1
|
Wu X, Xuan W, Yang X, Liu W, Zhang H, Jiang G, Cao B, Jiang Y. Ficolin A knockout alleviates sepsis-induced severe lung injury in mice by restoring gut Akkermansia to inhibit S100A4/STAT3 pathway. Int Immunopharmacol 2023; 121:110548. [PMID: 37356123 DOI: 10.1016/j.intimp.2023.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with high morbidity and mortality. Our previous results demonstrated that Ficolin A (FcnA) protected against lipopolysaccharide (LPS)-induced mild ALI via activating complement, however the mechanism of severe lung damage caused by sepsis remains unclear. This study aimed to investigate whether FcnA modulated gut microbiota to affect the progression of sepsis-induced severe ALI. Fcna-/- and Fcnb-/- C57BL/6 mice were applied to establish the ALI model by injection of LPS intraperitoneally. Mice were treated with antibiotics, fecal microbiota transplantation (FMT), and intratracheal administration of recombinant protein S100A4. Changes in body weight of mice were recorded, and lung injury were assessed. Then lung tissue wet/dry weight was calculated. We found knockout of FcnA, but not FcnB, alleviated sepsis-induced severe ALI evidenced by increased body weight change, decreased wet/dry weight of lung tissue, reduced inflammatory infiltration, decreased lung damage score, decreased Muc-2, TNF-α, IL-1β, IL-6, and Cr levels, and increased sIgA levels. Furthermore, knockout of FcnA restored gut microbiota homeostasis in mice. Correlation analysis showed that Akkermansia was significantly negatively associated with TNF-α, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF). Moreover, knockout of FcnA regulated gut microbiota to protect ALI through S100A4. Finally, we found knockout of FcnA alleviated ALI by inhibiting S100A4 via gut Akkermansia in mice, which may provide further insights and new targets into treating sepsis-induced severe lung injury.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Weixia Xuan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Wei Liu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
| |
Collapse
|
2
|
Kusakari K, Machida T, Ishida Y, Omori T, Suzuki T, Sekimata M, Wada I, Fujita T, Sekine H. The complex formation of MASP-3 with pattern recognition molecules of the lectin complement pathway retains MASP-3 in the circulation. Front Immunol 2022; 13:907023. [PMID: 36052069 PMCID: PMC9425028 DOI: 10.3389/fimmu.2022.907023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
The complement system plays an important role in host defense and is activated via three different activation pathways. We have previously reported that mannose-binding lectin-associated serine protease (MASP)-3, unlike its splicing variant MASP-1, circulates in an active form and is essential for the activation of the alternative pathway (AP) via the activation of complement factor D (FD). On the other hand, like MASP-1 and MASP-2 of the lectin pathway (LP), MASP-3 forms a complex with the pattern recognition molecules (PRMs) of the LP (LP-PRMs). Both MASP-1 and MASP-2 can be activated efficiently when the LP-PRMs complexed with them bind to their ligands. On the other hand, it remains unclear how MASP-3 is activated, or whether complex formation of MASP-3 with LP-PRMs is involved in activation of MASP-3 or its efficiency in the circulation. To address these issues, we generated wild-type (WT) and four mutant recombinant mouse MASP-3 proteins fused with PA (human podoplanin dodecapeptide)-tag (rmMASP-3-PAs), the latter of which have single amino acid substitution for alanine in the CUB1 or CUB2 domain responsible for binding to LP-PRMs. The mutant rmMASP-3-PAs showed significantly reduced in-vivo complex formation with LP-PRMs when compared with WT rmMASP-3-PA. In the in-vivo kinetic analysis of MASP-3 activation, both WT and mutant rmMASP-3-PAs were cleaved into the active forms as early as 30 minutes in the circulation of mice, and no significant difference in the efficiency of MASP-3 cleavage was observed throughout an observation period of 48 hours after intravenous administration. All sera collected 3 hours after administration of each rmMASP-3-PA showed full restoration of the active FD and AP activity in MASP-3-deficient mouse sera at the same levels as WT mouse sera. Unexpectedly, all mutant rmMASP-3-PAs showed faster clearance from the circulation than the WT rmMASP-3-PA. To our knowledge, the current study is the first to show in-vivo kinetics of MASP-3 demonstrating rapid activation and clearance in the circulation. In conclusion, our results demonstrated that the complex formation of MASP-3 with LP-PRMs is not required for in-vivo activation of MASP-3 or its efficiency, but may contribute to the long-term retention of MASP-3 in the circulation.
Collapse
Affiliation(s)
- Kohei Kusakari
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
- *Correspondence: Takeshi Machida,
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Toshiyuki Suzuki
- Radioisotope Research Center, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University, Fukushima, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693. [PMID: 35914009 PMCID: PMC9342791 DOI: 10.1371/journal.ppat.1010693] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination. Klebsiella pneumoniae is a major human pathogen. While capsule is the main virulence factor of the pathogen, only several of more than 80 capsule serotypes are frequently identified in invasive infections. However, it remains unclear how capsule contributes to K. pneumoniae virulence. Here we show that capsule type defines K. pneumoniae virulence by differential escape of immune surveillance in the liver. While low-virulence (LV) types are captured by Kupffer cells (KCs), high-virulence (HV) types circumvent the anti-bacterial machinery. Further, inactivated K. pneumoniae vaccine enables KCs to capture the HV K. pneumoniae and protects mice from lethal infection. Our findings explain the clinical prevalence of HV capsule types, and provide promising insights for future vaccine development.
Collapse
Affiliation(s)
- Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuyuan Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lulu Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Quanjiang Ji
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fen Qu
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Lu
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:613-622. [PMID: 34740769 DOI: 10.1016/j.fsi.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fibrinogen-related proteins (FREPs) are distributed universally in vertebrates and invertebrates. These proteins contain fibrinogen-like (FBG) domains in their C-terminal region and involve in immune responses and other aspects of physiology in invertebrates. In this study, 54 proteins that contain FBG domains or a fibrinogen_c domain were identified in Haliotis discus hannai. Comparatively, 88 and 63 FREPs were identified from the genomes of H. rufescens and H. laevigata. Most FREPs of abalones had a conserved motif containing a bound calcium ion site and a second conserved motif containing a polymerization pocket site. By sequence analysis, 394 SNPs and 11 Indels were identified in 20 FREP genes of the whole genome of H. discus hannai; 992 SNPs and 42 Indels were found in 64 FREPs of H. rufescens, and 192 SNPs and 12 Indels were found in 21 FREPs of H. laevigata. Among these SNPs, 92 missense mutation sites were identified in 26 FREP genes of H. rufescens, and 12 were identified in 8 FREP genes of H. laevigata. Due to the poor genomic integrity, annotations of the SNPs or Indels in H. discus hannai did not yield missense mutant sites. FREP genes with polymorphisms were ubiquitously expressed in all the tested tissues; however, the expression is lowest in the hemolymph. In response to Vibrio parahemolyticus infection, expression of FREP genes was significantly upregulated at different exposure times in gills, hepatopancreas, and hemolymph in H. discus hannai. Overall, this study documented the FREP genes of abalones and shed light on the role of FREPs in the innate immune system of these aquaculture species for the prevention and control of diseases.
Collapse
Affiliation(s)
- Yuelian Zou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qilin Hu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Huiping Yang
- School of Forest Resources and Conservation, IFAS, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32615, USA
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Nikki R, Abdul Jaleel KU, Ragesh S, Shini S, Saha M, Dinesh Kumar PK. Abundance and characteristics of microplastics in commercially important bottom dwelling finfishes and shellfish of the Vembanad Lake, India. MARINE POLLUTION BULLETIN 2021; 172:112803. [PMID: 34371342 DOI: 10.1016/j.marpolbul.2021.112803] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
This paper characterize microplastics (MPs) in the heavily urbanized, brackish water Vembanad Lake (India), focussing on some commercially important bottom-feeding fishes and shellfish (Arius maculatus, Etroplus suratensis, E. maculatus and Villorita sp.). The average abundance of MPs was higher in the water column (872 ± 573 nos./m3) than in finfishes (15 ± 13 particles per fish) and shellfish (23 ± 20 nos./ind.). Fibre was the most abundant MP type in the water and the organisms examined. The size of MPs obtained from finfishes ranged between 0.04 and 4.73 mm (4 ± 3 mm), with a majority of particles being <4 mm. No correlation was found between biological features (e.g. gut length, mouth size) of fishes and the size of MPs in their gut. In Villorita sp., the abundance of MPs was positively correlated with the size of the individuals. Raman spectroscopy confirmed the presence of chlorinated polyvinyl chloride, polyethylene, polypropylene and polyester in the samples.
Collapse
Affiliation(s)
- Ramachandran Nikki
- CSIR- National Institute of Oceanography, Regional Centre, Kochi 682018, Kerala, India
| | - K U Abdul Jaleel
- CSIR- National Institute of Oceanography, Regional Centre, Kochi 682018, Kerala, India.
| | - Saraswathi Ragesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin 682016, Kerala, India
| | - Shaji Shini
- CSIR- National Institute of Oceanography, Regional Centre, Kochi 682018, Kerala, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - P K Dinesh Kumar
- CSIR- National Institute of Oceanography, Regional Centre, Kochi 682018, Kerala, India
| |
Collapse
|
6
|
Yadav S, Sharma P, Sharma A, Ganga L, Saxena JK, Srivastava M. Immunization with Brugia malayi Calreticulin Protein Generates Robust Antiparasitic Immunity and Offers Protection during Experimental Lymphatic Filariasis. ACS Infect Dis 2021; 7:790-799. [PMID: 33667079 DOI: 10.1021/acsinfecdis.0c00565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lymphatic filariasis causes permanent and long-term disability worldwide. Lack of potent adulticidal drugs, the emergence of drug resistance, and the nonavailability of effective vaccines are the major drawbacks toward LF elimination. However, immunomodulatory proteins present in the parasite secretome are capable of providing good protection against LF and thus offer hope in designing new vaccines against LF. Here, we evaluated the immunogenicity and protective efficacy of B. malayi calreticulin protein (BmCRT) using in vitro and in vivo approaches. Stimulation with recombinant BmCRT (rBmCRT) significantly upregulated Th1 cytokine production in mouse splenocytes, mesenteric lymph nodes (mLNs), and splenic and peritoneal macrophages (PMΦs). Heightened NO release, ROS generation, increased lymphocyte proliferation, and increased antigen uptake were also observed after rBmCRT exposure. Mice immunized with rBmCRT responded with increased Th1 and Th2 cytokine secretion and exhibited highly elevated titers of anti-BmCRT specific IgG at day 14 and day 28 postimmunization while splenocytes and mLNs from immunized mice showed a robust recall response on restimulation with rBmCRT. Infective larvae (L3) challenge and protection studies undertaken in Mastomys coucha, a permissive model for LF, showed that rBmCRT-immunized animals mounted a robust humoral immune response as evident by elevated levels of total IgG, IgG1, IgG2a, IgG2b, and IgG3 in their serum even 150 days after L3 challenge, which led to significantly reduced microfilariae and worm burden in infected animals. BmCRT is highly immunogenic and generates robust antiparasitic immunity in immunized animals and should therefore be explored further as a putative vaccine candidate against LF.
Collapse
Affiliation(s)
| | | | - Aditi Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Mrigank Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Barkai LJ, Sipter E, Csuka D, Prohászka Z, Pilely K, Garred P, Hosszúfalusi N. Decreased Ficolin-3-mediated Complement Lectin Pathway Activation and Alternative Pathway Amplification During Bacterial Infections in Patients With Type 2 Diabetes Mellitus. Front Immunol 2019; 10:509. [PMID: 30949171 PMCID: PMC6436462 DOI: 10.3389/fimmu.2019.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Bacterial infections are frequent and severe in patients with diabetes mellitus. Whether diabetes per se induces functional alterations in the complement system hampering activation during infection is unknown. We investigated key elements of the complement system during bacterial infections in patients with type 2 diabetes mellitus (T2DM) and compared them to non-diabetic (ND) individuals. Using a prospective design, we included 197 T2DM, and 196 ND subjects, all with clinical diagnosis of acute community-acquired bacterial infections. Functional activities of the ficolin-3-mediated lectin (F3-LP), mannose binding lectin-mediated lectin- (MBL-LP), classical (CP), and alternative pathways (AP), as well as concentrations of complement activation products C4d and sC5b-9 were determined. Functional in vitro activities of F3-LP and AP were significantly higher in T2DM than in ND subjects, (median 64% vs. 45%, p = 0.0354 and 75 vs. 28%, p = 0.0013, respectively), indicating a decreased in vivo activation and lack of consumption of F3-LP and AP in T2DM patients, whereas no difference in functional capacities of CP and MBL-LP were observed between T2DM and ND subjects. Diminished F3-LP and AP activation was most pronounced in diabetic patients with urinary tract infections with positive microbiological culture results for Escherichia coli bacteria. In the T2DM group 3-months mortality significantly associated with diminished F3-LP and AP, but not with CP activation. Concentrations of C4d and sC5b-9 were significantly lower in the T2DM than in ND patients. In conclusion, we found impaired F3-LP activation and lack of AP amplification during bacterial infections in patients with type 2 diabetes, compared to non-diabetic subjects, suggesting a diminished complement mediated protection to bacterial infections in T2DM.
Collapse
Affiliation(s)
| | - Emese Sipter
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nóra Hosszúfalusi
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Bidula S, Sexton DW, Schelenz S. Ficolins and the Recognition of Pathogenic Microorganisms: An Overview of the Innate Immune Response and Contribution of Single Nucleotide Polymorphisms. J Immunol Res 2019; 2019:3205072. [PMID: 30868077 PMCID: PMC6379837 DOI: 10.1155/2019/3205072] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W. Sexton
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Silke Schelenz
- Department of Microbiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
9
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Wang Y, Wei S, Chen L, Pei J, Wu H, Pei Y, Chen Y, Wang D. Transcriptomic analysis of gene expression in mice treated with troxerutin. PLoS One 2017; 12:e0188261. [PMID: 29190643 PMCID: PMC5708793 DOI: 10.1371/journal.pone.0188261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO), and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR).
Collapse
Affiliation(s)
- Yuerong Wang
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Shuangshuang Wei
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Lintao Chen
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Jinli Pei
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Hao Wu
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yechun Pei
- Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China.,Department of Animal Science, Hainan University, Haikou, Hainan, China
| | - Yibo Chen
- Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Dayong Wang
- Hainan Key Laboratories of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, China.,Laboratory of Biotechnology and Molecular Pharmacology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
11
|
Banda NK, Acharya S, Scheinman RI, Mehta G, Takahashi M, Endo Y, Zhou W, Farrar CA, Sacks SH, Fujita T, Sekine H, Holers VM. Deconstructing the Lectin Pathway in the Pathogenesis of Experimental Inflammatory Arthritis: Essential Role of the Lectin Ficolin B and Mannose-Binding Protein-Associated Serine Protease 2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1835-1845. [PMID: 28739878 PMCID: PMC5568486 DOI: 10.4049/jimmunol.1700119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
Complement plays an important role in the pathogenesis of rheumatoid arthritis. Although the alternative pathway (AP) is known to play a key pathogenic role in models of rheumatoid arthritis, the importance of the lectin pathway (LP) pattern recognition molecules such as ficolin (FCN) A, FCN B, and collectin (CL)-11, as well as the activating enzyme mannose-binding lectin-associated serine protease-2 (MASP-2), are less well understood. We show in this article that FCN A-/- and CL-11-/- mice are fully susceptible to collagen Ab-induced arthritis (CAIA). In contrast, FCN B-/- and MASP-2-/-/sMAp-/- mice are substantially protected, with clinical disease activity decreased significantly (p < 0.05) by 47 and 70%, respectively. Histopathology scores, C3, factor D, FCN B deposition, and infiltration of synovial macrophages and neutrophils were similarly decreased in FCN B-/- and MASP-2-/-/sMAp-/- mice. Our data support that FCN B plays an important role in the development of CAIA, likely through ligand recognition in the joint and MASP activation, and that MASP-2 also contributes to the development of CAIA, likely in a C4-independent manner. Decreased AP activity in the sera from FCN B-/- and MASP-2-/-/sMAp-/- mice with arthritis on adherent anti-collagen Abs also support the hypothesis that pathogenic Abs, as well as additional inflammation-related ligands, are recognized by the LP and operate in vivo to activate complement. Finally, we also speculate that the residual disease seen in our studies is driven by the AP and/or the C2/C4 bypass pathway via the direct cleavage of C3 through an LP-dependent mechanism.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Sumitra Acharya
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Gaurav Mehta
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Conrad A Farrar
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
12
|
Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev 2017; 274:152-171. [PMID: 27782321 DOI: 10.1111/imr.12475] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and Collectins: Friend or Foe during Pathogen Invasion? Trends Microbiol 2015; 23:799-811. [PMID: 26482345 PMCID: PMC7127210 DOI: 10.1016/j.tim.2015.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
Innate immunity serves as the frontline defence against invading pathogens. Despite decades of research, new insights are constantly challenging our understanding of host-elicited immunity during microbial infections. Recently, two families of humoral innate immune proteins, pentraxins and collectins, have become a major focus of research in the field of innate immunity. Pentraxins and collectins are key players in activating the humoral arm of innate immunity, taking centre stage in immunoregulation and disease modulation. However, increasing evidence suggests that pentraxins and collectins can also mediate pathogenic effects during some infections. Herein, we discuss the protective and pathogenic effects of pentraxins and collectins, as well as their therapeutic significance.
Collapse
Affiliation(s)
- Suan-Sin Foo
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sébastien Jaillon
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy; Humanitas University, 20089, Rozzano, Milano, Italy
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
14
|
Sharma P, Sharma A, Vishwakarma AL, Agnihotri PK, Sharma S, Srivastava M. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages. J Leukoc Biol 2015; 99:619-28. [PMID: 26489428 DOI: 10.1189/jlb.4a0715-309rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/01/2015] [Indexed: 12/28/2022] Open
Abstract
Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.
Collapse
Affiliation(s)
- Pankaj Sharma
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| | - Aditi Sharma
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| | - Achchhe Lal Vishwakarma
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| | - Promod Kumar Agnihotri
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| | - Sharad Sharma
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| | - Mrigank Srivastava
- *Parasitology Division, Sophisticated Analytical Instrument Facility, and Toxicology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India; and Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
15
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
16
|
Weber-Steffens D, Hunold K, Kürschner J, Martinez SG, Elumalai P, Schmidt D, Trevani A, Runza VL, Männel DN. Immature mouse granulocytic myeloid cells are characterized by production of ficolin-B. Mol Immunol 2013; 56:488-96. [PMID: 23911405 DOI: 10.1016/j.molimm.2013.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022]
Abstract
Ficolins activate the lectin pathway of the complement system upon binding to carbohydrate patterns on pathogens. To characterize the producer cells of ficolin-B the expression of mouse ficolin-B, the orthologue of human M-ficolin, was studied in macrophages and dendritic cells during differentiation from bone marrow cells, in primary granulocytes, and during differentiation of granulocytes derived from ER-Hoxb8 cells. Expression of ficolin-B mRNA declined in all myeloid cell types to low levels during terminal differentiation. However, in contrast to macrophages and dendritic cells, ficolin-B expression was enhanced upon activation in granulocytes. High expression of ficolin-B was observed in primary immature neutrophilic CD11b(+) Ly-6C(int) Ly-6G(high) granulocytes when isolated from the bone marrow, in particular during sepsis. Ficolin-B was demonstrated in lysates of primary granulocytes, ER-Hoxb8-derived granulocytes, bone marrow-derived macrophages, and dendritic cells. Native ficolin-B from cell lysates and supernatants of granulocytes activated the lectin pathway as measured by binding to MASP-2 and inducing C4 deposition. Specific staining demonstrated intra-cellular or cell associated ficolin-B protein in activated immature granulocytes deposited in a granular fashion. This study shows that ficolin-B is stored in and set free from immature granulocytic myeloid cells indicating a role in the early infection-induced cellular response of these inflammatory cells.
Collapse
|
17
|
Matsushita M. Ficolins in complement activation. Mol Immunol 2013; 55:22-6. [PMID: 22959617 DOI: 10.1016/j.molimm.2012.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
Ficolins are a group of multimeric lectins made up of single subunits each of which is composed of a collagen-like domain and a fibrinogen-like domain. Most of the ficolins identified to date bind to acetylated compounds such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). Ficolins in serum are complexed with MBL-associated serine proteases (MASPs) and their truncated proteins. These lectins play an important role in innate immunity. Binding of the ficolin-MASP complex to carbohydrates present on the surface of microbes initiates complement activation via the lectin pathway.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
18
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
19
|
Arend WP, Mehta G, Antonioli AH, Takahashi M, Takahashi K, Stahl GL, Holers VM, Banda NK. Roles of adipocytes and fibroblasts in activation of the alternative pathway of complement in inflammatory arthritis in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:6423-33. [PMID: 23650618 DOI: 10.4049/jimmunol.1300580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is involved in mediation of joint damage in rheumatoid arthritis, with evidence suggesting activation of both the classical and alternative pathway (AP). The AP is both necessary and sufficient to mediate collagen Ab-induced arthritis, an experimental animal model of immune complex-induced joint disease. The AP in mice is dependent on MASP-1/3 cleavage of pro-factor D (pro-FD) into mature factor D (FD). The objectives of the current study were to determine the cells synthesizing MASP-1/3 and pro-FD in synovial tissue. Collagen Ab-induced arthritis was studied in wild-type C57BL/6 mice, and the localization of mRNA and protein for FD and MASP-1/3 in synovial adipose tissue (SAT) and fibroblast-like synoviocytes (FLS) was determined using various techniques, including laser capture microdissection. SAT was the sole source of mRNA for pro-FD. Cultured differentiated 3T3 adipocytes, a surrogate for SAT, produced pro-FD but no mature FD. FLS were the main source of MASP-1/3 mRNA and protein. Using cartilage microparticles (CMPs) coated with anti-collagen mAb and serum from MASP-1/3(-/-) mice as a source of factor B, pro-FD in 3T3 supernatants was cleaved into mature FD by MASP-1/3 in FLS supernatants. The mature FD was eluted from the CMP, and was not present in the supernatants from the incubation with CMP, indicating that cleavage of pro-FD into mature FD by MASP-1 occurred on the CMP. These results demonstrate that pathogenic activation of the AP can occur in the joint through immune complexes adherent to cartilage and the local production of necessary AP proteins by adipocytes and FLS.
Collapse
Affiliation(s)
- William P Arend
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bidula S, Kenawy H, Ali YM, Sexton D, Schwaeble WJ, Schelenz S. Role of ficolin-A and lectin complement pathway in the innate defense against pathogenic Aspergillus species. Infect Immun 2013; 81:1730-40. [PMID: 23478320 PMCID: PMC3647983 DOI: 10.1128/iai.00032-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/01/2013] [Indexed: 12/23/2022] Open
Abstract
Aspergillus species are saprophytic molds causing life-threatening invasive fungal infections in the immunocompromised host. Innate immune recognition, in particular, the mechanisms of opsonization and complement activation, has been reported to be an integral part of the defense against fungi. We have shown that the complement component ficolin-A significantly binds to Aspergillus conidia and hyphae in a concentration-dependent manner and was inhibited by N-acetylglucosamine and N-acetylgalactosamine. Calcium-independent binding to Aspergillus fumigatus and A. terreus was observed, but binding to A. flavus and A. niger was calcium dependent. Ficolin-A binding to conidia was increased under low-pH conditions, and opsonization led to enhanced binding of conidia to A549 airway epithelial cells. In investigations of the lectin pathway of complement activation, ficolin-A-opsonized conidia did not lead to lectin pathway-specific C4 deposition. In contrast, the collectin mannose binding lectin C (MBL-C) but not MBL-A led to efficient lectin pathway activation on A. fumigatus in the absence of ficolin-A. In addition, ficolin-A opsonization led to a modulation of the proinflammatory cytokine interleukin-8. We conclude that ficolin-A may play an important role in the innate defense against Aspergillus by opsonizing conidia, immobilizing this fungus through enhanced adherence to epithelial cells and modulation of inflammation. However, it appears that other immune pattern recognition molecules, i.e., those of the collectin MBL-C, are involved in the Aspergillus-lectin complement pathway activation rather than ficolin-A.
Collapse
Affiliation(s)
- Stefan Bidula
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hany Kenawy
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Youssif M. Ali
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Darren Sexton
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Infection, Immunity and Inflammation, College of Medicine and Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Silke Schelenz
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
21
|
Endo Y, Takahashi M, Iwaki D, Ishida Y, Nakazawa N, Kodama T, Matsuzaka T, Kanno K, Liu Y, Tsuchiya K, Kawamura I, Ikawa M, Waguri S, Wada I, Matsushita M, Schwaeble WJ, Fujita T. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5860-6. [PMID: 23150716 DOI: 10.4049/jimmunol.1200836] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are complexed with MBL-associated serine proteases, key enzymes of complement activation via the lectin pathway, and act as soluble pattern recognition molecules in the innate immune system. Although numerous reports have revealed the importance of MBL in infectious diseases and autoimmune disorders, the role of ficolin is still unclear. To define the specific role of ficolin in vivo, we generated model mice deficient in ficolins. The ficolin A (FcnA)-deficient (Fcna(-/-)) and FcnA/ficolin B double-deficient (Fcna(-/-)b(-/-)) mice lacked FcnA-mediated complement activation in the sera, because of the absence of complexes comprising FcnA and MBL-associated serine proteases. When the host defense was evaluated by transnasal infection with a Streptococcus pneumoniae strain, which was recognized by ficolins, but not by MBLs, the survival rate was significantly reduced in all three ficolin-deficient (Fcna(-/-), Fcnb(-/-), and Fcna(-/-)b(-/-)) mice compared with wild-type mice. Reconstitution of the FcnA-mediated lectin pathway in vivo improved survival rate in Fcna(-/-) but not in Fcna(-/-)b(-/-) mice, suggesting that both FcnA and ficolin B are essential in defense against S. pneumoniae. These results suggest that ficolins play a crucial role in innate immunity against pneumococcal infection through the lectin complement pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hunold K, Weber-Steffens D, Runza VL, Jensenius JC, Männel DN. Functional analysis of mouse ficolin-B and detection in neutrophils. Immunobiology 2012; 217:982-5. [PMID: 22459270 DOI: 10.1016/j.imbio.2012.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/17/2022]
Abstract
Ficolins and mannan-binding lectin recognize pathogen-associated molecular patterns and initiate the lectin pathway of complement activation via the associated serine proteases. In contrast to human ficolins and mouse ficolin-A, mouse ficolin-B has been considered incapable of complement activation. Dose-dependent binding of recombinant ficolin-B to immobilized GlcNAc, acetylated BSA, acetylated LDL, and fetuin was detected with ficolin-B-specific monoclonal antibodies. Recombinant ficolin-B bound to immobilized acetylated bovine serum albumin interacted with recombinant human mannan-binding lectin-associated serine protease-2, which led to C4 cleavage, thus demonstrating the capability of ficolin-B to activate the lectin pathway. Ficolin-B-specific monoclonal antibodies identified natural ficolin-B protein in lysates of mouse granulocytes isolated from the bone marrow. These results identify mouse ficolin-B as a functional member of the ficolin family activating complement via the lectin pathway.
Collapse
Affiliation(s)
- Katja Hunold
- Institute of Immunology, University of Regensburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Schmid M, Hunold K, Weber-Steffens D, Männel DN. Ficolin-B marks apoptotic and necrotic cells. Immunobiology 2012; 217:610-5. [PMID: 22119501 DOI: 10.1016/j.imbio.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/25/2011] [Indexed: 01/28/2023]
Abstract
Ficolins are a group of proteins consisting of a fibrinogen-like and a collagen-like domain. They play a role in innate immunity by activating the complement system via the lectin pathway upon binding to carbohydrate patterns on pathogens. Two types of ficolins have been identified in mice, ficolin A and ficolin B (FcnB). We show in this article that recombinant FcnB binds to late apoptotic cells and to apoptotic bodies as well as to necrotic cells but not to early apoptotic cells. This binding was calcium-dependent and could be competitively inhibited by acetylated BSA, a classical binding substrate of FcnB. In addition, DNA inhibited binding of FcnB to apoptotic and necrotic cells, indicating that DNA exposed by dying cells could also be a ligand for FcnB. Thus, FcnB may play a role in the removal of damaged host cells and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | |
Collapse
|
24
|
Moreno-Amaral AN, Gout E, Danella-Polli C, Tabarin F, Lesavre P, Pereira-da-Silva G, Thielens NM, Halbwachs-Mecarelli L. M-ficolin and leukosialin (CD43): new partners in neutrophil adhesion. J Leukoc Biol 2012; 91:469-74. [PMID: 22167719 DOI: 10.1189/jlb.0911460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
M-ficolin specificity for sialylated ligands prompted us to investigate its interactions with the main membrane sialoprotein of human neutrophils, CD43. rM-ficolin bound CD43 and prevented the access of anti-CD43 mAb. Moreover, rM-ficolin reacted exclusively with CD43 on Western blots of neutrophil lysate. We confirmed that M-ficolin is secreted by fMLP-activated neutrophils, and this endogenous M-ficolin also binds to CD43 and competes with anti-CD43 mAb. Anti-CD43 antibody cross-linking or fMLP resulted in M-ficolin and CD43 colocalization on polarized neutrophils. The binding of rM-ficolin to resting neutrophils induced cell polarization, adhesion, and homotypic aggregation as anti-CD43 mAb. The M-ficolin Y271F mutant, unable to bind sialic acid, neither reacted with neutrophils nor modulated their functions. Finally, rM-ficolin activated the lectin complement pathway on neutrophils. These results emphasize a new function of M-ficolin, different from ficolin pathogen recognition, i.e., a participation to neutrophil adhesion potentially important in early inflammation, as nanomolar agonist concentrations are sufficient to mobilize M-ficolin to the neutrophil surface. This multivalent lectin could then endow the antiadhesive CD43, essentially designed to prevent leukocyte aggregation in the blood flow, with new adhesive properties and explain, at least in part, dual-adhesive/antiadhesive roles of CD43 in neutrophil recruitment.
Collapse
|
25
|
Endo Y, Iwaki D, Ishida Y, Takahashi M, Matsushita M, Fujita T. Mouse ficolin B has an ability to form complexes with mannose-binding lectin-associated serine proteases and activate complement through the lectin pathway. J Biomed Biotechnol 2012; 2012:105891. [PMID: 22523468 PMCID: PMC3306798 DOI: 10.1155/2012/105891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP-) recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs), most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs), leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP) and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Mechanisms of mannose-binding lectin-associated serine proteases-1/3 activation of the alternative pathway of complement. Mol Immunol 2011; 49:281-9. [PMID: 21943708 DOI: 10.1016/j.molimm.2011.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/27/2011] [Indexed: 11/23/2022]
Abstract
Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL(-/-)/FCN A(-/-) mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL(-/-)/FCN A(-/-) mice. Furthermore, sera from MBL(-/-)/FCN A(-/-) mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL(-/-)/FCN A(-/-) mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4(-/-) mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL(-/-)/FCN A(-/-) mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein.
Collapse
|
27
|
Thielens NM. The double life of M-ficolin: what functions when circulating in serum and tethered to leukocyte surfaces? J Leukoc Biol 2011; 90:410-2. [PMID: 21880644 DOI: 10.1189/jlb.0611281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Commentary on the paper by Kjaer et al. and questions arising from cellular self-recognition by the pattern recognition molecule M-ficolin.
Collapse
|
28
|
Wu C, Söderhäll K, Söderhäll I. Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 2011; 11:2249-64. [PMID: 21598394 DOI: 10.1002/pmic.201000728] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022]
Abstract
To isolate pathogen-associated molecular patterns (PAMPs)-binding molecules, the bacterium, Staphylococcus aureus was used as an affinity matrix to find bacteria-binding proteins in the plasma of the freshwater crayfish, Pacifastacus leniusculus. Two new bacteria-binding ficolin-like proteins (FLPs) were identified by 2-DE and MS analysis. The FLPs have a fibrinogen-related domain (FReD) in their C-terminal and a repeat region in their N-terminal regions with putative structural similarities to the collagen-like domain of vertebrate ficolins and mannose binding lectins (MBLs). Phylogenetic analysis shows that the newly isolated crayfish FLP1 and FLP2 cluster separately from other FReD-containing proteins. A tissue distribution study showed that the mRNA expression of FLP occurred mainly in the hematopoietic tissue (Hpt) and in the hepatopancreas. Recombinant FLPs exhibited agglutination activity of Gram-negative bacteria Escherichia coli and Aeromonas hydrophila in the presence of Ca(2+) . The FLPs could bind to A. hydrophila, E. coli as well as S. aureus as judged by bacteria adsorption. Moreover, the FLPs may help crayfish to clear Gram-negative bacteria, but not Gram-positive bacteria which had been injected into the hemolymph. When Gram-negative bacteria coated with FLPs were incubated with Hpt cells, a lower death rate of the cells was found compared with control treatment. Our results suggest that FLPs function as pattern recognition receptors in the immune response of crayfish.
Collapse
Affiliation(s)
- Chenglin Wu
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Endo Y, Matsushita M, Fujita T. The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 2011; 43:705-12. [PMID: 21315829 DOI: 10.1016/j.biocel.2011.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
Abstract
Ficolins are a family of oligomeric proteins consisting of an N-terminal collagen-like domain and a C-terminal globular fibrinogen-like domain. They are novel lectins that employ the fibrinogen-like domain as a functional domain. Ficolins specifically recognize N-acetyl compounds such as N-acetylglucosamine, components of bacterial and fungal cell walls, and certain bacteria. Like mannose-binding lectin (MBL), ficolins circulate in complexes with MBL-associated serine proteases (MASPs). MASP complexes form with ficolins and MBL, thereby activating the complement through the lectin pathway. Upon binding of ficolins and MBL to carbohydrates on pathogens, MASPs convert to active forms, and subsequently activate the complement. The activated complements lead to pathogen phagocytosis, aggregation and lysis. In humans, three ficolins (L-, M- and H-ficolins) have been identified, which exhibit differences in tissue expression, protein location site, ligand-binding and bacteria-recognition, suggesting a specific role of each ficolin. In addition, these ficolins form complexes with three MASPs (MASP-1, MASP-2 and MASP-3) and two nonenzymatic proteins (sMAP and MAP-1), suggesting a highly sophisticated organization and regulated activation of the ficolin-dependent lectin pathway. This review provides an overview of our current knowledge of ficolins, especially human ficolins and their mouse homologues. We also discuss their possible physiological roles in innate immunity, especially their defensive role against bacterial infection.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
30
|
Romero A, Dios S, Poisa-Beiro L, Costa MM, Posada D, Figueras A, Novoa B. Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:334-344. [PMID: 21034769 DOI: 10.1016/j.dci.2010.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
In this paper, we describe sequences of fibrinogen-related proteins (FREPs) in the Mediterranean mussel Mytilus galloprovincialis (MuFREPs) with the fibrinogen domain probably involved in the antigen recognition, but without the additional collagen-like domain of ficolins, molecules responsible for complement activation by the lectin pathway. Although they do not seem to be true or primive ficolins since the phylogenetic analysis are not conclusive enough, their expression is increased after bacterial infection or PAMPs treatment and they present opsonic activities similar to mammalian ficolins. The most remarkable aspect of these sequences was the existence of a very diverse set of FREP sequences among and within individuals (different mussels do not share any identical sequence) which parallels the extraordinary complexity of the immune system, suggesting the existence of a primitive system with a potential capacity to recognize and eliminate different kind of pathogens.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Chang WC, Hartshorn KL, White MR, Moyoa P, Michelow IC, Koziel H, Kinane BT, Schmidt EV, Fujita T, Takahashi K. Recombinant chimeric lectins consisting of mannose-binding lectin and L-ficolin are potent inhibitors of influenza A virus compared with mannose-binding lectin. Biochem Pharmacol 2011; 81:388-95. [PMID: 21035429 PMCID: PMC3053085 DOI: 10.1016/j.bcp.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/21/2022]
Abstract
MBL structurally contains a type II-like collagenous domain and a carbohydrate recognition domain (CRD). We have recently generated three novel recombinant chimeric lectins (RCL), in which varying length of collagenous domain of mannose-binding lectin (MBL) is replaced with that of L-ficolin (L-FCN). CRD of MBL is used for target recognition because it has a broad spectrum in pathogen recognition compared with L-FCN. Results of our study demonstrate that these RCLs are potent inhibitors of influenza A virus (IAV). RCLs, against IAV, show dose-dependent activation of the lectin complement pathway, which is significantly higher than that of recombinant human MBL (rMBL). This activity is observed even without MBL-associated serine proteases (MASPs, provided by MBL deficient mouse sera), which have been thought to mediate complement activation. These observations suggest that RCLs are more efficient in associating with MASP-2, which predominantly mediates the activity. Yet, additional serum further increases the activity while RCL-mediated coagulation-like enzyme activities are diminished compared with rMBL, suggesting reduced association with MASP-1, which has been shown to mediate coagulation-like activity. These data suggest that RCLs may interfere less with host coagulation, which is advantageous to be a therapeutic drug. Importantly, these RCLs have surpassed rMBL for anti-viral activities, such as viral aggregation, reduction of viral hemagglutination (HA) and inhibition of virus-mediated HA and neuraminidase (NA) activities. These results are encouraging that novel RCLs could be used as anti-IAV agents with less side effect and that RCLs would be suitable candidates in developing a new anti-IAV therapy.
Collapse
Affiliation(s)
- Wei-Chuan Chang
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kevan L. Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA02118
| | - Mitchell R. White
- Department of Medicine, Boston University School of Medicine, Boston, MA02118
| | | | - Ian C. Michelow
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Henry Koziel
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02115
| | - Bernard T. Kinane
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Emmett V. Schmidt
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295 Japan
| | - Kazue Takahashi
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
32
|
Girija UV, Mitchell DA, Roscher S, Wallis R. Carbohydrate recognition and complement activation by rat ficolin-B. Eur J Immunol 2011; 41:214-23. [PMID: 21182092 PMCID: PMC3179595 DOI: 10.1002/eji.201040612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 12/19/2022]
Abstract
Ficolins are innate immune components that bind to PAMPs and structures on apoptotic cells. Humans produce two serum forms (L- and H-ficolin) and a leukocyte-associated form (M-ficolin), whereas rodents and most other mammals produce ficolins-A and -B, orthologues of L- and M-ficolin, respectively. All three human ficolins, together with mouse and rat ficolin-A, associate with mannan-binding lectin-associated serine proteases (MASPs) and activate the lectin pathway of complement on PAMPs. By contrast, mouse ficolin-B does not bind MASPs and cannot activate complement. Because of these striking differences together with the lack of functional information for other ficolin-B orthologues, we have characterized rat ficolin-B, and compared its physical and biochemical properties with its serum counterpart. The data show that both rat ficolins have archetypal structures consisting of oligomers of a trimeric subunit. Ficolin-B recognized mainly sialyated sugars, characteristic of exogenous and endogenous ligands, whereas ficolin-A had a surprisingly narrow specificity, binding strongly to only one of 320 structures tested: an N-acetylated trisaccharide. Surprisingly, rat ficolin-B activated MASP-2 comparable to ficolin-A. Mutagenesis data reveal that lack of activity in mouse ficolin-B is probably caused by a single amino acid change in the putative MASP-binding site that blocks the ficolin-MASP interaction.
Collapse
Affiliation(s)
| | - Daniel A Mitchell
- Clinical Sciences Research Institute, University of WarwickWarwick, UK
| | - Silke Roscher
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
| | - Russell Wallis
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
- Department of Biochemistry, University of LeicesterLeicester, UK
| |
Collapse
|
33
|
Zhang J, Yang L, Ang Z, Yoong SL, Tran TTT, Anand GS, Tan NS, Ho B, Ding JL. Secreted M-ficolin anchors onto monocyte transmembrane G protein-coupled receptor 43 and cross talks with plasma C-reactive protein to mediate immune signaling and regulate host defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6899-910. [PMID: 21037097 DOI: 10.4049/jimmunol.1001225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Although transmembrane C-type lectins (CLs) are known to initiate immune signaling, the participation and mechanism of action of soluble CLs have remained enigmatic. In this study, we found that M-ficolin, a conserved soluble CL of monocyte origin, overcomes its lack of membrane-anchor domain by docking constitutively onto a monocyte transmembrane receptor, G protein-coupled receptor 43 (GPCR43), to form a pathogen sensor-cum-signal transducer. On encountering microbial invaders, the M-ficolin-GPCR43 complex activates the NF-κB cascade to upregulate IL-8 production. We showed that mild acidosis at the local site of infection induces conformational changes in the M-ficolin molecule, which provokes a strong interaction between the C-reactive protein (CRP) and the M-ficolin-GPCR43 complex. The collaboration among CRP-M-ficolin-GPCR43 under acidosis curtails IL-8 production thus preventing immune overactivation. Therefore, we propose that a soluble CL may become membrane-associated through interaction with a transmembrane protein, whereupon infection collaborates with other plasma protein to transduce the infection signal and regulate host defense. Our finding implies a possible mechanism whereby the host might expand its repertoire of immune recognition-cum-regulation tactics by promiscuous protein networking. Furthermore, our identification of the pH-sensitive interfaces of M-ficolin-CRP provides a powerful template for future design of potential immunomodulators.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Banda NK, Takahashi M, Levitt B, Glogowska M, Nicholas J, Takahashi K, Stahl GL, Fujita T, Arend WP, Holers VM. Essential role of complement mannose-binding lectin-associated serine proteases-1/3 in the murine collagen antibody-induced model of inflammatory arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5598-606. [PMID: 20870940 PMCID: PMC3157645 DOI: 10.4049/jimmunol.1001564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene-targeted mice deficient in the complement mannose-binding lectin-associated serine protease-1 and -3 (MASP1/3(-/-)) express only the zymogen of factor D (pro-factor D [pro-Df]), a necessary component of the alternative pathway (AP). We used the murine collagen Ab-induced arthritis (CAIA) model, in which the AP is unique among complement pathways in being both necessary and sufficient for disease induction, to determine whether MASP-1/3 are required in vivo for the development of tissue injury. Disease activity scores, complement C3 tissue deposition in the joint, and histopathologic injury scores were markedly decreased in MASP1/3(-/-) as compared with wild-type (WT) mice. MASP-1 protein was immunochemically localized to synovial cells of knees of WT mice with arthritis. Pro-Df was present in both synovial cells and chondrocytes of knees of WT and MASP1/3(-/-) mice without arthritis, with increased amounts present in synovial cells of WT mice with CAIA. No conversion of pro-Df to mature Df was detectable in the serum of MASP1/3(-/-) mice during the evolution of CAIA. C3 activation and deposition as well as C5a generation induced in vitro by adherent anti-type II collagen mAbs were absent using sera from MASP1/3(-/-) mice under conditions in which only the AP was active. The addition of human Df fully reconstituted in vitro C3 activation and C5a generation using sera from MASP1/3(-/-) mice. Our studies demonstrate for the first time, to our knowledge, the absolute requirement for the activity of MASP-1 protein in autoimmune-associated inflammatory tissue injury in vivo through activation of the AP of complement by cleavage of pro-Df to mature Df.
Collapse
Affiliation(s)
- Nirmal K. Banda
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Brandt Levitt
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Magdalena Glogowska
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jessica Nicholas
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kazue Takahashi
- Developmental Immunology, Massachusetts General Hospital for Children, Boston, MA 02114
| | - Gregory L. Stahl
- Center of Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital, Boston, MA 02115
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - William P. Arend
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
35
|
Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 2010; 28:157-83. [PMID: 19968561 DOI: 10.1146/annurev-immunol-030409-101305] [Citation(s) in RCA: 437] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate immune system consists of a cellular and a humoral arm. Pentraxins (e.g., the short pentraxin C reactive protein and the long pentraxin PTX3) are key components of the humoral arm of innate immunity which also includes complement components, collectins, and ficolins. In response to microorganisms and tissue damage, neutrophils, macrophages, and dendritic cells are major sources of fluid-phase pattern-recognition molecules (PRMs) belonging to different molecular classes. Humoral PRMs in turn interact with and regulate cellular effectors. Effector mechanisms of the humoral innate immune system include activation and regulation of the complement cascade; agglutination and neutralization; facilitation of recognition via cellular receptors (opsonization); and regulation of inflammation. Thus, the humoral arm of innate immunity is an integrated system consisting of different molecules and sharing functional outputs with antibodies.
Collapse
|
36
|
Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:58-73. [PMID: 19799112 DOI: 10.1007/978-1-4419-0901-5_5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity comprises a sophisticated network of molecules, which recognize pathogens, and effector molecules, working together to establish a quick and efficient immune response to infectious agents. Complement activation triggered by mannan binding lectin (MBL) or ficolins represents a beautiful example of this network Both MBL and ficolins recognize specific chemical structures on the surface of antigens and pathogens, thus bind to a broad variety of pathogens. Once bound further complement deposition is achieved through a cascade of proteolytic reactions. MBL and ficolin induced complement activation is critical for adequate anti-bacterial, anti-fungal and anti-viral responses. This is well illustrated by numerous and convincing studies that demonstrate associations between MBL deficiency and infections. Recent work has also highlighted that MBL and ficolins recognize self-structures, thus extending the role of these molecules beyond the traditional view of first line defense molecules. It appears that MBL deficiency may modulate the prognosis of inflammatory and autoimmune diseases. What is known about the mechanisms behind this broad scope of activities of MBL and ficolins is discussed in this chapter.
Collapse
Affiliation(s)
- Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
37
|
Endo Y, Fujita T. [Pattern-recognition molecule, Ficolin]. Nihon Saikingaku Zasshi 2008; 63:399-405. [PMID: 19317229 DOI: 10.3412/jsb.63.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295
| | | |
Collapse
|
38
|
Garlatti V, Martin L, Gout E, Reiser JB, Fujita T, Arlaud GJ, Thielens NM, Gaboriaud C. Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch. J Biol Chem 2007; 282:35814-20. [PMID: 17897951 DOI: 10.1074/jbc.m705741200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ficolins are soluble oligomeric proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. They act as innate immune sensors by recognizing conserved molecular markers exposed on microbial surfaces and thereby triggering effector mechanisms such as enhanced phagocytosis and inflammation. In humans, L- and H-ficolins have been characterized in plasma, whereas a third species, M-ficolin, is secreted by monocytes and macrophages. To decipher the molecular mechanisms underlying their recognition properties, we previously solved the structures of the recognition domains of L- and H-ficolins, in complex with various model ligands (Garlatti, V., Belloy, N., Martin, L., Lacroix, M., Matsushita, M., Endo, Y., Fujita, T., Fontecilla-Camps, J. C., Arlaud, G. J., Thielens, N. M., and Gaboriaud, C. (2007) EMBO J. 24, 623-633). We now report the ligand-bound crystal structures of the recognition domain of M-ficolin, determined at high resolution (1.75-1.8 A), which provides the first structural insights into its binding properties. Interaction with acetylated carbohydrates differs from the one previously described for L-ficolin. This study also reveals the structural determinants for binding to sialylated compounds, a property restricted to human M-ficolin and its mouse counterpart, ficolin B. Finally, comparison between the ligand-bound structures obtained at neutral pH and nonbinding conformations observed at pH 5.6 reveals how the ligand binding site is dislocated at acidic pH. This means that the binding function of M-ficolin is subject to a pH-sensitive conformational switch. Considering that the homologous ficolin B is found in the lysosomes of activated macrophages (Runza, V. L., Hehlgans, T., Echtenacher, B., Zahringer, U., Schwaeble, W. J., and Mannel, D. N. (2006) J. Endotoxin Res. 12, 120-126), we propose that this switch could play a physiological role in such acidic compartments.
Collapse
Affiliation(s)
- Virginie Garlatti
- Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique-CNRS-Université Joseph Fourier, 38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Runza VL, Schwaeble W, Männel DN. Ficolins: novel pattern recognition molecules of the innate immune response. Immunobiology 2007; 213:297-306. [PMID: 18406375 DOI: 10.1016/j.imbio.2007.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
Ficolins are members of the collectin family of proteins which are able to recognize pathogen-associated molecular pattern (PAMP) on microbial surfaces. Upon binding to their specific PAMP, ficolins may trigger activation of the immune system by either binding to cellular receptors for collectins or by initiating activation of complement via the lectin pathway. For the latter, the human ficolins (i.e. L-, H- and M-ficolin) and murine ficolin-A were shown to associate with the lectin pathway-specific serine protease MBL-associated serine protease-2 (MASP-2) and catalyse its activation which in turn activates C4 and C4b-bound C2 to generate the C3 convertase C4b2a. There is mounting evidence underlining the lectin nature of ficolins with a wide range of carbohydrate moieties recognized on microbial surfaces. However, not all members of the ficolin family appear to act as lectin pathway recognition components. For example, murine ficolin-B does not associate with MASP-2 and appears to be absent in plasma and other humoral fluids. Its stringent cellular localization points to other functions within the immune response, possibly acting as an intracellular scavenger to target and facilitate clearance of PAMP-bearing debris. When comparing ficolin orthologues from different species, it appears evident that human, murine, and porcine ficolins differ in many aspects, a specific point that we aim to address in this review.
Collapse
Affiliation(s)
- Valeria L Runza
- Institute of Immunology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | | | |
Collapse
|
40
|
Phaneuf LR, Lillie BN, Hayes MA, Turner PV. Single nucleotide polymorphisms in mannan-binding lectins and ficolins in various strains of mice. Int J Immunogenet 2007; 34:259-67. [PMID: 17627761 DOI: 10.1111/j.1744-313x.2007.00689.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mannan-binding lectin (MBL) and ficolin are collagenous lectins produced primarily by the liver and are involved in innate resistance to microbial pathogens. Mice have two MBL genes (Mbl1 and Mbl2) that encode MBL-A and MBL-C, respectively. Similarly, the murine Fcna and Fcnb genes encode ficolin-A and ficolin-B. Several single nucleotide polymorphisms (SNP) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. In these studies, we identified SNPs in the expressed collagenous lectin genes Mbl1, Mbl2, Fcna, and Fcnb in 10 strains of mice designated high priority Group A strains by the Mouse Phenome Project (129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6 J, DBA/2 J, FVB/NJ, SJL/J, CAST/EiJ and SPRET/EiJ) by sequencing gene exons by reverse transcription-polymerase chain reaction (RT-PCR). Sequence comparisons identified a total of 15 structural SNPs in Mbl1 in two strains, 27 SNPs in Mbl2 in five strains, and 19 and 15 SNPs in Fcna and Fcnb, respectively, in two strains. Two non-synonymous SNPs were identified in the collagen-like domain of mouse Fcnb that are similar to the coding polymorphisms in the collagen-like domain of human MBL2. Most of the non-synonymous SNPs identified in Mbl1 and Mbl2 occurred in the carbohydrate-recognition domains (CRDs), and some resulted in altered residues close to known ligand binding sites. Similarly, most non-synonymous SNPs of Fcna and Fcnb were identified in the fibrinogen-like CRD. The miscoding SNPs found in the CRD regions of mouse Mbl1, Mbl2, Fcna and Fcnb may be associated with strain differences in glycan binding avidity and disposition of microbial or host ligands. Furthermore, the non-synonymous mutations in the collagen-like domain of Fcnb may alter the structure of the mature ficolin-B protein leading to functional deficiencies. These differences may be important in the pathogenesis of susceptibility differences between inbred strains to various infectious microorganisms.
Collapse
Affiliation(s)
- L R Phaneuf
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Kwon S, Kim MS, Kim D, Lee KW, Choi SY, Park J, Kim YH, Lee Y, Kwon HJ. Identification of a functionally relevant signal peptide of mouse ficolin A. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 40:532-8. [PMID: 17669269 DOI: 10.5483/bmbrep.2007.40.4.532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.
Collapse
Affiliation(s)
- Sanghoon Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Girija UV, Dodds AW, Roscher S, Reid KBM, Wallis R. Localization and characterization of the mannose-binding lectin (MBL)-associated-serine protease-2 binding site in rat ficolin-A: equivalent binding sites within the collagenous domains of MBLs and ficolins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:455-62. [PMID: 17579066 PMCID: PMC2592534 DOI: 10.4049/jimmunol.179.1.455] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ficolins and mannose-binding lectins (MBLs) are the first components of the lectin branch of the complement system. They comprise N-terminal collagen-like domains and C-terminal pathogen-recognition domains (fibrinogen-like domains in ficolins and C-type carbohydrate-recognition domains in MBLs), which target surface-exposed N-acetyl groups or mannose-like sugars on microbial cell walls. Binding leads to activation of MBL-associated serine protease-2 (MASP-2) to initiate complement activation and pathogen neutralization. Recent studies have shown that MASP-2 binds to a short segment of the collagen-like domain of MBL. However, the interaction between ficolins and MASP-2 is relatively poorly understood. In this study, we show that the MASP-2 binding site on rat ficolin-A is also located within the collagen-like domain and encompasses a conserved motif that is present in both MBLs and ficolins. Characterization of this motif using site-directed mutagenesis reveals that a lysine residue in the X position of the Gly-X-Y collagen repeat, Lys(56) in ficolin-A, which is present in all ficolins and MBLs known to activate complement, is essential for MASP-2 binding. Adjacent residues also make important contributions to binding as well as to MASP activation probably by stabilizing the local collagen helix. Equivalent binding sites and comparable activation kinetics of MASP-2 suggest that complement activation by ficolins and MBLs proceeds by analogous mechanisms.
Collapse
Affiliation(s)
| | - Alister W. Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Silke Roscher
- Departments of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Kenneth B. M. Reid
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Russell Wallis
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK
- Departments of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- Departments of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
43
|
Voehringer D, van Rooijen N, Locksley RM. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol 2007; 81:1434-44. [PMID: 17339609 DOI: 10.1189/jlb.1106686] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are associated with allergic diseases and helminth infections. Development of these cells and recruitment to peripheral tissues are only partially understood. Distinct stages of eosinophil development in fetal liver, bone marrow, and blood could be identified using IL-4 reporter mice and mAb against FIRE, Siglec-F, and CCR3. Immature eosinophils were present in the fetal liver and could reconstitute the eosinophil compartment in irradiated recipient mice. In adult mice, eosinophil maturation proceeded from CCR3(-) to CCR3(+) cells in the bone marrow and was accompanied with changes in the transcriptional profile. Eosinophils appeared as activated cells in lung, thymus, lymph nodes, and Peyer's patches but remained in a resting state in bone marrow, blood, and spleen. Mixed bone marrow chimeras revealed that recruitment to lung and peritoneum was dependent on Stat6 expression in noneosinophils. Alternatively activated macrophages contributed substantially to tissue recruitment of eosinophils, providing a novel basis for development of therapeutic approaches to lower tissue eosinophilia.
Collapse
Affiliation(s)
- David Voehringer
- Howard Hughes Medical Institute, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
44
|
Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007; 212:371-9. [PMID: 17544822 DOI: 10.1016/j.imbio.2006.11.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Ficolin is a multimeric protein consisting of an N-terminal collagen-like domain and a C-terminal fibrinogen-like domain. The structure is similar to mannose-binding lectin (MBL) and complement C1q owing to the collagen-like stalk. Accumulating data indicate that a key function of ficolin is to recognize the carbohydrate moieties on pathogens as a pattern-recognition molecule. Two or three kinds of ficolin have been identified in each species of mammals. They are similar but with some differences in the expression site, location site, ligand-binding specificity and ability to form complexes with MBL-associated serine proteases (MASPs). Like MBL, some ficolins are serum lectins and can form a complex with MASPs and small MBL-associated protein (sMAP). This complex activates the complement through "the lectin pathway". Our recent study suggests that ficolin acts through two distinct routes: the lectin pathway and a primitive opsonophagocytosis. All these observations suggest that ficolins function in clearance of non-self, based on their location sites and their molecular features.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
45
|
Iwaki D, Kanno K, Takahashi M, Endo Y, Lynch NJ, Schwaeble WJ, Matsushita M, Okabe M, Fujita T. Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway. THE JOURNAL OF IMMUNOLOGY 2007; 177:8626-32. [PMID: 17142762 DOI: 10.4049/jimmunol.177.12.8626] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannose-binding lectin (MBL) and ficolins are pattern recognition proteins acting in innate immunity, and they trigger the activation of the lectin complement pathway through MBL-associated serine proteases (MASPs). Upon activation of the lectin pathway, MASP-2 cleaves C4 and C2. A truncated form of MASP-2, named small MBL-associated protein (sMAP), is also associated with MBL/ficolin-MASP complexes. To clarify the role of sMAP, we have generated sMAP-deficient (sMAP(-/-)) mice by targeted disruption of the sMAP-specific exon. Because of the gene disruption, the expression level of MASP-2 was also decreased in sMAP(-/-) mice. When recombinant sMAP (rsMAP) and recombinant MASP-2 (rMASP-2) reconstituted the MBL-MASP-sMAP complex in deficient serum, the binding of these recombinant proteins to MBL was competitive, and the C4 cleavage activity of the MBL-MASP-sMAP complex was restored by the addition of rMASP-2, whereas the addition of rsMAP attenuated the activity. Therefore, MASP-2 is essential for the activation of C4 and sMAP plays a regulatory role in the activation of the lectin pathway.
Collapse
Affiliation(s)
- Daisuke Iwaki
- Department of Immunology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City 960-1295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takahashi M, Mori S, Shigeta S, Fujita T. Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:93-104. [PMID: 17892207 DOI: 10.1007/978-0-387-71767-8_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mannose-binding lectin (MBL) and ficolin are pattern recognition molecules in the complex with the MBL-associated serine proteases (MASPs). Three kinds of MASPs, termed as MASP-1, MASP-2 and MASP-3 have been identified. When MBL or ficolins binds to carbohydrates on the surface of microbes, conformational modifications of these molecules trigger to activate zymogens of MASPs, followed by consequential complement activation. MASP-2 cleaves C4 and C2 to make a C3 convertase, C4b2a. MASP-1 has an ability to cleave C3 directly, although this activity has not been detected in physiological conditions. Natural target molecules for MASP-3 are still discussible. To elucidate the physiological meanings of MASPs, we generated MASPs-deficient mice. Not only MASP-2-deficient mouse but also MASP-1-/MASP-3-deficient mouse reduced activities for C3 deposition on the surface of mannan and zymosan, suggesting MASP-1/3 also contribute the activation of complement by the lectin pathway. Also, MASP-1/3-deficient mice showed the susceptible to an influenza virus.
Collapse
Affiliation(s)
- Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Japan.
| | | | | | | |
Collapse
|
47
|
Chan RK, Ibrahim SI, Takahashi K, Kwon E, McCormack M, Ezekowitz A, Carroll MC, Moore FD, Austen WG. The Differing Roles of the Classical and Mannose-Binding Lectin Complement Pathways in the Events following Skeletal Muscle Ischemia-Reperfusion. THE JOURNAL OF IMMUNOLOGY 2006; 177:8080-5. [PMID: 17114482 DOI: 10.4049/jimmunol.177.11.8080] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement is an important mediator of the injuries observed after skeletal muscle ischemia and subsequent reperfusion. Although the classical pathway had been assumed to be the major pathway of activation leading to injury, the mannose-binding lectin (MBL) pathway might also play a contributing role. In this study, we found that MBL-deficient mice had significant protection after skeletal muscle reperfusion injury compared with wild-type, classical pathway-specific C1q-deficient mice, or MBL-deficient mice reconstituted with recombinant human MBL. MBL-deficient mice, however, were not protected from permeability edema or secondary lung injury after ischemia-reperfusion. These data indicate that blockade of the classical pathway alone (C1q) is protective against permeability edema and remote pulmonary injury but not protective against histologic muscle injury. In contrast, blocking the MBL pathway alone protects against histological injury but is not protective against permeability edema or lung injury. Thus, the activation of both pathways is likely responsible for the full spectrum of injuries observed after skeletal muscle reperfusion injury.
Collapse
Affiliation(s)
- Rodney K Chan
- Department of Surgery and Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|