1
|
Kardava L, Lim J, Buckner CM, Lopes de Assis F, Zhang X, Wang W, Melnyk ML, El Merhebi O, Trihemasava K, Teng IT, Carroll R, Jethmalani Y, Castro M, Lin BC, Praiss LH, Seamon CA, Kwong PD, Koup RA, Serebryannyy L, Nickle DC, Chun TW, Moir S. Phenotypic heterogeneity defines B cell responses to repeated SARS-CoV-2 exposures through vaccination and infection. Cell Rep 2025; 44:115557. [PMID: 40222009 PMCID: PMC12080740 DOI: 10.1016/j.celrep.2025.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/29/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Long-lived humoral memory is key to durable immunity against pathogens yet remains challenging to define due to heterogeneity among antigen-reactive B cells. We addressed this gap through longitudinal sampling over the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccinations with or without breakthrough infection. High-dimensional phenotypic profiling performed on ∼72 million B cells showed that receptor-binding domain (RBD) reactivity was associated with five distinct immunoglobulin G (IgG) B cell populations. Two expressed the activation marker CD71, both correlated with neutralizing antibodies, yet the one lacking the memory marker CD27 was induced by vaccination and blunted by infection. Two were resting memory populations; one lacking CD73 arose early and contributed to cross-reactivity; the other, expressing CD73, arose later and correlated with neutralizing antibodies. The fifth, a rare germinal center-like population, contributed to recall responses and was highly cross reactive. Overall, robust and distinct responses to booster vaccination overcame the superiority of hybrid immunity provided by breakthrough infection.
Collapse
Affiliation(s)
- Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James Lim
- Monoceros Biosystems, San Diego, CA 29130, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mattie L Melnyk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Robin Carroll
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Mike Castro
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Lauren H Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Richard A Koup
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - David C Nickle
- Monoceros Biosystems, San Diego, CA 29130, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Unterberger S, Terrazzini N, Sacre S. Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression. Hum Immunol 2025; 86:111249. [PMID: 39922089 DOI: 10.1016/j.humimm.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can induce trained immunity in monocytes. Trained immunity is the result of metabolic and epigenetic reprogramming of progenitor cells leading to an altered inflammatory response to subsequent activation. To investigate the monocyte response 3-6 months post SARS-CoV-2 infection, steady-state gene expression and innate immune receptor stimulation were investigated in monocytes from unvaccinated SARS-CoV-2 naïve individuals and convalescent COVID-19 participants. The differentially expressed genes (DEGs) identified were involved in the regulation of innate immune signalling pathways associated with anti-viral defence. COVID-19 participants who had experienced severe symptoms exhibited a larger number of DEGs than participants that had mild symptoms. Interestingly, genes encoding receptors that recognise SARS-CoV-2 RNA were downregulated. DDX58, encoding retinoic-acid inducible gene I (RIG-I), was downregulated which corresponded with a reduced response to RIG-I activation. Furthermore, toll-like receptor (TLR)1/2 and TLR4 activation also exhibited reduced cytokine secretion from convalescent COVID-19 monocytes. These data suggest that following SARS-CoV-2 infection, monocytes exhibit altered steady-state gene expression and reduced responsiveness to innate immune receptor activation. As both RIG-I and TLRs recognise components of SARS-CoV-2, this may lead to a moderated inflammatory response to SARS-CoV-2 reinfection in the months following the initial infection.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Wang C, Tang X, Jiang C, Zhang Y, Han B, Sun Y, Guo J, Peng H, Wang Z, Wang Y, Zhang J, Zhang Y, Jiang C. Intradermal delivery of SARS-CoV-2 RBD3-Fc mRNA vaccines via a needle-free injection system induces robust immune responses in rats. Front Immunol 2025; 16:1530736. [PMID: 40034698 PMCID: PMC11872709 DOI: 10.3389/fimmu.2025.1530736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Needle-free injection system (NFIS) is easy to operate and can decrease needle phobia. Besides, NFIS can increase the interaction of antigens in a more dispersed manner with immune cell at local injection site, which may improve the immune responses of mRNA vaccines. Although SARS-CoV-2 mRNA vaccines have great success, universal vaccines are urgently needed. Delivering universal mRNA vaccines by NFIS is preferred to combat COVID-19. Methods RBD3-Fc mRNA expressing BA.4, Delta, and prototype RBD, and human IgG Fc with YTE mutation was designed and synthesized. The safety and immune responses of universal RBD3-Fc naked mRNA and mRNA-LNP vaccines delivered intradermally using NFIS (named GV-01) and intramuscularly via needles were evaluated and compared in rats. Results The prime-boost regimen administered by two routes resulted in potent immune responses and intradermal delivery displays comparable or better performance in terms of binding antibodies, neutralizing antibodies and T cell responses. Naked mRNA vaccines were functional, but less effective than mRNA-LNP vaccines. Discussion The above results suggest that RBD3-Fc vaccines are safe and immunogenic and NFIS can be used as an alternative to needles/syringes for the inoculation of mRNA-LNP vaccines to elicit robust systematic immune responses.
Collapse
MESH Headings
- Animals
- Injections, Intradermal
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Rats
- SARS-CoV-2/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/genetics
- RNA, Messenger/immunology
- Female
- Male
- T-Lymphocytes/immunology
- Needles
Collapse
Affiliation(s)
- Cenrong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Tang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
| | - Chenghan Jiang
- College of Agriculture, Yanbian University, Yanbian, China
| | - Yu Zhang
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Bo Han
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Yi Sun
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Jianfeng Guo
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Rjoob K, Antonelli M, Murray B, Molteni E, Cheetham N, Canas LS, Modat M, Capdevila Pujol J, Hu C, Bowyer V, Wolf J, Spector TD, Ourselin S, Hammers A, Duncan EL, Steves CJ, Sudre CH. Symptom evolution in individuals with ongoing symptomatic COVID-19 and post-COVID-19 syndrome after SARS-CoV-2 vaccination versus influenza vaccination. J Infect 2025; 90:106406. [PMID: 39800064 DOI: 10.1016/j.jinf.2024.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND COVID-19 symptoms may persist beyond acute SARS-CoV-2 infection, as ongoing symptomatic COVID-19 [OSC] (symptom duration 4-12 weeks) and post-COVID syndrome [PCS] (symptom duration ≥12 weeks). Vaccination against SARS-CoV-2 decreases OSC/PCS in individuals subsequently infected with SARS-CoV-2 post-vaccination. Whether vaccination against SARS-CoV-2, or any other vaccinations (such as against influenza) affects symptoms in individuals already experiencing OSC/PCS, more than natural symptom evolution, is unknown. METHOD Using data from the ZOE COVID Symptom Study app, two comparative analyses were carried out, both in prospectively-reporting individuals with OSC/PCS: A) symptoms in individuals receiving first vaccination against SARS-CoV-2, compared with unvaccinated individuals, matched for age, sex, BMI and week of test (n=1679 in each group); B) symptoms in individuals receiving vaccination against influenza, compared with unvaccinated individuals, matched for age, sex, BMI, week of test and number of SARS-CoV-2 vaccinations (n=692 in each group). In both analyses, vaccination date (or equivalent time from start of symptoms in the unvaccinated group) was considered as the index time, and symptom evolution was measured by comparing symptoms during the second week before and second week after vaccination. Symptoms were considered by prevalence and burden over the considered periods; all results were adjusted for multiple comparisons. RESULTS After first vaccination against SARS-CoV-2, many symptoms in individuals with OSC/PCS improved more rapidly than natural history resolution, including the commonly reported symptoms of fatigue (p<0.0001, β=--0.9 [95% CI: -1.86; -0.67]) and myalgia (p<0.001, β=-0.3 [95% CI: -0.50; -0.12]). No symptom worsened after vaccination. In contrast, there was no improvement in OSC/PCS symptoms beyond natural history resolution after vaccination against influenza. CONCLUSION In individuals with OSC/PCS, symptom resolution improved after vaccination against SARS-CoV-2 ; this was not observed, however, after other vaccinations.
Collapse
Affiliation(s)
- Khaled Rjoob
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Michela Antonelli
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Benjamin Murray
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Nathan Cheetham
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Liane S Canas
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | | | - Vicky Bowyer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sébastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexander Hammers
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, London, UK
| | - Emma L Duncan
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Dept of Endocrinology, Guy's and St Thomas' NHS Foundation Trust., London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Department of Aging and Health, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Computer Science, Centre for Medical Image Computing, University College London, London, UK.
| |
Collapse
|
5
|
Holder KA, Ings DP, Fifield KE, Barnes DA, Barnable KA, Harnum DOA, Russell RS, Grant MD. Sequence Matters: Primary COVID-19 Vaccination after Infection Elicits Similar Anti-spike Antibody Levels, but Stronger Antibody Dependent Cell-mediated Cytotoxicity than Breakthrough Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1105-1114. [PMID: 39248629 PMCID: PMC11457723 DOI: 10.4049/jimmunol.2400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Infection before primary vaccination (herein termed "hybrid immunity") engenders robust humoral immunity and broad Ab-dependent cell-mediated cytotoxicity (ADCC) across SARS-CoV-2 variants. We measured and compared plasma IgG and IgA against Wuhan-Hu-1 and Omicron (B.1.1.529) full-length spike (FLS) and receptor binding domain after three mRNA vaccines encoding Wuhan-Hu-1 spike (S) and after Omicron breakthrough infection. We also measured IgG binding to Wuhan-Hu-1 and Omicron S1, Wuhan-Hu-1 S2 and Wuhan-Hu-1 and Omicron cell-based S. We compared ADCC using human embryonic lung fibroblast (MRC-5) cells expressing Wuhan-Hu-1 or Omicron S. The effect of Omicron breakthrough infection on IgG anti-Wuhan-Hu-1 and Omicron FLS avidity was also considered. Despite Omicron breakthrough infection increasing IgG and IgA against FLS and receptor binding domain to levels similar to those seen with hybrid immunity, there was no boost to ADCC. Preferential recognition of Wuhan-Hu-1 persisted following Omicron breakthrough infection, which increased IgG avidity against Wuhan-Hu-1 FLS. Despite similar total anti-FLS IgG levels following breakthrough infection, 4-fold higher plasma concentrations were required to elicit ADCC comparable to that elicited by hybrid immunity. The greater capacity for hybrid immunity to elicit ADCC was associated with a differential IgG reactivity pattern against S1, S2, and linear determinants throughout FLS. Immunity against SARS-CoV-2 following Omicron breakthrough infection manifests significantly less ADCC capacity than hybrid immunity. Thus, the sequence of antigenic exposure by infection versus vaccination and other factors such as severity of infection affect antiviral functions of humoral immunity in the absence of overt quantitative differences in the humoral response.
Collapse
Affiliation(s)
- Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kathleen E. Fifield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - David A. Barnes
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Keeley A. Barnable
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rodney S. Russell
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
6
|
Ricketson LJ, Doucette EJ, Alatorre I, Tarannum T, Gray J, Booth W, Tipples G, Charlton C, Kanji JN, Fonseca K, Kellner JD. Pediatric antibody responses to SARS-CoV-2 after infection and vaccination in Calgary, Canada. BMC Infect Dis 2024; 24:705. [PMID: 39026179 PMCID: PMC11256562 DOI: 10.1186/s12879-024-09615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND There are few reports of longitudinal serologic responses in children following Sars-CoV-2 infection and vaccination. This study describes longitudinal SARS-CoV-2 antibody responses following infection, vaccination, or both (hybrid immunity) in a cohort of Canadian children. The objectives of our study were to compare antibody levels following SARS-CoV-2 infection, vaccination, and hybrid immunity and to examine antibody decline after final antigen exposure. METHODS The Alberta Childhood COVID-19 Cohort (AB3C) study was a prospective longitudinal cohort study conducted from July 2020 to September 2022 with repeat sampling across 5 visits. Children under 18 years of age were enrolled for serial measurement of antibody responses to SARS-CoV-2 virus vaccine and infection. RESULTS The final sample size was 919; participants were 50.5% female, 48.2% were > 12 years and 88.5% were white ethnicity. The median peak spike IgG level of those with only infection was not different from those with no vaccination or infection (233 AU/mL (IQR: 99-944 AU/mL) vs. 3 AU/mL (IQR: 1-5 AU/mL; P = 0.1765). Participants with infections after vaccination had higher IgG levels than those where infection preceded vaccination (median: 36,660 (IQR: 22,084 - 40,000 AU/mL) vs. 17,461 AU/mL (IQR: 10,617 - 33,212 AU/mL); P < 0.0001). In a linear mixed methods model, children with infection-only had low levels of antibody that stayed stable over the study duration without further antigen exposures. Those with infection after vaccination had the slowest rate of antibody decline over time at 4% (95%CI: 2-5%) per week, compared with children where infection preceded vaccine 7% (95%CI: 6-8%) per week. CONCLUSIONS Children with hybrid immunity conferred through vaccination (2 + doses) followed by a SARS-CoV-2 infection had the highest and longest lasting antibody levels, compared to children who had an infection followed by vaccination, vaccination-only, or infection-only. The longer-term clinical importance of these findings, related to prevention of repeated infections and severe outcomes and need for further vaccine doses, is not yet known.
Collapse
Affiliation(s)
- Leah J Ricketson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emily J Doucette
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Isabella Alatorre
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tarannum Tarannum
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joslyn Gray
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William Booth
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carmen Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jamil N Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Kevin Fonseca
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - James D Kellner
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Lee WS, Audsley J, Trieu MC, Reynaldi A, Aurelia LC, Mehta PH, Patterson J, Kent HE, Nguyen J, Amarasena T, Esterbauer R, Haycroft ER, Ramanathan P, Davenport MP, Schlub TE, Sasadeusz J, Wheatley AK, Chung AW, Juno JA, Selva KJ, Kent SJ. Randomized controlled trial reveals no benefit to a 3-month delay in COVID-19 mRNA booster vaccine. J Clin Invest 2024; 134:e181244. [PMID: 38990644 PMCID: PMC11364387 DOI: 10.1172/jci181244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUNDThere is uncertainty about the timing of booster vaccination against COVID-19 in highly vaccinated populations during the present endemic phase of COVID-19. Studies focused on primary vaccination have previously suggested improved immunity with a longer interval between the first and second vaccine doses.METHODSWe conducted a randomized, controlled trial (November 2022-August 2023) and assigned 52 fully vaccinated adults to an immediate or a 3-month delayed bivalent Spikevax mRNA booster vaccine. Follow-up visits were completed for 48 participants (n = 24 per arm), with collection of saliva and plasma samples following each visit.RESULTSThe rise in neutralizing antibody responses to ancestral and Omicron strains were almost identical between the immediate and delayed vaccination arms. Analyses of plasma and salivary antibody responses (IgG, IgA), plasma antibody-dependent phagocytic activity, and the decay kinetics of antibody responses were similar between the 2 arms. Symptomatic and asymptomatic SARS-CoV-2 infections occurred in 49% (21 of 49) participants over the median 11.5 months of follow-up and were also similar between the 2 arms.CONCLUSIONSOur data suggest that there was no benefit in delaying COVID-19 mRNA booster vaccination in preimmune populations during the present endemic phase of COVID-19.TRIAL REGISTRATIONAustralian New Zealand Clinical Trials Registry number 12622000411741 (https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12622000411741).FUNDINGNational Health and Medical Research Council, Australia (program grant App1149990) and Medical Research Future Fund (App2005544).
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mai-Chi Trieu
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - L. Carissa Aurelia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Palak H. Mehta
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne Patterson
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Helen E. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Timothy E. Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Joseph Sasadeusz
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Song Y, Wang J, Yang Z, He Q, Bao C, Xie Y, Sun Y, Li S, Quan Y, Yang H, Li C. Heterologous booster vaccination enhances antibody responses to SARS-CoV-2 by improving Tfh function and increasing B-cell clonotype SHM frequency. Front Immunol 2024; 15:1406138. [PMID: 38975334 PMCID: PMC11224535 DOI: 10.3389/fimmu.2024.1406138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Heterologous prime-boost has broken the protective immune response bottleneck of the COVID-19 vaccines. however, the underlying mechanisms have not been fully elucidated. Here, we investigated antibody responses and explored the response of germinal center (GC) to priming with inactivated vaccines and boosting with heterologous adenoviral-vectored vaccines or homologous inactivated vaccines in mice. Antibody responses were dramatically enhanced by both boosting regimens. Heterologous immunization induced more robust GC activation, characterized by increased Tfh cell populations and enhanced helper function. Additionally, increased B-cell activation and antibody production were observed in a heterologous regimen. Libra-seq was used to compare the differences of S1-, S2- and NTD-specific B cells between homologous and heterologous vaccination, respectively. S2-specific CD19+ B cells presented increased somatic hypermutations (SHMs), which were mainly enriched in plasma cells. Moreover, a heterologous booster dose promoted the clonal expansion of B cells specific to S2 and NTD regions. In conclusion, the functional role of Tfh and B cells following SARS-CoV-2 heterologous vaccination may be important for modulating antibody responses. These findings provide new insights for the development of SARS-CoV-2 vaccines that induce more robust antibody response.
Collapse
Affiliation(s)
- Yanli Song
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Jiaolei Wang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhihui Yang
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Qian He
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Chunting Bao
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Xie
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yufang Sun
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Shuyan Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yaru Quan
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Huijie Yang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Changgui Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
9
|
Hamm SR, Loft JA, Pérez-Alós L, Heftdal LD, Hansen CB, Møller DL, Pries-Heje MM, Hasselbalch RB, Fogh K, Hald A, Ostrowski SR, Frikke-Schmidt R, Sørensen E, Hilsted L, Bundgaard H, Garred P, Iversen K, Perch M, Sørensen SS, Rasmussen A, Sabin CA, Nielsen SD. The Impact of Time between Booster Doses on Humoral Immune Response in Solid Organ Transplant Recipients Vaccinated with BNT162b2 Vaccines. Viruses 2024; 16:860. [PMID: 38932153 PMCID: PMC11209529 DOI: 10.3390/v16060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
As solid organ transplant (SOT) recipients remain at risk of severe outcomes after SARS-CoV-2 infections, vaccination continues to be an important preventive measure. In SOT recipients previously vaccinated with at least three doses of BNT162b2, we investigated humoral responses to BNT162b2 booster doses. Anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin G (IgG) was measured using an in-house ELISA. Linear mixed models were fitted to investigate the change in the geometric mean concentration (GMC) of anti-SARS-CoV-2 RBD IgG after vaccination in participants with intervals of more or less than six months between the last two doses of vaccine. We included 107 SOT recipients vaccinated with a BNT162b2 vaccine. In participants with an interval of more than six months between the last two vaccine doses, we found a 1.34-fold change in GMC per month (95% CI 1.25-1.44), while we found a 1.09-fold change in GMC per month (95% CI 0.89-1.34) in participants with an interval of less than six months between the last two vaccine doses, resulting in a rate ratio of 0.82 (95% CI 0.66 to 1.01, p = 0.063). In conclusion, the administration of identical COVID-19 mRNA vaccine boosters within six months to SOT recipients may result in limited humoral immunogenicity of the last dose.
Collapse
Affiliation(s)
- Sebastian Rask Hamm
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Josefine Amalie Loft
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Line Dam Heftdal
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Dina Leth Møller
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Kamille Fogh
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Annemette Hald
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper Iversen
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Caroline A. Sabin
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, UCL, Royal Free Campus, Rowland Hill St, London NW3 2PF, UK
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Zha G, Chen Z, Wu N, Huang T, Deng Z, Cai D, Peng M, Hu P, Ren H. Clinical characteristics and immunogenicity after Omicron breakthrough infection in patients with chronic hepatitis B infection: A longitudinal observational study. J Med Virol 2024; 96:e29548. [PMID: 38511555 DOI: 10.1002/jmv.29548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The clinical and immunological features after breakthrough infection (BTI) during Omicron wave in patients with chronic hepatitis B virus infection (CHB) are still unclear. A total of 101 patients with CHB from our previous coronavirus disease 2019 (COVID-19) vaccination cohort (NCT05007665), were continued to be followed up at the Second Affiliated Hospital of Chongqing Medical University after BTI, while an additional 39 healthcare workers after BTI were recruited as healthy controls (HCs). Clinical data were collected using questionnaire survey and electronic medical record. Blood samples were used to determine the antibody responses, as well as B and T cell responses. After BTI, the clinical symptoms of COVID-19 were mild to moderate in patients with CHB, with a median duration of 5 days. Compared with HCs, patients with CHB were more susceptible to develop moderate COVID-19. The liver function was not significantly damaged, and HBV-DNA was not activated in patients with CHB after BTI. Patients with CHB could elicit robust antibody responses after BTI (NAbs 13.0-fold, BA.5 IgG: 24.2-fold, respectively), which was also significantly higher than that in every period after vaccination (all p < 0.001), and compared to that in HCs after BTI. The CD4+, cTfh, and CD8+ T cell responses were also augmented in patients with CHB after BTI, while exhibiting comparability to those observed in HCs. In patients with CHB after BTI, the immune imprint was observed in B cell responses, rather than in T cell responses. In conclusion, Omicron breakthrough infection induced mild to moderate COVID-19 symptoms in patients with CHB, without exacerbating the progress of liver diseases. Meanwhile, BTI demonstrated the ability to induce robust antibody and T cell responses in patients with CHB, which was comparable to those observed in HCs.
Collapse
Affiliation(s)
- Guanhua Zha
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianquan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiling Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Li X, Zeng F, Yue R, Ma D, Meng Z, Li Q, Zhang Z, Zhang H, Liao Y, Liao Y, Jiang G, Zhao H, Yu L, Li D, Zhang Y, Liu L, Li Q. Heterologous Booster Immunization Based on Inactivated SARS-CoV-2 Vaccine Enhances Humoral Immunity and Promotes BCR Repertoire Development. Vaccines (Basel) 2024; 12:120. [PMID: 38400104 PMCID: PMC10891849 DOI: 10.3390/vaccines12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have indicated that sequentially administering SARS-CoV-2 vaccines can result in increased antibody and cellular immune responses. In this study, we compared homologous and heterologous immunization strategies following two doses of inactivated vaccines in a mouse model. Our research demonstrates that heterologous sequential immunization resulted in more immune responses displayed in the lymph node germinal center, which induced a greater number of antibody-secreting cells (ASCs), resulting in enhanced humoral and cellular immune responses and increased cross-protection against five variant strains. In further single B-cell analysis, the above findings were supported by the presence of unique B-cell receptor (BCR) repertoires and diversity in CDR3 sequence profiles elicited by a heterologous booster immunization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| |
Collapse
|
12
|
de Feijter M, van Gelder MMHJ, Vissers LCM, Kant AC, Woestenberg PJ. The risk of miscarriage after COVID-19 vaccination before and during pregnancy. Pharmacoepidemiol Drug Saf 2024; 33:e5724. [PMID: 37946587 DOI: 10.1002/pds.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Pregnant women are at higher risk of severe illness and adverse pregnancy outcomes due to a SARS-CoV-2 infection, which can be prevented by vaccination. Observational studies are needed to ascertain the safety of COVID-19 vaccination during pregnancy. We aimed to determine whether COVID-19 vaccination before and during pregnancy is associated with the risk of miscarriage. METHODS In this cohort study, we included 4640 pregnant women (mean age: 32.8 ± 3.7 years) from the Dutch Pregnancy Drug Register between February 2021 and August 2022. Information on COVID-19 vaccinations, miscarriage, and confounders was self-reported, using web-based questionnaires. The hazard ratio (HR) of miscarriage (in gestational weeks 6-20) after a COVID-19 vaccination, was estimated using the survival analyses. A COVID-19 vaccination during pregnancy (≥1 COVID-19 vaccination between week 2 and 20 of pregnancy) was included as a time-dependent exposure and vaccination prior to pregnancy was included as a binary exposure. RESULTS A total of 3202 pregnant women (69%) received ≥1 COVID-19 vaccine in gestational week 2-20. We observed no association of vaccination during pregnancy with the risk of miscarriage (adjusted HR = 1.29, 95% CI = 0.93-1.74). Vaccination prior to pregnancy, however, was associated with a decreased risk of miscarriage (adjusted HR = 0.69, 95% CI = 0.48-0.99). CONCLUSIONS We demonstrated that COVID-19 vaccination during pregnancy is not associated with an increased risk of miscarriage in gestational weeks 6-20. This study adds to the growing body of evidence demonstrating the safety of COVID-19 vaccination during pregnancy.
Collapse
Affiliation(s)
- Maud de Feijter
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
| | | | - Lieke C M Vissers
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
| | - Agnes C Kant
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Petra J Woestenberg
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
| |
Collapse
|
13
|
Holdenrieder S, Dos Santos Ferreira CE, Izopet J, Theel ES, Wieser A. Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19. Front Public Health 2023; 11:1290402. [PMID: 38222091 PMCID: PMC10788057 DOI: 10.3389/fpubh.2023.1290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken.
Collapse
Affiliation(s)
- Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | | | - Jacques Izopet
- Laboratory of Virology, Toulouse University Hospital and INFINITY Toulouse Institute for Infections and Inflammatory Diseases, INSERM UMR 1291 CNRS UMR 5051, University Toulouse III, Toulouse, France
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Faculty of Medicine, Max Von Pettenkofer Institute, LMU Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| |
Collapse
|
14
|
Huang CQ, Vishwanath S, Carnell GW, Chan ACY, Heeney JL. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 2023; 8:1971-1985. [PMID: 37932355 DOI: 10.1038/s41564-023-01505-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.
Collapse
Affiliation(s)
- Chloe Qingzhou Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Chun Yue Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, Korosec CS, Colwill K, Stephenson H, Law R, Ward LA, Sheikh-Mohamed S, Mailhot G, Delgado-Brand M, Pasculescu A, Wang JH, Qi F, Tursun T, Kardava L, Chau S, Samaan P, Imran A, Copertino DC, Chao G, Choi Y, Reinhard RJ, Kaul R, Heffernan JM, Jones RB, Chun TW, Moir S, Singer J, Gommerman J, Gingras AC, Kovacs C, Ostrowski M. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 2023; 26:107915. [PMID: 37790281 PMCID: PMC10542941 DOI: 10.1016/j.isci.2023.107915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster. Spike-specific T cell immunity was enhanced in PWH with normal CD4+ T cell count, suggesting Th1 imprinting. The frequency of detectable HIV viremia increased post-vaccination, but vaccines did not affect the size of the HIV reservoir in most PWH, except those with low-level viremia. Thus, older PWH require three doses of COVID-19 vaccine for maximum protection, while individuals with unsuppressed viremia should be monitored for adverse reactions from HIV reservoirs.
Collapse
Affiliation(s)
- Vitaliy A. Matveev
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erik Z. Mihelic
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Sebastian Grocott
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Microbiology and Immunology, McGill University, Montreal QC H3A 2B4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Henry Stephenson
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Bioengineering, McGill University, Montreal QC H3A 0E9, Canada
| | - Ryan Law
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Lesley A. Ward
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | | | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | | | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Jenny H. Wang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Serena Chau
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Annam Imran
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Dennis C. Copertino
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yoojin Choi
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Robert J. Reinhard
- Independent Public/Global Health Consultant, San Francisco, CA 94114, USA
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - R. Brad Jones
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Jennifer Gommerman
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
- Department of Internal Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health, Toronto ON M5B 1W8, Canada
| |
Collapse
|
16
|
Zendt M, Bustos Carrillo FA, Kelly S, Saturday T, DeGrange M, Ginigeme A, Wu L, Callier V, Ortega-Villa A, Faust M, Chang-Rabley E, Bugal K, Kenney H, Khil P, Youn JH, Osei G, Regmi P, Anderson V, Bosticardo M, Daub J, DiMaggio T, Kreuzburg S, Pala F, Pfister J, Treat J, Ulrick J, Karkanitsa M, Kalish H, Kuhns DB, Priel DL, Fink DL, Tsang JS, Sparks R, Uzel G, Waldman MA, Zerbe CS, Delmonte OM, Bergerson JRE, Das S, Freeman AF, Lionakis MS, Sadtler K, van Doremalen N, Munster V, Notarangelo LD, Holland SM, Ricotta EE. Characterization of the antispike IgG immune response to COVID-19 vaccines in people with a wide variety of immunodeficiencies. SCIENCE ADVANCES 2023; 9:eadh3150. [PMID: 37824621 PMCID: PMC10569702 DOI: 10.1126/sciadv.adh3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.
Collapse
Affiliation(s)
- Mackenzie Zendt
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fausto A. Bustos Carrillo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, NIAID, NIH, Rockville, MD, USA
| | - Sophie Kelly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | | | - Maureen DeGrange
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anita Ginigeme
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Medical Science and Computing LLC, Rockville, MD, USA
| | - Lurline Wu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Viviane Callier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ana Ortega-Villa
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Rockville, MD, USA
| | | | - Emma Chang-Rabley
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kara Bugal
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pavel Khil
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Jung-Ho Youn
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Gloria Osei
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Pravesh Regmi
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Victoria Anderson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Janine Daub
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas DiMaggio
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha Kreuzburg
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Justina Pfister
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer Treat
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jean Ulrick
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Douglas B. Kuhns
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Debra L. Priel
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Danielle L. Fink
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S. Tsang
- Department of Immunobiology and Yale Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT,USA
| | - Rachel Sparks
- Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD,USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Meryl A. Waldman
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Christa S. Zerbe
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sanchita Das
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section for Immunoengineering, NIBIB, NIH, Bethesda, MD, USA
| | | | | | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E. Ricotta
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Xu X, Wu Y, Kummer AG, Zhao Y, Hu Z, Wang Y, Liu H, Ajelli M, Yu H. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2023; 21:374. [PMID: 37775772 PMCID: PMC10541713 DOI: 10.1186/s12916-023-03070-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND After the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern. METHODS We conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2. RESULTS Our study included 280 records obtained from 147 household studies, contact tracing studies, or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods, although we did not find statistically significant differences between the Omicron subvariants. We found that Omicron BA.1 had the shortest pooled estimates for the incubation period (3.49 days, 95% CI: 3.13-4.86 days), Omicron BA.5 for the serial interval (2.37 days, 95% CI: 1.71-3.04 days), and Omicron BA.1 for the realized generation time (2.99 days, 95% CI: 2.48-3.49 days). Only one estimate for the intrinsic generation time was available for Omicron subvariants: 6.84 days (95% CrI: 5.72-8.60 days) for Omicron BA.1. The ancestral lineage had the highest pooled estimates for each investigated key time-to-event period. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. When pooling the estimates across different virus lineages, we found considerable heterogeneities (I2 > 80%; I2 refers to the percentage of total variation across studies that is due to heterogeneity rather than chance), possibly resulting from heterogeneities between the different study populations (e.g., deployed interventions, social behavior, demographic characteristics). CONCLUSIONS Our study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.
Collapse
Affiliation(s)
- Xiangyanyu Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yanpeng Wu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Allisandra G Kummer
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Yuchen Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zexin Hu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Hengcong Liu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Marco Ajelli
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Mahallawi WH. COVID-19 vaccine in hemodialysis patients: Time for a boost. Saudi Med J 2023; 44:882-888. [PMID: 37717958 PMCID: PMC10505293 DOI: 10.15537/smj.2023.44.9.20230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES To evaluate anti-spike immunoglobulin G (IgG) antibody levels of hemodialysis patients and correlate them with the patients' demographic data and to evaluate these patients' need for a coronavirus disease-19 (COVID-19) vaccine booster. METHODS A cross-sectional multi-center study carried out at King Abdulaziz Kidney Center, Hasan Tahir Hemodialysis Center, and Hayat Organization Hemodialysis Center in Al-Madinah Al-Munawarah, Saudi Arabia. Patients (n=167) who received a minimum single dose of COVID-19 vaccine were recruited. The samples were collected between March 2022 and January 2023. Anti-spike IgG antibody levels were measured using enzyme-linked immunosorbent assays. RESULTS A significantly higher proportion of patients who received 3 doses of COVID-19 vaccine had positive serostatus compared with patients who received one or 2 doses (3 doses: 87.2%, one dose: 0.0%, 2 doses: 77.3%; p=0.000). Compared with patients who received one dose, significantly higher IgG antibody levels were detected in patients who received 2 (p=0.013) and 3 doses (p=0.025; n=35). In contrast, there was no significant difference in IgG antibody levels between patients who received 2 or 3 doses (p=0.45). Significant IgG antibody levels were detected in patients who received 2 and 3 doses (p=0.0125) compared with those received one vaccine dose (p=0.0004). Furthermore, patients who received 3 doses had significantly higher IgG antibody levels than patients who received 2 doses (p=0.000). CONCLUSION The results show a dose-dependent association between IgG antibody levels and the number COVID-19 vaccines received. The study highlights the need for booster COVID-19 vaccination for patients on hemodialysis.
Collapse
Affiliation(s)
- Waleed H. Mahallawi
- From the Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B- and T-cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. ERJ Open Res 2023; 9:00400-2023. [PMID: 37583809 PMCID: PMC10423317 DOI: 10.1183/23120541.00400-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background While vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides significant protection from coronavirus disease 2019, the protection afforded to individuals with chronic lung disease is less well established. This study seeks to understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity. Methods Deep immune phenotyping of humoral and cell-mediated responses to the SARS-CoV-2 vaccine was performed in patients with asthma, COPD and interstitial lung disease (ILD) compared to healthy controls. Results 48% of vaccinated patients with chronic lung diseases had reduced antibody titres to the SARS-CoV-2 vaccine antigen relative to healthy controls. Vaccine antibody titres were significantly reduced among asthma (p<0.035), COPD (p<0.022) and a subset of ILD patients as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B-cells in circulation. Vaccine-specific memory T-cells were significantly reduced in patients with asthma (CD8+ p<0.004; CD4+ p<0.023) and COPD (CD8+ p<0.008) compared to healthy controls. Impaired T-cell responsiveness was also observed in a subset of ILD patients (CD8+ 21.4%; CD4+ 42.9%). Additional heterogeneity between healthy and disease cohorts was observed among bulk and vaccine-specific follicular T-helper cells. Conclusions Deep immune phenotyping of the SARS-CoV-2 vaccine response revealed the complex nature of vaccine-elicited immunity and highlights the need for more personalised vaccination schemes in patients with underlying lung conditions.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | | | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony N. Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael E. Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Hornsby H, Nicols AR, Longet S, Liu C, Tomic A, Angyal A, Kronsteiner B, Tyerman JK, Tipton T, Zhang P, Gallis M, Supasa P, Selvaraj M, Abraham P, Neale I, Ali M, Barratt NA, Nell JM, Gustafsson L, Strickland S, Grouneva I, Rostron T, Moore SC, Hering LM, Dobson SL, Bibi S, Mongkolsapaya J, Lambe T, Wootton D, Hall V, Hopkins S, Dong T, Barnes E, Screaton G, Richter A, Turtle L, Rowland-Jones SL, Carroll M, Duncan CJA, Klenerman P, Dunachie SJ, Payne RP, de Silva TI. Omicron infection following vaccination enhances a broad spectrum of immune responses dependent on infection history. Nat Commun 2023; 14:5065. [PMID: 37604803 PMCID: PMC10442364 DOI: 10.1038/s41467-023-40592-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in many individuals possessing hybrid immunity, generated through a combination of vaccination and infection. Concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that prior SARS-CoV-2 infection is associated with immune dampening. Taking a broad and comprehensive approach, we characterize mucosal and blood immunity to spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without prior SARS-CoV-2 infection. We find that most individuals increase BA.1/BA.2/BA.5-specific neutralizing antibodies following infection, but confirm that the magnitude of increase and post-omicron titres are higher in the infection-naive. In contrast, significant increases in nasal responses, including neutralizing activity against BA.5 spike, are seen regardless of infection history. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are significantly higher in the previously-infected, who display a maximally induced response with a highly cytotoxic CD8+ phenotype following their 3rd mRNA vaccine dose. Responses to non-spike antigens increase significantly regardless of prior infection status. These findings suggest that hybrid immunity induced by omicron breakthrough infections is characterized by significant immune enhancement that can help protect against future omicron variants.
Collapse
Affiliation(s)
- Hailey Hornsby
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Alexander R Nicols
- Translational and Clinical Research Institute, Immunity, and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Stephanie Longet
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Adrienn Angyal
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jessica K Tyerman
- Translational and Clinical Research Institute, Immunity, and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Tom Tipton
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peijun Zhang
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Marta Gallis
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Natalie A Barratt
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Jeremy M Nell
- Translational and Clinical Research Institute, Immunity, and Inflammation Theme, Newcastle University, Newcastle, UK
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lotta Gustafsson
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Scarlett Strickland
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Irina Grouneva
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Timothy Rostron
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Luisa M Hering
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Susan L Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Dan Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Victoria Hall
- UK Health Security Agency, London, UK
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre and Oxford University NHS Foundation Trust, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Alex Richter
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical & Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), Liverpool, UK
| | - Sarah L Rowland-Jones
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity, and Inflammation Theme, Newcastle University, Newcastle, UK
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre and Oxford University NHS Foundation Trust, Oxford, UK.
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre and Oxford University NHS Foundation Trust, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity, and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Thushan I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK.
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
21
|
Ciabattini A, Pastore G, Lucchesi S, Montesi G, Costagli S, Polvere J, Fiorino F, Pettini E, Lippi A, Ancillotti L, Tumbarello M, Fabbiani M, Montagnani F, Medaglini D. Trajectory of Spike-Specific B Cells Elicited by Two Doses of BNT162b2 mRNA Vaccine. Cells 2023; 12:1706. [PMID: 37443740 PMCID: PMC10340653 DOI: 10.3390/cells12131706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The mRNA vaccines for SARS-CoV-2 have demonstrated efficacy and immunogenicity in the real-world setting. However, most of the research on vaccine immunogenicity has been centered on characterizing the antibody response, with limited exploration into the persistence of spike-specific memory B cells. Here we monitored the durability of the memory B cell response up to 9 months post-vaccination, and characterized the trajectory of spike-specific B cell phenotypes in healthy individuals who received two doses of the BNT162b2 vaccine. To profile the spike-specific B cell response, we applied the tSNE and Cytotree automated approaches. Spike-specific IgA+ and IgG+ plasmablasts and IgA+ activated cells were observed 7 days after the second dose and disappeared 3 months later, while subsets of spike-specific IgG+ resting memory B cells became predominant 9 months after vaccination, and they were capable of differentiating into spike-specific IgG secreting cells when restimulated in vitro. Other subsets of spike-specific B cells, such as IgM+ or unswitched IgM+IgD+ or IgG+ double negative/atypical cells, were also elicited by the BNT162b2 vaccine and persisted up to month 9. The analysis of circulating spike-specific IgG, IgA, and IgM was in line with the plasmablasts observed. The longitudinal analysis of the antigen-specific B cell response elicited by mRNA-based vaccines provides valuable insights into our understanding of the immunogenicity of this novel vaccine platform destined for future widespread use, and it can help in guiding future decisions and vaccination schedules.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Giorgio Montesi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Simone Costagli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Jacopo Polvere
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
- Department of Medicine and Surgery, LUM University “Giuseppe Degennaro”, 70010 Casamassima, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| | - Arianna Lippi
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, University Hospital of Siena, 53100 Siena, Italy; (A.L.); (L.A.); (M.T.); (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Leonardo Ancillotti
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, University Hospital of Siena, 53100 Siena, Italy; (A.L.); (L.A.); (M.T.); (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mario Tumbarello
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, University Hospital of Siena, 53100 Siena, Italy; (A.L.); (L.A.); (M.T.); (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Massimiliano Fabbiani
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, University Hospital of Siena, 53100 Siena, Italy; (A.L.); (L.A.); (M.T.); (M.F.); (F.M.)
| | - Francesca Montagnani
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, University Hospital of Siena, 53100 Siena, Italy; (A.L.); (L.A.); (M.T.); (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.P.); (S.L.); (G.M.); (S.C.); (J.P.); (F.F.); (E.P.); (D.M.)
| |
Collapse
|
22
|
Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, Korosec CS, Colwill K, Stephenson H, Law R, Ward LA, Sheikh-Mohamed S, Mailhot G, Delgado-Brand M, Pasculescu A, Wang JH, Qi F, Tursun T, Kardava L, Chau S, Samaan P, Imran A, Copertino DC, Chao G, Choi Y, Reinhard RJ, Kaul R, Heffernan JM, Jones RB, Chun TW, Moir S, Singer J, Gommerman J, Gingras AC, Kovacs C, Ostrowski M. Immunogenicity of COVID-19 vaccines and their effect on the HIV reservoir in older people with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544834. [PMID: 37502977 PMCID: PMC10370192 DOI: 10.1101/2023.06.14.544834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. We followed 68 PWH aged 55 and older and 23 age-matched HIV-negative individuals for 48 weeks from the first vaccine dose, after the total of three doses. All PWH were on antiretroviral therapy (cART) and had different immune status, including immune responders (IR), immune non-responders (INR), and PWH with low-level viremia (LLV). We measured total and neutralizing Ab responses to SARS-CoV-2 spike and RBD in sera, total anti-spike Abs in saliva, frequency of anti-RBD/NTD B cells, changes in frequency of anti-spike, HIV gag/nef-specific T cells, and HIV reservoirs in peripheral CD4 + T cells. The resulting datasets were used to create a mathematical model for within-host immunization. Various regimens of BNT162b2, mRNA-1273, and ChAdOx1 vaccines elicited equally strong anti-spike IgG responses in PWH and HIV - participants in serum and saliva at all timepoints. These responses had similar kinetics in both cohorts and peaked at 4 weeks post-booster (third dose), while half-lives of plasma IgG also dramatically increased post-booster in both groups. Salivary spike IgA responses were low, especially in INRs. PWH had diminished live virus neutralizing titers after two vaccine doses which were 'rescued' after a booster. Anti-spike T cell immunity was enhanced in IRs even in comparison to HIV - participants, suggesting Th1 imprinting from HIV, while in INRs it was the lowest. Increased frequency of viral 'blips' in PWH were seen post-vaccination, but vaccines did not affect the size of the intact HIV reservoir in CD4 + T cells in most PWH, except in LLVs. Thus, older PWH require three doses of COVID-19 vaccine to maximize neutralizing responses against SARS-CoV-2, although vaccines may increase HIV reservoirs in PWH with persistent viremia.
Collapse
Affiliation(s)
| | - Erik Z. Mihelic
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Patrick Budylowski
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sebastian Grocott
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
- Dept of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver, BC, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics Dept, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics Dept, York University, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Henry Stephenson
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
- Dept of Bioengineering, McGill University, Montreal, QC, Canada
| | - Ryan Law
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lesley A. Ward
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | | | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Jenny H. Wang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Serena Chau
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
| | - Philip Samaan
- Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Annam Imran
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dennis C. Copertino
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Gary Chao
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yoojin Choi
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Rupert Kaul
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics Dept, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics Dept, York University, Toronto, ON, Canada
| | - R. Brad Jones
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Dept of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dept of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, ON, Canada
- Dept of Internal Medicine, University of Toronto, Toronto, ON, Canada
- Senior authors
| | - Mario Ostrowski
- Dept of Medicine, University of Toronto, Toronto, ON, Canada
- Dept of Immunology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health, Toronto, ON, Canada
- Senior authors
| |
Collapse
|
23
|
Dedroogh S, Schmiedl S, Thürmann PA, Graf K, Appelbaum S, Koß R, Theis C, Zia Z, Tebbenjohanns J, Thal SC, Dedroogh M. Impact of timing and combination of different BNT162b2 and ChAdOx1-S COVID-19 basic and booster vaccinations on humoral immunogenicity and reactogenicity in adults. Sci Rep 2023; 13:9036. [PMID: 37270632 DOI: 10.1038/s41598-023-34961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
In this single-center observational study with 1,206 participants, we prospectively evaluated SARS-CoV-2-antibodies (anti-S RBD) and vaccine-related adverse drug reactions (ADR) after basic and booster immunization with BNT162b2- and ChAdOx1-S-vaccines in four vaccination protocols: Homologous BNT162b2-schedule with second vaccination at either three or six weeks, homologous ChAdOx1-S-vaccination or heterologous ChAdOx1-S/BNT162b2-schedule, each at 12 weeks. All participants received a BNT162b2 booster. Blood samples for anti-S RBD analysis were obtained multiple times over a period of four weeks to six months after basic vaccination, immediately before, and up to three months after booster vaccination. After basic vaccination, the homologous ChAdOx1-S-group showed the lowest anti-S RBD levels over six months, while the heterologous BNT162b2-ChAdOx1-S-group demonstrated the highest anti-S levels, but failed to reach level of significance compared with the homologous BNT162b2-groups. Antibody levels were higher after an extended vaccination interval with BNT162b2. A BNT162b2 booster increased anti-S-levels 11- to 91-fold in all groups, with the homologous ChAdOx1-S-cohort demonstrated the highest increase in antibody levels. No severe or serious ADR were observed. The findings suggest that a heterologous vaccination schedule or prolonged vaccination interval induces robust humoral immunogenicity with good tolerability. Extending the time to boost-immunization is key to both improving antibody induction and reducing ADR rate.
Collapse
Affiliation(s)
- Simon Dedroogh
- Chair of Anesthesiology I, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Sven Schmiedl
- Center for Clinical Trials, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Chair of Clinical Pharmacology, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Philipp Klee-Institute for Clinical Pharmacology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Petra A Thürmann
- Chair of Clinical Pharmacology, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Philipp Klee-Institute for Clinical Pharmacology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Katharina Graf
- Center for Clinical Trials, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Sebastian Appelbaum
- Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Reinhard Koß
- Department of Occupational Medicine, Helios Klinikum Hildesheim, Hildesheim, Germany
| | - Christian Theis
- Chair of Anesthesiology I, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Zewarudin Zia
- Department of Anesthesiology, Helios Klinikum Hildesheim, Hildesheim, Germany
| | - Jürgen Tebbenjohanns
- Department of Cardiology, Helios Klinikum Hildesheim, Senator-Braun-Allee 33, 31135, Hildesheim, Germany
| | - Serge C Thal
- Chair of Anesthesiology I, Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
- Department of Anesthesiology, Helios University Hospital Wuppertal, Witten/Herdecke University, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Michael Dedroogh
- Department of Cardiology, Helios Klinikum Hildesheim, Senator-Braun-Allee 33, 31135, Hildesheim, Germany.
| |
Collapse
|
24
|
Serwanga J, Baine C, Mugaba S, Ankunda V, Auma BO, Oluka GK, Kato L, Kitabye I, Sembera J, Odoch G, Ejou P, Nalumansi A, Gombe B, Musenero M, Kaleebu P. Seroprevalence and durability of antibody responses to AstraZeneca vaccination in Ugandans with prior mild or asymptomatic COVID-19: implications for vaccine policy. Front Immunol 2023; 14:1183983. [PMID: 37205095 PMCID: PMC10187141 DOI: 10.3389/fimmu.2023.1183983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The duration and timing of immunity conferred by COVID-19 vaccination in sub-Saharan Africa are crucial for guiding pandemic policy interventions, but systematic data for this region is scarce. This study investigated the antibody response after AstraZeneca vaccination in COVID-19 convalescent Ugandans. Methods We recruited 86 participants with a previous rt-PCR-confirmed mild or asymptomatic COVID-19 infection and measured the prevalence and levels of spike-directed IgG, IgM, and IgA antibodies at baseline, 14 and 28 days after the first dose (priming), 14 days after the second dose (boosting), and at six- and nine-months post-priming. We also measured the prevalence and levels of nucleoprotein-directed antibodies to assess breakthrough infections. Results Within two weeks of priming, vaccination substantially increased the prevalence and concentrations of spike-directed antibodies (p < 0.0001, Wilcoxon signed rank test), with 97.0% and 66% of vaccinated individuals possessing S-IgG and S-IgA antibodies before administering the booster dose. S-IgM prevalence changed marginally after the initial vaccination and barely after the booster, consistent with an already primed immune system. However, we also observed a rise in nucleoprotein seroprevalence, indicative of breakthroughs six months after the initial vaccination. Discussion Our results suggest that vaccination of COVID-19 convalescent individuals with the AstraZeneca vaccine induces a robust and differential spike-directed antibody response. The data highlights the value of vaccination as an effective method for inducing immunity in previously infected individuals and the importance of administering two doses to maintain protective immunity. Monitoring anti-spike IgG and IgA when assessing vaccine-induced antibody responses is suggested for this population; assessing S-IgM will underestimate the response. The AstraZeneca vaccine is a valuable tool in the fight against COVID-19. Further research is needed to determine the durability of vaccine-induced immunity and the potential need for booster doses.
Collapse
Affiliation(s)
- Jennifer Serwanga
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Susan Mugaba
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Oliver Auma
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Gerald Kevin Oluka
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Isaac Kitabye
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Jackson Sembera
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Peter Ejou
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Amina Nalumansi
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Ben Gombe
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Monica Musenero
- Science, Technology, and Innovation Secretariat, Office of the President, Government of Uganda, Kampala, Uganda
| | - Pontiano Kaleebu
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
25
|
Pradenas E, Marfil S, Urrea V, Trigueros M, Pidkova T, Pons-Grífols A, Ortiz R, Rovirosa C, Tarrés-Freixas F, Aguilar-Gurrieri C, Toledo R, Chamorro A, Noguera-Julian M, Mateu L, Blanco I, Grau E, Massanella M, Carrillo J, Clotet B, Trinité B, Blanco J. Impact of hybrid immunity booster vaccination and Omicron breakthrough infection on SARS-CoV-2 VOCs cross-neutralization. iScience 2023; 26:106457. [PMID: 36999095 PMCID: PMC10027310 DOI: 10.1016/j.isci.2023.106457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.
Collapse
Affiliation(s)
- Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Macedonia Trigueros
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Tetyana Pidkova
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Ruth Toledo
- Infectious Diseases Department, Fight AIDS and Infectious Diseases Foundation (FLS), Germans Trias i Pujol Hospital, 08916 Badalona, Catalonia, Spain
| | - Anna Chamorro
- Infectious Diseases Department, Fight AIDS and Infectious Diseases Foundation (FLS), Germans Trias i Pujol Hospital, 08916 Badalona, Catalonia, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight AIDS and Infectious Diseases Foundation (FLS), Germans Trias i Pujol Hospital, 08916 Badalona, Catalonia, Spain
| | - Ignacio Blanco
- Germans Trias i Pujol Hospital, 08916 Badalona, Catalonia, Spain
| | - Eulàlia Grau
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
- CIBER Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
- Infectious Diseases Department, Fight AIDS and Infectious Diseases Foundation (FLS), Germans Trias i Pujol Hospital, 08916 Badalona, Catalonia, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Catalonia, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
- CIBER Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
26
|
Yalcin D, Bennett SJ, Sheehan J, Trauth AJ, Tso FY, West JT, Hagensee ME, Ramsay AJ, Wood C. Longitudinal Variations in Antibody Responses against SARS-CoV-2 Spike Epitopes upon Serial Vaccinations. Int J Mol Sci 2023; 24:ijms24087292. [PMID: 37108460 PMCID: PMC10138620 DOI: 10.3390/ijms24087292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARS-CoV-2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery.
Collapse
Affiliation(s)
- Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sydney J Bennett
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| | - Jared Sheehan
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Amber J Trauth
- Departments of Medicine, Section of Infectious Diseases, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - John T West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael E Hagensee
- Departments of Medicine, Section of Infectious Diseases, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| |
Collapse
|
27
|
Tsai DY, Wang CH, Schiro PG, Chen N, Tseng JY. Tracking B Cell Memory to SARS-CoV-2 Using Rare Cell Analysis System. Vaccines (Basel) 2023; 11:vaccines11040735. [PMID: 37112647 PMCID: PMC10145117 DOI: 10.3390/vaccines11040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rapid mutations within SARS-CoV-2 are driving immune escape, highlighting the need for in-depth and routine analysis of memory B cells (MBCs) to complement the important but limited information from neutralizing antibody (nAb) studies. In this study, we collected plasma samples and peripheral blood mononuclear cells (PBMCs) from 35 subjects and studied the nAb titers and the number of antigen-specific memory B cells at designated time points before and after vaccination. We developed an assay to use the MiSelect R II System with a single-use microfluidic chip to directly detect the number of spike-receptor-binding domain (RBD)-specific MBCs in PBMCs. Our results show that the number of spike-RBD-specific MBCs detected by the MiSelect R II System is highly correlated with the level of nAbs secreted by stimulated PBMCs, even 6 months after vaccination when nAbs were generally not present in plasma. We also found antigen-specific cells recognizing Omicron spike-RBD were present in PBMCs from booster vaccination of subjects, but with a high variability in the number of B cells. The MiSelect R II System provided a direct, automated, and quantitative method to isolate and analyze subsets of rare cells for tracking cellular immunity in the context of a rapidly mutating virus.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- MiCareo Taiwan Co., Ltd., 5F, No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City 114, Taiwan
| | - Chun-Hung Wang
- MiCareo Taiwan Co., Ltd., 5F, No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City 114, Taiwan
| | - Perry G. Schiro
- MiCareo Taiwan Co., Ltd., 5F, No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City 114, Taiwan
| | - Nathan Chen
- Adimmune Corporation, No. 3, Sec.1, Tanxing Rd., Tanzi Dist., Taichung City 427, Taiwan
| | - Ju-Yu Tseng
- MiCareo Taiwan Co., Ltd., 5F, No. 69, Ln. 77, Xing Ai Rd., Neihu Dist., Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-27923976
| |
Collapse
|
28
|
Follmann D, Janes HE, Chu E, Jayashankar L, Petropoulos CJ, Serebryannyy L, Carroll R, Jean-Baptiste N, Narpala S, Lin BC, McDermott A, Novak RM, Graciaa DS, Rolsma S, Magaret CA, Doria-Rose N, Corey L, Neuzil KM, Pajon R, Miller JM, Donis RO, Koup RA, Baden LR, El Sahly HM. Kinetics of the Antibody Response to Symptomatic SARS-CoV-2 Infection in Vaccinated and Unvaccinated Individuals in the Blinded Phase of the mRNA-1273 COVID-19 Vaccine Efficacy Trial. Open Forum Infect Dis 2023; 10:ofad069. [PMID: 36895286 PMCID: PMC9991588 DOI: 10.1093/ofid/ofad069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Background Hybrid immunity is associated with more durable protection against coronavirus disease 2019 (COVID-19). We describe the antibody responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vaccinated and unvaccinated individuals. Methods The 55 vaccine arm COVID-19 cases diagnosed during the blinded phase of the Coronavirus Efficacy trial were matched with 55 placebo arm COVID-19 cases. Pseudovirus neutralizing antibody (nAb) activity to the ancestral strain and binding antibody (bAb) responses to nucleocapsid and spike antigens (ancestral and variants of concern [VOCs]) were assessed on disease day 1 (DD1) and 28 days later (DD29). Results The primary analysis set was 46 vaccine cases and 49 placebo cases with COVID-19 at least 57 days post-first dose. For vaccine group cases, there was a 1.88-fold rise in ancestral antispike bAbs 1 month post-disease onset, although 47% had no increase. The vaccine-to-placebo geometric mean ratios for DD29 antispike and antinucleocapsid bAbs were 6.9 and 0.04, respectively. DD29 mean bAb levels were higher for vaccine vs placebo cases for all VOCs. DD1 nasal viral load positively correlated with bAb levels in the vaccine group. Conclusions Following COVID-19, vaccinated participants had higher levels and greater breadth of antispike bAbs and higher nAb titers than unvaccinated participants. These were largely attributable to the primary immunization series.
Collapse
Affiliation(s)
- Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Eric Chu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naz Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard M Novak
- Section of Infectious Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel S Graciaa
- Hope Clinic, Emory Vaccine Center, Division of Infectious Diseases, Emory University School of Medicine, Decatur, Georgia, USA
| | - Stephanie Rolsma
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Santos da Silva E, Servais JY, Kohnen M, Arendt V, Gilson G, Staub T, Seguin-Devaux C, Perez-Bercoff D. Vaccine- and Breakthrough Infection-Elicited Pre-Omicron Immunity More Effectively Neutralizes Omicron BA.1, BA.2, BA.4 and BA.5 Than Pre-Omicron Infection Alone. Curr Issues Mol Biol 2023; 45:1741-1761. [PMID: 36826057 PMCID: PMC9955496 DOI: 10.3390/cimb45020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Jean-Yves Servais
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Michel Kohnen
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Victor Arendt
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Georges Gilson
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Therese Staub
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Carole Seguin-Devaux
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Danielle Perez-Bercoff
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
30
|
Planas D, Bruel T, Staropoli I, Guivel-Benhassine F, Porrot F, Maes P, Grzelak L, Prot M, Mougari S, Planchais C, Puech J, Saliba M, Sahraoui R, Fémy F, Morel N, Dufloo J, Sanjuán R, Mouquet H, André E, Hocqueloux L, Simon-Loriere E, Veyer D, Prazuck T, Péré H, Schwartz O. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat Commun 2023; 14:824. [PMID: 36788246 PMCID: PMC9926440 DOI: 10.1038/s41467-023-36561-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ludivine Grzelak
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Said Mougari
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Cyril Planchais
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - Julien Puech
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Madelina Saliba
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Riwan Sahraoui
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Florent Fémy
- Service d'accueil des urgences, Hôpital Européen Georges Pompidou, Paris, France
| | - Nathalie Morel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur Yvette, France
| | - Jérémy Dufloo
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, València, Spain.,Department of Genetics, Universitat de València, València, Spain
| | - Hugo Mouquet
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - Emmanuel André
- University Hospitals Leuven, Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, Leuven, Belgium.,KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Leuven, Belgium
| | | | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France.,Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Thierry Prazuck
- CHR d'Orléans, Service de Maladies Infectieuses, Orléans, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France.,Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
31
|
Bobrovitz N, Ware H, Ma X, Li Z, Hosseini R, Cao C, Selemon A, Whelan M, Premji Z, Issa H, Cheng B, Abu Raddad LJ, Buckeridge DL, Van Kerkhove MD, Piechotta V, Higdon MM, Wilder-Smith A, Bergeri I, Feikin DR, Arora RK, Patel MK, Subissi L. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. THE LANCET. INFECTIOUS DISEASES 2023; 23:556-567. [PMID: 36681084 PMCID: PMC10014083 DOI: 10.1016/s1473-3099(22)00801-5] [Citation(s) in RCA: 362] [Impact Index Per Article: 181.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.
Collapse
Affiliation(s)
- Niklas Bobrovitz
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Harriet Ware
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiaomeng Ma
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Zihan Li
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Reza Hosseini
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Christian Cao
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anabel Selemon
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mairead Whelan
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, BC, Canada
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Brianna Cheng
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - David L Buckeridge
- Department of Epidemiology and Biostatistics, School of Population and Global Health, McGill University, Montreal, QC, Canada
| | | | - Vanessa Piechotta
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Melissa M Higdon
- International Vaccine Access Center, Department of International Health, John Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Annelies Wilder-Smith
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland; Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - Isabel Bergeri
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Daniel R Feikin
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Rahul K Arora
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Minal K Patel
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Lorenzo Subissi
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
32
|
Lozano-Rodríguez R, Avendaño-Ortíz J, Terrón V, Montalbán-Hernández K, Casalvilla-Dueñas J, Bergón-Gutiérrez M, Mata-Martínez P, Martín-Quirós A, García-Garrido MÁ, del Balzo-Castillo Á, Peinado M, Gómez L, Llorente-Fernández I, Martín-Miguel G, Herrero-Benito C, López-Morejón L, Vela-Olmo C, Cubillos-Zapata C, López-Collazo E, del Fresno C. mRNA-1273 boost after BNT162b2 vaccination generates comparable SARS-CoV-2-specific functional responses in naïve and COVID-19-recovered individuals. Front Immunol 2023; 14:1136029. [PMID: 37153580 PMCID: PMC10160618 DOI: 10.3389/fimmu.2023.1136029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction COVID-19 vaccines based on mRNA have represented a revolution in the biomedical research field. The initial two-dose vaccination schedule generates potent humoral and cellular responses, with a massive protective effect against severe COVID-19 and death. Months after this vaccination, levels of antibodies against SARS-CoV-2 waned, and this promoted the recommendation of a third vaccination dose. Methods We have performed an integral and longitudinal study of the immunological responses triggered by the booster mRNA-1273 vaccination, in a cohort of health workers previously vaccinated with two doses of the BNT162b2 vaccine at University Hospital La Paz located in Madrid, Spain. Circulating humoral responses and SARS-CoV-2-specific cellular reactions, after ex vivo restimulation of both T and B cells (cytokines production, proliferation, class switching), have been analyzed. Importantly, all along these studies, the analyses have been performed comparing naïve and subjects recovered from COVID-19, addressing the influence of a previous infection by SARS-CoV-2. Furthermore, as the injection of the third vaccination dose was contemporary to the rise of the Omicron BA.1 variant of concern, T- and B-cell-mediated cellular responses have been comparatively analyzed in response to this variant. Results All these analyses indicated that differential responses to vaccination due to a previous SARS-CoV-2 infection were balanced following the boost. The increase in circulating humoral responses due to this booster dropped after 6 months, whereas T-cell-mediated responses were more stable along the time. Finally, all the analyzed immunological features were dampened in response to the Omicron variant of concern, particularly late after the booster vaccination. Conclusion This work represents a follow-up longitudinal study for almost 1.5 years, analyzing in an integral manner the immunological responses triggered by the prime-boost mRNA-based vaccination schedule against COVID-19.
Collapse
Affiliation(s)
- Roberto Lozano-Rodríguez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - José Avendaño-Ortíz
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Karla Montalbán-Hernández
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - José Casalvilla-Dueñas
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Miguel Ángel García-Garrido
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Álvaro del Balzo-Castillo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - María Peinado
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Laura Gómez
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Gema Martín-Miguel
- Pediatric Intensive Care Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Herrero-Benito
- Emergency Department and Emergent Pathology Research Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Carolina Cubillos-Zapata
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Eduardo López-Collazo, ; Carlos del Fresno,
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- *Correspondence: Eduardo López-Collazo, ; Carlos del Fresno,
| |
Collapse
|
33
|
Doron S, Gandhi M. New boosters are here! Who should receive them and when? THE LANCET. INFECTIOUS DISEASES 2022; 22:1668-1669. [PMID: 36354037 PMCID: PMC9612842 DOI: 10.1016/s1473-3099(22)00688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shira Doron
- Department of Medicine, Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|
34
|
Planas D, Bruel T, Staropoli I, Guivel-Benhassine F, Porrot F, Maes P, Grzelak L, Prot M, Mougari S, Planchais C, Puech J, Saliba M, Sahraoui R, Fémy F, Morel N, Dufloo J, Sanjuán R, Mouquet H, André E, Hocqueloux L, Simon-Loriere E, Veyer D, Prazuck T, Péré H, Schwartz O. Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.17.516888. [PMID: 36415455 PMCID: PMC9681044 DOI: 10.1101/2022.11.17.516888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.
Collapse
Affiliation(s)
- Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ludivine Grzelak
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Said Mougari
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Cyril Planchais
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - Julien Puech
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Madelina Saliba
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Riwan Sahraoui
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Florent Fémy
- Service d’accueil des urgences, Hôpital Européen Georges Pompidou, Paris, France
| | - Nathalie Morel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, F-91191 Gif-sur Yvette, France
| | - Jérémy Dufloo
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, València
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, València
- Department of Genetics, Universitat de València, València, Spain
| | - Hugo Mouquet
- Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France
| | - Emmanuel André
- University Hospitals Leuven, Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Leuven, Belgium
| | | | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Thierry Prazuck
- CHR d’Orléans, Service de Maladies Infectieuses, Orléans, France
| | - Hélène Péré
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
- Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
35
|
Weskamm LM, Dahlke C, Addo MM. Flow cytometric protocol to characterize human memory B cells directed against SARS-CoV-2 spike protein antigens. STAR Protoc 2022; 3:101902. [PMID: 36595922 PMCID: PMC9663734 DOI: 10.1016/j.xpro.2022.101902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Memory B cells (MBCs), part of the immune response elicited by infection or vaccination, can persist in lymphoid organs and peripheral blood and are capable of rapid reactivation upon secondary antigen exposure. Here, we describe a flow cytometric assay to identify antigen-specific MBCs from peripheral blood mononuclear cells and characterize their isotypes and activation status. We detail steps to use fluorescently labeled antigen probes derived from the SARS-CoV-2 spike protein. These can be adapted to detect MBCs against other antigens. For complete details on the use and execution of this protocol, please refer to Weskamm et al. (2022).1.
Collapse
Affiliation(s)
- Leonie M. Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany,German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Corresponding author
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany,German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany,German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
36
|
The surprise saviours of the gut: the neurons that sense pain. Nature 2022. [PMID: 36266586 DOI: 10.1038/d41586-022-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|