1
|
Liu P, Fu M, Liu D, Chao T, Zhang J. Mechanisms of Radiation-induced Brain Injury in Mice Based on Bioinformatics Analysis. Radiat Res 2025; 203:321-332. [PMID: 40133766 DOI: 10.1667/rade-24-00204.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
Radiation therapy is a crucial adjunct treatment for head and neck tumors, as well as primary or metastatic brain tumors. Radiation-induced brain injury is one of the most severe complications, postirradiation, in patients with head and neck tumors, and significantly impacts their quality of life. Currently, there are no effective treatments for radiation-induced brain injury, making the study of radiation-induced molecular mechanisms and the identification of early damage biomarkers critical for the early diagnosis and treatment of such injuries. In this study, twelve male C57 mice aged 6-8 weeks were randomly divided into a control group, a 15 Gy irradiation group, and a 30 Gy irradiation group. Mice were exposed to 6 MV X rays. The control group underwent the same anesthesia procedure as the irradiated groups but did not receive radiation. General health and weight changes were monitored and recorded. Four months postirradiation, mice were subjected to intracranial magnetic resonance imaging [T2-weighted imaging (T2WI)], open field test (OFT), novel object recognition (NOR), followed by a collection of brain tissues for immunofluorescence, SA-β-gal staining, and transcriptomic and metabolomic analyses. Compared to the control group, the 15 Gy and 30 Gy irradiated mice showed reduced activity and weight loss. The irradiated mice exhibited impaired recognition memory in the NOR test and decreased body weight, but radiation had no significant effect on weight or performance in the OFT. Electron microscopy reveals significant demyelination of mouse cortex after irradiation, and MRI T2-weighted imaging demonstrated varying degrees of brain atrophy and ventricular enlargement in irradiated mice compared to the control group. Immunofluorescence staining showed a significant increase in astrocytes and microglia activated after irradiation. SA-β-gal staining revealed significant increases in the numbers of β-gal+ cells in irradiated mice compared to those in untreated control mice. Bioinformatics analysis identified enriched pathways primarily related to lipid metabolism and neuroinflammatory responses; associated metabolites and genes were variously upregulated or downregulated. The findings suggest that radiation-induced brain injury involves complex biological processes, with lipid metabolism disorders and neuroinflammation being the predominant pathological changes observed. Further studies on these metabolic pathways and genes could enhance our understanding of the pathogenic mechanisms underlying radiation-induced brain injury and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Peiquan Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wendo JK, Mbaria JM, Nyariki JN, Isaac AO. Ginkgo biloba attenuated detrimental inflammatory and oxidative events due to Trypanosoma brucei rhodesiense in mice treated with melarsoprol. PLoS Negl Trop Dis 2024; 18:e0012103. [PMID: 38620045 PMCID: PMC11045140 DOI: 10.1371/journal.pntd.0012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/25/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.
Collapse
Affiliation(s)
- Janet Khatenje Wendo
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| | - James Mucunu Mbaria
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
| | - James Nyabuga Nyariki
- The Technical University of Kenya, Department of Biochemistry and Biotechnology, Nairobi, Kenya
| | - Alfred Orina Isaac
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| |
Collapse
|
3
|
Sadek ASM, Farghaly DS, Kadada H, Mashaal A. Immunomodulatory potential of Sarcophaga argyostoma larval hemolymph as a natural alternative to berenil in treating Trypanosoma evansi in vivo. Sci Rep 2024; 14:6972. [PMID: 38521853 PMCID: PMC10960805 DOI: 10.1038/s41598-024-57113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
This study compared effects of diminazene aceturate (berenil), commonly used to treat domestic animals infected with Trypanosoma evansi, with the hemolymph of Sarcophaga argyostoma larva. The hemolymph may be acting as a possible natural alternative to berenil, based on immunomodulation mediated inflammatory response. Inflammatory mediators and histopathological changes in liver, kidney, and spleen of albino mice experimentally infected with T. evansi were studied. Mice were divided into five groups: G1, uninfected, untreated (negative control); G2, T. evansi infected (positive control); G3, infected and treated with berenil; G4, infected and treated with hemolymph; G5, infected and treated with hemolymph 3 days before infection (prophylactic group). Animals in (G4) and (G5) exhibited a significant overall reduction in serum levels of IFN-γ. However, the reduction in TNF-α and IL-6 levels was more limited compared to (G2) and (G3). Notably, an elevation in IL-10 levels was observed compared to animals in other groups. Furthermore, the groups treated with hemolymph demonstrated an alleviation of T. evansi infection in contrast to the other groups. This study highlights that the administration of Sarcophaga argyostoma larval hemolymph at a dosage of 0.5 ml/kg significantly inhibited T. evansi organisms in vivo, showcasing a pronounced trypanocidal effect.
Collapse
Affiliation(s)
- Al-Shaimaa M Sadek
- Parasitology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt.
| | - Doaa S Farghaly
- Medical Entomology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hala Kadada
- Taxonomy, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Oula JO, Mose JM, Waiganjo NN, Chepukosi KW, Mitalo NS, Isaac AO, Nyariki JN. Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitol Int 2023; 96:102775. [PMID: 37390918 DOI: 10.1016/j.parint.2023.102775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.
Collapse
Affiliation(s)
- James O Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Naomi N Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Kennedy W Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Nancy S Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya.
| |
Collapse
|
5
|
Kitwan L, Makobe C, Mdachi R, Maranga DN, Isaac AO, Nyariki JN. Coenzyme Q 10 prevented Trypanosoma brucei rhodesiense-mediated breach of the blood brain barrier, inflammation and organ damage in late stage of Human African Trypanosomiasis. J Parasit Dis 2023; 47:167-184. [PMID: 36910316 PMCID: PMC9998817 DOI: 10.1007/s12639-022-01553-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
During the late stage of Human African Trypanosomiasis (HAT), there is severe cytokine-driven inflammation, oxidative stress and organ damage. Controlling inflammation and oxidative damage presents unique therapeutic opportunities to improve treatment outcome. The current study sought to determine the putative impact of Coenzyme-Q10 (Co-Q10), a potent antioxidant and anti-inflammatory, on adverse inflammatory and oxidative events during Trypanosoma brucei rhodesiense (T.b.r) infection. Group one constituted the control; the second group was infected with T.b.r; the third group was orally administered with 200 mg/kg Co-Q10 for two weeks; thereafter, Co-Q10 administration continued after infection with T.b.r. Co-Q10 improved the survival rate of infected mice and prevented full blown parasite driven splenomegaly and hepatomegaly. Co-Q10 prevented characteristic T.b.r-driven breach of the blood brain barrier and improved neurological integrity among T.b.r infected mice. Co-Q10 protected from T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia. T.b.r-induced oxidative stress in the vital organs was assuaged following exposure to Co-Q10. Co-Q10 blocked T.b.r-induced derangement of high density lipoprotein and triglyceride levels. Co-Q10 significantly abrogated T.b.r-driven elevation of serum TNF-α and IFN-γ levels. Moreover, T.b.r-induced kidney and liver damage was assuaged by Co-Q10 administration. Co-Q10 administration downregulated T.b.r-induced elevation of uric acid and C-reactive protein. Likewise, T.b.r infected mice receiving Co-Q10 exhibited normal brain architecture. In conclusion, treatment with Co-Q10 may be useful in protecting against T.b.r-mediated organ injury, lethal inflammation and oxidative stress commonly present in severe late stage HAT; and presents unique opportunities for an adjunct therapy for late stage HAT.
Collapse
Affiliation(s)
- Lynn Kitwan
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Celestine Makobe
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Raymond Mdachi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| |
Collapse
|
6
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
8
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
9
|
A Preliminary Study on the Relationship between Parasitaemia and Cytokine Expression of Peripheral Blood Cells in Trypanosoma vivax-Experimentally Infected Cattle. Animals (Basel) 2021; 11:ani11113191. [PMID: 34827923 PMCID: PMC8614243 DOI: 10.3390/ani11113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Infections by Trypanosoma vivax in livestock have been reported with increasing frequency worldwide. Nevertheless, information regarding the immune response during the infection is scarce. Regarding that, cytokines play an important role as inflammation modulators, influencing the outcome of trypanosomosis. This study aimed to evaluate host cytokine production during T. vivax infection, in order to assess the increase or decrease of selected cytokines with the cattle’s ability to control the infection. While animals that showed an increase in IL-6 and IFNγ managed T. vivax parasitaemia satisfactorily, cattle that showed reduction of IL-1β, IL-2 and TNFα did not control the parasite multiplication. The presented results are preliminary and shed some light on the role of cytokines during T. vivax-infection. Abstract Trypanosoma vivax outbreaks have been reported with increasing frequency worldwide, causing significant economic losses in livestock. Though several studies have suggested that cytokine responses may influence infection caused by Trypanosoma sp., their exact role remains unclear and may vary according to the animal species and parasite strain. The present study aimed to evaluate cytokine expression of peripheral blood cells from three Girolando dairy cows experimentally infected with T. vivax. For this purpose, blood samples were collected prior to the inoculation on the day of inoculation (D0), the day after inoculation (D1), and then every seven days up to 119 days after infection (DAI). Each animal presented a unique pattern of cytokine expression. While a tendency of a Th1 cytokine response was observed during the patent phase (presence of circulating parasites), an increase of Th2 cytokine expression was found at the beginning of the sub-patent phase (low parasitaemia or aparasitaemic periods). In animals that presented a better control of parasitaemia, IL-6 and IFNγ increased during most of the trial period. On the other hand, the cow that presented reduction of IL-1β, IL-2, and TNFα during the entire period did not control parasitaemia properly. A balance between the Th1 and Th2 profile is beneficial for parasite control and animal health. The results found in the present study are a first step towards elucidating the dynamics of cattle’s inflammatory response against T. vivax, requiring future studies focusing on the role of key cytokines on the controlling of parasitaemia in different stages of bovine trypanosomosis.
Collapse
|
10
|
Levy DJ, Goundry A, Laires RSS, Costa TFR, Novo CM, Grab DJ, Mottram JC, Lima APCA. Role of the inhibitor of serine peptidase 2 (ISP2) of Trypanosoma brucei rhodesiense in parasite virulence and modulation of the inflammatory responses of the host. PLoS Negl Trop Dis 2021; 15:e0009526. [PMID: 34153047 PMCID: PMC8248637 DOI: 10.1371/journal.pntd.0009526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/01/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.
Collapse
Affiliation(s)
- David Jessula Levy
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Amy Goundry
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raquel S. S. Laires
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tatiana F. R. Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos Mendes Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Rijo-Ferreira F, Takahashi JS. Sleeping Sickness: A Tale of Two Clocks. Front Cell Infect Microbiol 2020; 10:525097. [PMID: 33134186 PMCID: PMC7562814 DOI: 10.3389/fcimb.2020.525097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Sleeping sickness is caused by a eukaryotic unicellular parasite known to infect wild animals, cattle, and humans. It causes a fatal disease that disrupts many rhythmic physiological processes, including daily rhythms of hormonal secretion, temperature regulation, and sleep, all of which are under circadian (24-h) control. In this review, we summarize research on sleeping sickness parasite biology and the impact it has on host health. We also consider the possible evolutionary advantages of sleep and circadian deregulation for the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Fataki Asina O, Noyes H, Bucheton B, Ilboudo H, MacLeod A, Mumba Ngoyi D. SNPs in IL4 and IFNG show no protective associations with human African trypanosomiasis in the Democratic Republic of the Congo: a case-control study. AAS Open Res 2020; 3:35. [PMID: 32964195 PMCID: PMC7481849 DOI: 10.12688/aasopenres.12999.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Human African trypanosomiasis (HAT) is a protozoal disease transmitted by tsetse flies. Infection with trypanosomes can lead directly to active HAT or latent infection with no detectable parasites, which may progress to active HAT or to spontaneous self-cure. Genetic variation could explain these differences in the outcome of infection. To test this hypothesis, polymorphisms in 17 candidate genes were tested ( APOL1 [ G1 and G2], CFH, HLA-A, HPR, HP, IL1B, IL12B, IL12RB1, IL10, IL4R, MIF, TNFA , IL6, IL4, IL8, IFNG, and HLA-G). Methods: Samples were collected in Democratic Republic of the Congo. 233 samples were genotyped: 100 active HAT cases, 33 from subjects with latent infections and 100 negative controls. Commercial service providers genotyped polymorphisms at 96 single nucleotide polymorphisms (SNPs) on 17 genes. Data were analyzed using Plink V1.9 software and R. Loci, with suggestive associations (uncorrected p < 0.05) validated using an additional 594 individuals, including 164 cases and 430 controls. Results: After quality control, 87 SNPs remained in the analysis. Two SNPs in IL4 and two in IFNG were suggestively associated (uncorrected p<0.05) with a differential risk of developing a Trypanosoma brucei gambiense infection in the Congolese population. The IFNG minor allele (rs2430561, rs2069718) SNPs were protective in comparison between latent infections and controls. Carriers of the rs2243258_T and rs2243279_A alleles of IL4 and the rs2069728_T allele of IFNG had a reduced risk of developing illness or latent infection, respectively. None of these associations were significant after Bonferroni correction for multiple testing. A validation study using more samples was run to determine if the absence of significant association was due to lack of power. Conclusions: This study showed no evidence of an association of HAT with IL4 and IFNG SNPs or with APOL1 G1 and G2 alleles, which have been found to be protective in other studies.
Collapse
Affiliation(s)
- Olivier Fataki Asina
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Uele, Isiro, Democratic Republic of the Congo
| | - Harry Noyes
- Center for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la santé ( IRSS)-Unite de Recherche Clinique de Nanoro( URCN), Nanoro, Burkina Faso
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Dieudonné Mumba Ngoyi
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - TrypanoGEN Group, as members of The H3Africa Consortium
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Uele, Isiro, Democratic Republic of the Congo
- Center for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
- IRD-CIRAD 177, Montpellier, 34398, France
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la santé ( IRSS)-Unite de Recherche Clinique de Nanoro( URCN), Nanoro, Burkina Faso
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, G12 8TA, UK
- School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
13
|
Dozio V, Lejon V, Mumba Ngoyi D, Büscher P, Sanchez JC, Tiberti N. Cerebrospinal Fluid-Derived Microvesicles From Sleeping Sickness Patients Alter Protein Expression in Human Astrocytes. Front Cell Infect Microbiol 2019; 9:391. [PMID: 31824868 PMCID: PMC6879452 DOI: 10.3389/fcimb.2019.00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Human African trypanosomiasis (HAT) caused by the extracellular protozoon Trypanosoma brucei, is a neglected tropical disease affecting the poorest communities in sub-Saharan Africa. HAT progresses from a hemolymphatic first stage (S1) to a meningo-encephalitic late stage (S2) when parasites reach the central nervous system (CNS), although the existence of an intermediate stage (Int.) has also been proposed. The pathophysiological mechanisms associated with the development of S2 encephalopathy are yet to be fully elucidated. Here we hypothesized that HAT progression toward S2 might be accompanied by an increased release of microvesicles (MVs), sub-micron elements (0.1–1 μm) involved in inflammatory processes and in the determination of the outcome of infections. We studied the morphology of MVs isolated from HAT cerebrospinal fluid (CSF) by transmission electron microscopy (TEM) and used flow cytometry to show that total-MVs and leukocyte derived-CD45+ MVs are significantly increased in concentration in S2 patients' CSF compared to S1 and Int. samples (n = 12 per group). To assess potential biological properties of these MVs, immortalized human astrocytes were exposed, in vitro, to MVs enriched from S1, Int. or S2 CSF. Data-independent acquisition mass spectrometry analyses showed that S2 MVs induced, compared to Int. or S1 MVs, a strong proteome modulation in astrocytes that resembled the one produced by IFN-γ, a key molecule in HAT pathogenesis. Our results indicate that HAT S2 CSF harbors MVs potentially involved in the mechanisms of pathology associated with HAT late stage. Such vesicles might thus represent a new player to consider in future functional studies.
Collapse
Affiliation(s)
- Vito Dozio
- Translational Biomarker Group, University of Geneva, Geneva, Switzerland
| | - Veerle Lejon
- Intertryp, Institut de Recherche pour le Développement, CIRAD, University of Montpellier, Montpellier, France
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Natalia Tiberti
- Translational Biomarker Group, University of Geneva, Geneva, Switzerland.,Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
14
|
Nsubuga J, Kato CD, Nanteza A, Matovu E, Alibu VP. Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co-infection in North Eastern Uganda. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:63. [PMID: 31687034 PMCID: PMC6820921 DOI: 10.1186/s13223-019-0377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.
Collapse
Affiliation(s)
- Julius Nsubuga
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Charles Drago Kato
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | | |
Collapse
|
15
|
Rodgers J, Steiner I, Kennedy PGE. Generation of neuroinflammation in human African trypanosomiasis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/6/e610. [PMID: 31467039 PMCID: PMC6745723 DOI: 10.1212/nxi.0000000000000610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/29/2019] [Indexed: 11/26/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by infection due to protozoan parasites of the Trypanosoma genus and is a major fatal disease throughout sub-Saharan Africa. After an early hemolymphatic stage in which the peripheral tissues are infected, the parasites enter the CNS causing a constellation of neurologic features. Although the CNS stage of HAT has been recognized for over a century, the mechanisms generating the neuroinflammatory response are complex and not well understood. Therefore a better understanding of the mechanisms utilized by the parasites to gain access to the CNS compartment is critical to explaining the generation of neuroinflammation. Contrast-enhanced MRI in a murine model of HAT has shown an early and progressive deterioration of blood-CNS barrier function after trypanosome infection that can be reversed following curative treatment. However, further studies are required to clarify the molecules involved in this process. Another important determinant of brain inflammation is the delicate balance of proinflammatory and counterinflammatory mediators. In mouse models of HAT, proinflammatory mediators such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and CXCL10 have been shown to be crucial to parasite CNS invasion while administration of interleukin (IL)-10, a counter inflammatory molecule, reduces the CNS parasite burden as well as the severity of the neuroinflammatory response and the clinical symptoms associated with the infection. This review focuses on information, gained from both infected human samples and animal models of HAT, with an emphasis on parasite CNS invasion and the development of neuroinflammation.
Collapse
Affiliation(s)
- Jean Rodgers
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow.
| | - Israel Steiner
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Peter G E Kennedy
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| |
Collapse
|
16
|
Kamoto K, Noyes H, Nambala P, Senga E, Musaya J, Kumwenda B, Bucheton B, Macleod A, Cooper A, Clucas C, Herz-Fowler C, Matove E, Chiwaya AM, Chisi JE. Association of APOL1 renal disease risk alleles with Trypanosoma brucei rhodesiense infection outcomes in the northern part of Malawi. PLoS Negl Trop Dis 2019; 13:e0007603. [PMID: 31412021 PMCID: PMC6750591 DOI: 10.1371/journal.pntd.0007603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma brucei (T.b.) rhodesiense is the cause of the acute form of human African trypanosomiasis (HAT) in eastern and southern African countries. There is some evidence that there is diversity in the disease progression of T.b. rhodesiense in different countries. HAT in Malawi is associated with a chronic haemo-lymphatic stage infection compared to other countries, such as Uganda, where the disease is acute with more marked neurological impairment. This has raised the question of the role of host genetic factors in infection outcomes. A candidate gene association study was conducted in the northern region of Malawi. This was a case-control study involving 202 subjects, 70 cases and 132 controls. All individuals were from one area; born in the area and had been exposed to the risk of infection since birth. Ninety-six markers were genotyped from 17 genes: IL10, IL8, IL4, HLA-G, TNFA, IL6, IFNG, MIF, APOL, HLA-A, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH. There was a strong significant association with APOL1 G2 allele (p = 0.0000105, OR = 0.14, CI95 = [0.05-0.41], BONF = 0.00068) indicating that carriers of the G2 allele were protected against T.b. rhodesiense HAT. SNP rs2069845 in IL6 had raw p < 0.05, but did not remain significant after Bonferroni correction. There were no associations found with the other 15 candidate genes. Our finding confirms results from other studies that the G2 variant of APOL1 is associated with protection against T.b. rhodesiense HAT.
Collapse
Affiliation(s)
- Kelita Kamoto
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, United Kingdom
| | - Peter Nambala
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Edward Senga
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Benjamin Kumwenda
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Bruno Bucheton
- Institut de Recherche pour le Développement (IRD), IRD-CIRAD 177, Montpellier, France
- Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea
| | - Annette Macleod
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | | | | | | | - John E. Chisi
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | | |
Collapse
|
17
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
18
|
Kennedy PGE, Rodgers J. Clinical and Neuropathogenetic Aspects of Human African Trypanosomiasis. Front Immunol 2019; 10:39. [PMID: 30740102 PMCID: PMC6355679 DOI: 10.3389/fimmu.2019.00039] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
Trypanosomiasis has been recognized as a scourge in sub-Saharan Africa for centuries. The disease, caused by protozoan parasites of the Trypanosoma genus, is a major cause of mortality and morbidity in animals and man. Human African trypanosomiasis (HAT), or sleeping sickness, results from infections with T. brucei (b.) gambiense or T. b. rhodesiense with T. b. gambiense accounting for over 95% of infections. Historically there have been major epidemics of the infection, followed by periods of relative disease control. As a result of concerted disease surveillance and treatment programmes, implemented over the last two decades, there has been a significant reduction in the number of cases of human disease reported. However, the recent identification of asymptomatic disease carriers gives cause for some concern. The parasites evade the host immune system by switching their surface coat, comprised of variable surface glycoprotein (VSG). In addition, they have evolved a variety of strategies, including the production of serum resistance associated protein (SRA) and T. b. gambiense-specific glycoprotein (TgsGP) to counter host defense molecules. Infection with either disease variant results in an early haemolymphatic-stage followed by a late encephalitic-stage when the parasites migrate into the CNS. The clinical features of HAT are diverse and non-specific with early-stage symptoms common to several infections endemic within sub-Saharan Africa which may result in a delayed or mistaken diagnosis. Migration of the parasites into the CNS marks the onset of late-stage disease. Diverse neurological manifestations can develop accompanied by a neuroinflammatory response, comprised of astrocyte activation, and inflammatory cell infiltration. However, the transition between the early and late-stage is insidious and accurate disease staging, although crucial to optimize chemotherapy, remains problematic with neurological symptoms and neuroinflammatory changes recorded in early-stage infections. Further research is required to develop better diagnostic and staging techniques as well as safer more efficacious drug regimens. Clearer information is also required concerning disease pathogenesis, specifically regarding asymptomatic carriers and the mechanisms employed by the trypanosomes to facilitate progression to the CNS and precipitate late-stage disease. Without progress in these areas it may prove difficult to maintain current control over this historically episodic disease.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2018; 145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections. Most of these, as other neuroinfections, are prevalent in sub-Saharan Africa. The present overview highlights the importance of this topic from both the clinical and pathogenetic points of view. Vigilance states and their regulation are first summarized, emphasizing that key nodes in this distributed brain system can be targeted by neuroinflammatory signaling. Sleep-wake changes in the parasitic disease human African trypanosomiasis (HAT) and its animal models are then reviewed and discussed. Experimental data have revealed that the suprachiasmatic nucleus, the master circadian pacemaker, and peptidergic cell populations of the lateral hypothalamus (the wake-promoting orexin neurons and the sleep-promoting melanin-concentrating hormone neurons) are targeted by African trypanosome infection. It is then discussed how prominent and disturbing are sleep changes in HIV/AIDS, also when the infection is cured with antiretroviral therapy. This recalls attention on the bidirectional interactions between sleep and immune system, including the specialized brain immune response of which microglial cells are protagonists. Sleep changes in an ancient viral disease, rabies, and in the emerging infection due to Zika virus which causes a congenital syndrome, are also dealt with. Altogether the findings indicate that sleep-wake regulation is targeted by brain infections caused by different pathogens and, although the relevant pathogenetic mechanisms largely remain to be clarified, these alterations differ from hypersomnia occurring in sickness behavior. Thus, brain infections point to the vulnerability of the neural network of sleep-wake regulation as a highly relevant clinical and basic science challenge.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
21
|
Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, Takahashi JS. Sleeping sickness is a circadian disorder. Nat Commun 2018; 9:62. [PMID: 29302035 PMCID: PMC5754353 DOI: 10.1038/s41467-017-02484-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep. African sleeping sickness is well known for the alterations of sleeping patterns, but it is not known how circadian biology is altered by the causative pathogen Trypanosoma brucei. Here the authors show T. brucei causes a disorder of the cellular circadian clock that is unrelated to the immune response to the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002, Porto, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Cristina Afonso
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.
| |
Collapse
|
22
|
Lamour SD, Alibu VP, Holmes E, Sternberg JM. Metabolic Profiling of Central Nervous System Disease in Trypanosoma brucei rhodesiense Infection. J Infect Dis 2017; 216:1273-1280. [PMID: 28927234 PMCID: PMC5853393 DOI: 10.1093/infdis/jix466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 11/27/2022] Open
Abstract
Background The progression of human African trypanosomiasis from the early hemolymphatic stage to the late meningoencephalitic stage is of critical diagnostic importance as it determines the choice of potentially toxic drug regimens. Current diagnostic criteria involving analysis of cerebrospinal fluid (CSF) for parasites and/or pleocytosis are sensitive, but recent evidence suggests that specificity may be poor. Methods We used an untargeted global metabolic profiling approach for the discovery of novel candidate stage-diagnostic markers in CSF from patients infected with Trypanosoma brucei rhodesiense, using 1H nuclear magnetic resonance (NMR) spectroscopy. Results Metabolic markers did not distinguish between early and late-stage cases but were associated with neuroinflammatory responses and the presentation of neurological disturbances. In particular, increased concentrations of 3-hydroxybutyrate and alanine and reduced concentrations of mannose and urea were discriminatory for the presentation of daytime somnolence and gait ataxia. Conclusions CSF metabolite concentrations provide markers for neuroinflammatory responses during central nervous system (CNS) invasion by trypanosomes and are associated with the presentation of neurological disturbances independently of disease stage determined by current criteria. This suggests that applying a dichotomous-stage diagnosis on the basis of CSF pleocytosis does not accurately reflect the biological changes occurring as parasites invade the CNS and has implications for biomarker discovery strategies.
Collapse
Affiliation(s)
- Sabrina D Lamour
- Department of Infectious Disease Epidemiology, School of Public Health
| | - Vincent P Alibu
- Department of Biochemistry, Makerere University, Kampala, Uganda
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London
| | - Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
23
|
Silva AA, Silva RR, Gibaldi D, Mariante RM, Dos Santos JB, Pereira IR, Moreira OC, Lannes-Vieira J. Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu. J Neuroinflammation 2017; 14:182. [PMID: 28877735 PMCID: PMC5588596 DOI: 10.1186/s12974-017-0952-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In conditions of immunosuppression, the central nervous sty 5ystem (CNS) is the main target tissue for the reactivation of infection by Trypanosoma cruzi, the causative agent of Chagas disease. In experimental T. cruzi infection, interferon gamma (IFNγ)+ microglial cells surround astrocytes harboring amastigote parasites. In vitro, IFNγ fuels astrocyte infection by T. cruzi, and IFNγ-stimulated infected astrocytes are implicated as potential sources of tumor necrosis factor (TNF). Pro-inflammatory cytokines trigger behavioral alterations. In T. cruzi-infected mice, administration of anti-TNF antibody hampers depressive-like behavior. Herein, we investigated the effects of TNF on astrocyte susceptibility to T. cruzi infection and the regulation of cytokine production. METHODS Primary astrocyte cultures of neonatal C57BL/6 and C3H/He mice and the human U-87 MG astrocyte lineage were infected with the Colombian T. cruzi strain. Cytokine production, particularly TNF, and TNF receptor 1 (TNFR1/p55) expression were analyzed. Recombinant cytokines (rIFNγ and rTNF), the anti-TNF antibody infliximab, and the TNFR1 modulator pentoxifylline were used to assess the in vitro effects of TNF on astrocyte susceptibility to T. cruzi infection. To investigate the role of TNF on CNS colonization by T. cruzi, infected mice were submitted to anti-TNF therapy. RESULTS rTNF priming of mouse and human astrocytes enhanced parasite/astrocyte interaction (i.e., the percentage of astrocytes invaded by trypomastigote parasites and the number of intracellular parasite forms/astrocyte). Furthermore, T. cruzi infection drove astrocytes to a pro-inflammatory profile with TNF and interleukin-6 production, which was amplified by rTNF treatment. Adding rTNF prior to infection fueled parasite growth and trypomastigote egression, in parallel with increased TNFR1 expression. Importantly, pentoxifylline inhibited the TNF-induced increase in astrocyte susceptibility to T. cruzi invasion. In T. cruzi-infected mice, anti-TNF therapy reduced the number of amastigote nests in the brain. CONCLUSIONS Our data implicate TNF as a promoter of T. cruzi invasion of mouse and human astrocytes. Moreover, the TNF-enriched inflammatory milieu and enhanced TNFR1 expression may favor TNF signaling, astrocyte colonization by T. cruzi and egression of trypomastigotes. Therefore, in T. cruzi infection, a self-sustaining TNF-induced inflammatory circuit may perpetuate the parasite cycle in the CNS and ultimately promote cytokine-driven behavioral alterations.
Collapse
Affiliation(s)
- Andrea Alice Silva
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marquês do Paraná, 303, Niterói, RJ, 24033-900, Brazil
| | - Rafael Rodrigues Silva
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório de Doença de Chagas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/no, Ouro Preto, MG, 35400-000, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Rafael Meyer Mariante
- Laboratório de Biologia Estrutural IOC/Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Jessica Brandão Dos Santos
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.,Laboratório de Hematologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marquês do Paraná, 303, Niterói, RJ, 24033-900, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil.
| |
Collapse
|
24
|
Waema MW, Maina NW, Ngotho M, Karanja SM, Gachie BM, Maranga DN, Kagira JM. IgM, lgG and IL-6 profiles in the Trypanosoma brucei brucei monkey model of human African trypanosomiasis. Acta Trop 2017; 168:45-49. [PMID: 28099874 DOI: 10.1016/j.actatropica.2017.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/14/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022]
Abstract
Human African trypanosomiasis (HAT) patients manifest immunological profiles, whose variations over time can be used to indicate disease progression. However, monitoring of these biomarkers in human patients is beset by several limitations which can be offset by using chronic animal models. A recent improved monkey model of HAT using a Trypanosoma brucei brucei isolate has been developed but the immunological profile has not been elucidated. The objectives of the current study was to determine the IgM, IgG and IL-6 profiles in blood and cerebrospinal fluid (CSF) in vervet monkeys infected with T. b. brucei. Three vervet monkeys were infected intravenously with 105T. b. brucei, monitored for disease development and subsequently treated 28days post infection (dpi) sub-curatively using diminazene aceturate (DA) to induce late stage disease and curatively treated with melarsoprol (Mel B) at 119 dpi, respectively. Matched serum and cerebrospinal fluid (CSF) samples were obtained at regular intervals and immunospecific IgM, immunoglobulin G (IgG) were quantified by ELISA while IL-6 was assayed using a cytometric bead array (CBA) kit. Results showed that following infection, CSF IgM, IgG, IL-6 and serum IL-6 were significantly (p<0.05) elevated with peak levels coinciding with relapse parasitaemia. The IgG levels increased to reach OD peak levels of 0.442±0.5 at 126 dpi. After curative treatment with MelB, the serum IgM and Ig G levels fell rapidly to attain pre-infection levels within 35 and 49days, respectively. This shows that the profile of these immunoglobulins can be used as an indicator of curative treatment. CSF IL-6 concentrations of infected vervet monkeys showed no significant change (P>0.05) between infection and 35 dpi but levels increased significantly (P<0.05) with the highest level of 55.53pg/ml recorded at112 dpi. IL-6 elevation from 35 dpi may be indicative of parasite neuroinvasion hence can be used as possible candidate marker for late stage disease in the monkey model. Further, the marker can also be used in conjunction with IgG and IgM as markers for development of test of cure for HAT.
Collapse
|
25
|
Sternberg JM, Forrest CM, Dalton RN, Turner C, Rodgers J, Stone TW, Kennedy PGE. Kynurenine Pathway Activation in Human African Trypanosomiasis. J Infect Dis 2017; 215:806-812. [PMID: 28013248 PMCID: PMC5388295 DOI: 10.1093/infdis/jiw623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022] Open
Abstract
Background The kynurenine pathway of tryptophan oxidation is associated with central nervous system (CNS) inflammatory pathways. Inhibition of this pathway ameliorates CNS inflammation in rodent models of the late (meningoencephalitic) stage of human African trypanosomiasis (HAT). In this study, we evaluate whether the kynurenine pathway is activated in clinical HAT and associated with CNS inflammatory responses. Methods We measured cerebrospinal fluid (CSF) tryptophan and kynurenine metabolite concentrations in patients infected with Trypanosoma brucei rhodesiense, using liquid chromatography-mass spectrometry. Results Kynurenine concentration in CSF was increased in both the early and late stages of disease, with a progressive increase in tryptophan oxidation associated with stage progression. Kynurenine pathway activation was associated with increases in neuroinflammatory markers, but there was no clear relationship to neurological symptoms. Conclusions CNS kynurenine pathway activation occurs during HAT, including cases prior to the current diagnostic cutoff for late-stage infection, providing evidence for early CNS involvement in HAT. Metabolite data demonstrate that the kynurenine-3-monooxygenase and kynurenine aminotransferase branches of the kynurenine pathway are active. The association between tryptophan oxidation and CNS inflammatory responses as measured by CSF interleukin 6 (IL-6) concentration supports a role of kynurenine metabolites in the inflammatory pathogenesis of late-stage HAT.
Collapse
Affiliation(s)
- Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R Neil Dalton
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, United Kingdom
| | - Charles Turner
- WellChild Laboratory, Evelina London Children's Hospital, King's College London, United Kingdom
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter G E Kennedy
- Department of Neurology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| |
Collapse
|
26
|
Krishnamoorthy P, Sengupta PP, Das S, Ligi M, Shome BR, Rahman H. Cytokine gene expression and pathology in mice experimentally infected with different isolates of Trypanosoma evansi. Exp Parasitol 2016; 170:168-176. [PMID: 27702553 DOI: 10.1016/j.exppara.2016.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Aim of the present study was to assess the cytokine gene expression in liver, kidney and spleen and histopathological changes in mice infected with buffalo and dog isolates of Trypanosoma evansi. Forty-four Swiss albino mice was divided into eleven groups of four mice each and injected subcutaneously with 1 × 105 trypanosomes of buffalo and dog isolate to twenty mice each, four mice served as control. Mice were examined for clinical signs, blood smear for trypanosome counts. Blood for PCR, liver, kidney, spleen, heart, lung, testis and abdominal muscle for histopathology and liver, kidney, spleen for cytokine gene expression studies, were collected. Mice showed dullness, lethargy, hunched back, sluggish movements on D4 and D5 in buffalo and dog isolate, respectively. Parasite count in blood varied between the two isolates of T. evansi. By PCR, trypanosome DNA was detected on D1 and D2 for buffalo and dog isolate, respectively. Splenomegaly was observed in mice infected with buffalo isolate but not with dog isolate. Histopathological changes were observed in liver, kidney, spleen and heart of mice but no changes in testis and abdominal muscles. Blood vessels of liver, heart, lung showed presence of trypanosomes in mice infected with buffalo isolate but not for dog isolate. Cytokine gene expression of IL-2, IL-4, IL-6, IL-12, TNF-α and IFN-γ increased in liver, kidney and spleen in both these isolates. However, the buffalo isolate exhibited pronounced increase in cytokine gene expression when compare to dog isolate of T. evansi. Anti-inflammatory cytokine gene IL-10 showed 50-60 and 10-20 folds increment in buffalo and dog isolates, respectively. This is the first report of IL-4, IL-6, IL-10 and IL-12 cytokine changes in mice infected with T. evansi. A variation in pathogenicity between buffalo and dog isolates was recorded indicating buffalo isolate of T. evansi remained more pathogenic in mice.
Collapse
Affiliation(s)
- P Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India.
| | - P P Sengupta
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - Sangita Das
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - M Ligi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - B R Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - H Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| |
Collapse
|
27
|
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:4. [PMID: 26807135 PMCID: PMC4722787 DOI: 10.1186/s13223-016-0113-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
Collapse
Affiliation(s)
- Charles D. Kato
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Enock Matovu
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Claire. M. Mugasa
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Ann Nanteza
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Vincent P. Alibu
- />College of Natural Sciences, Makerere University, P.O. BOX 7062, Kampala, Uganda
| |
Collapse
|
28
|
Rodgers J, Bradley B, Kennedy PGE, Sternberg JM. Central Nervous System Parasitosis and Neuroinflammation Ameliorated by Systemic IL-10 Administration in Trypanosoma brucei-Infected Mice. PLoS Negl Trop Dis 2015; 9:e0004201. [PMID: 26505761 PMCID: PMC4624684 DOI: 10.1371/journal.pntd.0004201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/08/2015] [Indexed: 02/01/2023] Open
Abstract
Invasion of the central nervous system (CNS) by African trypanosomes represents a critical step in the development of human African trypanosomiasis. In both clinical cases and experimental mouse infections it has been demonstrated that predisposition to CNS invasion is associated with a type 1 systemic inflammatory response. Using the Trypanosoma brucei brucei GVR35 experimental infection model, we demonstrate that systemic delivery of the counter-inflammatory cytokine IL-10 lowers plasma IFN-γ and TNF-α concentrations, CNS parasitosis and ameliorates neuro-inflammatory pathology and clinical symptoms of disease. The results provide evidence that CNS invasion may be susceptible to immunological attenuation.
Collapse
Affiliation(s)
- Jean Rodgers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara Bradley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Peter G E Kennedy
- Department of Neurology, Institute of Neurological Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
29
|
Liu G, Xu J, Wu H, Sun D, Zhang X, Zhu X, Magez S, Shi M. IL-27 Signaling Is Crucial for Survival of Mice Infected with African Trypanosomes via Preventing Lethal Effects of CD4+ T Cells and IFN-γ. PLoS Pathog 2015. [PMID: 26222157 PMCID: PMC4519326 DOI: 10.1371/journal.ppat.1005065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes are extracellular protozoan parasites causing a chronic debilitating disease associated with a persistent inflammatory response. Maintaining the balance of the inflammatory response via downregulation of activation of M1-type myeloid cells was previously shown to be crucial to allow prolonged survival. Here we demonstrate that infection with African trypanosomes of IL-27 receptor-deficient (IL-27R-/-) mice results in severe liver immunopathology and dramatically reduced survival as compared to wild-type mice. This coincides with the development of an exacerbated Th1-mediated immune response with overactivation of CD4+ T cells and strongly enhanced production of inflammatory cytokines including IFN-γ. What is important is that IL-10 production was not impaired in infected IL-27R-/- mice. Depletion of CD4+ T cells in infected IL-27R-/- mice resulted in a dramatically reduced production of IFN-γ, preventing the early mortality of infected IL-27R-/- mice. This was accompanied by a significantly reduced inflammatory response and a major amelioration of liver pathology. These results could be mimicked by treating IL-27R-/- mice with a neutralizing anti-IFN-γ antibody. Thus, our data identify IL-27 signaling as a novel pathway to prevent early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretion of IFN-γ during infection with African trypanosomes. These data are the first to demonstrate the essential role of IL-27 signaling in regulating immune responses to extracellular protozoan infections. Infection with extracellular protozoan parasites, African trypanosomes, is characterized by a persistent inflammatory immune response. It has been recently shown that maintaining the balance of the inflammatory responses via dampening M1-type myeloid cell activation is critical to guarantee control of the parasites and survival of the host. In this study, we demonstrated that IL-27 receptor-deficient (IL-27R-/-) mice infected with African trypanosomes developed an excessive inflammatory response and severe liver immunopathology, resulting in dramatically reduced survival, as compared to infected wild-type mice. The early mortality of infected IL-27R-/- mice was correlated with significantly elevated secretions of inflammatory cytokines, particularly IFN-γ, and enhanced activation of CD4+ Th1 cells. Importantly, IL-10 production was not impaired in infected IL-27R-/- mice. Either depletion of CD4+ T cells, resulting in a dramatically reduced secretion of IFN-γ, or neutralization of IFN-γ, prevented the early mortality of infected IL-27R-/- mice with a significantly reduced inflammatory response and a major amelioration of the liver pathology. Thus, our data identify IL-27 signaling as a novel pathway to prevent the early mortality via inhibiting hyperactivation of CD4+ Th1 cells and their excessive secretions of IFN-γ during experimental infection with extracellular protozoan parasites African trypanosomes.
Collapse
Affiliation(s)
- Gongguan Liu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Jinjun Xu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Hui Wu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, Guangzhou, China
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Stefan Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
- Structural Biology Research Centre, VIB, Brussels, Belgium
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kato CD, Alibu VP, Nanteza A, Mugasa CM, Matovu E. Interleukin (IL)-6 and IL-10 Are Up Regulated in Late Stage Trypanosoma brucei rhodesiense Sleeping Sickness. PLoS Negl Trop Dis 2015; 9:e0003835. [PMID: 26090964 PMCID: PMC4474433 DOI: 10.1371/journal.pntd.0003835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/17/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sleeping sickness due to Trypanosoma brucei rhodesiense has a wide spectrum of clinical presentations coupled with differences in disease progression and severity across East and Southern Africa. The disease progresses from an early (hemo-lymphatic) stage to the late (meningoencephalitic) stage characterized by presence of parasites in the central nervous system. We hypothesized that disease progression and severity of the neurological response is modulated by cytokines. METHODS A total of 55 sleeping sickness cases and 41 healthy controls were recruited passively at Lwala hospital, in Northern Uganda. A panel of six cytokines (IFN-γ, IL1-β, TNF-α, IL-6, TGF-β and IL-10) were assayed from paired plasma and cerebrospinal fluid (CSF) samples. Cytokine concentrations were analyzed in relation to disease progression, clinical presentation and severity of neurological responses. RESULTS Median plasma levels (pg/ml) of IFN-γ (46.3), IL-6 (61.7), TGF-β (8755) and IL-10 (256.6) were significantly higher in cases compared to controls (p< 0.0001). When early stage and late stage CSF cytokines were compared, IL-10 and IL-6 were up regulated in late stage patients and were associated with a reduction in tremors and cranioneuropathy. IL-10 had a higher staging accuracy with a sensitivity of 85.7% (95% CI, 63.7%-97%) and a specificity of 100% (95% CI, 39.8%-100%) while for IL-6, a specificity of 100% (95% CI, 47.8%-100%) gave a sensitivity of 83.3% (95% CI, 62.2%-95.3%). CONCLUSION Our study demonstrates the role of host inflammatory cytokines in modulating the progression and severity of neurological responses in sleeping sickness. We demonstrate here an up-regulation of IL-6 and IL-10 during the late stage with a potential as adjunct stage biomarkers. Given that both cytokines could potentially be elevated by other CNS infections, our findings should be further validated in a large cohort of patients including those with other inflammatory diseases such as cerebral malaria.
Collapse
Affiliation(s)
- Charles D. Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Vincent P. Alibu
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Claire M. Mugasa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| |
Collapse
|
31
|
McCarroll CS, Rossor CL, Morrison LR, Morrison LJ, Loughrey CM. A Pre-clinical Animal Model of Trypanosoma brucei Infection Demonstrating Cardiac Dysfunction. PLoS Negl Trop Dis 2015; 9:e0003811. [PMID: 26023927 PMCID: PMC4449042 DOI: 10.1371/journal.pntd.0003811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
African trypanosomiasis (AT), caused by Trypanosoma brucei species, results in both neurological and cardiac dysfunction and can be fatal if untreated. Research on the pathogenesis and treatment of the disease has centred to date on the characteristic neurological symptoms, whereas cardiac dysfunction (e.g. ventricular arrhythmias) in AT remains largely unstudied. Animal models of AT demonstrating cardiac dysfunction similar to that described in field cases of AT are critically required to transform our understanding of AT-induced cardiac pathophysiology and identify future treatment strategies. We have previously shown that T. brucei can interact with heart muscle cells (cardiomyocytes) to induce ventricular arrhythmias in ex vivo adult rat hearts. However, it is unknown whether the arrhythmias observed ex vivo are also present during in vivo infection in experimental animal models. Here we show for the first time the characterisation of ventricular arrhythmias in vivo in two animal models of AT infection using electrocardiographic (ECG) monitoring. The first model utilised a commonly used monomorphic laboratory strain, Trypanosoma brucei brucei Lister 427, whilst the second model used a pleomorphic laboratory strain, T. b. brucei TREU 927, which demonstrates a similar chronic infection profile to clinical cases. The frequency of ventricular arrhythmias and heart rate (HR) was significantly increased at the endpoint of infection in the TREU 927 infection model, but not in the Lister 427 infection model. At the end of infection, hearts from both models were isolated and Langendorff perfused ex vivo with increasing concentrations of the β-adrenergic agonist isoproterenol (ISO). Interestingly, the increased frequency of arrhythmias observed in vivo in the TREU 927 infection model was lost upon isolation of the heart ex vivo, but re-emerged with the addition of ISO. Our results demonstrate that TREU 927 infection modifies the substrate of the myocardium in such a way as to increase the propensity for ventricular arrhythmias in response to a circulating factor in vivo or β-adrenergic stimulation ex vivo. The TREU 927 infection model provides a new opportunity to accelerate our understanding of AT-related cardiac pathophysiology and importantly has the required sensitivity to monitor adverse cardiac-related electrical dysfunction when testing new therapeutic treatments for AT.
Collapse
Affiliation(s)
- Charlotte S. McCarroll
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte L. Rossor
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Linda R. Morrison
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, United Kingdom
| | - Liam J. Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Christopher M. Loughrey
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Coles JA, Myburgh E, Ritchie R, Hamilton A, Rodgers J, Mottram JC, Barrett MP, Brewer JM. Intravital imaging of a massive lymphocyte response in the cortical dura of mice after peripheral infection by trypanosomes. PLoS Negl Trop Dis 2015; 9:e0003714. [PMID: 25881126 PMCID: PMC4400075 DOI: 10.1371/journal.pntd.0003714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 11/23/2022] Open
Abstract
Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T.b.brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi). CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM) to 5.2 ± 1.2 μm/min (p = 0.007). The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma. African trypanosomes are motile parasites that cause sleeping sickness. They multiply first in the blood then cause death mainly by effects on the brain: immune system cells, including T cells and dendritic cells, play major roles in this. Thinking we might see the attack on the brain, we infected mice with trypanosomes and used a two-photon microscope, which allowed us to image the superficial brain and the delicate tissue between the skull and the brain called the meninges without making a hole in the skull. The mice (which were anesthetized) had been genetically modified so that T cells and dendritic cells were fluorescent, as were the trypanosomes. We did not notice much happening in the brain itself, but in the meninges, in a compartment called the dura, huge numbers of T cells and dendritic cells appeared. Trypanosomes also moved from the blood into this compartment. Since T cells, dendritic cells and trypanosomes had not been videoed in the meninges before, we began by observing them carefully: their numbers, their movements and their interactions. The accumulation of lymphocytes is a sign of meningitis, a feature of infection by a wide range of pathogens and our results suggest interesting future work.
Collapse
Affiliation(s)
- Jonathan A. Coles
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
33
|
Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Palomba M, Seke-Etet PF, Laperchia C, Tiberio L, Xu YZ, Colavito V, Grassi-Zucconi G, Bentivoglio M. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness. Neuroscience 2015; 290:185-95. [PMID: 25595977 DOI: 10.1016/j.neuroscience.2014.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/24/2023]
Abstract
Human African trypanosomiasis or sleeping sickness is a severe, neglected tropical disease caused by the extracellular parasite Trypanosoma brucei. The disease, which leads to chronic neuroinflammation, is characterized by sleep and wake disturbances, documented also in rodent models. In rats and mice infected with Trypanosoma brucei brucei, we here tested the hypothesis that the disease could target neurons of the lateral hypothalamus (LH) containing orexin (OX)-A or melanin-concentrating hormone (MCH), implicated in sleep/wake regulation. In the cerebrospinal fluid of infected rats, the OX-A level was significantly decreased early after parasite neuroinvasion, and returned to the control level at an advanced disease stage. The number of immunohistochemically characterized OX-A and MCH neurons decreased significantly in infected rats during disease progression and in infected mice at an advanced disease stage. A marked reduction of the complexity of dendritic arborizations of OX-A neurons was documented in infected mice. The evaluation of NeuN-immunoreactive neurons did not reveal significant neuronal loss in the LH of infected mice, thus suggesting a potential selective vulnerability of OX-A and MCH neurons. Immunophenotyping and quantitative analysis showed in infected mice marked activation of microglial cells surrounding OX-A neurons. Day/night oscillation of c-Fos baseline expression was used as marker of OX-A neuron activity in mice. In control animals Fos was expressed in a higher proportion of OX-A neurons in the night (activity) phase than in the day (rest) phase. Interestingly, in infected mice the diurnal spontaneous Fos oscillation was reversed, with a proportion of OX-A/Fos neurons significantly higher at daytime than at nighttime. Altogether the findings reveal a progressive decrease of OX-A and MCH neurons and dysregulation of OX-A neuron diurnal activity in rodent models of sleeping sickness. The data point to the involvement of these peptidergic neurons in the pathogenesis of sleep/wake alterations in the disease and to their vulnerability to inflammatory signaling.
Collapse
Affiliation(s)
- M Palomba
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - P F Seke-Etet
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - C Laperchia
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - L Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Y-Z Xu
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - V Colavito
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - G Grassi-Zucconi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - M Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
35
|
Sternberg JM, Mitchell JA. Plasma neuronal specific enolase: a potential stage diagnostic marker in human African trypanosomiasis. Trans R Soc Trop Med Hyg 2014; 108:449-52. [PMID: 24789741 PMCID: PMC4342681 DOI: 10.1093/trstmh/tru065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND This study was carried out to determine the potential of neuronal specific enolase (NSE) as a stage diagnostic marker in human African trypanosomiasis. METHODS Plasma and cerebrospinal fluid were obtained from a cohort of Trypanosoma brucei rhodesiense-infected patients and non-infected controls. Neuronal specific enolase concentrations were measured by ELISA and analysed in relation to diagnosis and disease-stage data. RESULTS Plasma NSE concentration was significantly increased in late-stage patients (median 21 ng/ml), compared to the control (median 11 ng/ml), but not in early-stage patients (median 5.3 ng/ml). Cerebrospinal fluid NSE concentration did not vary between stages. CONCLUSION Plasma NSE is a potential stage diagnostic in this cohort and merits further investigation.
Collapse
Affiliation(s)
- Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, University Of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Julia A Mitchell
- Institute of Biological and Environmental Sciences, University Of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
36
|
Masocha W. Role of chemokines and cytokines in the neuropathogenesis of African trypanosomiasis. World J Clin Infect Dis 2013; 3:79-85. [DOI: 10.5495/wjcid.v3.i4.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei spp. cause human African trypanosomiasis (HAT) or sleeping sickness in humans and nagana in animals. The early stages of the disease have no specific symptoms; however, the late stage of the disease involves neurological signs of the disease, including disturbance of sleep patterns from which the disease derives the name sleeping sickness. During the late stage of African trypanosomiasis parasites, increased numbers of white blood cells and levels of cytokines and/or chemokines are found in the brain parenchyma and/or cerebrospinal fluid of animal models and HAT patients. In this mini review, contemporary findings on how chemokines and cytokines are thought to play an important role in the central nervous system invasion by the parasites, inflammation and the neuropathology of the disease are discussed. The levels of various cytokines and chemokines, such as interferon-gamma (IFN-γ), interleukin-1 beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), C-C motif chemokine 2 (CCL2), CCL3, C-X-C motif chemokine 8 (CXCL8, IL-8) and CXCL10, in the cerebrospinal fluid (CSF) of HAT patients correlate with the severity or stage of the disease. Thus, these molecules are possible candidates for differentiating between early and late stage HAT. The role of cytokines and chemokines in parasite invasion of the central nervous system is also being elucidated. IFN-γ, TNF-α and CXCL-10 are some of the cytokines and chemokines now known to facilitate parasite penetration of the brain parenchyma. Interestingly, they also constitute some of the candidate molecules with potential to differentiate between stage 1 and 2 of HAT. The increased levels of cytokines, such as IL-1β, IL-6, IFN-γ and TNF-α, as well as prostaglandins, during African trypanosomiasis might contribute to the neurological dysfunctions that occur during HAT.
Collapse
|
37
|
IL-6 is upregulated in late-stage disease in monkeys experimentally infected with Trypanosoma brucei rhodesiense. Clin Dev Immunol 2013; 2013:320509. [PMID: 24194772 PMCID: PMC3806132 DOI: 10.1155/2013/320509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
The management of human African trypanosomiasis (HAT) is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops) were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi) to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF) and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P < 0.05) elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.
Collapse
|
38
|
Translation of human African trypanosomiasis biomarkers towards field application. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
39
|
MacLean L, Reiber H, Kennedy PGE, Sternberg JM. Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response. PLoS Negl Trop Dis 2012; 6:e1857. [PMID: 23145191 PMCID: PMC3493381 DOI: 10.1371/journal.pntd.0001857] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/24/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. METHODOLOGY/PRINCIPAL FINDINGS This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. CONCLUSIONS Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value.
Collapse
Affiliation(s)
- Lorna MacLean
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | | | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, College of Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy M. Sternberg
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
40
|
Frevert U, Movila A, Nikolskaia OV, Raper J, Mackey ZB, Abdulla M, McKerrow J, Grab DJ. Early invasion of brain parenchyma by African trypanosomes. PLoS One 2012; 7:e43913. [PMID: 22952808 PMCID: PMC3432051 DOI: 10.1371/journal.pone.0043913] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/26/2012] [Indexed: 12/11/2022] Open
Abstract
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Olga V. Nikolskaia
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jayne Raper
- Department of Biological Sciences, Hunter College of CUNY, New York, New York, United States of America
| | - Zachary B. Mackey
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Maha Abdulla
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - James McKerrow
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Dennis J. Grab
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Londoño D, Carvajal J, Strle K, Kim KS, Cadavid D. IL-10 Prevents apoptosis of brain endothelium during bacteremia. THE JOURNAL OF IMMUNOLOGY 2011; 186:7176-86. [PMID: 21602495 DOI: 10.4049/jimmunol.1100060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-10-deficient mice infected with the relapsing fever bacterium Borrelia turicatae rapidly succumb to a brain hemorrhage if they are unable to clear peak bacteremia. In this study, we investigated the protective role of IL-10 during relapsing-remitting bacteremia and explored the molecular events involved in the protection of brain endothelium by IL-10. Brain endothelial injury was measured with cytotoxicity and diverse apoptotic assays, whereas the signaling pathway analysis was done by quantitative PCR array. The results showed that severe endothelial cell injury leading to hemorrhage in the brain and other organs occurred in IL-10-deficient mice during relapsing-remitting infection. Human brain microvascular endothelial cells (HBMEC) produced abundant proinflammatory mediators upon exposure to whole bacteria or purified bacterial lipoprotein but did not produce any detectable IL-10. Whole bacteria and purified outer membrane lipoprotein rapidly killed HBMEC by apoptosis in a time- and concentration-dependent manner. Exogenous IL-10 protected HBMEC from apoptosis. HBMEC apoptosis during exposure to a low number of bacteria was associated with downregulation of TNF and TNFAIP3 and upregulation of BAX. In contrast, HBMEC apoptosis during exposure to high concentrations of purified outer membrane lipoprotein was associated with marked upregulation of FAS, FAS ligand, and the adaptor molecules RIPK1 and CFLAR. Exogenous IL-10 reversed all the apoptotic signaling changes induced by whole bacteria or its purified lipoprotein. The results indicate that prominent brain endothelial cell apoptosis occurs during relapsing-remitting bacteremia in the absence of IL-10 and point to a prominent role for bacterial lipoprotein-mediated activation of FAS and caspase-3 in this process.
Collapse
Affiliation(s)
- Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02144, USA
| | | | | | | | | |
Collapse
|
42
|
Rodgers J, McCabe C, Gettinby G, Bradley B, Condon B, Kennedy PGE. Magnetic resonance imaging to assess blood-brain barrier damage in murine trypanosomiasis. Am J Trop Med Hyg 2011; 84:344-50. [PMID: 21292912 PMCID: PMC3029195 DOI: 10.4269/ajtmh.2011.10-0487] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability of trypanosomes to invade the brain and induce an inflammatory reaction is well-recognized. This study uses magnetic resonance imaging (MRI) in conjunction with a murine model of central nervous system (CNS) stage trypanosomiasis to investigate this phenomenon at the level of the blood–brain barrier (BBB). Mice were scanned before and after administration of the contrast agent. Signal enhancement maps were generated, and the percentage signal change was calculated. The severity of the neuroinflammation was also assessed. Statistical analysis of the signal change data revealed a significantly (P = 0.028) higher signal enhancement in mice at 28 days post-infection (least squares mean = 26.709) compared with uninfected animals (6.298), indicating the presence of BBB impairment. Leukocytes were found in the meninges and perivascular space of some blood vessels in the infected mice. This study shows that the integrity of the BBB is compromised during CNS stage trypanosomiasis and that the impairment does not correlate with inflammatory cell infiltration.
Collapse
Affiliation(s)
- Jean Rodgers
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The experimental studies of Brucei group trypanosomes presented here demonstrate that the balance of host and parasite factors, especially IFN-γ GPI-sVSG respectively, and the timing of cellular exposure to them, dictate the predominant MP and DC activation profiles present at any given time during infection and within specific tissues. The timing of changes in innate immune cell functions following infection consistently support the conclusion that the key events controlling host resistance occur within a short time following initial exposure to the parasite GPI substituents. Once the changes in MP and DC activities are initiated, there appears little that the host can do to reverse these changes and alter the final outcome of these regulatory events. Instead, despite the availability of multiple innate and adaptive immune mechanisms that can control parasites, there is an inability to control trypanosome numbers sufficiently to prevent the emergence and establishment of virulent trypanosomes that eventually kill the host. Overall it appears that trypanosomes have carefully orchestrated the host innate and adaptive immune response so that parasite survival and transmission, and alterations of host immunity, are to its ultimate benefit.
Collapse
|
44
|
Abstract
Parasitic infections previously seen only in developing tropical settings can be currently diagnosed worldwide due to travel and population migration. Some parasites may directly or indirectly affect various anatomical structures of the heart, with infections manifested as myocarditis, pericarditis, pancarditis, or pulmonary hypertension. Thus, it has become quite relevant for clinicians in developed settings to consider parasitic infections in the differential diagnosis of myocardial and pericardial disease anywhere around the globe. Chagas' disease is by far the most important parasitic infection of the heart and one that it is currently considered a global parasitic infection due to the growing migration of populations from areas where these infections are highly endemic to settings where they are not endemic. Current advances in the treatment of African trypanosomiasis offer hope to prevent not only the neurological complications but also the frequently identified cardiac manifestations of this life-threatening parasitic infection. The lack of effective vaccines, optimal chemoprophylaxis, or evidence-based pharmacological therapies to control many of the parasitic diseases of the heart, in particular Chagas' disease, makes this disease one of the most important public health challenges of our time.
Collapse
|
45
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
46
|
Amrouni D, Gautier-Sauvigné S, Meiller A, Vincendeau P, Bouteille B, Buguet A, Cespuglio R. Cerebral and peripheral changes occurring in nitric oxide (NO) synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells. PLoS One 2010; 5:e9211. [PMID: 20169057 PMCID: PMC2821905 DOI: 10.1371/journal.pone.0009211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/26/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of nitric oxide (NO) in the development of human African trypanosomiasis (HAT) using an animal model, was examined. The manner by which the trypanocidal activity of NO is impaired in the periphery and in the brain of rats infected with Trypanosoma brucei brucei (T. b. brucei) was analyzed through: (i) the changes occurring in NO concentration in both peripheral (blood) and cerebral compartments; (ii) the activity of nNOS and iNOS enzymes; (iii) identification of the brain cell types in which the NO-pathways are particularly active during the time-course of the infection. METHODOLOGY/PRINCIPAL FINDINGS NO concentration (direct measures by voltammetry) was determined in central (brain) and peripheral (blood) compartments in healthy and infected animals at various days post-infection: D5, D10, D16 and D22. Opposite changes were observed in the two compartments. NO production increased in the brain (hypothalamus) from D10 (+32%) to D16 (+71%), but decreased in the blood from D10 (-22%) to D16 (-46%) and D22 (-60%). In parallel with NO measures, cerebral iNOS activity increased and peaked significantly at D16 (up to +700%). However, nNOS activity did not vary. Immunohistochemical staining confirmed iNOS activation in several brain regions, particularly in the hypothalamus. In peritoneal macrophages, iNOS activity decreased from D10 (-83%) to D16 (-65%) and D22 (-74%) similarly to circulating NO. CONCLUSION/SIGNIFICANCE The NO changes observed in our rat model were dependent on iNOS activity in both peripheral and central compartments. In the periphery, the NO production decrease may reflect an arginase-mediated synthesis of polyamines necessary to trypanosome growth. In the brain, the increased NO concentration may result from an enhanced activity of iNOS present in neurons and glial cells. It may be regarded as a marker of deleterious inflammatory reactions.
Collapse
Affiliation(s)
- Donia Amrouni
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Sabine Gautier-Sauvigné
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Anne Meiller
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Philippe Vincendeau
- University of Bordeaux 2, EA 3677 Laboratory of Parasitology, Bordeaux, France
| | - Bernard Bouteille
- University of Limoges, EA 3174 Laboratory of Tropical and Compared Neuroepidemiology & IFR 145 GEIST, Faculty of Medicine, Limoges, France
| | - Alain Buguet
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| | - Raymond Cespuglio
- University of Lyon, Faculty of Medicine, EA 4170 Laboratory of Free Radicals, Energy Substrates and Cerebral Physiopathology, & Neurochem platform, Lyon, France
| |
Collapse
|
47
|
Luo X, Li D, Cen D, He Z, Meng Z, Liang L. Effect of intravenous immunoglobulin treatment on brain interferon-gamma and interleukin-6 levels in a rat kindling model. Epilepsy Res 2010; 88:162-7. [DOI: 10.1016/j.eplepsyres.2009.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 01/04/2023]
|
48
|
Abstract
SUMMARYNeurological involvement following trypanosome infection has been recognised for over a century. However, there are still many unanswered questions concerning the mechanisms used by the parasite to gain entry to the CNS and the pathogenesis of the resulting neuroinflammatory reaction. There is a paucity of material from human cases of the disease therefore the majority of current research relies on the use of animal models of trypanosome infection. This review reports contemporary knowledge, from both animal models and human samples, regarding parasite invasion of the CNS and the neuropathological changes that accompany trypanosome infection and disease progression. The effects of trypanosomes on the blood-brain barrier are discussed and possible key molecules in parasite penetration of the barrier highlighted. Changes in the balance of CNS cytokines and chemokines are also described. The article closes by summarising the effects of trypanosome infection on the circadian sleep-wake cycle, and sleep structure, in relation to neuroinflammation and parasite location within the CNS. Although a great deal of progress has been made in recent years, the advent and application of sophisticated analysis techniques, to decipher the complexities of HAT pathogenesis, herald an exciting and rewarding period for advances in trypanosome research.
Collapse
|
49
|
Grab DJ, Garcia-Garcia JC, Nikolskaia OV, Kim YV, Brown A, Pardo CA, Zhang Y, Becker KG, Wilson BA, de A Lima APC, Scharfstein J, Dumler JS. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 2009; 3:e479. [PMID: 19621073 PMCID: PMC2707606 DOI: 10.1371/journal.pntd.0000479] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/04/2009] [Indexed: 12/25/2022] Open
Abstract
Background Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes. Methodology/Principal Findings Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%–49%) and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Gαq with Pasteurella multocida toxin (PMT). PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain) and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. Conclusions/Significance Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Gαq-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease. Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bosschaerts T, Guilliams M, Stijlemans B, De Baetselier P, Beschin A. Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology 2009; 214:737-47. [PMID: 19577324 DOI: 10.1016/j.imbio.2009.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uncontrolled inflammation is a major cause of pathogenicity during chronic parasite infections. Novel therapies should therefore aim at re-establishing the balance between pro- and anti-inflammatory signals during disease to avoid tissue damage and ensure survival of the host. In this context, we are intending to identify strategies capable of inducing counter-inflammatory activity in injured liver and thereby increasing the resistance of the host to African trypanosomiasis as a model for parasite infection. Here, recent evidence is summarized revealing how monocytic cells recruited to the liver of African trypanosome-infected mice develop an M1 or M2 activation status, thereby maintaining the capacity of the host to control parasite growth while avoiding the development of liver damage, which otherwise culminates in early death of the host.
Collapse
Affiliation(s)
- Tom Bosschaerts
- Department of Molecular and Cellular Interactions, VIB, Brussel, Belgium
| | | | | | | | | |
Collapse
|