1
|
Ruan W, Gao P, Qu X, Jiang J, Zhao Z, Qiao S, Zhang H, Yang T, Li D, Du P, Lu X, Wang Q, Zhao X, Gao GF. SARS-CoV-2 serotyping based on spike antigenicity and its implications for host immune evasion. EBioMedicine 2025; 114:105634. [PMID: 40080947 PMCID: PMC11951033 DOI: 10.1016/j.ebiom.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND As SARS-CoV-2 continues to spread and evolve, new variants/sub-variants emerge, raising concerns about vaccine-induced immune escape. Here, we conducted a systematic analysis of the serology and immunogenicity of major circulating variants/sub-variants of SARS-CoV-2 since the outbreak. METHODS We expressed and purified trimeric S proteins from 21 SARS-CoV-2 variants, with SARS-CoV included as an outgroup. Mice were immunized, and the resulting antisera were tested for binding antibodies after the third dose injection, and for neutralizing antibodies (NAbs) after both the second and third doses. Using pseudovirus neutralization assays, we evaluated cross-neutralization among major circulating variants. By integrating serological classification, antigenic mapping, and 3D landscape analysis, we explored the antigenic relationships among different SARS-CoV-2 variants and their impact on serological responses. FINDINGS Based on the cross-neutralization activities of the sera from different S protein vaccinations and antigenicity analyses, we grouped the 21 lineages into six serotypes. Particularly, BA.2.86 and JN.1 had very weak cross-neutralization with all other SARS-CoV-2 sub-variants tested and were grouped into a separate serotype, Serotype VI. INTERPRETATION This systematic study contributes to a better understanding of the evolution of SARS-CoV-2 and its antigenic characteristics and provides valuable insights for vaccine development. FUNDING This study was supported by the National Key R&D Program of China (2023YFC2307801, 2020YFA0509202 and 2021YFA1300803), the National Natural Science Foundation of China (82222040 and 82072289), CAS Project for Young Scientists in Basic Research (YSBR-083) and Beijing Nova Program of Science and Technology (20220484181).
Collapse
Affiliation(s)
- Wenjing Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyue Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junlan Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Life Science Academy, Beijing 102209, China
| | - He Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ting Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Wu Q, Wu H, Hu Y, Zheng X, Chang F, Liu Y, Pan Z, Wang Q, Tang F, Qian J, Li Y, Huang B, Chen K, Xu J, Wang Y, Xie X, Zhao P, Wu X, Qu X, Li YP. Immune evasion of Omicron variants JN.1, KP.2, and KP.3 to the polyclonal and monoclonal antibodies from COVID-19 convalescents and vaccine recipients. Antiviral Res 2025; 235:106092. [PMID: 39864525 DOI: 10.1016/j.antiviral.2025.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The Omicron BA.2.86 subvariants, JN.1, KP.2, and KP.3, have become predominant globally, raising concerns about their immune evasion from vaccines and monoclonal antibody (mAb) treatments. These variants harbor more receptor-binding domain (RBD) mutations than the XBB and EG.5 sub-lineages, which are already known to compromise vaccine and therapeutic efficacy. We evaluated sera from individuals vaccinated with inactivated vaccines, with or without breakthrough infections, as well as COVID-19 convalescents. Our results showed a substantial decrease in serum neutralizing activity against the JN.1, KP.2, XBB.1.5, and EG.5.1 variants compared to BA.2. Additionally, we developed 19 neutralizing antibodies from memory B cells, with some retaining efficacy against earlier Omicron variants. However, potency was notably diminished against newer subvariants like BF.7, BQ.1, XBB.1.5, and BA.2.86. Of mAbs, those isolated from COVID-19 convalescents, particularly SA-3, exhibited exceptional potency across ten variants from BA.2 to KP.2, with IC50 values ranging from 0.006 to 2.546 μg/mL. However, SA-3 had lost neutralizing activity against the KP.3 due to the Q493E mutation, but the KP.3 became susceptible to neutralization by the other mAb, SA-6. In contrast, SA-6 was unable to neutralize KP.2 because of the presence of R346T mutation. Our findings underscore the importance of continuous surveillance of viral evolution and the need for updated vaccines and therapeutics to combat the ongoing evolution of SARS-CoV-2, particularly in the context of emerging variants that escape both vaccine-induced immunity and monoclonal antibody treatments.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hairuo Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China; Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang 422099, China; Xinning Country People's Hospital, Shaoyang 422099, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuezhou Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Huang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Keqiu Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Xu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Xiangping Xie
- The Central Hospital of Shaoyang, Shaoyang 422099, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, Hengyang Medical School, University of South China, No. 30, Jiefang Road, Shigu District, Hengyang 421000, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Bhiman JN, Madzorera VS, Mkhize Q, Scheepers C, Hermanus T, Ayres F, Makhado Z, Moyo-Gwete T, Crowther C, Singh B, Fortuin M, Marinda E, Jooste S, Zuma K, Zungu N, Morris L, Puren A, Simbayi L, Moyo S, Moore PL. Population shift in antibody immunity following the emergence of a SARS-CoV-2 variant of concern. Sci Rep 2025; 15:5549. [PMID: 39953108 PMCID: PMC11828959 DOI: 10.1038/s41598-025-89940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from pre-existing immunity and elicit variant-specific immune responses. In South Africa, the second wave of SARS-CoV-2 infections was driven by the Beta VOC, which coincided with the country-wide National COVID-19 Antibody Survey (NCAS). The NCAS was conducted between November 2020 and February 2021 to understand the burden of SARS-CoV-2 infection through seroprevalence. We evaluated 649 NCAS sera for spike binding and pseudovirus neutralizing antibodies. We classified individuals as ancestral or D614G neutralizers (114/649), Beta neutralizers (96/649), double neutralizers (375/649) or non-neutralizers (62/649). We observed a consistent decrease in preferential neutralization against the D614G variant from 68 to 18% of individuals over the four sampling months. Concurrently, samples with equivalent neutralization of both variants, or with enhanced neutralization of the Beta variant, increased from 32 to 82% of samples. Neutralization data showed that geometric mean titers (GMTs) against D614G dropped 2.4-fold, while GMTs against Beta increased 2-fold during this same period. A shift in population humoral immunity in favor of Beta-directed or cross-neutralizing antibody responses, paralleled the increase in genomic frequency of the Beta variant in South Africa. Understanding similar population immunity shifts could elucidate immunity gaps that drive SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Jinal N Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.
| | - Vimbai Sharon Madzorera
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Qiniso Mkhize
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Cathrine Scheepers
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Tandile Hermanus
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Carol Crowther
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Beverley Singh
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mirriam Fortuin
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Edmore Marinda
- Human Sciences Research Council, Pretoria, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Sean Jooste
- Human Sciences Research Council, Pretoria, South Africa
| | - Khangelani Zuma
- Human Sciences Research Council, Pretoria, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Nompumelelo Zungu
- Human Sciences Research Council, Pretoria, South Africa
- School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian Puren
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Leickness Simbayi
- Human Sciences Research Council, Pretoria, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sizulu Moyo
- Human Sciences Research Council, Pretoria, South Africa
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
5
|
Chang S, Shin J, Park S, Park H, Kim JH, Kim TW, Jung IK, Song B, Shin KS, Park B, Kim SY, Jeon JH, Yeo J, Lee TY, Kang CY. Continuous Tracking for Effective Tackling: Ad5/35 Platform-Based JN1 Lineage Vaccines Development in Response to Evolving SARS-CoV-2 Variants. J Med Virol 2025; 97:e70206. [PMID: 39891605 DOI: 10.1002/jmv.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The SARS-CoV-2 virus is continuously evolving, such that JN.1 and its subvariants, including KP.2, KP.3, and LB.1, are now predominant variants globally. JN.1 is derived from BA.2.86, which harbors more than 30 mutations in the spike protein compared with those of XBB and BA.2, and it carries an additional L455S mutation. Given the rapid evolution of these variants, assessing the neutralization capacity of current JN.1 lineage vaccines against prevalent variants, such as KP.3, is critical. Phylogenetic trees using spike protein sequences and antigenic cartography based on neutralization results reveal that JN.1 lineage variants are antigenically distant from previously circulating variants. Moreover, JN.1 subvariants showed inadequate neutralization titers compared with other variants against XBB.1.5-containing vaccine in mice. Immunization with vaccines targeting the JN.1, KP.2, KP.3, and LB.1 variants demonstrated significant neutralizing activity against predominant variants in mice. These results highlight the importance of vaccine development to keep pace with the evolution of SARS-CoV-2 variants and the need for updated vaccines targeting the JN.1 variant.
Collapse
Affiliation(s)
- Soojeong Chang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Jieun Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Seowoo Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Hyemin Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Jong Heon Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Tae Wan Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - In Kyung Jung
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Boyeong Song
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Bongju Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Seo-Yeon Kim
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Ji Hyang Jeon
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Jinah Yeo
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Tae-Young Lee
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| |
Collapse
|
6
|
Rössler A, Netzl A, Lasrado N, Chaudhari J, Mühlemann B, Wilks SH, Kimpel J, Smith DJ, Barouch DH. Nonhuman primate antigenic cartography of SARS-CoV-2. Cell Rep 2025; 44:115140. [PMID: 39754717 PMCID: PMC11781863 DOI: 10.1016/j.celrep.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus. We evaluated neutralization profiles against 23 SARS-CoV-2 variants in nonhuman primates (NHPs) after single variant exposure and generated an NHP-derived antigenic map. We identified a distant antigenic region occupied by BA.2.86, JN.1, and the descendants KP.2, KP.3, and KZ.1.1.1. We also found that the monovalent XBB.1.5 mRNA vaccine induced broad immunity against the mapped antigenic space. In addition, substantial concordance was observed between our NHP-derived and two human antigenic maps, demonstrating the utility of NHPs as a surrogate for antigenic cartography in humans.
Collapse
Affiliation(s)
- Annika Rössler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jayeshbhai Chaudhari
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, 10117 Berlin, Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Naumova DA, Krokunova T, Maksimov D, Mityaeva ON, Astakhova EA, Volchkov PY. Challenges in Humoral Immune Response to Adeno-Associated Viruses Determination. Int J Mol Sci 2025; 26:816. [PMID: 39859531 PMCID: PMC11765838 DOI: 10.3390/ijms26020816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Adeno-associated viruses (AAVs) are non-pathogenic, replication-deficient viruses that have gained widespread attention for their application as gene therapy vectors. While these vectors offer high transduction efficiency and long-term gene expression, the host immune response poses a significant challenge to their clinical success. This review focuses on the obstacles to evaluating the humoral response to AAVs. We discuss the problems with the validation of in vitro tests and the possible approaches to overcome them. Using published data on neutralizing titers of AAV serotypes, we built the first antigenic maps of AAVs in order to visualize the antigenic relationships between varying serotypes.
Collapse
Affiliation(s)
- Daria A. Naumova
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| | - Tatyana Krokunova
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| | - Denis Maksimov
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| | - Olga N. Mityaeva
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| | - Ekaterina A. Astakhova
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia
- Moscow Center for Advanced Studies, Kulakova Street, 20, Moscow 123592, Russia
| |
Collapse
|
8
|
Liu J, Wang L, Kurtesi A, Budylowski P, Potts KG, Menon H, Tan Y, Samaan P, Liu X, Wang Y, Hu Q, Samson R, Qi F, Evseev D, John C, Ellestad KK, Fan Y, Budiman F, Tohan ER, Udayakumar S, Yang J, Marcusson EG, Gingras AC, Mahoney DJ, Ostrowski MA, Martin-Orozco N. A bivalent COVID-19 mRNA vaccine elicited broad immune responses and protection against Omicron subvariants infection. NPJ Vaccines 2025; 10:4. [PMID: 39788981 PMCID: PMC11718203 DOI: 10.1038/s41541-025-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Continuously emerging SARS-CoV-2 Omicron subvariants pose a threat thwarting the effectiveness of approved COVID-19 vaccines. Especially, the protection breadth and degree of these vaccines against antigenically distant Omicron subvariants is unclear. Here, we report the immunogenicity and efficacy of a bivalent mRNA vaccine, PTX-COVID19-M1.2 (M1.2), which encodes native spike proteins from Wuhan-Hu-1 (D614G) and Omicron BA.2.12.1, in mouse and hamster models. Both primary series and booster vaccination using M1.2 elicited potent and broad nAbs against Wuhan-Hu-1 (D614G) and some Omicron subvariants. Strong spike-specific T cell responses against Wuhan-Hu-1 and Omicron subvariants, including JN.1, were also induced. Vaccination with M1.2 protected animals from Wuhan-Hu-1 and multiple Omicron subvariants challenges. Interestingly, protection against XBB.1.5 lung infection did not correlate with nAb levels. These results indicate that M1.2 generated a broadly protective immune response against antigenically distant Omicron subvariants, and spike-specific T cells probably contributed to the breadth of the protection.
Collapse
Affiliation(s)
- Jun Liu
- Providence Therapeutics Holdings, Inc., Calgary, Canada.
| | - Li Wang
- Everest Medicines, Shanghai, China
| | - Alexandra Kurtesi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kyle G Potts
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Haritha Menon
- Providence Therapeutics Holdings, Inc., Calgary, Canada
| | - Yilin Tan
- Providence Therapeutics Holdings, Inc., Calgary, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Queenie Hu
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Freda Qi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Danyel Evseev
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cini John
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kristofor K Ellestad
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yue Fan
- Everest Medicines, Shanghai, China
| | - Frans Budiman
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Suji Udayakumar
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Douglas J Mahoney
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mario A Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Immunology, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
| | | |
Collapse
|
9
|
Suntronwong N, Kanokudom S, Duangchinda T, Chantima W, Pakchotanon P, Klinfueng S, Puenpa J, Thatsanathorn T, Wanlapakorn N, Poovorawan Y. Neutralization of omicron subvariants and antigenic cartography following multiple COVID 19 vaccinations and repeated omicron non JN.1 or JN.1 infections. Sci Rep 2025; 15:1454. [PMID: 39789099 PMCID: PMC11718010 DOI: 10.1038/s41598-024-84138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.1, and evaluated neutralization against omicron BA.5, BA.2.75, BQ.1.1, XBB.1.16, XBB.1.5, and JN.1. Neutralizing antibodies exhibited a narrow breadth against BA.5 and BA.2.75 and failed to neutralize BQ.1.1 and XBB lineages after three to five doses of the ancestral monovalent vaccine. Hybrid immunity elicited higher neutralizing titers than vaccination alone, but titers remained relatively low. A single omicron PVI elicited lower neutralization titers to all variants compared to wild-type (WT), indicating immunological imprinting. Repeated omicron PVIs, particularly JN.1, slightly mitigated these effects by increasing broad neutralization responses to all variants, though not significantly. Antigenic mapping demonstrated that XBB lineages and JN.1 are antigenically distant from WT and also evaded antibodies induced by earlier omicron variants (BA.1-5) PVIs. However, repeated JN.1 PVIs shortened this antigenic distance, indicating broader neutralization across omicron variants. These findings highlight SARS-CoV-2 immunity following various antigen boosts and the impact of repeated omicron JN.1 exposure on broad immunity, informing future COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Einhauser S, Asam C, Weps M, Senninger A, Peterhoff D, Bauernfeind S, Asbach B, Carnell GW, Heeney JL, Wytopil M, Fuchs A, Messmann H, Prelog M, Liese J, Jeske SD, Protzer U, Hoelscher M, Geldmacher C, Überla K, Steininger P, Wagner R. Longitudinal effects of SARS-CoV-2 breakthrough infection on imprinting of neutralizing antibody responses. EBioMedicine 2024; 110:105438. [PMID: 39522353 PMCID: PMC11585733 DOI: 10.1016/j.ebiom.2024.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study. METHODS 173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.2, BA.5, BQ.1.1, XBB.1.5 and JN.1. FINDINGS Magnitude-breadth-analysis showed enhanced neutralization capacity in vaccinated individuals against multiple VOCs. Longitudinal analysis revealed sustained neutralization magnitude-breadth after antigenically distant Delta or Omicron breakthrough infection (BTI), with triple-vaccinated individuals showing significantly elevated titres and improved breadth. Antigenic mapping and antibody landscaping revealed initial boosting of vaccine-induced WT-specific responses after BTI, a shift in neutralization towards infecting VOCs at peak responses and an immune imprinted bias towards dominating WT immunity in the long-term. Despite that bias, machine-learning models confirmed a sustained shift of the immune-profiles following BTI. INTERPRETATION In summary, our longitudinal analysis revealed delayed and short lived nAb shifts towards the infecting VOC, but an immune imprinted bias towards long-term vaccine induced immunity after BTI. FUNDING This work was funded by the Bavarian State Ministry of Science and the Arts for the CoVaKo study and the ForCovid project. The funders had no influence on the study design, data analysis or data interpretation.
Collapse
Affiliation(s)
- Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Claudia Asam
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Manuela Weps
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Senninger
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stilla Bauernfeind
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom; DIOSynVax, Ltd., Cambridge, United Kingdom
| | - Monika Wytopil
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Fuchs
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Martina Prelog
- Pediatric Rheumatology / Special Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Liese
- Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Samuel D Jeske
- Institute of Virology, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research, Munich Partner Site, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
12
|
Renner TM, Stuible M, Cass B, Perret S, Guimond J, Lord-Dufour S, McCluskie MJ, Durocher Y, Akache B. Reduced cross-protective potential of Omicron compared to ancestral SARS-CoV-2 spike vaccines against potentially zoonotic coronaviruses. NPJ VIRUSES 2024; 2:58. [PMID: 40295830 PMCID: PMC11721134 DOI: 10.1038/s44298-024-00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/19/2024] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic has emphasised the importance of vaccines and preparedness against viral threats crossing species barriers. In response, a worldwide vaccination campaign targeting SARS-CoV-2 was implemented, which provides some cross-protective immunological memory to other coronavirus species with zoonotic potential. Following a vaccination regimen against SARS-CoV-2 spike in a preclinical mouse model, we were able to demonstrate the induction of neutralizing antibodies towards multiple human ACE2 (hACE2)-binding Sarbecovirus spikes. Importantly, compared to vaccines based on the SARS-CoV-2 Reference strain, vaccines based on Omicron spike sequences induced drastically less broadly cross-protective neutralizing antibodies against other hACE2-binding sarbecoviruses. This observation remained true whether the vaccination regimens were based on protein subunit or mRNA / LNP vaccines. Overall, while it may be necessary to update vaccine antigens to combat the evolving SARS-CoV-2 virus for enhanced protection from COVID-19, Reference-based vaccines may be a more valuable tool to protect against novel coronavirus zoonoses.
Collapse
Affiliation(s)
- Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Brian Cass
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Sylvie Perret
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Julie Guimond
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Simon Lord-Dufour
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada.
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024; 98:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Dearlove BL, Fries AC, Epsi NJ, Richard SA, Ganesan A, Huprikar N, Lindholm DA, Mende K, Colombo RE, Colombo C, Bai H, Larson DT, Ewers EC, Lalani T, Smith AG, Berjohn CM, Maves RC, Jones MU, Saunders D, Maldonado CJ, Mody RM, Bazan SE, Tribble DR, Burgess T, Simons MP, Agan BK, Pollett SD, Rolland M. SARS-CoV-2 variant replacement constrains vaccine-specific viral diversification. Virus Evol 2024; 10:veae071. [PMID: 39386074 PMCID: PMC11463026 DOI: 10.1093/ve/veae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccine breakthrough infections have been important for all circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant periods, but the contribution of vaccine-specific SARS-CoV-2 viral diversification to vaccine failure remains unclear. This study analyzed 595 SARS-CoV-2 sequences collected from the Military Health System beneficiaries between December 2020 and April 2022 to investigate the impact of vaccination on viral diversity. By comparing sequences based on the vaccination status of the participant, we found limited evidence indicating that vaccination was associated with increased viral diversity in the SARS-CoV-2 spike, and we show little to no evidence of a substantial sieve effect within major variants; rather, we show that rapid variant replacement constrained intragenotype COVID-19 vaccine strain immune escape. These data suggest that, during past and perhaps future periods of rapid SARS-CoV-2 variant replacement, vaccine-mediated effects were subsumed with other drivers of viral diversity due to the massive scale of infections and vaccinations that occurred in a short time frame. However, our results also highlight some limitations of using sieve analysis methods outside of placebo-controlled clinical trials.
Collapse
Grants
- Walter Reed National Military Medical Center, Bethesda, MD
- Defense Health Program
- Walter Reed Army Institute of Research, Silver Spring, MD
- National Institute of Allergy and Infectious Diseases at the National Institutes of Health
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF)
- U.S. Department of Defense (DOD)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.
- Infectious Disease Clinical Research Program (IDCRP)
- National Institute of Allergy and Infectious Disease
- Uniformed Services University of the Health Sciences (USUHS)
- Department of Defense (DoD)
- Coast Guard, Washington, DC
- School of Aerospace Medicine, Dayton, OH
- William Beaumont Army Medical Center, El Paso, TX
- Womack Army Medical Center, Fort Bragg
- Henry M. Jackson Foundation, Inc., Bethesda, MD
- Carl R. Darnall Army Medical Center
- United States Air Force
- Tripler Army Medical Center, Honolulu, HI
Collapse
Affiliation(s)
- Bethany L Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
| | - Anthony C Fries
- The Applied Technology and Genomics (PHT) Division, US Air Force School of Aerospace Medicine, 2510 5th St, Dayton, OH 45433, United States
| | - Nusrat J Epsi
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Stephanie A Richard
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Anuradha Ganesan
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Division of Infectious Diseases, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, United States
| | - Nikhil Huprikar
- Division of Infectious Diseases, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, United States
| | - David A Lindholm
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Division of Infectious Diseases, Brooke Army Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234, United States
| | - Katrin Mende
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Division of Infectious Diseases, Brooke Army Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234, United States
| | - Rhonda E Colombo
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Division of Infectious Diseases, Madigan Army Medical Center, 9040 Jackson Avenue, Tacoma, WA 98431, United States
| | - Christopher Colombo
- Division of Infectious Diseases, Madigan Army Medical Center, 9040 Jackson Avenue, Tacoma, WA 98431, United States
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
| | - Derek T Larson
- Division of Infectious Diseases, Alexander T. Augusta Military Medical Center, 9300 DeWitt Loop, Fort Belvoir, VA 22060, United States
| | - Evan C Ewers
- Division of Infectious Diseases, Alexander T. Augusta Military Medical Center, 9300 DeWitt Loop, Fort Belvoir, VA 22060, United States
| | - Tahaniyat Lalani
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Division of Infectious Diseases, Naval Medical Center Portsmouth, 620 John Paul Jones Circle, Portsmouth, VA 23708, United States
| | - Alfred G Smith
- Division of Infectious Diseases, Naval Medical Center Portsmouth, 620 John Paul Jones Circle, Portsmouth, VA 23708, United States
| | - Catherine M Berjohn
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Infectious Diseases and Internal Medicine, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92134, United States
| | - Ryan C Maves
- Sections of Infectious Diseases and Critical Care Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Milissa U Jones
- Department of Pediatrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - David Saunders
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Carlos J Maldonado
- Department of Clinical Investigation, Womack Army Medical Center, 2817 Rock Merritt Avenue, Fort Liberty, NC, United States
| | - Rupal M Mody
- Division of Infectious Diseases, William Beaumont Army Medical Center, 18511 Highlander Medics Street, El Paso, TX 79918, United States
| | - Samantha E Bazan
- Department of Primary Care, Carl R. Darnall Army Medical Center, 590 Medical Center Road, Fort Cavazos, TX 76544, United States
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mark P Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Brian K Agan
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Simon D Pollett
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, United States
| |
Collapse
|
15
|
Mühlemann B, Trimpert J, Walper F, Schmidt ML, Jansen J, Schroeder S, Jeworowski LM, Beheim-Schwarzbach J, Bleicker T, Niemeyer D, Richter A, Adler JM, Vidal RM, Langner C, Vladimirova D, Wilks SH, Smith DJ, Voß M, Paltzow L, Martínez Christophersen C, Rose R, Krumbholz A, Jones TC, Corman VM, Drosten C. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc Natl Acad Sci U S A 2024; 121:e2310917121. [PMID: 39078681 PMCID: PMC11317614 DOI: 10.1073/pnas.2310917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Felix Walper
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Marie L. Schmidt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jenny Jansen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Simon Schroeder
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | | | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Lea Paltzow
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | - Terry C. Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Victor M. Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| |
Collapse
|
16
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Meira DD, Zetum ASS, Casotti MC, Campos da Silva DR, de Araújo BC, Vicente CR, Duque DDA, Campanharo BP, Garcia FM, Campanharo CV, Aguiar CC, Lapa CDA, Alvarenga FDS, Rosa HP, Merigueti LP, Sant’Ana MC, Koh CW, Braga RFR, Cruz RGCD, Salazar RE, Ventorim VDP, Santana GM, Louro TES, Louro LS, Errera FIV, Paula FD, Altoé LSC, Alves LNR, Trabach RSDR, Santos EDVWD, Carvalho EFD, Chan KR, Louro ID. Bioinformatics and molecular biology tools for diagnosis, prevention, treatment and prognosis of COVID-19. Heliyon 2024; 10:e34393. [PMID: 39816364 PMCID: PMC11734128 DOI: 10.1016/j.heliyon.2024.e34393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Since December 2019, a new form of Severe Acute Respiratory Syndrome (SARS) has emerged worldwide, caused by SARS coronavirus 2 (SARS-CoV-2). This disease was called COVID-19 and was declared a pandemic by the World Health Organization in March 2020. Symptoms can vary from a common cold to severe pneumonia, hypoxemia, respiratory distress, and death. During this period of world stress, the medical and scientific community were able to acquire information and generate scientific data at unprecedented speed, to better understand the disease and facilitate vaccines and therapeutics development. Notably, bioinformatics tools were instrumental in decoding the viral genome and identifying critical targets for COVID-19 diagnosis and therapeutics. Through the integration of omics data, bioinformatics has also improved our understanding of disease pathogenesis and virus-host interactions, facilitating the development of targeted treatments and vaccines. Furthermore, molecular biology techniques have accelerated the design of sensitive diagnostic tests and the characterization of immune responses, paving the way for precision medicine approaches in treating COVID-19. Our analysis highlights the indispensable contributions of bioinformatics and molecular biology to the global effort against COVID-19. In this review, we aim to revise the COVID-19 features, diagnostic, prevention, treatment options, and how molecular biology, modern bioinformatic tools, and collaborations have helped combat this pandemic. An integrative literature review was performed, searching articles on several sites, including PUBMED and Google Scholar indexed in referenced databases, prioritizing articles from the last 3 years. The lessons learned from this COVID-19 pandemic will place the world in a much better position to respond to future pandemics.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Danielle Ribeiro Campos da Silva
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bianca Paulino Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Fernanda Mariano Garcia
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Camilly Victória Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carla Carvalho Aguiar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carolina de Aquino Lapa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flávio dos Santos Alvarenga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Henrique Perini Rosa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Marllon Cindra Sant’Ana
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Clara W.T. Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Raquel Furlani Rocon Braga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rahna Gonçalves Coutinho da Cruz
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rhana Evangelista Salazar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Espírito Santo, Vitória, 29027-502, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Flavia Imbroisi Valle Errera
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | | | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20551-030, Brazil
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
18
|
Biswas D, Mahalingam G, Subaschandrabose RK, Priya S, Ramachandran R, Suresh S, Mathivanan TV, Balu NV, Selvaraj K, Nellickal AJ, Christudoss P, Samuel P, Kt RD, Marepally S, Moorthy M. Role of prior immunity in binding to spike of "future" Omicron subvariants. Indian J Med Microbiol 2024; 50:100615. [PMID: 38782260 DOI: 10.1016/j.ijmmb.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Throughout the COVID-19 pandemic, virus evolution and large-scale vaccination programs have caused multiple exposures to SARS CoV-2 spike protein, resulting in complex antibody profiles. The binding of these to spike protein of "future" variants in the context of such heterogeneous exposure has not been studied. METHODS We tested archival sera (Delta and Omicron period) stratified by anti-spike antibody (including IgG) levels for reactivity to Omicron-subvariants(BA.1, BA.2,BA.2.12.1, BA.2.75, BA.4/5 and BF.7) spike protein. Assessed antigenic distance between groups using Antigenic Cartography and performed hierarchical clustering of antibody data in a Euclidean distance framework. RESULTS Antibody (including IgG) antibody reactivity to Wild-type (CLIA) and subvariants (ELISA) spike protein were similar between periods (p > 0.05). Both 'High S' and 'Low S' of Delta and Omicron periods were closely related to "future" subvariants by Antigenic Cartography. Sera from different S groups clustered together with 'Low S' interspersed between 'High S' on hierarchical clustering, suggesting common binding sites. Further, anti-spike antibodies (including IgG) to Wild-type (S1/S2 and Trimeric S) clustered with Omicron-subvariant binding antibodies. CONCLUSIONS Hybrid immunity caused by cumulative virus exposure in Delta or Omicron periods resulted in equivalent binding to "future" variants, which might be due to binding to conserved regions of spike protein of future variants. A prominent finding is that the 'Low S' antibody demonstrates similar binding.
Collapse
Affiliation(s)
- Deepayan Biswas
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | | | - Sangeetha Priya
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Rohini Ramachandran
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Sevanthy Suresh
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | - Tamil Venthan Mathivanan
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Nelson Vijaykumar Balu
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Kavitha Selvaraj
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Arun Jose Nellickal
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Pamela Christudoss
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Prasanna Samuel
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, Pin: 632002, India.
| | - Ramya Devi Kt
- Department of Biotechnology, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, Pin: 603203, India.
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| |
Collapse
|
19
|
van Dijk LLA, Rijsbergen LC, Rubio BT, Schmitz KS, Gommers L, Comvalius AD, Havelaar A, van Amerongen G, Schepp R, Lamers MM, GeurtsvanKessel CH, Haagmans BL, van Binnendijk R, de Swart RL, de Vries RD. Virus neutralization assays for human respiratory syncytial virus using airway organoids. Cell Mol Life Sci 2024; 81:267. [PMID: 38884678 PMCID: PMC11335194 DOI: 10.1007/s00018-024-05307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.
Collapse
Affiliation(s)
- Laura L A van Dijk
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Laurine C Rijsbergen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Bruno Tello Rubio
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Katharina S Schmitz
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Anouskha D Comvalius
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Alexander Havelaar
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Geert van Amerongen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Rutger Schepp
- Center of Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Corine H GeurtsvanKessel
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Rob van Binnendijk
- Center of Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar MS, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays. Sci Transl Med 2024; 16:eadl1722. [PMID: 38748773 DOI: 10.1126/scitranslmed.adl1722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
21
|
Baker R, Lawlor R, Smith M, Price J, Eaton A, Lover A, Alfandari D, Reinhart P, Arcaro KF, Osborne BA. Antibody responses in blood and saliva post COVID-19 bivalent booster do not reveal an Omicron BA.4/BA.5- specific response. Front Immunol 2024; 15:1401209. [PMID: 38812500 PMCID: PMC11133519 DOI: 10.3389/fimmu.2024.1401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Current SARS-CoV-2 strains continue to mutate and attempt to evade the antibody response elicited by previous exposures and vaccinations. In September of 2022, the first updated SARS-CoV-2 vaccines, designed to create immune responses specific for the variants circulating in 2022, were approved. These new vaccines, known commonly as the bivalent boost(er), include mRNA that encodes both the original Wuhan-Hu-1 spike protein as well as the spike protein specific to the Omicron BA.4 and BA.5 variants. Methods We recruited volunteers from University of Massachusetts student, faculty and staff members to provide samples of blood and saliva at four different time points, including pre-boost and three times post boost and analyzed samples for antibody production as well as neutralization of virus. Results Our data provide a comprehensive analysis of the antibody response following a single dose of the bivalent boost over a 6-month period and support previous findings that the response induced after the bivalent boost does not create a strong BA.4/BA.5-specific antibody response. Conclusion We found no evidence of a specific anti-BA.4/BA.5 response developing over time, including in a sub-population of individuals who become infected after a single dose of the bivalent booster. Additionally, we present data that support the use of saliva samples as a reliable alternative to blood for antibody detection against specific SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Ryan Baker
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maeve Smith
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica Price
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ashley Eaton
- Institute for Applied Life Sciences (IALS) Clinical Testing Center (ICTC), University of Massachusetts Amherst, Amherst, MA, United States
| | - Andrew Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Peter Reinhart
- Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, United States
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
22
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
23
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Song G, Li R, Cheng MQ. Safety, immunogenicity, and protective effective of inhaled COVID-19 vaccines: A systematic review and meta-analysis. J Med Virol 2024; 96:e29625. [PMID: 38650361 DOI: 10.1002/jmv.29625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to examine the safety, immunogenicity and protective effective of inhaled COVID-19 vaccines (ICVs). Literature research was done through EMBASE, Cochrane, PubMed, and Web of Science up to 10 March 2024. Pooled estimates with corresponding 95% confidence intervals (CI) were computed and compared using the random effects and common effects model. Of the 15 studies, 11 analyzed safety, 13 analyzed immunogenicity, and 3 analyzed protective effective. The results showed a favorable safety profile of ICVs for primary vaccination series, however it does not always seem to produce the expected immune response and protective effective. Meta-analysis of ICVs booster vaccinations (BVs) showed that the levels of neutralizing antibody Geometric mean titer (nAb-GMT) with aerosolised Ad5-nCoV (AAd5-nCoV) were all higher than those with inactivated vaccine (INA-nCoV) (standard mean difference (SMD) = 2.32; 95% CI: 1.96-2.69) and intramuscular Ad5-nCoV (IMAd5-nCoV) (SMD = 0.31; 95% CI: 0.14-0.48) against the original strain of SARS-CoV-2. Importantly, we also observed similar results in the omicron variant. In addition, ICV in BVs has high mucosal immunity to IgA antibodies. The risk of adverse events was comparable or lower for AAd5-nCoV compared to INA-nCoV or IMAd5-nCoV. Current evidence shows that the safety profile of ICVs were well. The booster dose of AAd5-nCoV had a high immune response (including mucosal immunity) and provided protection against COVID-19 caused by the SARS-CoV-2 omicron variant. Further studies are needed to investigate the long-term safety of intranasal vaccine booster protection and various types of ICVs.
Collapse
Affiliation(s)
- Gao Song
- Department of Pharmacy, Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, Puer People's Hospital, Pu'er, China
| | - Meng-Qun Cheng
- Department of Reproductive Medicine, Puer People's Hospital, Pu'er, China
| |
Collapse
|
25
|
Chang S, Shin KS, Park B, Park S, Shin J, Park H, Jung IK, Kim JH, Bae SE, Kim JO, Baek SH, Kim G, Hong JJ, Seo H, Volz E, Kang CY. Strategy to develop broadly effective multivalent COVID-19 vaccines against emerging variants based on Ad5/35 platform. Proc Natl Acad Sci U S A 2024; 121:e2313681121. [PMID: 38408238 PMCID: PMC10927586 DOI: 10.1073/pnas.2313681121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/28/2024] [Indexed: 02/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strain has evolved into highly divergent variants with several sub-lineages. These newly emerging variants threaten the efficacy of available COVID-19 vaccines. To mitigate the occurrence of breakthrough infections and re-infections, and more importantly, to reduce the disease burden, it is essential to develop a strategy for producing updated multivalent vaccines that can provide broad neutralization against both currently circulating and emerging variants. We developed bivalent vaccine AdCLD-CoV19-1 BA.5/BA.2.75 and trivalent vaccines AdCLD-CoV19-1 XBB/BN.1/BQ.1.1 and AdCLD-CoV19-1 XBB.1.5/BN.1/BQ.1.1 using an Ad5/35 platform-based non-replicating recombinant adenoviral vector. We compared immune responses elicited by the monovalent and multivalent vaccines in mice and macaques. We found that the BA.5/BA.2.75 bivalent and the XBB/BN.1/BQ.1.1 and XBB.1.5/BN.1/BQ.1.1 trivalent vaccines exhibited improved cross-neutralization ability compared to their respective monovalent vaccines. These data suggest that the developed multivalent vaccines enhance immunity against circulating Omicron subvariants and effectively elicit neutralizing antibodies across a broad spectrum of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Soojeong Chang
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Bongju Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Seowoo Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Jieun Shin
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Hyemin Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - In Kyung Jung
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Jong Heon Kim
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Seong Eun Bae
- Science Unit, International Vaccine Institute, Seoul08826, Republic of Korea
| | - Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul08826, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science & Technology, Daejeon34141, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Erik Volz
- Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, LondonW2 1PG, United Kingdom
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| |
Collapse
|
26
|
Springer DN, Höltl E, Prüger K, Puchhammer-Stöckl E, Aberle JH, Stiasny K, Weseslindtner L. Measuring Variant-Specific Neutralizing Antibody Profiles after Bivalent SARS-CoV-2 Vaccinations Using a Multivariant Surrogate Virus Neutralization Microarray. Vaccines (Basel) 2024; 12:94. [PMID: 38250907 PMCID: PMC10818493 DOI: 10.3390/vaccines12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | | | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| |
Collapse
|
27
|
Wang X, Jiang S, Ma W, Li X, Wei K, Xie F, Zhao C, Zhao X, Wang S, Li C, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Li J, Hu Z, Zhang W, Jiang S, Li M, Zhang Y, Wang P. Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster. Cell Host Microbe 2024; 32:25-34.e5. [PMID: 38029742 DOI: 10.1016/j.chom.2023.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangnan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Kaifeng Wei
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shidi Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zixin Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Yang X, Wang Y, Liang Z, Cui T, Chen D, Li G, Xu H, Liu S, Zhong N, Huang W, Wang Z. Immune escape of BA.2.86 is comparable to XBB subvariants from the plasma of BA.5- and BA.5-XBB-convalescent subpopulations. J Med Virol 2024; 96:e29417. [PMID: 38258345 DOI: 10.1002/jmv.29417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The EG.5.1 variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been prevalent since mid-July 2023 in the United States and China. The variant BA.2.86 has become a major concern because it is 34 mutations away from the parental variant BA.2 and >30 mutations from XBB.1.5. There is an urgent need to evaluate whether the immunity of the population and current vaccines are protective against EG.5.1 and BA.2.86. Based on a cohort of two breakthrough-infected groups, the levels of neutralizing antibodies (NAbs) against different subvariants were measured using pseudovirus-based neutralization assays. XBB.1.5, EG.5.1, and BA.2.86 are comparably immune-evasive from neutralization by the plasma of individuals recovered from BA.5 infection (BA.5-convalescent) or XBB.1.9.2/XBB.1.5 infection following BA.5 infection (BA.5-XBB-convalescent). NAb levels against EG.5.1 and BA.2.86 subvariants remained >120 geometric mean titers (GMTs) in BA.5-XBB-convalescent individuals 2 months postinfection but were <40 GMTs in BA.5-convalescent individuals. Furthermore, the XBB-targeting messenger RNA (mRNA) vaccine RQ3033 induced higher levels of NAbs against XBB.1.5, EG.5.1, and BA.2.86 than against BA.5-XBB infection. The results suggest that BA.2.86 and EG.5.1 are unlikely to cause more severe concerns than the currently circulating XBB subvariants and that the XBB.1.5-targeting mRNA vaccine tested has promising protection against EG.5.1 and BA.2.86.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yuan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ziteng Liang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Cui
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Daxiang Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Guichang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hao Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Siyi Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Nanshan Zhong
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Weijin Huang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing, National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Bianco A, Bortolami A, Miccolupo A, Sottili R, Ghergo P, Castellana S, Del Sambro L, Capozzi L, Pagliari M, Bonfante F, Ridolfi D, Bulzacchelli C, Giannico A, Parisi A. SARS-CoV-2 in Animal Companions: A Serosurvey in Three Regions of Southern Italy. Life (Basel) 2023; 13:2354. [PMID: 38137955 PMCID: PMC10745004 DOI: 10.3390/life13122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Several animal species have been found to be susceptible to SARS-CoV-2 infection. The occurrence of infection in dogs and cats living in close contact with owners deserves particular attention from public health authorities in a One Health approach. In this study, we conducted serological screening to identify SARS-CoV-2 exposure in the sera from dogs and cats in three regions of southern Italy sampled during the years 2021 and 2022. We collected 100 serum samples in 2021 (89 from dogs and 11 from cats) and 640 in 2022 (577 from dogs and 63 from cats). Overall, the ELISA positivity rate was found to be 2.7% (20/740), with higher seroprevalence in dogs. Serum neutralization tests confirmed positivity only in two samples collected from dogs, and the assays, performed with serologically distinct SARS-CoV-2 variants, showed variant-specific positivity. This paper shows that monitoring SARS-CoV-2 exposure in animals might be affected by the viral antigenic evolution, which requires continuous updates to the serological tests used. Serological surveys are useful in understanding the true extent of exposure occurring in specific animal populations, not suffering the same limitations as molecular tests, and could help in identifying the infecting virus if tests able to characterize the immune response are used. The use of variant-specific validated serological methods should always be considered in serosurvey studies in order to determine the real impact of emerging variants on animal populations and its implications for veterinary and human health, as well as to identify potential reservoirs of the virus and its evolutionary changes.
Collapse
Affiliation(s)
- Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Roldano Sottili
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Paola Ghergo
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Matteo Pagliari
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Donato Ridolfi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Carmela Bulzacchelli
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Anna Giannico
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| |
Collapse
|
30
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice (Peromyscus leucopus) in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. NPJ VIRUSES 2023; 1:10. [PMID: 40295640 PMCID: PMC11721133 DOI: 10.1038/s44298-023-00010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 04/30/2025]
Abstract
Diverse mammalian species display susceptibility to SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. In addition, to provide a comparison, we also screened a species with significant SARS-CoV-2 infection and exposure across North America: the white-tailed deer (Odocoileus virginianus). We detected no active coronavirus infections and 7% (4/55) wild-type SARS-CoV-2 neutralizing antibody seroprevalence. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
31
|
Joseph JO, Ylade M, Daag JV, Aogo R, Crisostomo MV, Mpingabo P, Premkumar L, Deen J, Katzelnick L. High transmission of endemic human coronaviruses before and during the COVID-19 pandemic in adolescents in Cebu, Philippines. RESEARCH SQUARE 2023:rs.3.rs-3581033. [PMID: 38014070 PMCID: PMC10680936 DOI: 10.21203/rs.3.rs-3581033/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background SARS-CoV-2, the causative agent of COVID-19, is a betacoronavirus belonging to the same genus as endemic human coronaviruses (hCoVs) OC43 and HKU1 and is distinct from alpha hCoVs 229E and NL63. In a study of adolescents in the Philippines, we evaluated the seroprevalence to hCoVs, whether pre-pandemic hCoV immunity modulated subsequent risk of SARS-CoV-2 infection, and if SARS-CoV-2 infection affected the transmission of the hCoVs. Methods From 499 samples collected in 2021 and screened by SARS-CoV-2 receptor binding domain (RBD) enzyme-linked immunosorbent assay (ELISA), we randomly selected 59 SARS-CoV-2 negative and 61 positive individuals for further serological evaluation. We measured RBD and spike antibodies to the four hCoVs and SARS-CoV-2 by ELISA in samples from the same participants collected pre-pandemic (2018-2019) and mid-pandemic (2021), before COVID-19 vaccination. Results We observed over 72% seropositivity to the four hCoVs pre-pandemic. Binding antibodies increased with age to 229E and OC43, suggesting endemic circulation, while immunity was flat across ages for HKU1 and NL63. During the COVID-19 pandemic, antibody level increased significantly to the RBDs of OC43, NL63, and 229E and spikes of all four hCoVs in both SARS-CoV-2 negative and positive adolescents. Those aged 12-15 years old in 2021 had higher antibodies to RBD and spike of OC43, NL63, and 229E than adolescents the same age in 2019, further demonstrating intense transmission of the hCoVs during the pandemic. Conclusions We observe a limited impact of the COVID-19 pandemic on endemic hCoV transmission. This study provides insight into co-circulation of hCoVs and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines-Manila
| | | | | | | | | | | | - Jacqueline Deen
- National Institutes of Health, University of the Philippines-Manila
| | | |
Collapse
|
32
|
Seow J, Shalim ZA, Graham C, Kimuda S, Pillai A, Lechmere T, Kurshan A, Khimji AM, Snell LB, Nebbia G, Mant C, Waters A, Fox J, Malim MH, Doores KJ. Broad and potent neutralizing antibodies are elicited in vaccinated individuals following Delta/BA.1 breakthrough infection. mBio 2023; 14:e0120623. [PMID: 37747187 PMCID: PMC10653880 DOI: 10.1128/mbio.01206-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Zayed A. Shalim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Aswin Pillai
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Atika M. Khimji
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Snell
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Infectious Diseases Biobank, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Anele Waters
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
33
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
34
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Thimmiraju SR, Adhikari R, Villar MJ, Lee J, Liu Z, Kundu R, Chen YL, Sharma S, Ghei K, Keegan B, Versteeg L, Gillespie PM, Ciciriello A, Islam NY, Poveda C, Uzcategui N, Chen WH, Kimata JT, Zhan B, Strych U, Bottazzi ME, Hotez PJ, Pollet J. A Recombinant Protein XBB.1.5 RBD/Alum/CpG Vaccine Elicits High Neutralizing Antibody Titers against Omicron Subvariants of SARS-CoV-2. Vaccines (Basel) 2023; 11:1557. [PMID: 37896960 PMCID: PMC10610638 DOI: 10.3390/vaccines11101557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen.
Collapse
Affiliation(s)
- Syamala Rani Thimmiraju
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rakesh Adhikari
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jungsoon Lee
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhuyun Liu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rakhi Kundu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Lin Chen
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suman Sharma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.); (K.G.)
| | - Karm Ghei
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.); (K.G.)
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Portia M. Gillespie
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Ciciriello
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelufa Y. Islam
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nestor Uzcategui
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen-Hsiang Chen
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.); (K.G.)
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX 77005, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX 77005, USA
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA (M.J.V.); (J.L.); (Z.L.); (R.K.); (Y.-L.C.); (A.C.); (C.P.); (N.U.); (W.-H.C.); (B.Z.); (M.E.B.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar M, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative Analysis of SARS-CoV-2 Antigenicity across Assays and in Human and Animal Model Sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559689. [PMID: 37808679 PMCID: PMC10557678 DOI: 10.1101/2023.09.27.559689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mehul Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
38
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559030. [PMID: 37808797 PMCID: PMC10557615 DOI: 10.1101/2023.09.22.559030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Rössler A, Netzl A, Knabl L, Bante D, Wilks SH, Borena W, von Laer D, Smith DJ, Kimpel J. Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography. Nat Commun 2023; 14:5224. [PMID: 37633965 PMCID: PMC10460376 DOI: 10.1038/s41467-023-41049-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
40
|
Springer DN, Bauer M, Medits I, Camp JV, Aberle SW, Burtscher C, Höltl E, Weseslindtner L, Stiasny K, Aberle JH. Bivalent COVID-19 mRNA booster vaccination (BA.1 or BA.4/BA.5) increases neutralization of matched Omicron variants. NPJ Vaccines 2023; 8:110. [PMID: 37542025 PMCID: PMC10403593 DOI: 10.1038/s41541-023-00708-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
We report SARS-CoV-2 neutralizing antibody titers in sera of triple-vaccinated individuals who received a booster dose of an original monovalent or a bivalent BA.1- or BA.4/BA.5-adapted vaccine or had a breakthrough infection with Omicron variants BA.1, BA.2 or BA.4/BA.5. A bivalent BA.4/BA.5 booster or Omicron-breakthrough infection induced increased Omicron-neutralization titers compared with the monovalent booster. The XBB.1.5 variant effectively evaded neutralizing-antibody responses elicited by current vaccines and/or infection with previous variants.
Collapse
Affiliation(s)
- David N Springer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Bauer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Jeremy V Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Eva Höltl
- Health Center Erste Bank, Erste Bank, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Lee WS, Tan HX, Reynaldi A, Esterbauer R, Koutsakos M, Nguyen J, Amarasena T, Kent HE, Aggarwal A, Turville SG, Taiaroa G, Kinsella P, Liew KC, Tran T, Williamson DA, Cromer D, Davenport MP, Kent SJ, Juno JA, Khoury DS, Wheatley AK. Durable reprogramming of neutralizing antibody responses following Omicron breakthrough infection. SCIENCE ADVANCES 2023; 9:eadg5301. [PMID: 37478181 PMCID: PMC10361595 DOI: 10.1126/sciadv.adg5301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following Omicron BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months after infection. Both BA.1 and BA.2 infections robustly boosted neutralization activity against the infecting strain while expanding breadth against BA.4, although neutralization activity was substantially reduced for the more recent XBB and BQ.1.1 strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modeling of neutralization titers predicts that protection from symptomatic reinfection against antigenically similar strains will be durable but is undermined by new emerging strains with further neutralization escape.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julie Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E. Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stuart G. Turville
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - George Taiaroa
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul Kinsella
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Astakhova EA, Morozov AA, Byazrova MG, Sukhova MM, Mikhailov AA, Minnegalieva AR, Gorchakov AA, Filatov AV. Antigenic Cartography Indicates That the Omicron BA.1 and BA.4/BA.5 Variants Remain Antigenically Distant to Ancestral SARS-CoV-2 after Sputnik V Vaccination Followed by Homologous (Sputnik V) or Heterologous (Comirnaty) Revaccination. Int J Mol Sci 2023; 24:10493. [PMID: 37445671 PMCID: PMC10341525 DOI: 10.3390/ijms241310493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid emergence of evasive SARS-CoV-2 variants is an ongoing challenge for COVID-19 vaccinology. Traditional virus neutralization tests provide detailed datasets of neutralization titers against the viral variants. Such datasets are difficult to interpret and do not immediately inform of the sufficiency of the breadth of the antibody response. Some of these issues could be tackled using the antigenic cartography approach. In this study, we created antigenic maps using neutralization titers of sera from donors who received the Sputnik V booster vaccine after primary Sputnik V vaccination and compared them with the antigenic maps based on serum neutralization titers of Comirnaty-boosted donors. A traditional analysis of neutralization titers against the WT (wild-type), Alpha, Beta, Delta, Omicron BA.1, and BA.4/BA.5 variants showed a significant booster humoral response after both homologous (Sputnik V) and heterologous (Comirnaty) revaccinations against all of the studied viral variants. However, despite this, a more in-depth analysis using antigenic cartography revealed that Omicron variants remain antigenically distant from the WT, which is indicative of the formation of insufficient levels of cross-neutralizing antibodies. The implications of these findings may be significant when developing a new vaccine regimen.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Morozov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Ministry of Science and Higher Education of Russia, RUDN University, 117198 Moscow, Russia
| | - Maria M. Sukhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem A. Mikhailov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aygul R. Minnegalieva
- Laboratory of Synthetic and Evolutionary Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
43
|
Yang J, Hong W, Lei H, He C, Lei W, Zhou Y, Zhao T, Alu A, Ma X, Li J, Yang L, Wang Z, Wang W, Lu G, Shen G, Lu S, Wu G, Shi H, Wei X. Low levels of neutralizing antibodies against XBB Omicron subvariants after BA.5 infection. Signal Transduct Target Ther 2023; 8:252. [PMID: 37336889 DOI: 10.1038/s41392-023-01495-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.
Collapse
Affiliation(s)
- Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| | - Huashan Shi
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
44
|
Mykytyn AZ, Rosu ME, Kok A, Rissmann M, van Amerongen G, Geurtsvankessel C, de Vries RD, Munnink BBO, Smith DJ, Koopmans MPG, Lamers MM, Fouchier RAM, Haagmans BL. Antigenic mapping of emerging SARS-CoV-2 omicron variants BM.1.1.1, BQ.1.1, and XBB.1. THE LANCET. MICROBE 2023; 4:e294-e295. [PMID: 36657480 PMCID: PMC9842387 DOI: 10.1016/s2666-5247(22)00384-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Miruna E Rosu
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Adinda Kok
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | | | | | - Rory D de Vries
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Bas B Oude Munnink
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marion P G Koopmans
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands.
| |
Collapse
|
45
|
Lindesmith LC, Brewer-Jensen PD, Conrad H, O’Reilly KM, Mallory ML, Kelly D, Williams R, Edmunds WJ, Allen DJ, Breuer J, Baric RS. Emergent variant modeling of the serological repertoire to norovirus in young children. Cell Rep Med 2023; 4:100954. [PMID: 36854303 PMCID: PMC10040388 DOI: 10.1016/j.xcrm.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Human norovirus is the leading cause of acute gastroenteritis. Young children and the elderly bear the greatest burden of disease, representing more than 200,000 deaths annually. Infection prevalence peaks at younger than 2 years and is driven by novel GII.4 variants that emerge and spread globally. Using a surrogate neutralization assay, we characterize the evolution of the serological neutralizing antibody (nAb) landscape in young children as they transition between sequential GII.4 pandemic variants. Following upsurge of the replacement variant, antigenic cartography illustrates remodeling of the nAb landscape to the new variant accompanied by improved nAb titer. However, nAb relative avidity remains focused on the preceding variant. These data support immune imprinting as a mechanism of immune evasion and GII.4 virus persistence across a population. Understanding the complexities of immunity to rapidly evolving and co-circulating viral variants, like those of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), and dengue viruses, will fundamentally inform vaccine design for emerging pathogens.
Collapse
Affiliation(s)
- Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul D. Brewer-Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen M. O’Reilly
- Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1EW 7HT, UK
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rachel Williams
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - W. John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1EW 7HT, UK
| | - David J. Allen
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Microbiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Rössler A, Netzl A, Knabl L, Schäfer H, Wilks SH, Bante D, Falkensammer B, Borena W, von Laer D, Smith DJ, Kimpel J. BA.2 and BA.5 omicron differ immunologically from both BA.1 omicron and pre-omicron variants. Nat Commun 2022; 13:7701. [PMID: 36513653 PMCID: PMC9745279 DOI: 10.1038/s41467-022-35312-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant. Meanwhile, however, omicron BA.2 and BA.5 became dominant in many countries and replaced BA.1. As both have several mutations compared to BA.1, we analyzed whether BA.2 and BA.5 show further immune escape relative to BA.1. Here, we characterized neutralization profiles against the BA.2 and BA.5 omicron sub-variants in plasma samples from individuals with different history of exposures to infection/vaccination and found that unvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map including all Variants of Concern and BA.1, BA.2 and BA.5 omicron sub-variants, showed that all omicron sub-variants are distinct to pre-omicron variants, but that the three omicron variants are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the current antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distant variants. Here, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Antonia Netzl
- University of Cambridge, Center for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Helena Schäfer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Samuel H Wilks
- University of Cambridge, Center for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Barbara Falkensammer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Derek J Smith
- University of Cambridge, Center for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|