1
|
Cho H, Kelsall BL. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol Rev 2015; 260:145-67. [PMID: 24942688 DOI: 10.1111/imr.12195] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease. This review focuses on the role of type I IFNs in the intestine in health and disease and their emerging role as immune modulators. Clear understanding of type I IFN-mediated immune responses may provide avenues for fine-tuning existing IFN treatment for infection and intestinal inflammation.
Collapse
Affiliation(s)
- Hyeseon Cho
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF, Pestka JJ, Cantor GH, Roth RA, Ganey PE. Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:58-73. [PMID: 19953420 DOI: 10.1080/15287390903249057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity accounts for nearly half of acute liver failure cases in the United States. The doses that produce hepatotoxicity vary considerably and many risk factors have been proposed, including liver inflammation from viral hepatitis. Interestingly, inflammatory stress from another stimulus, bacterial endotoxin (lipopolysaccharide, LPS), renders the liver more sensitive to hepatotoxicity from numerous xenobiotic agents. The purpose of these studies was to test the hypothesis that inflammation induced by LPS or infection with reovirus increases sensitivity to APAP-induced liver injury. For LPS-induced inflammation, C57BL/6J mice were treated with either saline or LPS (44 x 10(6) EU/kg, ip) 2 h before treatment with APAP (100-400 mg/kg, ip) or saline. No elevation in serum alanine aminotransferase (ALT) activity was observed in mice that received vehicle or LPS alone. LPS co-treatment produced a leftward shift of the dose-response curve for APAP-induced hepatotoxicity and led to significantly greater tumor necrosis factor-alpha (TNF) production than APAP alone. Reovirus serotype 1 (10(8) PFU, iv) induced inflammation in Balb/c mice as evidenced by increases in hepatic mRNAs for macrophage inhibitory protein-2, interleukin-6, and TNF. Co-administration of reovirus and APAP at doses of 450 and 700 mg/kg (2 h after reovirus) led to increases in serum ALT activity, whereas neither reovirus nor APAP alone produced liver injury. Consistent with the increases in serum ALT activity, histopathologic examination revealed centrilobular necrosis with marked neutrophilic accumulation only in livers of mice treated with LPS/APAP or with reovirus/APAP. The results suggest that normally noninjurious doses of APAP are rendered hepatotoxic by modest inflammation, whether bacterial or viral in origin.
Collapse
Affiliation(s)
- Jane F Maddox
- Departments of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hamidi H, Pourreza J, Rahimi H. Dietary betaine affect duodenal histology of broilers challenged with a mixed coccidial infection. Pak J Biol Sci 2009; 12:291-295. [PMID: 19579961 DOI: 10.3923/pjbs.2009.291.295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The purpose of this research was to investigate effect of dietary betaine on intestinal morphology after an experimental coccidiosis. Hence a total of 189 male and female broiler chicks were randomly assigned to 9 floor cages. Chicks were fed a basal diet supplemented with 0, 0.6 or 1.2 g kg(-1) betaine. All birds were inoculated orally with Eimeria oocysts on day 28. Duodenal morphology parameters and lesions were scored by microscopic observation on intestine samples which were taken at day 42 of age. Adding 1.2 g kg(-1) betaine to diet diminished intestinal lesions (p < 0.05). Dietary supplementation with 0.6 or 1.2 g kg(-1) betaine significantly (p < 0.01) increased intraepithelial lymphocytes as well. Level of additive betaine had no effect on the ratio of villus height/crypt depth or villus surface area. Lamina propria of duodenum became thicker in the intestine of chickens which received more supplemental betaine via their diet. In conclusion, since the number of intraepithelial lymphocytes and thickness of lamina propria represent the condition of gut immune response, it seems that dietary betaine may immunomodulate the gastrointestinal tract of broilers. In addition, betaine effect on villus morphology measured later in life differed from what had been measured already earlier in life of the chicks.
Collapse
Affiliation(s)
- H Hamidi
- Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
4
|
Xue L, Pestka JJ, Li M, Firestone GL, Bjeldanes LF. 3,3'-Diindolylmethane stimulates murine immune function in vitro and in vivo. J Nutr Biochem 2008; 19:336-44. [PMID: 17707631 PMCID: PMC2387240 DOI: 10.1016/j.jnutbio.2007.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 12/25/2022]
Abstract
3,3'-Diindolylmethane (DIM), a major condensation product of indole-3-carbinol, exhibits chemopreventive properties in animal models of cancer. Recent studies have shown that DIM stimulates interferon-gamma (IFN-gamma) production and potentiates the IFN-gamma signaling pathway in human breast cancer cells via a mechanism that includes increased expression of the IFN-gamma receptor. The goal of this study was to test the hypothesis that DIM modulates the murine immune function. Specifically, the effects of DIM were evaluated in a panel of murine immune function tests that included splenocyte proliferation, reactive oxygen species (ROS) generation, cytokine production and resistance to viral infection. DIM was found to induce proliferation of splenocytes as well as augment mitogen- and interleukin (IL)-2-induced splenocyte proliferation. DIM also stimulated the production of ROS by murine peritoneal macrophage cultures. Oral administration of DIM, but not intraperitoneal injection, induced elevation of serum cytokines in mice, including IL-6, granulocyte colony-stimulating factor (G-CSF), IL-12 and IFN-gamma. Finally, in a model of enteric virus infection, oral DIM administration to mice enhanced both clearance of reovirus from the GI tract and the subsequent mucosal IgA response. Thus, DIM is a potent stimulator of immune function. This property might contribute to the cancer inhibitory effects of this indole.
Collapse
Affiliation(s)
- Ling Xue
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720-3104, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3104, USA
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824-1224, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824-1224, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gary L Firestone
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3104, USA
| | - Leonard F. Bjeldanes
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720-3104, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3104, USA
| |
Collapse
|
5
|
Beli E, Li M, Cuff C, Pestka JJ. Docosahexaenoic acid-enriched fish oil consumption modulates immunoglobulin responses to and clearance of enteric reovirus infection in mice. J Nutr 2008; 138:813-9. [PMID: 18356340 DOI: 10.1093/jn/138.4.813] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We hypothesized that consumption of the (n-3) PUFA, docosahexaenoic acid (DHA), modulates the mucosal immune response to enteric infection with respiratory enteric orphan virus (reovirus), a model intestinal pathogen. Mice were fed either AIN-93G control diet, containing 10 g/kg corn oil and 60 g/kg high oleic acid safflower oil, or AIN-93G, containing 10 g/kg corn oil and 60 g/kg DHA-enriched fish oil, for 4 wk and then orally gavaged with reovirus strain Type 1 Lang, (T1/L). Reovirus-specific IgA antibody was first detectable in the feces of mice fed a control diet at 6 d postinfection (PI) and was further elevated at 8 and 10 d PI. IgA responses in DHA-fed mice were similar at 6 and 8 d PI but greater at 10 d PI (P < 0.05). Both reovirus-specific serum IgA and IgG(2a) were comparably induced in mice fed control or DHA diets. Reovirus-specific IgA and IgG(2a) secretion by ex vivo Peyer's patch, lamina propria, and spleen cultures derived from control and DHA groups were comparable. Although both groups carried similar numbers of reovirus plaque forming units per intestine, DHA-fed mice shed nearly 10 times more viral RNA in feces than control mice at 2, 4, and 6 d PI (P < 0.05). However, viral RNA was not detectable in either group at 8 and 10 d. Taken together, these data suggest that DHA consumption did not markedly alter mucosal or systemic Ig responses to reovirus but delayed clearance of the virus from the intestinal tract.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
6
|
Johansson C, Wetzel JD, He J, Mikacenic C, Dermody TS, Kelsall BL. Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. ACTA ACUST UNITED AC 2007; 204:1349-58. [PMID: 17502662 PMCID: PMC2118611 DOI: 10.1084/jem.20061587] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We defined the function of type I interferons (IFNs) in defense against reovirus strain type 1 Lang (T1L), which is a double-stranded RNA virus that infects Peyer's patches (PPs) after peroral inoculation of mice. T1L induced expression of mRNA for IFN-alpha, IFN-beta, and Mx-1 in PPs and caused localized intestinal infection that was cleared in 10 d. In contrast, T1L produced fatal systemic infection in IFNalphaR1 knockout (KO) mice with extensive cell loss in lymphoid tissues and necrosis of the intestinal mucosa. Studies of bone-marrow chimeric mice indicated an essential role for hematopoietic cells in IFN-dependent viral clearance. Dendritic cells (DCs), including conventional DCs (cDCs), were the major source of type I IFNs in PPs of reovirus-infected mice, whereas all cell types expressed the antiviral protein Mx-1. Neither NK cells nor signaling via Toll-like receptor 3 or MyD88 were essential for viral clearance. These data demonstrate a requirement for type I IFNs in the control of an intestinal viral infection and indicate that cDCs are a significant source of type I IFN production in vivo. Therefore, innate immunity in PPs is an essential component of host defense that limits systemic spread of pathogens that infect the intestinal mucosa.
Collapse
Affiliation(s)
- Cecilia Johansson
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kwa SF, Beverley P, Smith AL. Peyer's patches are required for the induction of rapid Th1 responses in the gut and mesenteric lymph nodes during an enteric infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:7533-41. [PMID: 16751400 DOI: 10.4049/jimmunol.176.12.7533] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Peyer's patches (PP) and mesenteric lymph nodes (MLN) are structural components of the gut-associated lymphoid tissues and contribute to the induction of immune responses toward infection in the gastrointestinal tract. These secondary lymphoid organs provide structural organization for efficient cellular interactions and the initiation of primary adaptive immune responses against infection. Immunity against primary infection with the enteric apicomplexan parasite, Eimeria vermiformis, depends on the rapid induction of local Th1 responses. Lymphotoxin (LT)-deficient mice which have various defects in secondary lymphoid organs were infected with E. vermiformis. The relative susceptibility of LTalpha(-/-), LTbeta(-/-), LTalpha(+/-)beta(+/-) mice and bone marrow chimeras, indicated that rapid protective Th1 responses required both PP and MLN. Moreover, the timing of Th1 induction in both MLN and gut was dependent on the presence of PP suggesting a level of cooperation between immune responses induced in these distinct lymphoid structures. The delay in Th1 induction was attributable to the delayed arrival of a broad range of dendritic cell subsets in the MLN and a substantial reduction of CD8alpha(-)CD11b(high) B220(-) dendritic cells in PP-deficient mice.
Collapse
Affiliation(s)
- Sue-fen Kwa
- Enteric Immunology, Division of Immunology, Institute for Animal Health, Compton, Near Newbury, Berkshire, UK
| | | | | |
Collapse
|
8
|
Revolledo L, Ferreira A, Mead G. Prospects in Salmonella Control: Competitive Exclusion, Probiotics, and Enhancement of Avian Intestinal Immunity. J APPL POULTRY RES 2006. [DOI: 10.1093/japr/15.2.341] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-gamma responses. Toxicol Appl Pharmacol 2006; 214:318-25. [PMID: 16504231 PMCID: PMC7125810 DOI: 10.1016/j.taap.2006.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 12/25/2022]
Abstract
Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 × 107 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher F. Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224. Fax: +1 517 353 8963.
| |
Collapse
|
10
|
Pal K, Kaetzel CS, Brundage K, Cunningham CA, Cuff CF. Regulation of polymeric immunoglobulin receptor expression by reovirus. J Gen Virol 2005; 86:2347-2357. [PMID: 16033983 DOI: 10.1099/vir.0.80690-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA and IgA-coated immune complexes from the lamina propria across epithelia and into secretions. The effect of reovirus infection on regulation of pIgR expression in the human intestinal epithelial cell line HT-29 was characterized in this report. Both replication-competent and UV-inactivated reovirus at m.o.i. equivalents of 1-100 p.f.u. per cell upregulated pIgR mRNA by 24 h post-infection and intracellular pIgR protein was increased at 48 h following exposure to UV-inactivated virus. Binding of virus to HT-29 cells was required, as pre-incubating virus with specific antiserum, but not non-immune serum, inhibited reovirus-mediated pIgR upregulation. Endosomal acidification leading to uncoating of virus is a required step for pIgR upregulation, as ammonium chloride or bafilomycin A1 pre-treatment inhibited virus-induced pIgR upregulation. Inhibition experiments using the calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal suggested that calpains are involved in reovirus-mediated pIgR upregulation. Upregulation of pIgR following virus infection appears to be an innate immune response against invading pathogens that could help the host clear infection effectively. Signalling induced by microbes and their products may serve to augment pIgR-mediated transcytosis of IgA, linking the innate and acquired immune responses to viruses.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen Brundage
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Cynthia A Cunningham
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Christopher F Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| |
Collapse
|
11
|
Li M, Cuff CF, Pestka J. Modulation of Murine Host Response to Enteric Reovirus Infection by the Trichothecene Deoxynivalenol. Toxicol Sci 2005; 87:134-45. [PMID: 15958657 DOI: 10.1093/toxsci/kfi225] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the known capacity of deoxynivalenol (DON) to target gut lymphoid tissue and IgA production, it was hypothesized that this mycotoxin interferes with the immune response to enteric reovirus infection. When mice were orally gavaged, first with 25 mg/kg bw DON, and then with reovirus serotype 1, strain Lang (T1/L) 2 or 12 h later, viral titers in the GI tract were 10-fold higher than control mice after 5 days. Virus was almost completely cleared in both treatment and control groups from intestinal tissue after 10 days. Real-time PCR indicated that, in infected control mice, reovirus lambda2 core spike (L2 gene) RNA per g feces in infected mice that were pretreated with DON was significantly higher at 1, 3, and 5 days than in infected mice only. In reovirus-infected mice, DON at doses of 10 and 25 mg/kg bw but not 2 and 5 mg/kg bw increased fecal L2 RNA, whereas DON doses as low as 2 mg/kg potentiated L2 RNA levels in Peyer's patches (PP). Reovirus-specific IgA levels in feces of mice treated with DON were significantly elevated, as were specific IgA responses in lamina propria and PP fragment cultures. Similar effects were observed for serum IgA and IgG. DON suppressed IFN-gamma responses in PP to reovirus at 3 and 5 days as compared to infected controls, while IL-2 mRNA concentrations were unaffected. Although reovirus alone did not induce Th2 cytokine mRNAs in PP, DON exposure significantly elevated IL-4, IL-6, and IL-10 mRNA expression at various times during the infection. ELISPOT revealed that mRNA expression data corresponded to suppression of IFN-gamma- and enhancement of IL-4-producing cell responses in PP cultures from DON-treated mice. Taken together, these data suggest that DON transiently increased both severity of the reovirus infection and shedding in feces as well as elevated reovirus IgA responses. These effects corresponded to suppressed Th1 and enhanced Th2 cytokine expression.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
12
|
Bharhani MS, Grewal JS, Pilgrim MJ, Enocksen C, Peppler R, London L, London SD. Reovirus serotype 1/strain Lang-stimulated activation of antigen-specific T lymphocytes in Peyer's patches and distal gut-mucosal sites: activation status and cytotoxic mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:3580-9. [PMID: 15749895 DOI: 10.4049/jimmunol.174.6.3580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intraduodenal priming of mice with reovirus serotype 1/strain Lang (reovirus 1/L) stimulates gut lymphocytes and generates precursor and effector CTLs. Our earlier studies demonstrated that germinal center and T cell Ag (GCT) is a marker which identifies reovirus 1/L-specific precursor CTL and effector CTL in Peyer's patches (PP) of reovirus 1/L-inoculated mice. In this study, we characterized the expression of the activation markers, GCT and CD11c, on reovirus 1/L-stimulated gut lymphocytes and the effector mechanisms involved in reovirus 1/L-specific cytotoxicity. We found that intraduodenal reovirus 1/L inoculation of mice induced the expression of both GCT and CD11c on PP lymphocytes (PPL), intraepithelial lymphocytes (IEL), and lamina propria lymphocytes (LPL), and these activated cells expressed Fas ligand (FasL). The majority of the GCT+ CD11c+ IEL and LPL expressed a phenotype, TCRalphabeta+ Thy-1+ CD8+ similar to that expressed on reovirus 1/L-stimulated PPL. However, splenic lymphocytes expressed GCT but not CD11c after stimulation with reovirus 1/L. Perforin, Fas-FasL, and TRAIL pathways were found to be involved in PPL, IEL, and LPL cytotoxic activity against reovirus 1/L-infected targets. In PPL, perforin and Fas-FasL pathways were more effective than TRAIL. In IEL, all three cytotoxic mechanisms were equally as effective. However, LPL prefer Fas-FasL and TRAIL over perforin. Further, we demonstrated the preferential migration of GCT+ PPL to the intraepithelial compartment and the lamina propria. These results suggest that GCT and CD11c can be used as activation markers for gut lymphocytes and CD11c can also be used to differentiate between activated gut and systemic lymphocytes.
Collapse
Affiliation(s)
- Mantej S Bharhani
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Klein JR. T-cell activation in the curious world of the intestinal intraepithelial lymphocyte. Immunol Res 2005; 30:327-37. [PMID: 15531773 DOI: 10.1385/ir:30:3:327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In conventional terms, when T cells encounter appropriate stimuli, they are induced to undergo molecular and physical changes that confer upon them a state of activation. Once initiated, activation generally results in a state of full T-cell responsiveness in an all-or-none manner. Uniquely, however, the intestinal intraepithelial lymphocytes (IELs) bear features that are decidedly different from those of T cells located throughout other immunological compartments in that they exhibit some but not all properties of activated T cells, yet they can be induced to move further into activation provided appropriate costimulatory signals have been received. IEL costimulatory molecules some of which are constitutively expressed, whereas others are upregulated following T-cell receptor (TCR)/CD3 stimulation appear to hold the key to determining the nature and magnitude of the activational process. A system of activation such as this in the intestine would be expected to have great immunological protective value for the host because it would provide an untrammeled process of T-cell activation at a barrier site where the level of antigen exposure is consistently high. Clearly, however, mechanisms must be in place to insure that the IEL activation process is not inadvertently breached. These and other issues central to the operational workings of the intestinal immune system are elaborated in this article, and a model is presented in which IEL activation can be viewed as a layered, three-stage activational process.
Collapse
Affiliation(s)
- John R Klein
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Montufar-Solis D, Klein JR. Experimental intestinal reovirus infection of mice: what we know, what we need to know. Immunol Res 2005; 33:257-65. [PMID: 16462002 PMCID: PMC2745836 DOI: 10.1385/ir:33:3:257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reovirus, a member of the Reoviridae family, is a ubiquitous virus in vertebrate hosts. Although disease caused by reovirus infection is for the most part mild, studies of reovirus have particularly been valuable as a model for understanding the local host response to replicating foreign antigen in intestinal and respiratory sites. In this article, a brief overview is presented of the basic features of reovirus infection, as will the host's humoral and cellular immune response during the infectious cycle. New information regarding the interactions and involvement of immune response molecules during reovirus infection will be presented based on multiple analyte array studies from our laboratory.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Fleeton M, Contractor N, Leon F, He J, Wetzel D, Dermody T, Iwasaki A, Kelsall B. Involvement of Dendritic Cell Subsets in the Induction of Oral Tolerance and Immunity. Ann N Y Acad Sci 2004; 1029:60-5. [PMID: 15681744 DOI: 10.1196/annals.1309.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dendritic cells (DCs) play a central role in the generation of immune responses in the intestine. DCs induce differentiation and tolerance of T cells, and may have a direct role in B cell switching to IgA. Four distinct subsets of CD11c(+) DCs are present in murine Peyer's patches, which represent primary sites for the induction of mucosal T and B cell responses. Studies suggest that CD11b(+) DCs or plasmacytoid DCs may be specialized for the induction of regulatory T cells, and CD8alpha(+) DCs for the induction of clonal deletion in response to soluble oral antigen, while all DC subsets (including CD8alpha(-)/CD11b(-) DCs) may be involved in responses to pathogens. We are currently using reovirus type-1 Lang (TIL) to explore the role of DC populations in mucosal immunity in vivo, as oral administration of live T1L to mice induces strong mucosal and systemic antiviral immune responses, whereas oral administration of inactivated T1L results in tolerance to viral proteins. We found that primary infection with T1L occurs in epithelial cells of the PP follicle-associated epithelium, but that CD8alpha(-)/CD11b(-) DCs in the subepithelial dome region (SED) are loaded with T1L antigens in the absence of active DC infection. At least a portion of this antigen is associated with cell fragments from apoptotic epithelial cells, demonstrating that SED DCs cross-present antigens from apoptotic epithelial cells. In vitro, in contrast to exposure to several TLR-ligands or anti-CD40, exposure to T1L does not activate DCs to mature or to produce cytokines, despite clear loading of the DCs with viral antigens. These data suggest that T1L is taken up by a "silent" receptor on DCs, and that the induction of immunity to T1L is dependent on signals from non-DCs following active viral infection that induce DC maturation. Thus, the decision between tolerance and immunity to inactive and live virus, respectively, likely depends on whether there is active infection of epithelial cells by T1L, which results in the elaboration of molecules, such as cytokines, that induce DC maturation.
Collapse
Affiliation(s)
- Marina Fleeton
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fleeton MN, Contractor N, Leon F, Wetzel JD, Dermody TS, Kelsall BL. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. ACTA ACUST UNITED AC 2004; 200:235-45. [PMID: 15263030 PMCID: PMC2212021 DOI: 10.1084/jem.20041132] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We explored the role of Peyer's patch (PP) dendritic cell (DC) populations in the induction of immune responses to reovirus strain type 1 Lang (T1L). Immunofluorescence staining revealed the presence of T1L structural (σ1) and nonstructural (σNS) proteins in PPs of T1L-infected mice. Cells in the follicle-associated epithelium contained both σ1 and σNS, indicating productive viral replication. In contrast, σ1, but not σNS, was detected in the subepithelial dome (SED) in association with CD11c+/CD8α−/CD11blo DCs, suggesting antigen uptake by these DCs in the absence of infection. Consistent with this possibility, PP DCs purified from infected mice contained σ1, but not σNS, and PP DCs from uninfected mice could not be productively infected in vitro. Furthermore, σ1 protein in the SED was associated with fragmented DNA by terminal deoxy-UTP nick-end labeling staining, activated caspase-3, and the epithelial cell protein cytokeratin, suggesting that DCs capture T1L antigen from infected apoptotic epithelial cells. Finally, PP DCs from infected mice activated T1L-primed CD4+ T cells in vitro. These studies show that CD8α−/CD11blo DCs in the PP SED process T1L antigen from infected apoptotic epithelial cells for presentation to CD4+ T cells, and therefore demonstrate the cross-presentation of virally infected cells by DCs in vivo during a natural viral infection.
Collapse
Affiliation(s)
- Marina N Fleeton
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N228, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mathers AR, Cuff CF. Role of interleukin-4 (IL-4) and IL-10 in serum immunoglobulin G antibody responses following mucosal or systemic reovirus infection. J Virol 2004; 78:3352-60. [PMID: 15016857 PMCID: PMC371054 DOI: 10.1128/jvi.78.7.3352-3360.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mucosal and parenteral immunizations elicit qualitatively distinct immune responses, and there is evidence that mucosal immunization can skew the balance of T helper 1 and T helper 2 responses. However, a clear picture of the effect of the route of infection on the balance of the T helper responses has not yet emerged. Our laboratory previously demonstrated that oral reovirus infection elicits specific serum immunoglobulin G2a (IgG2a), while parenteral reovirus infection elicits the mixed production of specific serum IgG2a and IgG1 in mice of the H-2(d) haplotype. Knowing that IgG2a production is indicative of a T helper 1 response and IgG1 production is indicative of a T helper 2 response, we hypothesized that the route of infection influences the development of T helper 1 and T helper 2 responses. Using quantitative reverse transcription-PCR, we found that mRNA for the T helper 1 cytokines gamma interferon and interleukin-12 (IL-12) were expressed in draining lymphoid tissues following both oral and parenteral infections. However, we observed that mRNA for the T helper 2 cytokine IL-10 was suppressed in the Peyer's patches and mesenteric lymph nodes and IL-4 mRNA was suppressed in the mesenteric lymph nodes compared to noninfected controls, following oral infection. Using recombinant cytokines and cytokine knockout mice, we confirmed that IL-4 plays a major role in mediating the route-of-infection-dependent differences in serum IgG subclass responses. Therefore, the route of infection needs to be taken into consideration when developing vaccines and adjuvant therapies.
Collapse
Affiliation(s)
- Alicia R Mathers
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506-9177, USA
| | | |
Collapse
|
18
|
Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J Virol 2004; 78:947-57. [PMID: 14694126 PMCID: PMC368743 DOI: 10.1128/jvi.78.2.947-957.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/02/2003] [Indexed: 12/18/2022] Open
Abstract
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.
Collapse
Affiliation(s)
- Amy B Hutchings
- GI Cell Biology Laboratory, Children's Hospital, Departments of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang HC, Zhou Q, Dragoo J, Klein JR. Most murine CD8+ intestinal intraepithelial lymphocytes are partially but not fully activated T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4717-22. [PMID: 12391179 DOI: 10.4049/jimmunol.169.9.4717] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine small intestine intraepithelial lymphocytes (IELs) bear properties of both activated and nonactivated T cells, although the significance of that dichotomy remains unclear. In this study, we show that although IELs express CD69 in situ and ex vivo, and have cytotoxic activity ex vivo, most CD8(+) IELs from normal mice are phenotypically similar to naive T cells in that they are CD45RB(high), CD44(low/int), and lack or have low levels of expression of CD25, Ly-6C, OX40, Fas ligand (FasL), and intracellular IFN-gamma synthesis. Unlike CD8(+) lymph node cells, IELs express high levels of the FasL gene, but do not express surface FasL until after CD3-mediated stimulation has occurred. Additionally, anti-CD3 stimulation of IELs in the presence of actinomycin-D did not inhibit FasL expression, suggesting that regulation FasL expression on IELs is controlled at least partially at the posttranscriptional level. Following CD3-mediated stimulation, IELs synthesize and secrete IFN-gamma more rapidly and to greater levels than CD8(+) lymph node cells, and they acquire the phenotype of fully activated effector cells as seen by an up-regulation of CD44, Ly-6C, OX40, FasL, and CD25 with the kinetics of memory T cells, with down-regulation of CD45RB expression. These findings indicate that contrary to previous interpretations, most small intestine IELs are not fully activated T cells, but rather that they are semiactivated T cells ready to shift to a fully activated state once a CD3-mediated signal has been received. These data also imply that under appropriate conditions it is possible for T cells to be sustained in a state of partial activation.
Collapse
Affiliation(s)
- Heuy-Ching Wang
- Dental Branch, Department of Basic Sciences, University of Texas Health Science Center, Houston 77030, USA
| | | | | | | |
Collapse
|
20
|
Zekarias B, Songserm T, Post J, Kok GL, Pol JMA, Engel B, ter HAAHM. Development of organs and intestinal mucosa leukocytes in four broiler lines that differ in susceptibility to malabsorption syndrome. Poult Sci 2002; 81:1283-8. [PMID: 12269605 DOI: 10.1093/ps/81.9.1283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Growth retardation in young broiler chicks due to poor nutrient metabolism, commonly known as malabsorption syndrome (MAS), is a widespread problem caused by enteric infections with a combination of pathogens mainly viruses. Genetic lines of broiler chickens differ in susceptibility to the syndrome. A difference in growth retardation was observed among four broiler lines (BL) after oral inoculation at 1 d of age with intestinal homogenates obtained from MAS-affected birds. Two of the lines that are more susceptible to MAS had severe weight gain depression. To uncover the factors that play a role in the susceptibility to MAS, we analyzed the growth rate of the body and vital organs and the quantity of leukocytes in the peripheral blood and intestinal mucosa. The development of the intestine, liver, bursa of Fabricius, and spleen was similar among the BL. The resistant BL had higher numbers of peripheral blood leukocytes, especially lymphocytes, at 1 d of age. A significant difference was noted in the numbers of CD4+ T cells and CD8+ T cells in the intestinal villi. At the ages of 3 and 8 d, the susceptible BL had more CD8+ T cells in the villi, whereas the ratios of CD4+:CD8+ T cells were higher in the resistant BL. This difference in the number of T-cell subpopulations in the intestinal mucosa might be an important factor in the difference in susceptibility to the enteric infections associated with MAS.
Collapse
Affiliation(s)
- B Zekarias
- Institute for Animal Science and Health, ID-Lelystad, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Suzuki H, Jeong K, Doi K. Age-related changes in the regional variations in the number and subsets of intraepithelial lymphocytes in mouse small intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:589-595. [PMID: 12031418 DOI: 10.1016/s0145-305x(02)00004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previously, we reported regional variations in the number and subsets of the small intestinal IELs of mice. In this study, we examined the age-related changes in the regional variations of IELs in mice from 2 to 11 weeks old. IELs were isolated from the proximal, middle and distal parts of the small intestine and analysed by flow cytometry. The total number of IELs gradually increased with age and reached a plateau at 8 weeks old. As to IEL subsets, the percentage of alpha beta T cells was higher in the distal part at and after 2 weeks of age (before weaning). The percentage of the alpha beta T cell subset of extrathymic origin was higher in the proximal part while the percentages of alpha beta T cell subsets of thymic origin were higher in the distal part at and after 3 weeks (just after weaning). It appears that regional variations in IELs may be formed before the weaning period in mice.
Collapse
Affiliation(s)
- Hodaka Suzuki
- Department of Veterinary Pathology, Faculty of Agriculture, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
22
|
Suzuki H, Jeong KI, Doi K. Regional variations in the distribution of small intestinal intraepithelial lymphocytes in alymphoplasia (aly/aly) mice and heterozygous (aly/+) mice. Immunol Invest 2001; 30:303-12. [PMID: 11777282 DOI: 10.1081/imm-100108165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regional variations in intraepithelial lymphocytes (IELs) in the small intestine were examined in alymphoplasia mutant (aly/aly) mice, which are characterized by the systemic absence of lymph nodes and Peyer's patches, and heterozygous (aly/+) mice. The small intestines were taken from 10 to 12-week-old mice and divided equally into 3 parts (the proximal, middle and distal parts). IELs were isolated from each part of the intestine and analyzed with a flow cytometer. The number of IELs in the distal part was significantly fewer in aly/aly mice compared with aly/+ mice, although the total number of small intestinal IELs were comparable between them. As to the IELs subsets, regional variations in alphabeta T cells and gammadelta T cells were observed in aly/+ mice, but they disappeared in aly/aly mice. However, regional variations in composition of alphabeta T cell subsets were similarly observed in both aly/aly mice and aly/+ mice. This indicates that, although not essential, mesenteric lymph nodes (MLN) and/or Peyer's patches may modify the regional variations in IELs.
Collapse
Affiliation(s)
- H Suzuki
- Department of Veterinary Pathology, Faculty of Agriculture, The University of Tokyo, Japan
| | | | | |
Collapse
|
23
|
Silvey KJ, Hutchings AB, Vajdy M, Petzke MM, Neutra MR. Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. J Virol 2001; 75:10870-9. [PMID: 11602727 PMCID: PMC114667 DOI: 10.1128/jvi.75.22.10870-10879.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 08/11/2001] [Indexed: 12/23/2022] Open
Abstract
Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.
Collapse
Affiliation(s)
- K J Silvey
- GI Cell Biology Laboratory, Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Elhofy A, Marriott I, Bost KL. Salmonella infection does not increase expression and activity of the high affinity IL-12 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3324-32. [PMID: 10975850 DOI: 10.4049/jimmunol.165.6.3324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of high affinity IL-12 receptors is required for IL-12-mediated IFN-gamma production. Activation of this pathway has been shown to be critical in generating optimal cell-mediated immunity. Therefore, increased IL-12 receptor expression might be expected in the host response after infection by an intracellular bacterial pathogen. In the present study, we have made the surprising discovery that infection with Salmonella results in an early reduction of high affinity IL-12 receptor expression and activation. After oral inoculation with Salmonella, the level of mRNA expression encoding IL-12 receptor beta2 (IL-12Rbeta2) subunit was diminished 12 h postinfection in the mesenteric lymph nodes and subsequently in the spleen. Furthermore, decreased IL-12Rbeta2 mRNA expression was observed in CD4+ T lymphocytes isolated from the mesenteric lymph nodes and spleens of infected mice. Attenuated IL-12Rbeta2 mRNA expression correlated with reduced receptor signaling, as demonstrated by reduced IL-12-induced STAT4 phosphorylation in enriched T lymphocytes isolated from the mesenteric lymph nodes and spleens of Salmonella-infected mice. These in vivo results were substantiated with an in vitro model system. In this model system, T lymphocytes cocultured with Salmonella-infected macrophages expressed less IL-12Rbeta2 mRNA. The cocultured T cells were also less responsive to IL-12 as assessed by reduced phosphorylation of STAT4 and limited IFN-gamma secretion. Together, these studies suggest that Salmonella can limit an optimal host immune response by reducing the expression and activity of high affinity IL-12 receptors.
Collapse
MESH Headings
- Animals
- CD4-CD8 Ratio
- Cells, Cultured
- Coculture Techniques
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Down-Regulation/immunology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/metabolism
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/pharmacology
- Intubation, Gastrointestinal
- Lymph Nodes/immunology
- Lymph Nodes/microbiology
- Lymph Nodes/pathology
- Macrophages/immunology
- Macrophages/microbiology
- Mesentery
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Phosphorylation
- RNA, Messenger/biosynthesis
- Receptors, Interleukin/antagonists & inhibitors
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-12
- Recombinant Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- STAT4 Transcription Factor
- Salmonella/immunology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/metabolism
- Spleen/immunology
- Spleen/microbiology
- Spleen/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- A Elhofy
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
25
|
Suzuki H, Jeong KI, Okutani T, Doi K. Regional variations in the distribution of small intestinal intraepithelial lymphocytes in three inbred strains of mice. J Vet Med Sci 2000; 62:881-7. [PMID: 10993186 DOI: 10.1292/jvms.62.881] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regional variation in the intraepithelial lymphocytes (IELs) in the small intestine was examined in BALB/c male and female mice and C3H/He and C57BL/6 male mice. The small intestines were taken from 11 to 12-week-old mice and divided equally into 3 parts (the proximal, middle and distal parts). IELs were isolated from each part of the intestine and analyzed with flow cytometer. The number of IELs was highest in the proximal part and lowest in the distal part. The distribution of IEL subsets was markedly different between the proximal and the distal parts, and that in the middle part showed the intermediate pattern. The percentage of alphabeta T cells were higher in the distal part. In alphabeta T cell subset, the percentage of CD8alphaalpha T cells was higher in the proximal part, whereas those of CD4 and CD4CD8alphaalpha double positive T cells were higher in the distal part. In gammadelta T cell subset, no regional variations were found. The regional variations in the number and subsets of IELs showed almost the same patterns between male and female BALB/c mice and similar patterns among three strains of mice. This strongly suggests that the regional variations in the small intestinal IELs are common to mouse species.
Collapse
Affiliation(s)
- H Suzuki
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Yun CH, Lillehoj HS, Lillehoj EP. Intestinal immune responses to coccidiosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:303-324. [PMID: 10717295 DOI: 10.1016/s0145-305x(99)00080-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and production efficiency of livestock and poultry. Coccidiosis is an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria. Infection with coccidia parasites seriously impairs the growth and feed utilization of chickens and costs the US poultry industry more than $1.5 billion in annual losses. Although acquired immunity to Eimeria develops following natural infection, due to the complex life cycle and intricate host immune response to Eimeria, vaccine development has been difficult and a better understanding of the basic immunobiology of pertinent host-parasite interactions is necessary for developing effective immunological control strategies against coccidiosis. Chickens infected with Eimeria produce parasite specific antibodies in both the circulation and mucosal secretions but humoral immunity plays only a minor role in protection against this disease. Rather, recent evidence implicates cell-mediated immunity as the major factor conferring resistance to coccidiosis. This review will summarize current understanding of the avian intestinal immune system and its response to Eimeria as well as provide a conceptual overview of the complex molecular and cellular events involved in intestinal immunity to coccidiosis. It is anticipated that increased knowledge of the interaction between parasites and host immunity will stimulate the birth of novel immunological and molecular biological concepts in the control of intestinal parasitism.
Collapse
Affiliation(s)
- C H Yun
- USDA, Agricultural Research Service, Immunology and Disease Resistance Laboratory, Livestock and Poultry Sciences Institute, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
27
|
Abstract
Although immunologists typically examine immune responses in peripheral lymphoid tissues, mucosal surfaces are the first sites at which most antigens are encountered. The role of lymphocytes in the gut-associated lymphoid tissue (GALT) in the production of secretory IgA has been well characterized. Although T cells of the GALT are located in areas likely to have a key role in cell-mediated immunity at mucosal surfaces, the ways in which these cells help defend against mucosal infection are only beginning to be understood. This review examines mucosal T-cell responses to enteric infection with bacteria, viruses, and parasites.
Collapse
Affiliation(s)
- H N Shi
- Mucosal Immunology Laboratory, Combined Program in Pediatric G.I. and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|