shukla A, Rastogi M, Singh SK. Zika virus NS1 suppresses the innate immune responses via miR-146a in human microglial cells. Int J Biol Macromol 2021; 193:2290-2296. [PMID: 34798192 DOI: 10.1016/j.ijbiomac.2021.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) is a positive-single strand RNA virus that belongs to the Flaviviridae family. ZIKV infection causes congenital ZIKV syndrome (CZS) in children and Guillain Barre Syndrome (GBS) in adults. ZIKV infected cells secrete non-structural protein 1 (sNS1), which plays an important role in viral replication and immune evasion. The microglial cells are the brain resident macrophages that mediate the immune responses in CNS. The miRNAs are small non-coding RNAs that regulate the expression of their target genes by binding to the 3'UTR region. The present study highlights the bystander effect of ZIKV-NS1 via miR-146a. The Real-Time PCR, Immunoblotting, overexpression, knockdown studies, and reactive oxygen species measurement have been done to study the immunomodulatory effects of ZIKV-NS1 in human microglial cells. ZIKV-NS1 induced the expression of miR-146a and suppressed the ROS activity in human microglial cells. The up-regulated miR-146a led to the decreased expression of TRAF6 and STAT-1. The reduced expression of TRAF6 in turn led to the suppression of pNF-κBp65 and TNF-α downstream. The miR-146a suppressed the pro-inflammatory and cellular antiviral responses in microglial cells. Our findings demonstrate the bystander role of ZIKV-NS1 in suppressing the pro-inflammatory and cellular antiviral responses through miR-146a in human microglial cells.
Collapse
Affiliation(s)
- Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
230
|
Wong LM, Li WT, Shende N, Tsai JC, Ma J, Chakladar J, Gnanasekar A, Qu Y, Dereschuk K, Wang-Rodriguez J, Ongkeko WM. Analysis of the immune landscape in virus-induced cancers using a novel integrative mechanism discovery approach. Comput Struct Biotechnol J 2021; 19:6240-6254. [PMID: 34900135 PMCID: PMC8636736 DOI: 10.1016/j.csbj.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms of carcinogenesis from viral infections are extraordinarily complex and not well understood. Traditional methods of analyzing RNA-sequencing data may not be sufficient for unraveling complicated interactions between viruses and host cells. Using RNA and DNA-sequencing data from The Cancer Genome Atlas (TCGA), we aim to explore whether virus-induced tumors exhibit similar immune-associated (IA) dysregulations using a new algorithm we developed that focuses on the most important biological mechanisms involved in virus-induced cancers. Differential expression, survival correlation, and clinical variable correlations were used to identify the most clinically relevant IA genes dysregulated in 5 virus-induced cancers (HPV-induced head and neck squamous cell carcinoma, HPV-induced cervical cancer, EBV-induced stomach cancer, HBV-induced liver cancer, and HCV-induced liver cancer) after which a mechanistic approach was adopted to identify pathways implicated in IA gene dysregulation. Results Our results revealed that IA dysregulations vary with the cancer type and the virus type, but cytokine signaling pathways are dysregulated in all virus-induced cancers. Furthermore, we also found that important similarities exist between all 5 virus-induced cancers in dysregulated clinically relevant oncogenic signatures and IA pathways. Finally, we also discovered potential mechanisms for genomic alterations to induce IA gene dysregulations using our algorithm. Conclusions Our study offers a new approach to mechanism identification through integrating functional annotations and large-scale sequencing data, which may be invaluable to the discovery of new immunotherapy targets for virus-induced cancers.
Collapse
Key Words
- Algorithm
- C2, Canonical pathway
- C6, Oncogenic signature
- C7, Immunological signature
- CA, Cancer-associated
- CESC, Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
- CNA, Copy number alteration
- Cervical squamous cell carcinoma and endocervical adenocarcinoma
- EBV, Epstein-Barr virus
- Epstein-Barr virus
- FDR, False discovery rate
- GSEA, Gene set enrichment analysis
- HBV, Hepatitis B virus
- HCV, Hepatitis C virus
- HNSCC, Head and Neck Squamous Cell Carcinoma
- HPV, Human papillomavirus
- Head and neck squamous cell carcinoma
- Hepatitis B
- Hepatitis C
- Human papillomavirus
- IA, Immune-associated
- LIHC, Liver Hepatocellular Carcinoma
- Liver hepatocellular carcinoma
- MSigDB, Molecular Signature Database
- STAD, Stomach Adenocarcinoma
- Stomach adenocarcinoma
- TCGA
- TCGA, The Cancer Genome Atlas
Collapse
Affiliation(s)
- Lindsay M. Wong
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Neil Shende
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Joseph C. Tsai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jiayan Ma
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Aditi Gnanasekar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Yuanhao Qu
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Kypros Dereschuk
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jessica Wang-Rodriguez
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Pathology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Weg M. Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Corresponding author at: Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
231
|
Zhu L, Li X, Xu H, Fu L, Gao GF, Liu W, Zhao L, Wang X, Jiang W, Fang M. Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. J Gen Virol 2021; 102. [PMID: 34882534 PMCID: PMC8744269 DOI: 10.1099/jgv.0.001697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein of many enveloped RNA viruses regulates multiple stages of viral life cycle and has the characteristics of nucleocytoplasmic shuttling. We have previously demonstrated that matrix protein 1 (M1) of an RNA virus, influenza virus, blocks host cell cycle progression by interacting with SLD5, a member of the GINS complex, which is required for normal cell cycle progression. In this study, we found that M protein of several other RNA viruses, including VSV, SeV and HIV, interacted with SLD5. Furthermore, VSV/SeV infection and M protein of VSV/SeV/HIV induced cell cycle arrest at G0/G1 phase. Importantly, overexpression of SLD5 partially rescued the cell cycle arrest by VSV/SeV infection and VSV M protein. In addition, SLD5 suppressed VSV replication in vitro and in vivo, and enhanced type Ⅰ interferon signalling. Taken together, our results suggest that targeting SLD5 by M protein might be a common strategy used by multiple enveloped RNA viruses to block host cell cycle. Our findings provide new mechanistic insights for virus to manipulate cell cycle progression by hijacking host replication factor SLD5 during infection.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.,International College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
232
|
Regan P, Elkhalifa S, Barratt P. The systemic immunosuppressive effects of peripheral corticosteroid injections: A narrative review of the evidence in the context of COVID-19. Musculoskeletal Care 2021; 20:431-441. [PMID: 34882956 PMCID: PMC9015551 DOI: 10.1002/msc.1603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Introduction Injected glucocorticoid's (corticosteroids) are commonly used in musculoskeletal practice. The current global COVID‐19 pandemic has increased attention on the potential for locally injected corticosteroids to exert a systemic immunosuppressive effect and the implications this may have in relation to COVID‐19 infection and vaccination. Aim This narrative review summarises the evidence regarding the potential systemic immunosuppressive effects of peripheral corticosteroid injections in relation to the ongoing COVID‐19 pandemic. Method A narrative review was selected to allow inclusion of evidence related to a diverse range of topics relevant to this subject in order to provide the most comprehensive and clinically relevant guidance for clinicians. Results/discussion Current evidence demonstrates that cytotoxic, phagocytic and antigen presenting cells involved in both the innate and adaptive immune responses are suppressed for 48 h post‐injection and messenger cytokines that are integral to immune function are suppressed for over 96 h post‐injection. This potentially reduces an individual's ability to prevent viral infection, limit early viral replication, and delays activation of adaptive immune mechanisms (T and B lymphocytes) and subsequent viral clearance and elimination. The hypothalamic–pituitary–adrenal (HPA) axis can be suppressed for 2–4 weeks or longer following peripheral corticosteroid injections. The role of the HPA axis in immune function is not fully understood, however this could potentially indicate longer lasting immunosuppression. Conclusions This review found evidence of suppression of immune cell numbers for the first 48 h post‐injection, cytokines for over 96 h post‐injection and HPA axis suppression lasting for 2–4 weeks or longer. There is currently no evidence that these physiological changes translate into a clinically meaningful increased risk of COVID‐19 infection or related morbidity or mortality, but there is also no persuasive evidence that they do not. This review discusses the implications of the current evidence in relation to shared decision making, informed consent, risk management and COVID‐19 vaccination to provide clinicians with a pragmatic guide to help navigate the current uncertainty regarding the potential immunosuppressive effects of peripheral corticosteroid injections.
Collapse
Affiliation(s)
- Paul Regan
- Musculoskeletal Clinical and Assessment and Treatment Service, Salford Royal NHS Foundation Trust, Salford Care Organisation (Part of the Northern Care Alliance), Salford, UK
| | - Shuayb Elkhalifa
- Department of Immunology, Salford Royal NHS Foundation Trust, Salford Care Organisation (part of the Northern Care Alliance), Salford, UK
| | - Paul Barratt
- Musculoskeletal Clinical and Assessment and Treatment Service, Salford Royal NHS Foundation Trust, Salford Care Organisation (Part of the Northern Care Alliance), Salford, UK
| |
Collapse
|
233
|
Jin J, Liu Y, Xu X, Wang Z, Niu J. The association between Fc gamma RIIb expression levels and chronic hepatitis B virus infection progression. BMC Infect Dis 2021; 21:1235. [PMID: 34879827 PMCID: PMC8653572 DOI: 10.1186/s12879-021-06918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fc gamma receptor IIb (FcγRIIb) is an important inhibitory receptor that plays vital roles in regulating various immune response processes and the pathogenesis of many infectious diseases. The purpose of our research was to evaluate FcγRIIb expression in serum and liver biopsy specimens from hepatitis B virus (HBV)-infected patients and to explore the association of FcγRIIb with chronic HBV infection. METHODS Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum FcγRIIb levels in 119 HBV-infected patients and 24 healthy controls. An immunohistochemical method was then employed to identify FcγRIIb expression in biopsy specimens from patients with chronic hepatitis B (CHB). The integrated optical density (IOD) value was measured to represent FcγRIIb expression levels. RESULTS Serum FcγRIIb levels were decreased in CHB patients compared to controls (P < 0.001). The FcγRIIb levels in the CHB patient group were remarkably lower than those in the HBV carrier group (P < 0.001). In addition, FcγRIIb levels were negatively associated with AST and ALT (r = -0.3936, P = 0.0063; r = -0.3459, P = 0.0097, respectively). The IOD values of FcγRIIb expression in the moderate and severe CHB groups were significantly lower than those in the control group (P = 0.006 and P < 0.001, respectively). The FcγRIIb level tended to be lower with pathological changes related to hepatitis. Furthermore, correlation analysis revealed that FcγRIIb had negative correlations with AST and ALT (r = -0.688, P = 0.0016; r = -0.686, P = 0.0017, respectively) but a positive association with the platelet count (r = 0.6464, P = 0.0038). CONCLUSIONS FcγRIIb levels are significantly related to chronic HBV infection and the progression of CHB. Changes in FcγRIIb may affect the progression of liver inflammation and fibrosis in CHB patients.
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Yuwei Liu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Xiaotong Xu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Zhongfeng Wang
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
234
|
Das A, Chauhan KS, Kumar H, Tailor P. Mutation in Irf8 Gene ( Irf8R294C ) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Front Immunol 2021; 12:758190. [PMID: 34867997 PMCID: PMC8635750 DOI: 10.3389/fimmu.2021.758190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations—regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.
Collapse
Affiliation(s)
- Annesa Das
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India.,Special Centre for Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
235
|
Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness. Proc Natl Acad Sci U S A 2021; 118:e2111477118. [PMID: 34857628 PMCID: PMC8670484 DOI: 10.1073/pnas.2111477118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person's infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop viral dynamic models of SARS-CoV-2 infection and fit them to data to estimate key within-host parameters such as the infected cell half-life and the within-host reproductive number. We then develop a model linking viral load (VL) to infectiousness and show a person's infectiousness increases sublinearly with VL and that the logarithm of the VL in the upper respiratory tract is a better surrogate of infectiousness than the VL itself. Using data on VL and the predicted infectiousness, we further incorporated data on antigen and RT-PCR tests and compared their usefulness in detecting infection and preventing transmission. We found that RT-PCR tests perform better than antigen tests assuming equal testing frequency; however, more frequent antigen testing may perform equally well with RT-PCR tests at a lower cost but with many more false-negative tests. Overall, our models provide a quantitative framework for inferring the impact of therapeutics and vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing strategies.
Collapse
Affiliation(s)
- Ruian Ke
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
- New Mexico Consortium, Los Alamos, NM 87544
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
- New Mexico Consortium, Los Alamos, NM 87544
| |
Collapse
|
236
|
Mittal N, Mittal R. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past. Eur J Pharmacol 2021; 912:174569. [PMID: 34653378 DOI: 10.1016/j.ejphar.2021.174569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Drug repurposing or studying existing drugs for potential therapeutic utility in newer indications has been identified as an attractive option for treating a number of diseases. Various strategies of drug repurposing include serendipitous observation of drug's unexpected effects, directing the failed investigational drugs to new indications and currently adopted systematic approach to identify, screen and develop existing drug molecules for new off-label indications. Drug repurposing is able to constructively overcome the bottleneck restraints encountered during traditional de novo drug development process in grounds of timelines, cost and resources. However, success rates of drug repurposing programs are not very impressive. Through a meticulous examination of some failed repurposing attempts we aimed to identify key factors leading to high attrition rate in such studies. Based on the fundamental elements of knowledge and evaluation, we have defined four pillars toward improving success rate in drug repurposing programs viz. sound knowledge of the repurposed drug's pharmacological characteristics (pillar 1: drug pharmacology); drug formulation considerations in new indication (pillar 2: drug formulation); evaluation in representative biological assays with translational potential (pillar 3: evaluation in biological assays); and robust clinical trial methodologies including biomarker driven approach to provide conclusive evidence of repurposed drug's efficacy in new indication (pillar 4: clinical evaluation). In addition to the pharmacological challenges, certain regulatory concerns, including lack of clear guidelines for evaluation and market exclusivity pose hurdles in the application of drug repurposing, which may however be overcome to a great extent by adopting some strategies as discussed in this review.
Collapse
Affiliation(s)
- Niti Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India.
| | - Rakesh Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India
| |
Collapse
|
237
|
Pennemann FL, Mussabekova A, Urban C, Stukalov A, Andersen LL, Grass V, Lavacca TM, Holze C, Oubraham L, Benamrouche Y, Girardi E, Boulos RE, Hartmann R, Superti-Furga G, Habjan M, Imler JL, Meignin C, Pichlmair A. Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nat Commun 2021; 12:7009. [PMID: 34853303 PMCID: PMC8636641 DOI: 10.1038/s41467-021-27192-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.
Collapse
Affiliation(s)
- Friederike L Pennemann
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Assel Mussabekova
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Line Lykke Andersen
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Vincent Grass
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Teresa Maria Lavacca
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Lila Oubraham
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Yasmine Benamrouche
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Enrico Girardi
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rasha E Boulos
- Computer Science and Mathematics Department, School of Arts and Science, Lebanese American University, Byblos, Lebanon
| | - Rune Hartmann
- Aarhus University, Department of Molecular Biology and Genetics - Structural Biology, Aarhus, Denmark
| | - Giulio Superti-Furga
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany.
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany.
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
238
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Cytokine and Nitric Oxide-Dependent Gene Regulation in Islet Endocrine and Nonendocrine Cells. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab063. [PMID: 34927076 PMCID: PMC8674205 DOI: 10.1093/function/zqab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023]
Abstract
While exposure to inflammatory cytokines is thought to contribute to pancreatic β-cell damage during diabetes, primarily because cytokine-induced nitric oxide impairs β-cell function and causes cell death with prolonged exposure, we hypothesize that there is a physiological role for cytokine signaling that protects β-cells from a number of environmental stresses. This hypothesis is derived from the knowledge that β-cells are essential for survival even though they have a limited capacity to replicate, yet they are exposed to high cytokine levels during infection as most of the pancreatic blood flow is directed to islets. Here, mouse islets were subjected to single-cell RNA sequencing following 18-h cytokine exposure. Treatment with IL-1β and IFN-γ stimulates expression of inducible nitric oxide synthase (iNOS) mRNA and antiviral and immune-associated genes as well as repression of islet identity factors in a subset of β- and non-β-endocrine cells in a nitric oxide-independent manner. Nitric oxide-dependent expression of genes encoding heat shock proteins was observed in both β- and non-β-endocrine cells. Interestingly, cells with high expression of heat shock proteins failed to increase antiviral and immune-associated gene expression, suggesting that nitric oxide may be an internal "off switch" to prevent the negative effects of prolonged cytokine signaling in islet endocrine cells. We found no evidence for pro-apoptotic gene expression following 18-h cytokine exposure. Our findings suggest that the primary functions of cytokines and nitric oxide are to protect islet endocrine cells from damage, and only when regulation of cytokine signaling is lost does irreversible damage occur.
Collapse
Affiliation(s)
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | | |
Collapse
|
239
|
Zheng R, Li Y, Chen D, Su J, Han N, Chen H, Ning Z, Xiao M, Zhao M, Zhu B. Changes of Host Immunity Mediated by IFN-γ + CD8 + T Cells in Children with Adenovirus Pneumonia in Different Severity of Illness. Viruses 2021; 13:v13122384. [PMID: 34960654 PMCID: PMC8708941 DOI: 10.3390/v13122384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023] Open
Abstract
The host immunity of patients with adenovirus pneumonia in different severity of illness is unclear. This study compared the routine laboratory tests and the host immunity of human adenovirus (HAdV) patients with different severity of illness. A co-cultured cell model in vitro was established to verify the T cell response in vitro. Among 140 patients with confirmed HAdV of varying severity, the number of lymphocytes in the severe patients was significantly reduced to 1.91 × 109/L compared with the healthy control (3.92 × 109/L) and the mild patients (4.27 × 109/L). The levels of IL-6, IL-10, and IFN-γ in patients with adenovirus pneumonia were significantly elevated with the severity of the disease. Compared with the healthy control (20.82%) and the stable patients (33.96%), the percentage of CD8+ T cells that produced IFN-γ increased to 56.27% in the progressing patients. Adenovirus infection increased the percentage of CD8+ T and CD4+ T cells that produce IFN-γ in the co-culture system. The hyperfunction of IFN-γ+ CD8+ T cells might be related to the severity of adenovirus infection. The in vitro co-culture cell model could also provide a usable cellular model for subsequent experiments.
Collapse
MESH Headings
- Adenovirus Infections, Human/genetics
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/pathology
- Adenovirus Infections, Human/virology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/physiology
- CD8-Positive T-Lymphocytes/microbiology
- Child
- Child, Preschool
- Female
- Humans
- Infant
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-6/genetics
- Interleukin-6/immunology
- Lymphocyte Count
- Male
- Patient Acuity
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
Collapse
|
240
|
Kaynarcalidan O, Moreno Mascaraque S, Drexler I. Vaccinia Virus: From Crude Smallpox Vaccines to Elaborate Viral Vector Vaccine Design. Biomedicines 2021; 9:1780. [PMID: 34944596 PMCID: PMC8698642 DOI: 10.3390/biomedicines9121780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Various vaccinia virus (VACV) strains were applied during the smallpox vaccination campaign to eradicate the variola virus worldwide. After the eradication of smallpox, VACV gained popularity as a viral vector thanks to increasing innovations in genetic engineering and vaccine technology. Some VACV strains have been extensively used to develop vaccine candidates against various diseases. Modified vaccinia virus Ankara (MVA) is a VACV vaccine strain that offers several advantages for the development of recombinant vaccine candidates. In addition to various host-restriction genes, MVA lacks several immunomodulatory genes of which some have proven to be quite efficient in skewing the immune response in an unfavorable way to control infection in the host. Studies to manipulate these genes aim to optimize the immunogenicity and safety of MVA-based viral vector vaccine candidates. Here we summarize the history and further work with VACV as a vaccine and present in detail the genetic manipulations within the MVA genome to improve its immunogenicity and safety as a viral vector vaccine.
Collapse
Affiliation(s)
| | | | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (O.K.); (S.M.M.)
| |
Collapse
|
241
|
Del Rayo Camacho-Corona M, Camacho-Morales A, Góngora-Rivera F, Escamilla-García E, Morales-Landa JL, Andrade-Medina M, Herrera-Rodulfo AF, García-Juárez M, García-Espinosa P, Stefani T, González-Barranco P, Carrillo-Tripp M. Immunomodulatory effects of Allium Sativum L. and its constituents against viral infections and metabolic diseases. Curr Top Med Chem 2021; 22:109-131. [PMID: 34809549 DOI: 10.2174/1568026621666211122163156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties. OBJECTIVE The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV-2. METHOD Exhaustive literature search has been carried out on electronic databases. CONCLUSION Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic's ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.
Collapse
Affiliation(s)
| | | | - Fernando Góngora-Rivera
- Stroke Unit and Neurology Department, University Hospital Jose Eleuterio Gonzalez, Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | - Erandi Escamilla-García
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | - Juan Luis Morales-Landa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Subsede Noreste, Apodaca, N.L. Mexico
| | - Mariana Andrade-Medina
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| | - Aldo Fernando Herrera-Rodulfo
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| | - Martín García-Juárez
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | | | - Tommaso Stefani
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, Prague. Czech Republic
| | - Patricia González-Barranco
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, N.L. Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| |
Collapse
|
242
|
Escobedo RA, Singh DK, Kaushal D. Understanding COVID-19: From Dysregulated Immunity to Vaccination Status Quo. Front Immunol 2021; 12:765349. [PMID: 34858417 PMCID: PMC8632224 DOI: 10.3389/fimmu.2021.765349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The development of vaccines against infectious diseases has helped us battle the greatest threat to public health. With the emergence of novel viruses, targeted immunotherapeutics ranging from informed vaccine development to personalized medicine may be the very thing that separates us between life and death. Late in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), made a remarkable entrance to human civilization, being one of many to cross the species barrier. This review discusses the important aspects of COVID-19, providing a brief overview of our current understanding of dysregulated immune responses developed using various experimental models, a brief outline of experimental models of COVID-19 and more importantly, the rapid development of vaccines against COVID-19.
Collapse
Affiliation(s)
- Ruby A. Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
- The Integrated Biomedical Sciences (IBMS) Graduate Program, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, United States
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
243
|
Airewele NE, Shiffman ML. Chronic Hepatitis B Virus in Patients with Chronic Hepatitis C Virus. Clin Liver Dis 2021; 25:817-829. [PMID: 34593155 DOI: 10.1016/j.cld.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many patients with hepatitis C virus (HCV) have also been exposed to hepatitis B virus (HBV). The 2 viruses interact and in most cases HCV suppresses HBV. When HCV is treated with direct antiviral agents, this suppressive effect is removed, HBV replication may increase, and a flare in liver enzymes with liver injury may occur. All patients with chronic HCV should therefore be checked for serologic evidence of HBV. Patients with hepatitis B surface antigen are at the highest risk for reactivation, and these patients should receive prophylactic treatment of HBV during and for 6 months after HCV treatment.
Collapse
Affiliation(s)
- Nelson E Airewele
- Liver Institute of Richmond, Bon Secours Mercy Health, Richmond, VA, USA; Liver Institute of Hampton Roads, Bon Secours Mercy Health, Newport News, VA, USA.
| | - Mitchell L Shiffman
- Liver Institute of Richmond, Bon Secours Mercy Health, Richmond, VA, USA; Liver Institute of Hampton Roads, Bon Secours Mercy Health, Newport News, VA, USA
| |
Collapse
|
244
|
Affiliation(s)
- Omid Arasteh
- Department of Clinical PharmacyFaculty of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hossein Khalili
- Department of Clinical PharmacyFaculty of PharmacyTehran University of Medical SciencesTehranIran
| |
Collapse
|
245
|
Lee Y, Lu M, Lillehoj HS. Immunological studies on chicken interferon-kappa using an antigen-capture ELISA developed using new mouse monoclonal antibodies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104204. [PMID: 34271063 DOI: 10.1016/j.dci.2021.104204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Interferon (IFN)-κ is a type I IFN that plays a central role in anti-viral defense and host immune response. The functions of type I IFNs have not been clearly defined in chickens compared to those of their mammalian counterparts. In this study, we developed an antigen-capture ELISA using newly developed mouse monoclonal antibodies (mAbs) which are specific for chicken IFN-κ (chIFN-κ) and showed that this ELISA can measure native chIFN-κ production during the activation of macrophages by polyinosinic:polycytidylic acid (poly I:C). The recombinant chicken IFN-κ expressed in Escherichia coli was used to immunize mice. Five mAbs that specifically recognized chIFN-κ were selected and characterized based on their specificity and binding activity toward chIFN-κ via indirect ELISA and western blotting. To develop a capture ELISA for chicken IFN-κ, two sets of the best capture and detection mAbs combinations were identified via pairing assays. To validate the antigen-capture assay, the production of native IFN-κ was induced in chicken HD11 macrophages using poly I:C. Furthermore, qRT-PCR was used to confirm the transcript-level expression of IFN-κ in HD11 cells at 24 and 48 h. The neutralizing effects of anti-chIFN-κ mAbs were evaluated based on their ability to block the induction of IFN-stimulated genes (ISGs) in DF-1 fibroblast cells stimulated with recombinant chIFN-κ proteins. All five mAbs blocked the mRNA expression of ISGs in a dose-dependent manner. Our results validate the specificity and utility of these newly developed mAbs for the detection of native chicken IFN-κ. This novel antigen-capture ELISA will be a valuable tool for fundamental and applied research involving IFN-κ in the normal and diseased states.
Collapse
Affiliation(s)
- Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA-Agricultural Research Service, Beltsville, MD, USA
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA-Agricultural Research Service, Beltsville, MD, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA-Agricultural Research Service, Beltsville, MD, USA.
| |
Collapse
|
246
|
Brune JE, Chang MY, Altemeier WA, Frevert CW. Type I Interferon Signaling Increases Versican Expression and Synthesis in Lung Stromal Cells During Influenza Infection. J Histochem Cytochem 2021; 69:691-709. [PMID: 34666527 PMCID: PMC8554580 DOI: 10.1369/00221554211054447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Versican, a chondroitin sulfate proteoglycan, is an essential component of the extracellular matrix (ECM) in inflammatory lung disease. Versican's potential as an immunomodulatory molecule makes it a promising therapeutic target for controlling host immune responses in the lungs. To establish changes to versican expression and accumulation during influenza A viral pneumonia, we document the temporal and spatial changes to versican mRNA and protein in concert with pulmonary inflammatory cell infiltration. These studies were performed in the lungs of wild-type C57BL6/J mice on days 3, 6, 9, and 12 post-infection with influenza A virus using immunohistochemistry, in situ hybridization, and quantitative digital pathology. Using duplex in situ hybridization, we demonstrate that type I interferon signaling contributes significantly to versican expression in lung stromal cells. Our findings show that versican is a type I interferon-stimulated gene in pulmonary fibroblasts and pericytes in the context of viral pneumonia. These data also provide a guide for future studies to determine the role of versican in the pulmonary immune response to influenza infection.
Collapse
Affiliation(s)
- Jourdan E. Brune
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y. Chang
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - William A. Altemeier
- Center for Lung Biology, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W. Frevert
- Center for Lung Biology, University of Washington, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
247
|
Zou H, Wu T, Wang Y, Kang Y, Shan Q, Xu L, Jiang Z, Lin X, Ye XY, Xie T, Zhang H. 5-Hydroxymethylfurfural Enhances the Antiviral Immune Response in Macrophages through the Modulation of RIG-I-Mediated Interferon Production and the JAK/STAT Signaling Pathway. ACS OMEGA 2021; 6:28019-28030. [PMID: 34723002 PMCID: PMC8552330 DOI: 10.1021/acsomega.1c03862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) exists in a wide range of sugar-rich foods and traditional Chinese medicines. The role of 5-HMF in antiviral innate immunity and its mechanism have not been reported previously. In this study, we reveal for the first time that 5-HMF upregulates the production of retinoic acid-inducible gene I (RIG-I)-mediated type I interferon (IFN) as a response to viral infection. IFN-β and IFN-stimulated chemokine gene expressions induced by the vesicular stomatitis virus (VSV) are upregulated in RAW264.7 cells and primary peritoneal macrophages after treatment with 5-HMF, a natural product that appears to inhibit the efficiency of viral replication. Meanwhile, 5-HMF-pretreated mice show enhanced innate antiviral immunity, increased serum levels of IFN-β, and reduced morbidity and viral loads upon infection with VSV. Thus, 5-HMF can be seen to have a positive effect on enhancing type I IFN production. Mechanistically, 5-HMF upregulates the expression of RIG-I in macrophages, resulting in an acceleration of the RIG-I signaling pathway activation. Additionally, STAT1 and STAT2 phosphorylations, along with the expression of IFN-stimulated chemokine genes induced by IFN-α/β, were also enhanced in macrophages cotreated with 5-HMF. In summary, these findings indicate that 5-HMF not only can induce type I IFN production but also can enhance IFN-JAK/STAT signaling, leading to a novel immunomodulatory mechanism against viral infection. In conclusion, our study reveals a previously unrecognized effect of 5-HMF in the antiviral innate immune response and suggests new potential of utilizing 5-HMF for controlling viral infection.
Collapse
Affiliation(s)
- Han Zou
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tingyue Wu
- School
of Life Science, University of Science &
Technology of China, Hefei 230026, Anhui, China
- Key
Laboratory of Animal Models and Human Disease Mechanisms of the Chinese
Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuan Wang
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Yanhua Kang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qingye Shan
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Liqing Xu
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Zheyi Jiang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohan Lin
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang-Yang Ye
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tian Xie
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hang Zhang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
248
|
Kumar S, Saurabh MK, Narasimha VL, Maharshi V. Efficacy of Interferon-β in Moderate-to-Severe Hospitalised Cases of COVID-19: A Systematic Review and Meta-analysis. Clin Drug Investig 2021; 41:1037-1046. [PMID: 34687413 PMCID: PMC8540871 DOI: 10.1007/s40261-021-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Background and Objective Interferon-β, as with several other anti-viral agents, has been investigated as a treatment option for COVID-19 as a repurposed drug. The present study is a systematic review and meta-analysis of interferon-β to determine its efficacy among moderate-to-severe COVID-19 patients. Methods A systematic literature search was done using relevant terms for ‘COVID-19’ and ‘interferon-β’. Randomised controlled trials (RCT) evaluating the efficacy of interferon-β in COVID-19 were included. Data were extracted for outcome measures, namely mortality, time to clinical improvement and length of hospital stay. Random effects meta-analysis was performed using RevMan V.5.4.1 to calculate overall effect estimate as odds ratio/hazard ratio for categorical variables and mean difference for continuous variable. Result Eight RCTs were eligible for qualitative synthesis and seven for meta-analysis. The overall effect estimate (odds ratio [OR] 0.59; 95 % CI 0.91, 1.12) and (mean difference [MD] − 1.41; 95 % CI − 2.84, 0.02) indicated no statistically significant difference between effect of IFN-β and that of control on mortality and length of hospital stay, respectively. However, the overall effect estimate (hazard ratio [HR] 1.95; 95 % CI 1.36, 2.79) denoted a favourable effect of INF-β on reducing the time to clinical improvement in moderate-to-severe COVID-19 patients. Conclusion Addition of interferon-β to standard of care resulted in significant reduction in time to clinical improvement but no significant benefit in terms of reduction in mortality and length of hospital stay in moderate-to-severe cases of COVID-19.
Collapse
Affiliation(s)
- Subodh Kumar
- All India Institute of Medical Sciences, Deoghar, India
| | | | | | - Vikas Maharshi
- All India Institute of Medical Sciences, Deoghar, India.
| |
Collapse
|
249
|
Hajjo R, Sabbah DA, Bardaweel SK, Tropsha A. Shedding the Light on Post-Vaccine Myocarditis and Pericarditis in COVID-19 and Non-COVID-19 Vaccine Recipients. Vaccines (Basel) 2021; 9:vaccines9101186. [PMID: 34696294 PMCID: PMC8541143 DOI: 10.3390/vaccines9101186] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Myocarditis and pericarditis have been linked recently to COVID-19 vaccines without exploring the underlying mechanisms, or compared to cardiac adverse events post-non-COVID-19 vaccines. We introduce an informatics approach to study post-vaccine adverse events on the systems biology level to aid the prioritization of effective preventive measures and mechanism-based pharmacotherapy by integrating the analysis of adverse event reports from the Vaccine Adverse Event Reporting System (VAERS) with systems biology methods. Our results indicated that post-vaccine myocarditis and pericarditis were associated most frequently with mRNA COVID-19 vaccines followed by live or live-attenuated non-COVID-19 vaccines such as smallpox and anthrax vaccines. The frequencies of cardiac adverse events were affected by vaccine, vaccine type, vaccine dose, sex, and age of the vaccinated individuals. Systems biology results suggested a central role of interferon-gamma (INF-gamma) in the biological processes leading to cardiac adverse events, by impacting MAPK and JAK-STAT signaling pathways. We suggest that increasing the time interval between vaccine doses minimizes the risks of developing inflammatory adverse reactions. We also propose glucocorticoids as preferred treatments based on system biology evidence. Our informatics workflow provides an invaluable tool to study post-vaccine adverse events on the systems biology level to suggest effective mechanism-based pharmacotherapy and/or suitable preventive measures.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27515, USA;
- National Center for Epidemics and Communicable Disease Control, Amman 11942, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27515, USA;
| |
Collapse
|
250
|
Zhang Y, Chen S, Jin Y, Ji W, Zhang W, Duan G. An Update on Innate Immune Responses during SARS-CoV-2 Infection. Viruses 2021; 13:2060. [PMID: 34696490 PMCID: PMC8541410 DOI: 10.3390/v13102060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the Coronaviridae family, which is responsible for the COVID-19 pandemic followed by unprecedented global societal and economic disruptive impact. The innate immune system is the body's first line of defense against invading pathogens and is induced by a variety of cellular receptors that sense viral components. However, various strategies are exploited by SARS-CoV-2 to disrupt the antiviral innate immune responses. Innate immune dysfunction is characterized by the weak generation of type I interferons (IFNs) and the hypersecretion of pro-inflammatory cytokines, leading to mortality and organ injury in patients with COVID-19. This review summarizes the existing understanding of the mutual effects between SARS-CoV-2 and the type I IFN (IFN-α/β) responses, emphasizing the relationship between host innate immune signaling and viral proteases with an insight on tackling potential therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215123, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (S.C.); (W.J.); (W.Z.); (G.D.)
| |
Collapse
|