1
|
Li Q, Liao Y, Zeng J, Hu S, Li C, Whitsett JA, Zheng Y, Luo F, Xu C, He T, Lin X, Wan H. KLF5 Shapes Developing Respiratory Tubules by Inhibiting Actin Asymmetry in Epithelial Cells. Am J Respir Cell Mol Biol 2025; 72:663-677. [PMID: 39556252 DOI: 10.1165/rcmb.2024-0140oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024] Open
Abstract
Tubulogenesis depends on precise cell shape changes driven by asymmetric tension from the actin cytoskeleton. How actin asymmetry is dynamically controlled to coordinate epithelial cell shape changes required for respiratory tubulogenesis remains unknown. Herein, we unveiled a critical role for the transcription factor KLF5, regulating actin asymmetry, inducing epithelial cell shape changes by balancing RHOA and CDC42 GTPase activity via RICH2. Conditional Klf5 expression or deletion in pulmonary epithelial cells affected apical actin organization and the positioning of apical polarity proteins in cell membranes, disrupting branching and sacculation of respiratory tubules during mouse lung morphogenesis. Increased KLF5 concentrations were observed in epithelial cells lining dilated tubules in lungs from patients with congenital pulmonary airway malformation. Together, our results demonstrate that dynamic regulation of apical actin organization by KLF5 is essential for respiratory tubulogenesis, providing a mechanistic framework for comprehending the morphogenesis of respiratory tubules.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
- School of Life Sciences, Fudan University, Chengdu, China; and
| | - Yong Liao
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, China
| | - Junwei Zeng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
- School of Life Sciences, Fudan University, Chengdu, China; and
| | - Silu Hu
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity and
| | - Chunjie Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity and
| | | | - Yi Zheng
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity and
| | - Chang Xu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Taozhen He
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinhua Lin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University, Chengdu, China
- School of Life Sciences, Fudan University, Chengdu, China; and
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity and
| |
Collapse
|
2
|
Mora Massad K, Dai Z, Petrache I, Ventetuolo CE, Lahm T. Lung endothelial cell heterogeneity in health and pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol 2025; 328:L877-L884. [PMID: 39772753 PMCID: PMC12116231 DOI: 10.1152/ajplung.00296.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Lung endothelial cells (ECs) are essential for maintaining organ function and homeostasis. Despite sharing some common features with ECs from organ systems, lung ECs exhibit significant heterogeneity in morphology, function, and gene expression. This heterogeneity is increasingly recognized as a key contributor to the development of pulmonary diseases like pulmonary hypertension (PH). In this mini-review, we explore the evolving understanding of lung EC heterogeneity, particularly through the lens of single-cell RNA sequencing (scRNA-seq) technologies. These advances have provided unprecedented insights into the diverse EC subpopulations, their specific roles, and the disturbances in their homeostatic functions that contribute to PH pathogenesis. In particular, these studies identified novel and functionally distinct cell types such as aerocytes and general capillary ECs that are critical for maintaining lung function in health and disease. In addition, multiple novel pathways and mechanisms have been identified that contribute to aberrant pulmonary vascular remodeling in PH. Emerging techniques like single-nucleus RNA sequencing and spatial transcriptomics have further pushed the field forward by discovering novel disease mediators. As research continues to leverage these advanced techniques, the field is poised to uncover novel EC subtypes and disease mechanisms, paving the way for new therapeutic targets in PH and other lung diseases.
Collapse
Grants
- 4IPA1275127 American Heart Association (AHA)
- R01 HL077328 NHLBI NIH HHS
- P01 HL158507 NHLBI NIH HHS
- Reuben M. Chernaick Fellowship
- R01HL169509 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- I01 BX002042 BLRD VA
- R01 HL141268 NHLBI NIH HHS
- Borstein Family Foundation
- R01HL144727 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Colorado Pulmonary Vascular Disease Award
- R01 HL170096 NHLBI NIH HHS
- R01HL170096 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL158596 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL144727 NHLBI NIH HHS
- HL077328 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL169509 NHLBI NIH HHS
- R01 HL158596 NHLBI NIH HHS
- R01 HL162794 NHLBI NIH HHS
- R01-HL141268 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL62794 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Karina Mora Massad
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhiyu Dai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, Missouri, United States
| | - Irina Petrache
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
- Department of Health Services, Policy and Practice, Brown University, Providence, Rhode Island, United States
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, United States
| |
Collapse
|
3
|
Liu B, Yi D, Li S, Ramirez K, Xia X, Cao Y, Zhao H, Tripathi A, Qiu S, Kala M, Rafikov R, Gu H, de Jesus Perez V, Lemay SE, Glembotski CC, Knox KS, Bonnet S, Kalinichenko VV, Zhao YY, Fallon MB, Boucherat O, Dai Z. Single-Cell and Spatial Transcriptomics Identified Fatty Acid-Binding Proteins Controlling Endothelial Glycolytic and Arterial Programming in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401371 DOI: 10.1161/atvbaha.124.321173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a devastating disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for patients with PAH. Recent studies showed that FABP (fatty acid-binding protein) 4 and FABP5 are expressed in endothelial cells (ECs) across multiple tissues, and circulating FABP4 level is elevated in patients with PAH. However, the role of endothelial FABP4/5 in the pathogenesis of PAH remains undetermined. METHODS FABP4/5 expression was examined in pulmonary arterial ECs and lung tissues from patients with idiopathic PAH and pulmonary hypertension (PH) rat models. Plasma proteome analysis was performed in human PAH samples. Echocardiography, hemodynamics, histology, and immunostaining were performed to evaluate the lung and heart PH phenotypes in Egln1Tie2Cre (CKO) mice and Egln1Tie2Cre/Fabp4/5-/- (TKO) mice. Bulk RNA sequencing (RNA-seq), single-cell RNA sequencing analysis, and spatial transcriptomic analysis were performed to understand the cellular and molecular mechanisms of endothelial FABP4/5-mediated PAH pathogenesis. RESULTS Both FABP4 and FABP5 were highly induced in ECs of CKO mice and pulmonary arterial ECs from patients with idiopathic PAH (IPAH) and in whole lungs of PH rats. Plasma levels of FABP4/5 were upregulated in patients with IPAH and directly correlated with severity of hemodynamics and biochemical parameters. Genetic deletion of both Fabp4 and Fabp5 in CKO mice caused a reduction of right ventricular systolic pressure and right ventricular hypertrophy, attenuated pulmonary vascular remodeling, and prevented the right heart failure secondary to PH. FABP4/5 deletion also normalized EC glycolysis and distal arterial programming, reduced reactive oxygen species and HIF (hypoxia-inducible factor)-2α expression, and decreased aberrant EC proliferation in CKO lungs. CONCLUSIONS PH causes aberrant expression of FABP4/5 in pulmonary ECs, which leads to enhanced EC glycolysis and distal arterial programming, contributing to the accumulation of arterial ECs and vascular remodeling and exacerbating the disease.
Collapse
Affiliation(s)
- Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., C.C.G., Z.D.)
- Division of Pulmonary Critical Care and Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO (B.L., A.T., Z.D.)
| | - Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., C.C.G., Z.D.)
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Now with GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, China (S.L.)
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Yanhong Cao
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Hanqiu Zhao
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Ankit Tripathi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Division of Pulmonary Critical Care and Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO (B.L., A.T., Z.D.)
| | - Shenfeng Qiu
- Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix. (S.Q.)
- Division of Pulmonary Critical Care and Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO (B.L., A.T., Z.D.)
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Ruslan Rafikov
- Department of Medicine, Indiana University College of Medicine, Indianapolis (R.R.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix (H.G.)
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA (V.d.j.P., O.B.)
| | - Sarah-Eve Lemay
- Pulmonary Hypertension and Vascular Biology Research Group, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada (S.-E.L., S.B.)
| | - Christopher C Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., C.C.G., Z.D.)
| | - Kenneth S Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Sebastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada (S.-E.L., S.B.)
| | - Vladimir V Kalinichenko
- Phoenix Children's Health Research Institute, College of Medicine-Phoenix, University of Arizona, Phoenix. (V.V.K.)
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ (V.V.K.)
| | - You-Yang Zhao
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, IL (Y.-Y.Z.)
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL (Y.-Y.Z.)
| | - Michael B Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
| | - Olivier Boucherat
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA (V.d.j.P., O.B.)
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., K.S.K., Z.D.)
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., S.L., K.R., X.X., Y.C., H.Z., A.T., M.K., C.C.G., K.S.K., M.B.F., Z.D.)
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix. (B.L., D.Y., C.C.G., Z.D.)
| |
Collapse
|
4
|
Song JY, Wehbe F, Wong AK, Hall BM, Vander Heiden JA, Brightbill HD, Arron JR, Garfield DA, Dey A, Rock JR. YAP/TAZ activity in PDGFRα-expressing alveolar fibroblasts modulates AT2 proliferation through Wnt4. Cell Rep 2025; 44:115645. [PMID: 40333185 DOI: 10.1016/j.celrep.2025.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
The Hippo pathway, mediated by its transcriptional effectors Yes-associated protein 1 (YAP) and WW-domain-containing transcription regulator 1 (TAZ), is crucial in maintaining lung homeostasis and facilitating injury repair. While its roles in epithelial cells are well established, its regulatory effects on lung fibroblasts remain less understood. We engineered a mouse model for the inducible knockdown of YAP/TAZ and showed that fibroblast-specific knockdown enhances PDGFRα+ alveolar fibroblasts' support for alveolar-epithelial-stem-cell-derived organoids in vitro. Single-cell profiling revealed changes in fibroblast subpopulations, including the emergence of a Wnt4+ enriched subpopulation. Epigenomic analyses revealed shifts in transcription factor motif enrichment in both fibroblasts and epithelial cells due to fibroblast YAP/TAZ suppression. Further computational and in vivo analyses confirmed increased Wnt signaling and Wnt4 expression in PDGFRα-lineage+ fibroblasts, which enhanced SPC+ alveolar type 2 (AT2) cell proliferation. These findings highlight a mechanistic role of YAP/TAZ in PDGFRα+ alveolar fibroblasts in supporting AT2 cell maintenance and proliferation via Wnt4 secretion.
Collapse
Affiliation(s)
- Jane Y Song
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fabien Wehbe
- Data & Analytics Chapter-Computational Science, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Aaron K Wong
- Department of Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben M Hall
- Department of Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Vander Heiden
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David A Garfield
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason R Rock
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
5
|
Ushakumary MG, Feng S, Bandyopadhyay G, Olson H, Weitz KK, Huyck HL, Poole C, Purkerson JM, Bhattacharya S, Ljungberg MC, Mariani TJ, Deutsch GH, Misra RS, Carson JP, Adkins JN, Pryhuber GS, Clair G. Cell Population-resolved Multiomics Atlas of the Developing Lung. Am J Respir Cell Mol Biol 2025; 72:484-495. [PMID: 39447176 PMCID: PMC12051933 DOI: 10.1165/rcmb.2024-0105oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024] Open
Abstract
The lung is a vital organ that undergoes extensive morphological and functional changes during postnatal development. To disambiguate how different cell populations contribute to organ development, we performed proteomic and transcriptomic analyses of four sorted cell populations from the lung of human subjects 0-8 years of age with a focus on early life. The cell populations analyzed included epithelial, endothelial, mesenchymal, and immune cells. Our results revealed distinct molecular signatures for each of the sorted cell populations that enable the description of molecular shifts occurring in these populations during postnatal development. We confirmed that the proteome of the different cell populations was distinct regardless of age and identified functions specific to each population. We identified a series of cell population protein markers, including those located at the cell surface, that show differential expression and distribution on RNA in situ hybridization and immunofluorescence imaging. We validated the spatial distribution of alveolar type 1 and endothelial cell surface markers. Temporal analyses of the proteomes of the four populations revealed processes modulated during postnatal development and clarified the findings obtained from whole-tissue proteome studies. Finally, the proteome was compared with a transcriptomics survey performed on the same lung samples to evaluate processes under post-transcriptional control.
Collapse
Affiliation(s)
- Mereena G. Ushakumary
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Gautam Bandyopadhyay
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Heather Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Heidi L. Huyck
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Cory Poole
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jeffrey M. Purkerson
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Soumyaroop Bhattacharya
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - M. Cecilia Ljungberg
- Department of Pediatrics, College of Medicine, Baylor University, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas
| | - Thomas J. Mariani
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Gail H. Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ravi S. Misra
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - James P. Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas; and
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Gloria S. Pryhuber
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
6
|
Deng E, Shen Q, Zhang J, Fang Y, Chang L, Luo G, Fan X. Systematic evaluation of single-cell RNA-seq analyses performance based on long-read sequencing platforms. J Adv Res 2025; 71:141-153. [PMID: 38782298 DOI: 10.1016/j.jare.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The rapid development of next-generation sequencing (NGS)-based single-cell RNA sequencing (scRNA-seq) allows for detecting and quantifying gene expression in a high-throughput manner, providing a powerful tool for comprehensively understanding cellular function in various biological processes. However, the NGS-based scRNA-seq only quantifies gene expression and cannot reveal the exact transcript structures (isoforms) of each gene due to the limited read length. On the other hand, the long read length of third-generation sequencing (TGS) technologies, including Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), enable direct reading of intact cDNA molecules. OBJECTIVES Both ONT and PacBio have been used in conjunction with scRNA-seq, but their performance in single-cell analyses has not been systematically evaluated. METHODS To address this, we generated ONT and PacBio data from the same single-cell cDNA libraries containing different amount of cells. RESULTS Using NGS as a control, we assessed the performance of each platform in cell type identification. Additionally, the reliability in identifying novel isoforms and allele-specific gene/isoform expression by both platforms was verified, providing a systematic evaluation to design the sequencing strategies in single-cell transcriptome studies. CONCLUSION Beyond gene expression analysis, which the NGS-based scRNA-seq only affords, TGS-based scRNA-seq achieved gene splicing analyses, identifying novel isoforms. Attribute to higher sequencing quality of PacBio, it outperforms ONT in accuracy of novel transcripts identification and allele-specific gene/isoform expression.
Collapse
Affiliation(s)
- Enze Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Qingmei Shen
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China; GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| | - Jingna Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Yaowei Fang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Lei Chang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| | - Guanzheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China; GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China.
| |
Collapse
|
7
|
Liu G, Shi Y, Huang H, Xiao N, Liu C, Zhao H, Xing Y, Cai L. FPCAM: A Weighted Dictionary-Driven Model for Single-Cell Annotation in Pulmonary Fibrosis. BIOLOGY 2025; 14:479. [PMID: 40427668 PMCID: PMC12108865 DOI: 10.3390/biology14050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025]
Abstract
The groundbreaking development of scRNA-seq has significantly improved cellular resolution. However, accurate cell-type annotation remains a major challenge. Existing annotation tools are often limited by their reliance on reference datasets, the heterogeneity of marker genes, and subjective biases introduced through manual intervention, all of which impact annotation accuracy and reliability. To address these limitations, we developed FPCAM, a fully automated pulmonary fibrosis cell-type annotation model. Built on the R Shiny platform, FPCAM utilizes a matrix of up-regulated marker genes and a manually curated gene-cell association dictionary specific to pulmonary fibrosis. It achieves accurate and efficient cell-type annotation through similarity matrix construction and optimized matching algorithms. To evaluate its performance, we compared FPCAM with state-of-the-art annotation models, including SCSA, SingleR, and SciBet. The results showed that FPCAM and SCSA both achieved an accuracy of 89.7%, outperforming SingleR and SciBet. Furthermore, FPCAM demonstrated high accuracy in annotating the external validation dataset GSE135893, successfully identifying multiple cell subtypes. In summary, FPCAM provides an efficient, flexible, and accurate solution for cell-type identification and serves as a powerful tool for scRNA-seq research in pulmonary fibrosis and other related diseases.
Collapse
Affiliation(s)
- Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Yan Shi
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
| | - Hongxu Huang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
| | - Ningkun Xiao
- Department of Immunochemistry, Institution of Chemical Engineering, Ural Federal University, Yekaterinburg 620000, Russia
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014000, China; (G.L.)
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014000, China
| |
Collapse
|
8
|
Kalailingam P, Ngan SC, Iyappan R, Nehchiri A, Mohd‐Kahliab K, Lee BST, Sharma B, Machan R, Bo ST, Chambers ES, Fajardo VA, Macpherson REK, Liu J, Klentrou P, Tsiani EL, Lim KL, Su IH, Gao Y, Richar AM, Kalaria RN, Chen CP, Balion C, de Kleijn D, McCarthy NE, Sze SK. Immunotherapeutic targeting of aging-associated isoDGR motif in chronic lung inflammation. Aging Cell 2025; 24:e14425. [PMID: 39757428 PMCID: PMC11984686 DOI: 10.1111/acel.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Accumulation of damaged biomolecules in body tissues is the primary cause of aging and age-related chronic diseases. Since this damage often occurs spontaneously, it has traditionally been regarded as untreatable, with typical therapeutic strategies targeting genes or enzymes being ineffective in this domain. In this report, we demonstrate that an antibody targeting the isoDGR damage motif in lung tissue can guide immune clearance of harmful damaged proteins in vivo, effectively reducing age-linked lung inflammation. We observed age-dependent accumulation of the isoDGR motif in human lung tissues, as well as an 8-fold increase in isoDGR-damaged proteins in lung fibrotic tissues compared with healthy tissue. This increase was accompanied by marked infiltration of CD68+/CD11b + macrophages, consistent with a role for isoDGR in promoting chronic inflammation. We therefore assessed isoDGR function in mice that were either naturally aged or lacked the isoDGR repair enzyme. IsoDGR-protein accumulation in mouse lung tissue was strongly correlated with chronic inflammation, pulmonary edema, and hypoxemia. This accumulation also induced mitochondrial and ribosomal dysfunction, in addition to features of cellular senescence, thereby contributing to progressive lung damage over time. Importantly, treatment with anti-isoDGR antibody was able to reduce these molecular features of disease and significantly reduced lung pathology in vivo.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- Center for Genomic MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - SoFong Cam Ngan
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Ranjith Iyappan
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Afra Nehchiri
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | | | | | - Bhargy Sharma
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Radek Machan
- SCELSENanyang Technological UniversitySingaporeSingapore
| | - Sint Thida Bo
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Emma S. Chambers
- Centre for Immunobiology, the Blizard Institute, Bart's and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Val A. Fajardo
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | | | - Jian Liu
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Panagiota Klentrou
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | | | - Kah Leong Lim
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - I. Hsin Su
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - A. Mark Richar
- Cardiovascular Research InstituteNational University Health SystemSingaporeSingapore
| | - Raj N. Kalaria
- Institute of Neuroscience, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Christopher P. Chen
- Memory, Aging and Cognition CentreNational University Health SystemSingaporeSingapore
| | - Cynthia Balion
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonOntarioCanada
| | | | - Neil E. McCarthy
- Centre for Immunobiology, the Blizard Institute, Bart's and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
9
|
Kim H, Yi S, Liyanage P, Zhao S, Wikenheiser-Brokamp KA, McMillin L, Xu Y, Kitzmiller JA, Whitsett JA, Naren AP, Mun KS. Development of a 3D bioengineered human lung submucosal gland ductal airway model to study mucociliary clearance in vitro. CELL BIOMATERIALS 2025; 1:100013. [PMID: 40226365 PMCID: PMC11984632 DOI: 10.1016/j.celbio.2025.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Mucociliary clearance (MCC) is critical in maintaining lung health and preventing respiratory infections. MCC is impaired in people with cystic fibrosis, due to accumulation of thick, sticky mucus resulting from defective cystic fibrosis transmembrane conductance regulator channel function. In this study, we developed a unique 3D lung submucosal gland ductal airway model utilizing primary human submucosal gland epithelial cells, which enables the formation of physiologically relevant architecture of the ductal epithelium including ciliary cells within a 3D bioprinted scaffold. Our observation demonstrates that this model not only enables the fabrication of human lung submucosal gland ductal airway-like structure mimicking in vivo physiology, also facilitates quantitative measurement of patient-specific MCC and determines pharmacological effects. Our results suggest that this model could be a valuable tool for understanding mechanisms underlying impaired MCC and testing the efficacy of novel therapeutic strategies for the treatment of respiratory diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Hoyeol Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sujung Yi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pramodha Liyanage
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shuyang Zhao
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lisa McMillin
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Joseph A Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Anjaparavanda P. Naren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kyu Shik Mun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Lead Contact
| |
Collapse
|
10
|
Ushakumary MG, Chrisler WB, Bandyopadhyay G, Huyck H, Gorman BL, Beishembieva N, Pitonza A, Lai ZJ, Fillmore TL, Attah IK, Dylag AM, Misra R, Carson JP, Adkins JN, Pryhuber GS, Clair G. Sorted-Cell Proteomics Reveals an AT1-Associated Epithelial Cornification Phenotype and Suggests Endothelial Redox Imbalance in Human Bronchopulmonary Dysplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644398. [PMID: 40166356 PMCID: PMC11957130 DOI: 10.1101/2025.03.20.644398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bronchopulmonary dysplasia (BPD) is a neonatal lung disease characterized by inflammation and scarring leading to long-term tissue damage. Previous whole tissue proteomics identified BPD-specific proteome changes and cell type shifts. Little is known about the proteome-level changes within specific cell populations in disease. Here, we sorted epithelial (EPI) and endothelial (ENDO) cell populations based on their differential surface markers from normal and BPD human lungs. Using a low-input compatible sample preparation method (MicroPOT), proteins were extracted and digested into peptides and subjected to Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) proteome analysis. Of the 4,970 proteins detected, 293 were modulated in abundance or detection in the EPI population and 422 were modulated in ENDO cells. Modulation of proteins associated with actin-cytoskeletal function such as SCEL, LMO7, and TBA1B were observed in the BPD EPIs. Using confocal imaging and analysis, we validated the presence of aberrant multilayer-like structures comprising SCEL and LMO7, known to be associated with epidermal cornification, in the human BPD lung. This is the first report of accumulation of cornification-associated proteins in BPD. Their localization in the alveolar parenchyma, primarily associated with alveolar type 1 (AT1) cells, suggests a role in the BPD post-injury response. In the ENDOs, redox balance and mitochondrial function pathways were modulated. Alternative mRNA splicing and cell proliferative functions were elevated in both populations suggesting potential dysregulation of cell progenitor fate. This study characterized the proteome of epithelial and endothelial cells from the BPD lung for the first time, identifying population-specific changes in BPD pathogenesis. New & Noteworthy The study is the first to perform proteomics on sorted pulmonary epithelial and endothelial populations from BPD and age-matched control human donors. We identified an increase in cornification-associated proteins in BPD (e.g., SCEL and LMO7), and evidenced the presence of multilayered structures unique to BPD alveolar regions, associated with alveolar type 1 (AT1) cells. By changing the nature and/or biomechanical properties of the epithelium, these structures may alter the behavior of other alveolar cell types potentially contributing to the arrested alveolarization observed in BPD. Lastly, our data suggest the modulation of cell proliferation and redox homeostasis in BPD providing potential mechanisms for the reduced vascular growth associated with BPD.
Collapse
|
11
|
Pezet MG, Torres JA, Thimraj TA, Matkovic I, Schrode N, Murray JW, Saqi A, Beaumont KG, Snoeck HW. Human respiratory airway progenitors derived from pluripotent cells generate alveolar epithelial cells and model pulmonary fibrosis. Nat Biotechnol 2025:10.1038/s41587-025-02569-0. [PMID: 39994483 DOI: 10.1038/s41587-025-02569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Human lungs contain unique cell populations in distal respiratory airways or terminal and respiratory bronchioles (RA/TRBs) that accumulate in persons with lung injury and idiopathic pulmonary fibrosis (IPF), a lethal lung disease. As these populations are absent in rodents, deeper understanding requires a human in vitro model. Here we convert human pluripotent stem cells (hPS cells) into expandable spheres, called induced respiratory airway progenitors (iRAPs), consisting of ~98% RA/TRB-associated cell types. One hPS cell can give rise to 1010 iRAP cells. We differentiate iRAPs through a stage consistent with transitional type 2 alveolar epithelial (AT2) cells into a population corresponding to mature AT1 cells with 95% purity. iRAPs with deletion of Heřmanský-Pudlák Syndrome 1 (HPS1), which causes pulmonary fibrosis in humans, replicate the aberrant differentiation and recruitment of profibrotic fibroblasts observed in IPF, indicating that intrinsic dysfunction of RA/TRB-associated alveolar progenitors contributes to HPS1-related IPF. iRAPs may provide a system suitable for IPF drug discovery and validation.
Collapse
Affiliation(s)
- Mikael G Pezet
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Juan A Torres
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tania A Thimraj
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ivana Matkovic
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nadine Schrode
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W Murray
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
He H, Ma C, Wei W, Wang H, Lai Y, Liu M, Sun S, Ma Q, Lai J, Liu H, Liu H, Sun F, Lin X. Heparan sulfate regulates myofibroblast heterogeneity and function to mediate niche homeostasis during alveolar morphogenesis. Nat Commun 2025; 16:1834. [PMID: 39979343 PMCID: PMC11842828 DOI: 10.1038/s41467-025-57163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Postnatal respiration requires bulk formation of alveoli that produces extensive surface area for gas diffusion from epithelium to the circulatory system. Alveolar morphogenesis initiates at late gestation or postnatal stage during mammalian development and is mediated by coordination among multiple cell types. Here we show that fibroblast-derived Heparan Sulfate Glycosaminoglycan (HS-GAG) is essential for maintaining a niche that supports alveolar formation by modulating both biophysical and biochemical cues. Gli1-CreER mediated deletion of HS synthase gene Ext1 in lung fibroblasts results in enlarged and simplified alveolar structures. Ablation of HS results in loss of a subset of PDGFRαhi αSMA+ alveolar myofibroblasts residing in the distal alveolar region, which exhibit contractile properties and maintain WNT signaling activity to support normal proliferation and differentiation of alveolar epithelial cells. HS is essential for proliferation while preventing precocious apoptosis of alveolar myofibroblasts. We show that these processes are dependent upon FGF/MAPK signaling and forced activation of MAPK/ERK signaling partially corrected alveolar simplification and restored alveolar myofibroblast number and AT2 cell proliferation in HS deficient mice. These data reveal HS-dependent myofibroblast heterogeneity and function as an essential orchestrator for developing alveolar niche critical for the generation of gas exchange units.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Chong Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Wei Wei
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haonan Wang
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yutian Lai
- Department of Lung Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shenfei Sun
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiashuang Lai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Hanxiang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Fei Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Xinhua Lin
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Niethamer TK, Planer JD, Morley MP, Babu A, Zhao G, Basil MC, Cantu E, Frank DB, Diamond JM, Nottingham AN, Li S, Sharma A, Hallquist H, Levin LI, Zhou S, Vaughan AE, Morrisey EE. Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states. Cell Stem Cell 2025; 32:302-321.e6. [PMID: 39818203 PMCID: PMC11805657 DOI: 10.1016/j.stem.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation. These cell states include an injury-induced capillary endothelial cell (iCAP) that arises after injury, persists indefinitely, and shares hallmarks with developing lung endothelium and endothelial aberrations found in degenerative human lung diseases. This dataset provides a foundational resource to understand the complexity of cellular and molecular responses to injury and correlations to responses found in human development and disease.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gan Zhao
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Cantu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Frank
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana N Nottingham
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnav Sharma
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hannah Hallquist
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian I Levin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Shen J, Li J, Shen Q, Hou J, Zhang C, Bai H, Ai X, Su Y, Wang Z, Zhang Y, Xu B, Hao J, Wang P, Zhang Q, Ye AY, Li Z, Feng T, Li L, Qi F, Wang Q, Sun Y, Liu C, Xi X, Yan L, Hong H, Chen Y, Xie X, Xie J, Liu X, Du R, Plebani R, Zhang L, Zhou D, Church G, Si L. Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection. Nat Microbiol 2025; 10:431-447. [PMID: 39815008 DOI: 10.1038/s41564-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses. PROTAR viruses were engineered to be attenuated by the ubiquitin-proteasome system, which mediates viral protein degradation in conventional host cells, but allows efficient replication in engineered cell lines for large-scale manufacturing. Depending on the degron-E3 ligase pairs, viruses showed varying degrees of attenuation. In animal models, PROTAR viruses were highly attenuated and elicited robust, broad, strain-dependent humoral, mucosal and cellular immunity. In addition, they provided cross-reactive protection against homologous and heterologous viral challenges. This study provides a systematic approach for developing safe and effective vaccines, with potential applications in designing live attenuated vaccines against other pathogens.
Collapse
Affiliation(s)
- Jinying Shen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Shen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihuan Hou
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunhe Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiqing Bai
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinlei Su
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihao Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunfei Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Beibei Xu
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiawei Hao
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Zhen Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Tang Feng
- West China Hospital, Sichuan University, Chengdu, China
| | - Le Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Qi
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qikai Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yacong Sun
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengyao Liu
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuetong Xi
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Yan
- Beijing Daxiang Biotech, Beijing, China
| | | | - Yuting Chen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Xie
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Jing Xie
- West China Hospital, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruikun Du
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Roberto Plebani
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Longlong Si
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Sukubo NG, Bigini P, Morelli A. Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:97-118. [PMID: 39902342 PMCID: PMC11789677 DOI: 10.3762/bjnano.16.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.
Collapse
Affiliation(s)
- Naths Grazia Sukubo
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| |
Collapse
|
16
|
Foote AG, Sun X. A Single-Cell Atlas of the Upper Respiratory Epithelium Reveals Heterogeneity in Cell Types and Patterning Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633456. [PMID: 39896587 PMCID: PMC11785068 DOI: 10.1101/2025.01.16.633456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The upper respiratory tract, organized along the pharyngolaryngeal-to-tracheobronchial axis, is essential for homeostatic functions such as breathing and vocalization. The upper respiratory epithelium is frequently exposed to pollutants and pathogens, making this an area of first-line defense against respiratory injury and infection. The respiratory epithelium is composed of a rich array of specialized cell types, each with unique capabilities in immune defense and injury repair. However, the precise transcriptomic signature and spatial distribution of these cell populations, as well as potential cell subpopulations, have not been well defined. Here, using single cell RNAseq combined with spatial validation, we present a comprehensive atlas of the mouse upper respiratory epithelium. We systematically analyzed our rich RNAseq dataset of the upper respiratory epithelium to reveal 17 cell types, which we further organized into three spatially distinct compartments: the Tmprss11a + pharyngolaryngeal, the Nkx2-1 + tracheobronchial, and the Dmbt1 + submucosal gland epithelium. We profiled/analyzed the pharyngolaryngeal epithelium, composed of stratified squamous epithelium, and identified distinct regional signatures, including a Keratin gene expression code. In profiling the tracheobronchial epithelium, which is composed of a pseudostratified epithelium-with the exception of the hillock structure-we identified that regional luminal cells, such as club cells and basal cells, show varying gradients of marker expression along the proximal-distal and/or dorsal-ventral axis. Lastly, our analysis of the submucosal gland epithelium, composed of an array of cell types, such as the unique myoepithelial cells, revealed the colorful diversity of between and within cell populations. Our single-cell atlas with spatial validation highlights the distinct transcriptional programs of the upper respiratory epithelium and serves as a valuable resource for future investigations to address how cells behave in homeostasis and pathogenesis. Highlights - Defined three spatially distinct epithelial compartments, Tmprss11a + pharyngolaryngeal, Nkx2-1 + tracheobronchial, and Dmbt1 + submucosal gland, comprising 17 total cell types - Profiled Keratin gene expression code along proximal-distal and basal-luminal axes and highlighted "stress-induced" Keratins KRT6A and KRT17 at homeostasis - Demarcated expression gradients of Scgb1a1 + and Scgb3a2+ club cells along the proximal-distal axes - Specified submucosal gland cell heterogeneity including Nkx3-1+ mucin-producing cells, with ACTA2+ basal myoepithelial cells exhibiting gene profile for neuroimmune mediated signaling.
Collapse
|
17
|
Shan N, Shang Y, He Y, Wen Z, Ning S, Chen H. Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning. Sci Rep 2025; 15:610. [PMID: 39753882 PMCID: PMC11699037 DOI: 10.1038/s41598-024-84820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database. CCL2 was identified as a common characteristic gene of IPF and SSc. The genes associated with CCL2 expression in both diseases were enriched mainly in chemokine-related pathways and lipid metabolism-related pathways according to Gene Set Enrichment Analysis. Single-cell RNA sequencing (sc-RNAseq) revealed a significant difference in CCL2 expression in alveolar epithelial type 1/2 cells, mast cells, ciliated cells, club cells, fibroblasts, M1/M2 macrophages, monocytes and plasma cells between IPF patients and healthy donors. Statistical analyses revealed that CCL2 was negatively correlated with lung function in IPF patients and decreased after mycophenolate mofetil (MMF) treatment in SSc patients. Finally, we identified CCL2 as a common biomarker from IPF and SSc, revealing the common mechanism of these two diseases and providing clues for the study of the treatment and mechanism of these two diseases.
Collapse
Affiliation(s)
- Ning Shan
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Shang
- The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Yaowu He
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhe Wen
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shangwei Ning
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Hong Chen
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
18
|
Eastburn DJ, White KS, Jayne ND, Camiolo S, Montis G, Ha S, Watson KG, Yeakley JM, McComb J, Seligmann B. High-throughput gene expression analysis with TempO-LINC sensitively resolves complex brain, lung and kidney heterogeneity at single-cell resolution. Sci Rep 2024; 14:31285. [PMID: 39732835 PMCID: PMC11682069 DOI: 10.1038/s41598-024-82736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample. The TempO-LINC approach is easily scalable based on the number of barcodes and rounds of barcoding performed; however, for the experiments reported in this study, the assay utilized over 5.3 million unique barcodes. TempO-LINC offers a robust protocol for fixing and banking cells and displays high-sensitivity gene detection from multiple diverse sample types. We show that TempO-LINC has a multiplet rate of less than 1.1% and a cell capture rate of ~ 50%. Although the assay can accurately profile the whole transcriptome (19,683 human, 21,400 mouse and 21,119 rat genes), it can be targeted to measure only actionable/informative genes and molecular pathways of interest - thereby reducing sequencing requirements. In this study, we applied TempO-LINC to profile the transcriptomes of more than 90,000 cells across multiple species and sample types, including nuclei from mouse lung, kidney and brain tissues. The data demonstrated the ability to identify and annotate more than 50 unique cell populations and positively correlate expression of cell type-specific molecular markers within them. TempO-LINC is a robust new single-cell technology that is ideal for large-scale applications/studies with high data quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Seungeun Ha
- BioSpyder Technologies, Inc., Carlsbad, CA, USA
| | | | | | - Joel McComb
- BioSpyder Technologies, Inc., Carlsbad, CA, USA
| | | |
Collapse
|
19
|
Kenney D, O’Connell AK, Tseng AE, Turcinovic J, Sheehan ML, Nitido AD, Montanaro P, Gertje HP, Ericsson M, Connor JH, Vrbanac V, Crossland NA, Harly C, Balazs AB, Douam F. Immune Signatures of SARS-CoV-2 Infection Resolution in Human Lung Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583965. [PMID: 38496468 PMCID: PMC10942442 DOI: 10.1101/2024.03.08.583965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients. Infection resolution is associated with the activation of a limited number of hematopoietic subsets, including inflammatory monocytes and non-canonical double-negative T-cells with cytotoxic functions, which are highly enriched in viral RNA and dissipate upon infection resolution. Activation of specific human fibroblast and endothelial subsets also elicit robust antiviral and monocyte chemotaxis signatures, respectively. Notably, systemic depletion of human CD4+ cells, but not CD3+ cells, abrogates infection resolution in fLX and induces persistent infection, supporting evidence that peripheral CD4+ monocytes are important contributors to SARS-CoV-2 infection resolution in lung tissues. Collectively, our findings unravel a comprehensive picture of the immunological events defining effective resolution of SARS-CoV-2 infection in human lung tissues, revealing markedly divergent immunological trajectories between resolving and fatal COVID-19 cases.
Collapse
Affiliation(s)
- Devin Kenney
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K. O’Connell
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anna E. Tseng
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jacquelyn Turcinovic
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Maegan L. Sheehan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Adam D. Nitido
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Paige Montanaro
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Ericsson
- Electron Microscopy Core Facility, Harvard Medical School, Boston, MA, USA
| | - John H. Connor
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Nicholas A. Crossland
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Christelle Harly
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France
- LabEx IGO ‘Immunotherapy, Graft, Oncology’, Nantes, France
- These authors contributed equally to the work
| | - Alejandro B. Balazs
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally to the work
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- These authors contributed equally to the work
- Lead contact
| |
Collapse
|
20
|
Yang J, Li Y, Huang Y, Chen H, Sui P. Unlocking lung regeneration: insights into progenitor cell dynamics and metabolic control. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:31. [PMID: 39676102 PMCID: PMC11646969 DOI: 10.1186/s13619-024-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Regenerative responses are particularly important in the lungs, which are critical for gas exchange and frequently challenged by environmental insults. The lung progenitor cells play a central role in the lung regeneration response, and their dysfunction is associated with various lung diseases. Understanding the mechanisms regulating lung progenitor cell function is essential for developing new therapeutic approaches to promote lung regeneration. This review summarizes recent advancements in the field of lung regeneration, focusing on the metabolic control of lung progenitor cell function. We discuss cell lineage plasticity and cell-cell signaling under different physiological conditions. Additionally, we highlight the connection between progenitor cell dysfunction and lung diseases, emphasizing the need to develop new therapeutic strategies in regenerative medicine to improve lung regenerative capacity.
Collapse
Affiliation(s)
- Jiaying Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yawen Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huaiyong Chen
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
21
|
Jones DL, Morley MP, Li X, Ying Y, Zhao G, Schaefer SE, Rodriguez LR, Cardenas-Diaz FL, Li S, Zhou S, Chembazhi UV, Kim M, Shen C, Nottingham A, Lin SM, Cantu E, Diamond JM, Basil MC, Vaughan AE, Morrisey EE. An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung. Science 2024; 386:eado5561. [PMID: 39666855 DOI: 10.1126/science.ado5561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 12/14/2024]
Abstract
Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche. Conversely, loss of Notch signaling rewired alveolar signaling patterns to promote functional regeneration and gas exchange. Signaling patterns in injury-induced niches can differentiate fibrotic from degenerative human lung diseases through altering the direction of Wnt/Fgf signaling. Thus, we have identified an injury-induced niche in the lung with the ability to discriminate human lung disease phenotypes.
Collapse
Affiliation(s)
- Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Schaefer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis R Rodriguez
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ullas V Chembazhi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijeong Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chen Shen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Crotty Alexander LE, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Rao T, Zhou Y, Chen C, Chen J, Zhang J, Lin W, Jia D. Recent progress in neonatal hyperoxic lung injury. Pediatr Pulmonol 2024; 59:2414-2427. [PMID: 38742254 DOI: 10.1002/ppul.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.
Collapse
Affiliation(s)
- Tian Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Chinese Medicine Hospital of Pingyang, Wenzhou, Zhejiang, China
| | - Jiayi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Durlak W, Thébaud B. The vascular phenotype of BPD: new basic science insights-new precision medicine approaches. Pediatr Res 2024; 96:1162-1171. [PMID: 36550351 DOI: 10.1038/s41390-022-02428-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth. Up to 1/3 of children with BPD develop pulmonary hypertension (PH). PH increases mortality, the risk of adverse neurodevelopmental outcome and lacks effective treatment. Current vasodilator therapies address symptoms, but not the underlying arrested vascular development. Recent insights into placental biology and novel technological advances enabling the study of normal and impaired lung development at the single cell level support the concept of a vascular phenotype of BPD. Dysregulation of growth factor pathways results in depletion and dysfunction of putative distal pulmonary endothelial progenitor cells including Cap1, Cap2, and endothelial colony-forming cells (ECFCs), a subset of vascular progenitor cells with self-renewal and de novo angiogenic capacity. Preclinical data demonstrate effectiveness of ECFCs and ECFC-derived particles including extracellular vesicles (EVs) in promoting lung vascular growth and reversing PH, but the mechanism is unknown. The lack of engraftment suggests a paracrine mode of action mediated by EVs that contain miRNA. Aberrant miRNA signaling contributes to arrested pulmonary vascular development, hence using EV- and miRNA-based therapies is a promising strategy to prevent the development of BPD-PH. More needs to be learned about disrupted pathways, timing of intervention, and mode of delivery. IMPACT: Single-cell RNA sequencing studies provide new in-depth view of developmental endothelial depletion underlying BPD-PH. Aberrant miRNA expression is a major cause of arrested pulmonary development. EV- and miRNA-based therapies are very promising therapeutic strategies to improve prognosis in BPD-PH.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Peng B, Zhou Y, Fu X, Chen L, Pan Z, Yi Q, Zhao T, Fu Z, Wang T. THBS1 mediates hypoxia driven EndMT in pulmonary hypertension. Pulm Circ 2024; 14:e70019. [PMID: 39635464 PMCID: PMC11615509 DOI: 10.1002/pul2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Long-term hypoxia is one of the main causes of pulmonary vascular remodeling in pulmonary hypertension (PH) associated with congenital heart disease (CHD) children. Endothelial to mesenchymal transition (EndMT) is an important pathological basis of pulmonary vascular remodeling in PH. We observed that Fibronectin 1 (FN1) had strong protein-protein interactions with both Thrombospondin 1 (THBS1) and Transglutaminase 2 (TGM2) in PH with venous peripheral bloods samples from pediatric patients and healthy children. LungMAP CellCards and heatmaps of human PAEC in PH patients and lung tissues in hypoxia induced PH mice model were used to show that THBS1 and FN1 were significantly elevated. We studied the relationship between THBS1 and FN1 in vivo, by using SUHX-induced PH mice model, and in vitro, by using hypoxia-induced human PAEC. The results showed that hypoxia could result in EndMT and inhibiting THBS1 could reverse EndMT in vivo and in vitro, verifying our transcriptome results. Taken together, our research demonstrated that THBS1 could mediate hypoxia driven EndMT of PH, providing a new insight of research in the pathophysiology of PH.
Collapse
Affiliation(s)
- Bingming Peng
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yingzhen Zhou
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xingmeng Fu
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Li Chen
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhengxia Pan
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qijian Yi
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Tengteng Zhao
- Department of Medicine, Section of Physiology, Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Zhou Fu
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ting Wang
- Department of Respiratory, Thoracic and Cardiac Surgery, Cardiovascular MedicineChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Engineering Research Center of Stem Cell TherapyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Medicine, Section of Physiology, Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
26
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 regulate chromatin accessibility required for NKX2-1 mediated alveolar epithelial differentiation and function. Nat Commun 2024; 15:8112. [PMID: 39284798 PMCID: PMC11405758 DOI: 10.1038/s41467-024-52154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis. Lineage specific deletion of PRDM3/16 in AT2 cells leads to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
| | - Sheila M Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Redman E, Fierville M, Cavard A, Plaisant M, Arguel MJ, Ruiz Garcia S, McAndrew EM, Girard-Riboulleau C, Lebrigand K, Magnone V, Ponzio G, Gras D, Chanez P, Abelanet S, Barbry P, Marcet B, Zaragosi LE. Cell Culture Differentiation and Proliferation Conditions Influence the In Vitro Regeneration of the Human Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:267-281. [PMID: 38843491 PMCID: PMC11376247 DOI: 10.1165/rcmb.2023-0356ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.
Collapse
Affiliation(s)
- Elisa Redman
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Morgane Fierville
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Amélie Cavard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Magali Plaisant
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Sandra Ruiz Garcia
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Eamon M McAndrew
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Cédric Girard-Riboulleau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Gilles Ponzio
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Delphine Gras
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Pascal Chanez
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Sophie Abelanet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| |
Collapse
|
29
|
Eastburn DJ, White KS, Jayne ND, Camiolo S, Montis G, Ha S, Watson KG, Yeakley JM, McComb J, Seligmann B. High-throughput gene expression analysis with TempO-LINC sensitively resolves complex brain, lung and kidney heterogeneity at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606484. [PMID: 39149288 PMCID: PMC11326174 DOI: 10.1101/2024.08.03.606484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial-indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000+ cells per run. The TempO-LINC approach is easily scalable based on the number of barcodes and rounds of barcoding performed; however, for the experiments reported in this study, the assay utilized over 5.3 million unique barcodes. TempO-LINC has a robust protocol for fixing and banking cells and displays high-sensitivity gene detection from multiple diverse sample types. We show that TempO-LINC has an observed multiplet rate of less than 1.1% and a cell capture rate of ~50%. Although the assay can accurately profile the whole transcriptome (19,683 human or 21,400 mouse genes), it can be targeted to measure only actionable/informative genes and molecular pathways of interest - thereby reducing sequencing requirements. In this study, we applied TempO-LINC to profile the transcriptomes of 89,722 cells across multiple sample types, including nuclei from mouse lung, kidney and brain tissues. The data demonstrated the ability to identify and annotate at least 50 unique cell populations and positively correlate expression of cell type-specific molecular markers within them. TempO-LINC is a robust new single-cell technology that is ideal for large-scale applications/studies across thousands of samples with high data quality.
Collapse
|
30
|
Mo C, Li H, Yan M, Xu S, Wu J, Li J, Yang X, Li Y, Yang J, Su X, Liu J, Wu C, Wang Y, Dong H, Chen L, Dai L, Zhang M, Pu Q, Yang L, Ye T, Cao Z, Ding BS. Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis. Cell Metab 2024; 36:1839-1857.e12. [PMID: 39111287 DOI: 10.1016/j.cmet.2024.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 03/17/2025]
Abstract
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiachen Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinchun Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingping Su
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuan Wang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Pu
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Tinghong Ye
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China; Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhongwei Cao
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Bi-Sen Ding
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
32
|
Guan C, Kong L. Mass spectrometry imaging in pulmonary disorders. Clin Chim Acta 2024; 561:119835. [PMID: 38936534 DOI: 10.1016/j.cca.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Mass Spectrometry Imaging (MSI) represents a novel and advancing technology that offers unparalleled in situ characterization of tissues. It provides comprehensive insights into the chemical structures, relative abundances, and spatial distributions of a vast array of both identified and unidentified endogenous and exogenous compounds, a capability not paralleled by existing analytical methodologies. Recent scholarly endeavors have increasingly explored the utility of MSI in the adjunct diagnosis and biomarker research of pulmonary disorders, including but not limited to lung cancer. Concurrently, MSI has proven instrumental in elucidating the spatiotemporal dynamics of various pharmacological agents. This review concisely delineates the fundamental principles underpinning MSI, its applications in pulmonary disease diagnosis, biomarker discovery, and drug distribution investigations. Additionally, it presents a forward-looking perspective on the prospective trajectories of MSI technological advancements.
Collapse
Affiliation(s)
- Chunliu Guan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
33
|
Luo S, Rollins S, Schmitz-Abe K, Tam A, Li Q, Shi J, Lin J, Wang R, Agrawal PB. The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 2024; 561:119765. [PMID: 38852790 DOI: 10.1016/j.cca.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA
| | - Klaus Schmitz-Abe
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Tam
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA; Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02115, USA.
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh + neurons control allergen-induced airway hyperreactivity. Nature 2024; 631:601-609. [PMID: 38987587 PMCID: PMC11254774 DOI: 10.1038/s41586-024-07608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jinhao Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ziai Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisun Chin
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Le Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Haoze Yu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victoria Nudell
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Barsha Dash
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Esteban A Moya
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ, Li Y. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 2024; 27:109938. [PMID: 38832011 PMCID: PMC11145361 DOI: 10.1016/j.isci.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.
Collapse
Affiliation(s)
- Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Chenggang Lu
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Russell B. Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Huy Nguyen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Sung-Jin Lee
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| |
Collapse
|
36
|
Wang G, Wen B, Guo M, Li E, Zhang Y, Whitsett JA, Kalin TV, Kalinichenko VV. Identification of endothelial and mesenchymal FOXF1 enhancers involved in alveolar capillary dysplasia. Nat Commun 2024; 15:5233. [PMID: 38898031 PMCID: PMC11187179 DOI: 10.1038/s41467-024-49477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.
Collapse
Affiliation(s)
- Guolun Wang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Bingqiang Wen
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Enhong Li
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Yufang Zhang
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA.
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
37
|
Shuldiner EG, Karmakar S, Tsai MK, Hebert JD, Tang YJ, Andrejka L, Wang M, Detrick CR, Cai H, Tang R, Petrov DA, Winslow MM. Aging represses lung tumorigenesis and alters tumor suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596319. [PMID: 38853826 PMCID: PMC11160591 DOI: 10.1101/2024.05.28.596319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Most cancers are diagnosed in persons over the age of sixty, but little is known about how age impacts tumorigenesis. While aging is accompanied by mutation accumulation - widely understood to contribute to cancer risk - it is also associated with numerous other cellular and molecular changes likely to impact tumorigenesis. Moreover, cancer incidence decreases in the oldest part of the population, suggesting that very old age may reduce carcinogenesis. Here we show that aging represses tumor initiation and growth in genetically engineered mouse models of human lung cancer. Moreover, aging dampens the impact of inactivating many, but not all, tumor suppressor genes with the impact of inactivating PTEN, a negative regulator of the PI3K/AKT pathway, weakened to a disproportionate extent. Single-cell transcriptomic analysis revealed that neoplastic cells from tumors in old mice retain many age-related transcriptomic changes, showing that age has an enduring impact that persists through oncogenic transformation. Furthermore, the consequences of PTEN inactivation were strikingly age-dependent, with PTEN deficiency reducing signatures of aging in cancer cells and the tumor microenvironment. Our findings suggest that the relationship between age and lung cancer incidence may reflect an integration of the competing effects of driver mutation accumulation and tumor suppressive effects of aging.
Collapse
|
38
|
Burgess CL, Huang J, Bawa PS, Alysandratos KD, Minakin K, Ayers LJ, Morley MP, Babu A, Villacorta-Martin C, Yampolskaya M, Hinds A, Thapa BR, Wang F, Matschulat A, Mehta P, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 2024; 31:657-675.e8. [PMID: 38642558 PMCID: PMC11147407 DOI: 10.1016/j.stem.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lauren J Ayers
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline Matschulat
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
39
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. Development 2024; 151:dev202659. [PMID: 38602479 PMCID: PMC11165721 DOI: 10.1242/dev.202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R. Koenitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Chaudhry FN, Michki NS, Shirmer DL, McGrath-Morrow S, Young LR, Frank DB, Zepp JA. Dynamic Hippo pathway activity underlies mesenchymal differentiation during lung alveolar morphogenesis. Development 2024; 151:dev202430. [PMID: 38602485 PMCID: PMC11112347 DOI: 10.1242/dev.202430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.
Collapse
Affiliation(s)
- Fatima N. Chaudhry
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nigel S. Michki
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dain L. Shirmer
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lisa R. Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Li R. Disrupted TGF-β signaling: a link between bronchopulmonary dysplasia and alveolar type 1 cells. J Clin Invest 2024; 134:e178562. [PMID: 38488005 PMCID: PMC10940082 DOI: 10.1172/jci178562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease common in extreme preterm infants and is characterized by alveolar simplification. Current BPD research mainly focuses on alveolar type 2 (AT2) cells, myofibroblasts, and the endothelium. However, a notable gap exists in the involvement of AT1 cells, which constitute a majority of the alveolar surface area. In this issue of the JCI, Callaway and colleagues explored the role of TGF-β signaling in AT1 cells for managing the AT1-to-AT2 transition and its involvement in the integration of mechanical forces with the pulmonary matrisome during development. The findings implicate AT1 cells in the pathogenesis of BPD.
Collapse
|
43
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
44
|
Moos P, Cheminant J, Adhikari U, Venosa A. Transcriptomic-based roadmap to the healthy and ozone-exposed lung. CURRENT OPINION IN TOXICOLOGY 2024; 37:100445. [PMID: 38187954 PMCID: PMC10769160 DOI: 10.1016/j.cotox.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The lung is constantly exposed to a myriad of exogenous stressors. Ground-level ozone represents a ubiquitous and extremely reactive anthropogenic toxicant, impacting the health of millions across the globe. While abundant, epidemiological, in vivo, and in vitro data focuses the ozone toxicity in individual cell types (e.g. epithelial type II, alveolar macrophages) or signaling pathways involved in the injury (e.g., akt, glutathione). When appropriately used, bulk and single cell RNA sequencing techniques have the potential to provide complete, and in certain cases unbiased, information of the molecular events taking place in the steady state and injured lung, and even capture the phenotypic diversity of neighboring cells. To this end, this review compiles information pertaining to the latest understanding of lung cell identity and activation in the steady state and ozone exposed lung. In addition, it discusses the value and benefits of multi-omics approaches and other tools developed to predict cell-cell communication and dissect spatial heterogeneity.
Collapse
Affiliation(s)
- Philip Moos
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Jenna Cheminant
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Ujjwal Adhikari
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
45
|
Zhang J, Liu Y. Epithelial stem cells and niches in lung alveolar regeneration and diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:17-26. [PMID: 38645714 PMCID: PMC11027191 DOI: 10.1016/j.pccm.2023.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 04/23/2024]
Abstract
Alveoli serve as the functional units of the lungs, responsible for the critical task of blood-gas exchange. Comprising type I (AT1) and type II (AT2) cells, the alveolar epithelium is continuously subject to external aggressors like pathogens and airborne particles. As such, preserving lung function requires both the homeostatic renewal and reparative regeneration of this epithelial layer. Dysfunctions in these processes contribute to various lung diseases. Recent research has pinpointed specific cell subgroups that act as potential stem or progenitor cells for the alveolar epithelium during both homeostasis and regeneration. Additionally, endothelial cells, fibroblasts, and immune cells synergistically establish a nurturing microenvironment-or "niche"-that modulates these epithelial stem cells. This review aims to consolidate the latest findings on the identities of these stem cells and the components of their niche, as well as the molecular mechanisms that govern them. Additionally, this article highlights diseases that arise due to perturbations in stem cell-niche interactions. We also discuss recent technical innovations that have catalyzed these discoveries. Specifically, this review underscores the heterogeneity, plasticity, and dynamic regulation of these stem cell-niche systems. It is our aspiration that a deeper understanding of the fundamental cellular and molecular mechanisms underlying alveolar homeostasis and regeneration will open avenues for identifying novel therapeutic targets for conditions such as chronic obstructive pulmonary disease (COPD), fibrosis, coronavirus disease 2019 (COVID-19), and lung cancer.
Collapse
Affiliation(s)
- Jilei Zhang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
46
|
Jones DL, Morley MP, Li X, Ying Y, Cardenas-Diaz FL, Li S, Zhou S, Schaefer SE, Chembazhi UV, Nottingham A, Lin S, Cantu E, Diamond JM, Basil MC, Vaughan AE, Morrisey EE. An injury-induced tissue niche shaped by mesenchymal plasticity coordinates the regenerative and disease response in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582147. [PMID: 38529490 PMCID: PMC10962740 DOI: 10.1101/2024.02.26.582147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Severe lung injury causes basal stem cells to migrate and outcompete alveolar stem cells resulting in dysplastic repair and a loss of gas exchange function. This "stem cell collision" is part of a multistep process that is now revealed to generate an injury-induced tissue niche (iTCH) containing Keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Temporal and spatial single cell analysis reveals that iTCHs are governed by mesenchymal proliferation and Notch signaling, which suppresses Wnt and Fgf signaling in iTCHs. Conversely, loss of Notch in iTCHs rewires alveolar signaling patterns to promote euplastic regeneration and gas exchange. The signaling patterns of iTCHs can differentially phenotype fibrotic from degenerative human lung diseases, through apposing flows of FGF and WNT signaling. These data reveal the emergence of an injury and disease associated iTCH in the lung and the ability of using iTCH specific signaling patterns to discriminate human lung disease phenotypes.
Collapse
Affiliation(s)
- Dakota L. Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L. Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Schaefer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ullas V. Chembazhi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M. Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C. Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Gaddis N, Fortriede J, Guo M, Bardes EE, Kouril M, Tabar S, Burns K, Ardini-Poleske ME, Loos S, Schnell D, Jin K, Iyer B, Du Y, Huo BX, Bhattacharjee A, Korte J, Munshi R, Smith V, Herbst A, Kitzmiller JA, Clair GC, Carson JP, Adkins J, Morrisey EE, Pryhuber GS, Misra R, Whitsett JA, Sun X, Heathorn T, Paten B, Prasath VBS, Xu Y, Tickle T, Aronow BJ, Salomonis N. LungMAP Portal Ecosystem: Systems-level Exploration of the Lung. Am J Respir Cell Mol Biol 2024; 70:129-139. [PMID: 36413377 PMCID: PMC10848697 DOI: 10.1165/rcmb.2022-0165oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts, we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multiomics data, and a diverse collection of image data that span mammalian lung development and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances, including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, and mouse) to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, reanalysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP, and external research efforts.
Collapse
Affiliation(s)
- Nathan Gaddis
- RTI International, Research Triangle Park, North Carolina
| | - Joshua Fortriede
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Minzhe Guo
- Division of Pulmonary Biology, The Perinatal Institute, and
| | - Eric E. Bardes
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Scott Tabar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kevin Burns
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | | | - Stephanie Loos
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Daniel Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Balaji Iyer
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Yina Du
- Division of Pulmonary Biology, The Perinatal Institute, and
| | - Bing-Xing Huo
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jeff Korte
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ruchi Munshi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Victoria Smith
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew Herbst
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Geremy C. Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - James P. Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Edward E. Morrisey
- Department of Medicine and
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Ravi Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, The Perinatal Institute, and
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics and
- Department of Biological Sciences, University of California, San Diego, San Diego, California; and
| | - Trevor Heathorn
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California
| | - V. B. Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Yan Xu
- Division of Pulmonary Biology, The Perinatal Institute, and
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Tim Tickle
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
48
|
Abadir P, Cosarderelioglu C, Damarla M, Malinina A, Dikeman D, Marx R, Nader MM, Abadir M, Walston J, Neptune E. Unlocking the protective potential of the angiotensin type 2 receptor (AT 2R) in acute lung injury and age-related pulmonary dysfunction. Biochem Pharmacol 2024; 220:115978. [PMID: 38081369 PMCID: PMC10880333 DOI: 10.1016/j.bcp.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFβ activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.
Collapse
Affiliation(s)
- Peter Abadir
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA.
| | - Caglar Cosarderelioglu
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Mahendra Damarla
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Alla Malinina
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Dustin Dikeman
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA
| | - Ruth Marx
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Monica M Nader
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA; Urbana High School, USA
| | | | - Jeremy Walston
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Department of Medicine, USA
| | - Enid Neptune
- Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, USA.
| |
Collapse
|
49
|
Yang S, Gaietto K, Chen W. Mapping a New Course to Understand Lung Biology Mechanisms: LungMAP.net. Am J Respir Cell Mol Biol 2024; 70:91-93. [PMID: 38109690 PMCID: PMC10848696 DOI: 10.1165/rcmb.2023-0439ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
- Sheng Yang
- Department of Biostatistics Nanjing Medical University Nanjing, Jiangsu, China
| | - Kristina Gaietto
- Department of Pediatrics University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Wei Chen
- Department of Pediatrics University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Chu CY, Kim SY, Pryhuber GS, Mariani TJ, McGraw MD. Single-cell resolution of human airway epithelial cells exposed to bronchiolitis obliterans-associated chemicals. Am J Physiol Lung Cell Mol Physiol 2024; 326:L135-L148. [PMID: 38084407 PMCID: PMC11279737 DOI: 10.1152/ajplung.00304.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.
Collapse
Affiliation(s)
- Chin-Yi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew D McGraw
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|