1
|
Camunas-Alberca SM, Taha AY, Gradillas A, Barbas C. Comprehensive analysis of oxidized arachidonoyl-containing glycerophosphocholines using ion mobility spectrometry-mass spectrometry. Talanta 2025; 289:127712. [PMID: 39987613 DOI: 10.1016/j.talanta.2025.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The biological significance of oxidized arachidonoyl-containing glycerophosphocholines, exemplified by the oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), in pathological processes is well-established. However, despite their widespread use in redox lipidomics research, the precise chemical composition of the heterogeneous mixtures of oxPAPC generated in vitro -including the high prevalence of isomers and the oxidation mechanisms involved- remain inadequately understood. To address these knowledge gaps, we developed a multidimensional in-house database from a commercial oxPAPC preparation -employing Liquid Chromatography coupled to Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS) and Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). This database includes lipid names, retention times, accurate mass values (m/z), adduct profiles, MS/MS information, as well as collision cross-section (CCS) values. Our investigation elucidated 34 compounds belonging to distinct subsets of oxPAPC products, encompassing truncated, full-length, and cyclized variants. The integration of IMS-MS crucially facilitated: (i) structural insights among regioisomers, exemplified by the 5,6-PEIPC and 11,12-PEIPC epoxy-isoprostane derivatives, (ii) novel Collision Cross Section (CCS) values, and (iii) cleaner MS/MS spectra for elucidating the fragmentation mechanisms involved to yield specific fragment ions. These diagnostic ions were employed to successfully characterize full-length isomers present in human plasma samples from patients with mucormycosis. This comprehensive oxPAPC characterization not only advances the understanding of lipid peroxidation products but also enhances analytical capabilities for in vitro-generated oxidized mixtures. The implementation of this robust database, containing multiple orthogonal (i.e., independent) pieces of information, will serve as a comprehensive resource for the field.
Collapse
Affiliation(s)
- Sandra M Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616, Davis, CA, USA; Center for Neuroscience, University of California, One Shields Avenue, 95616, Davis, CA, USA.
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| |
Collapse
|
2
|
Pinheiro‐de‐Sousa I, Fonseca‐Alaniz MH, Giudice G, Valadão IC, Modestia SM, Mattioli SV, Junior RR, Zalmas L, Fang Y, Petsalaki E, Krieger JE. Integrated systems biology approach identifies gene targets for endothelial dysfunction. Mol Syst Biol 2023; 19:e11462. [PMID: 38031960 PMCID: PMC10698507 DOI: 10.15252/msb.202211462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Iguaracy Pinheiro‐de‐Sousa
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Miriam Helena Fonseca‐Alaniz
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Girolamo Giudice
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Iuri Cordeiro Valadão
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Silvestre Massimo Modestia
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Sarah Viana Mattioli
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- Department of Biophysics and PharmacologyInstitute of Biosciences of Botucatu, Universidade Estadual PaulistaBotucatuBrazil
| | - Ricardo Rosa Junior
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Lykourgos‐Panagiotis Zalmas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusCambridgeUK
- Open Targets, Wellcome Genome CampusCambridgeUK
| | - Yun Fang
- Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
3
|
Balczon R, Choi CS, deWeever A, Zhou C, Gwin MS, Kolb C, Francis CM, Lin MT, Stevens T. Infection promotes Ser-214 phosphorylation important for generation of cytotoxic tau variants. FASEB J 2023; 37:e23042. [PMID: 37358817 DOI: 10.1096/fj.202300620rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Patients who recover from hospital-acquired pneumonia exhibit a high incidence of end-organ dysfunction following hospital discharge, including cognitive deficits. We have previously demonstrated that pneumonia induces the production and release of cytotoxic oligomeric tau from pulmonary endothelial cells, and these tau oligomers can enter the circulation and may be a cause of long-term morbidities. Endothelial-derived oligomeric tau is hyperphosphorylated during infection. The purpose of these studies was to determine whether Ser-214 phosphorylation of tau is a necessary stimulus for generation of cytotoxic tau variants. The results of these studies demonstrate that Ser-214 phosphorylation is critical for the cytotoxic properties of infection-induced oligomeric tau. In the lung, Ser-214 phosphorylated tau contributes to disruption of the alveolar-capillary barrier, resulting in increased permeability. However, in the brain, both the Ser-214 phosphorylated tau and the mutant Ser-214-Ala tau, which cannot be phosphorylated, disrupted hippocampal long-term potentiation suggesting that inhibition of long-term potentiation was relatively insensitive to the phosphorylation status of Ser-214. Nonetheless, phosphorylation of tau is essential to its cytotoxicity since global dephosphorylation of the infection-induced cytotoxic tau variants rescued long-term potentiation. Collectively, these data demonstrate that multiple forms of oligomeric tau are generated during infectious pneumonia, with different forms of oligomeric tau being responsible for dysfunction of distinct end-organs during pneumonia.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Chung-Sik Choi
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Althea deWeever
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Meredith S Gwin
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Claire Kolb
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - C Michael Francis
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Mike T Lin
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, USA
| |
Collapse
|
4
|
Pascoe CD, Jha A, Ryu MH, Ragheb M, Vaghasiya J, Basu S, Stelmack GL, Srinathan S, Kidane B, Kindrachuk J, O'Byrne PM, Gauvreau GM, Ravandi A, Carlsten C, Halayko AJ. Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction. Eur Respir J 2021; 57:13993003.00839-2020. [PMID: 32883680 DOI: 10.1183/13993003.00839-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 01/14/2023]
Abstract
Oxidised phosphatidylcholines (OxPCs) are produced under conditions of elevated oxidative stress and can contribute to human disease pathobiology. However, their role in allergic asthma is unexplored. The aim of this study was to characterise the OxPC profile in the airways after allergen challenge of people with airway hyperresponsiveness (AHR) or mild asthma. The capacity of OxPCs to contribute to pathobiology associated with asthma was also to be determined.Using bronchoalveolar lavage fluid from two human cohorts, OxPC species were quantified using ultra-high performance liquid chromatography-tandem mass spectrometry. Murine thin-cut lung slices were used to measure airway narrowing caused by OxPCs. Human airway smooth muscle (HASM) cells were exposed to OxPCs to assess concentration-associated changes in inflammatory phenotype and activation of signalling networks.OxPC profiles in the airways were different between people with and without AHR and correlated with methacholine responsiveness. Exposing patients with mild asthma to allergens produced unique OxPC signatures that associated with the severity of the late asthma response. OxPCs dose-dependently induced 15% airway narrowing in murine thin-cut lung slices. In HASM cells, OxPCs dose-dependently increased the biosynthesis of cyclooxygenase-2, interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor and the production of oxylipins via protein kinase C-dependent pathways.Data from human cohorts and primary HASM cell culture show that OxPCs are present in the airways, increase after allergen challenge and correlate with metrics of airway dysfunction. Furthermore, OxPCs may contribute to asthma pathobiology by promoting airway narrowing and inducing a pro-inflammatory phenotype and contraction of airway smooth muscle. OxPCs represent a potential novel target for treating oxidative stress-associated pathobiology in asthma.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada.,Co-first authors
| | - Aruni Jha
- Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada.,Co-first authors
| | - Min Hyung Ryu
- Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mirna Ragheb
- Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada
| | - Jignesh Vaghasiya
- Dept of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada
| | - Sujata Basu
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada
| | - Gerald L Stelmack
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB, Canada
| | | | - Biniam Kidane
- Dept of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Jason Kindrachuk
- Dept of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Paul M O'Byrne
- Dept of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Dept of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Amir Ravandi
- Dept of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
5
|
Karki P, Birukov KG. Oxidized Phospholipids in Control of Endothelial Barrier Function: Mechanisms and Implication in Lung Injury. Front Endocrinol (Lausanne) 2021; 12:794437. [PMID: 34887839 PMCID: PMC8649713 DOI: 10.3389/fendo.2021.794437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Earlier studies investigating the pathogenesis of chronic vascular inflammation associated with atherosclerosis described pro-inflammatory and vascular barrier disruptive effects of lipid oxidation products accumulated in the sites of vascular lesion and atherosclerotic plaque. However, accumulating evidence including studies from our group suggests potent barrier protective and anti-inflammatory properties of certain oxidized phospholipids (OxPLs) in the lung vascular endothelium. Among these OxPLs, oxidized 1-palmitoyl-2-arachdonyl-sn-glycero-3-phosphocholine (OxPAPC) causes sustained enhancement of lung endothelial cell (EC) basal barrier properties and protects against vascular permeability induced by a wide variety of agonists ranging from bacterial pathogens and their cell wall components, endotoxins, thrombin, mechanical insults, and inflammatory cytokines. On the other hand, truncated OxPLs cause acute endothelial barrier disruption and potentiate inflammation. It appears that multiple signaling mechanisms triggering cytoskeletal remodeling are involved in OxPLs-mediated regulation of EC barrier. The promising vascular barrier protective and anti-inflammatory properties exhibited by OxPAPC and its particular components that have been established in the cellular and animal models of sepsis and acute lung injury has prompted consideration of OxPAPC as a prototype therapeutic molecule. In this review, we will summarize signaling and cytoskeletal mechanisms involved in OxPLs-mediated damage, rescue, and restoration of endothelial barrier in various pathophysiological settings and discuss a future potential of OxPAPC in treating lung disorders associated with endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Konstantin G. Birukov,
| |
Collapse
|
6
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
7
|
Narzt MS, Nagelreiter IM, Oskolkova O, Bochkov VN, Latreille J, Fedorova M, Ni Z, Sialana FJ, Lubec G, Filzwieser M, Laggner M, Bilban M, Mildner M, Tschachler E, Grillari J, Gruber F. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biol 2018; 20:467-482. [PMID: 30466060 PMCID: PMC6243031 DOI: 10.1016/j.redox.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Julie Latreille
- Department of Biology & Women's Beauty, Chanel, Pantin, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Manuel Filzwieser
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Maria Laggner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria; Department of Biotechnology, BOKU, University of Natural Resources and Life Sciences Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
8
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Kiser JN, Lawrence TE, Neupane M, Seabury CM, Taylor JF, Womack JE, Neibergs HL. Rapid Communication: Subclinical bovine respiratory disease - loci and pathogens associated with lung lesions in feedlot cattle. J Anim Sci 2018; 95:2726-2731. [PMID: 28727052 PMCID: PMC7110184 DOI: 10.2527/jas.2017.1548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bovine respiratory disease (BRD) is an economically important disease of feedlot cattle that is caused by viral and bacterial pathogen members of the BRD complex. Many cases of subclinical BRD go untreated and are not detected until slaughter, when lung lesions are identified. The objectives of this study were to identify which BRD pathogens were associated with the presence of lung lesions at harvest and to identify genomic loci that were associated with susceptibility to lung lesions as defined by consolidation of the lung and/or the presence of fibrin tissue. Steers from a Colorado feedlot (n = 920) were tested for the presence of viral and bacterial pathogens using deep pharyngeal and mid-nasal swabs collected on entry into the study. Pathogen profiles were compared between cattle with or without lung consolidation (LC), fibrin tissue in the lung (FT), a combination of LC and FT in the same lung (lung lesions [LL]), and hyperinflated lungs (HIF) at harvest. Genotyping was conducted using the Illumina BovineHD BeadChip. Genomewide association analyses (GWAA) were conducted using EMMAX (efficient mixed-model association eXpedited), and pseudoheritabilities were estimated. The pathogen profile comparisons revealed that LC (P = 0.01, odds ratio [OR] = 3.37) and LL cattle (P = 0.04, OR = 4.58) were more likely to be infected with bovine herpes virus-1 and that HIF cattle were more likely to be infected with Mycoplasma spp. (P = 0.04, OR = 4.33). Pseudoheritability estimates were 0.25 for LC, 0.00 for FT, 0.28 for LL, and 0.13 for HIF. Because pseudoheritability for FT was estimated to be 0, GWAA results for FT were not reported. There were 4 QTL that were moderately associated (P < 1 × 10−5) with only LC, 2 that were associated with only LL, and 1 that was associated with LC and LL. Loci associated with HIF included 12 that were moderately associated and 3 that were strongly associated (uncorrected P < 5 × 10−7). A 24-kb region surrounding significant lead SNP was investigated to identify positional candidate genes. Many positional candidate genes underlying or flanking the detected QTL have been associated with signal transduction, cell adhesion, or gap junctions, which have functional relevance to the maintenance of lung health. The identification of pathogens and QTL associated with the presence of lung abnormalities in cattle exhibiting subclinical BRD allows the identification of loci that may not be detected through manifestation of clinical disease alone.
Collapse
|
10
|
Abstract
Lipid mediators play a critical role in the development and resolution of vascular endothelial barrier dysfunction caused by various pathologic interventions. The accumulation of excess lipids directly impairs endothelial cell (EC) barrier function that is known to contribute to the development of atherosclerosis and metabolic disorders such as obesity and diabetes as well as chronic inflammation in the vascular endothelium. Certain products of phospholipid oxidation (OxPL) such as fragmented phospholipids generated during oxidative and nitrosative stress show pro-inflammatory potential and cause endothelial barrier dysfunction. In turn, other OxPL products enhance basal EC barrier and exhibit potent barrier-protective effects in pathologic settings of acute vascular leak caused by pro-inflammatory mediators, barrier disruptive agonists and pathologic mechanical stimulation. These beneficial effects were further confirmed in rodent models of lung injury and inflammation. The bioactive oxidized lipid molecules may serve as important therapeutic prototype molecules for future treatment of acute lung injury syndromes associated with endothelial barrier dysfunction and inflammation. This review will summarize recent studies of biological effects exhibited by various groups of lipid mediators with a focus on the role of oxidized phospholipids in control of vascular endothelial barrier, agonist induced EC permeability, inflammation, and barrier recovery related to clinical settings of acute lung injury and inflammatory vascular leak.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA,CONTACT Konstantin G. Birukov, MD, PhD Department of Anesthesiology, University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Liu B, Tai Y, Caceres AI, Achanta S, Balakrishna S, Shao X, Fang J, Jordt SE. Oxidized Phospholipid OxPAPC Activates TRPA1 and Contributes to Chronic Inflammatory Pain in Mice. PLoS One 2016; 11:e0165200. [PMID: 27812120 PMCID: PMC5094666 DOI: 10.1371/journal.pone.0165200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Yan Tai
- Department of Laboratory and Equipment Administration, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ana I. Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shrilatha Balakrishna
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 2015; 10:019014. [PMID: 25779088 DOI: 10.1116/1.4914948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 Å at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.
Collapse
|
13
|
JUNGHANS ANN, WALTMAN MARYJO, SMITH HILLARYL, POCIVAVSEK LUKA, ZEBDA NOUREDDINE, BIRUKOV KONSTANTIN, VIAPIANO MARIANO, MAJEWSKI JAROSLAW. Understanding dynamic changes in live cell adhesion with neutron reflectometry. MODERN PHYSICS LETTERS. B, CONDENSED MATTER PHYSICS, STATISTICAL PHYSICS, APPLIED PHYSICS 2014; 28:1430015. [PMID: 25705067 PMCID: PMC4334466 DOI: 10.1142/s0217984914300154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell - surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.
Collapse
Affiliation(s)
- ANN JUNGHANS
- MPA-CINT/Lujan Neutron Scattering Center, Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - MARY JO WALTMAN
- Biosciences Division, Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - HILLARY L. SMITH
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - LUKA POCIVAVSEK
- Department of Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - NOUREDDINE ZEBDA
- NDA Analytics, Woolley Road, Huntingdon, Cambridgeshire, PE28 4HS, UK
| | - KONSTANTIN BIRUKOV
- Lung Injury Center, Department of Medicine, The University of Chicag; 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - MARIANO VIAPIANO
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School 4 Blackfan Circle, Boston, MA 02115, USA
| | - JAROSLAW MAJEWSKI
- MPA-CINT/Lujan Neutron Scattering Center, Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| |
Collapse
|
14
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
15
|
Pocivavsek L, Junghans A, Zebda N, Birukov K, Majewski J. Tuning endothelial monolayer adhesion: a neutron reflectivity study. Am J Physiol Lung Cell Mol Physiol 2013; 306:L1-9. [PMID: 24163142 DOI: 10.1152/ajplung.00160.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells, master gatekeepers of the cardiovascular system, line its inner boundary from the heart to distant capillaries constantly exposed to blood flow. Interendothelial signaling and the monolayers adhesion to the underlying collagen-rich basal lamina are key in physiology and disease. Using neutron scattering, we report the first ever interfacial structure of endothelial monolayers under dynamic flow conditions mimicking the cardiovascular system. Endothelial adhesion (defined as the separation distance ℓ between the basal cell membrane and solid boundary) is explained using developed interfacial potentials and intramembrane segregation of specific adhesion proteins. Our method provides a powerful tool for the biophysical study of cellular layer adhesion strength in living tissues.
Collapse
Affiliation(s)
- Luka Pocivavsek
- Dept. of Surgery, Univ. of Pittsburgh Medical Center, Pittsburgh, PA 15222.
| | | | | | | | | |
Collapse
|
16
|
Springstead JR, Gugiu BG, Lee S, Cha S, Watson AD, Berliner JA. Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J Lipid Res 2012; 53:1304-15. [PMID: 22550136 DOI: 10.1194/jlr.m025320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), referred to as OxPAPC, and an active component, 1-palmitoyl-2-(5,6-epoxyisoprostane E₂)-sn-glycero-3-phosphatidylcholine (PEIPC), accumulate in atherosclerotic lesions and regulate over 1,000 genes in human aortic endothelial cells (HAEC). We previously demonstrated that OxPNB, a biotinylated analog of OxPAPC, covalently binds to a number of proteins in HAEC. The goal of these studies was to gain insight into the binding mechanism and determine whether binding regulates activity. In whole cells, N-acetylcysteine inhibited gene regulation by OxPAPC, and blocking cell cysteines with N-ethylmaleimide strongly inhibited the binding of OxPNB to HAEC proteins. Using MS, we demonstrate that most of the binding of OxPAPC to cysteine is mediated by PEIPC. We also show that OxPNB and PEIPE-NB, the analog of PEIPC, bound to a model protein, H-Ras, at cysteines previously shown to regulate activity in response to 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ₂). This binding was observed with recombinant protein and in cells overexpressing H-Ras. OxPAPC and PEIPC compete with OxPNB for binding to H-Ras. 15dPGJ₂ and OxPAPC increased H-Ras activity at comparable concentrations. Using microarray analysis, we demonstrate a considerable overlap of gene regulation by OxPAPC, PEIPC, and 15dPGJ₂ in HAEC, suggesting that some effects attributed to 15dPGJ₂ may also be regulated by PEIPC because both molecules accumulate in inflammatory sites. Overall, we provide evidence for the importance of OxPAPC-cysteine interactions in regulating HAEC function.
Collapse
Affiliation(s)
- James R Springstead
- Department of Medicine and University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
17
|
Birukova AA, Lee S, Starosta V, Wu T, Ho T, Kim J, Berliner JA, Birukov KG. A role for VEGFR2 activation in endothelial responses caused by barrier disruptive OxPAPC concentrations. PLoS One 2012; 7:e30957. [PMID: 22303475 PMCID: PMC3269437 DOI: 10.1371/journal.pone.0030957] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation. METHODS EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC) and human aortic endothelial cells (HAEC) was monitored by changes in transendothelial electrical resistance (TER) across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC) and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown. RESULTS Low OxPAPC concentrations (5-20 µg/ml) induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50-100 µg/ml) caused a rapid increase in permeability; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y(731). We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction. CONCLUSIONS This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high OxPAPC concentrations and contributes to stress fiber formation and increased MLC phosphorylation.
Collapse
Affiliation(s)
- Anna A. Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Sangderk Lee
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Vitaliy Starosta
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Tinghuai Wu
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
| | - Tiffany Ho
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jin Kim
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Judith A. Berliner
- Departments of Pathology and Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Konstantin G. Birukov
- Section of Pulmonary and Critical Medicine, Department of Medicine, Lung Injury Center, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Leonarduzzi G, Gamba P, Gargiulo S, Biasi F, Poli G. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radic Biol Med 2012; 52:19-34. [PMID: 22037514 DOI: 10.1016/j.freeradbiomed.2011.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 12/31/2022]
Abstract
Vascular areas of atherosclerotic development persist in a state of inflammation, and any further inflammatory stimulus in the subintimal area elicits a proatherogenic response; this alters the behavior of the artery wall cells and recruits further inflammatory cells. In association with the inflammatory response, oxidative events are also involved in the development of atherosclerotic plaques. It is now unanimously recognized that lipid oxidation-derived products are key players in the initiation and progression of atherosclerotic lesions. Oxidized lipids, derived from oxidatively modified low-density lipoproteins (LDLs), which accumulate in the intima, strongly modulate inflammation-related gene expression, through involvement of various signaling pathways. In addition, considerable evidence supports a proatherogenic role of a large group of potent bioactive lipids called eicosanoids, which derive from oxidation of arachidonic acid, a component of membrane phospholipids. Of note, LDL lipid oxidation products might regulate eicosanoid production, modulating the enzymatic degradation of arachidonic acid by cyclooxygenases and lipoxygenases; these enzymes might also directly contribute to LDL oxidation. This review provides a comprehensive overview of current knowledge on signal transduction pathways and inflammatory gene expression, modulated by lipid oxidation-derived products, in the progression of atherosclerosis.
Collapse
|
19
|
Usatyuk PV, Natarajan V. Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function. Microvasc Res 2012; 83:45-55. [PMID: 21570987 PMCID: PMC3196796 DOI: 10.1016/j.mvr.2011.04.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Lipid peroxidation of polyunsaturated fatty acids generates bioactive aldehydes, which exhibit pro- and anti-inflammatory effects in cells and tissues. Accumulating evidence indicates that 4-hydroxynonenal (4-HNE), a major aldehyde derived from lipid peroxidation of n-6 polyunsaturated fatty acids trigger signals that modulates focal adhesion and adherens junction proteins thereby inducing endothelial barrier dysfunction. Similarly, oxidized phospholipids (Ox-PLs) generated by lipid peroxidation of phospholipids with polyunsaturated fatty acids have been implicated in atherogenesis, inflammation and gene expression. Interestingly, physiological concentration of Ox-PLs is anti-inflammatory and protect against endotoxin- and ventilator-associated acute lung injury. Thus, excess generation of bioactive hydroxyalkenals and Ox-PLs during oxidative stress contributes to pathophysiology of various diseases by modulating signaling pathways that regulate pro- and anti-inflammatory responses and barrier regulation. This review summarizes the role of 4-HNE and Ox-PLs affecting cell signaling pathways and endothelial barrier dysfunction through modulation of the activities of proteins/enzymes by Michael adducts formation, enhancing the level of protein tyrosine phosphorylation of the target proteins, and by reorganization of cytoskeletal, focal adhesion, and adherens junction proteins. A better understanding of molecular mechanisms of hydroxyalkenals- and Ox-PLs-mediated pro-and anti-inflammatory responses and barrier function may lead to development of novel therapies to ameliorate oxidative stress related cardio-pulmonary disorders.
Collapse
Affiliation(s)
- Peter V. Usatyuk
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
20
|
Kadl A, Sharma PR, Chen W, Agrawal R, Meher AK, Rudraiah S, Grubbs N, Sharma R, Leitinger N. Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic Biol Med 2011; 51:1903-9. [PMID: 21925592 PMCID: PMC3197756 DOI: 10.1016/j.freeradbiomed.2011.08.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022]
Abstract
Oxidative tissue damage is a hallmark of many chronic inflammatory diseases. However, the precise mechanisms linking oxidative changes to inflammatory reactions remain unclear. Herein we show that Toll-like receptor 2 (TLR2) translates oxidative tissue damage into inflammatory responses by mediating the effects of oxidized phospholipids. Intraperitoneal injection of oxidized 1-palmitoyl-2-arachidonyl-sn-3-glycerophosphorylcholine (OxPAPC) resulted in upregulation of inflammatory genes in wild-type, but not in TLR2(-/-) mice. In vitro, OxPAPC induced TLR2 (but not TLR4)-dependent inflammatory gene expression and JNK and p38 signaling in macrophages. Induction of TLR2-dependent gene expression required reducible functional groups on sn-2 acyl chains of oxidized phospholipids, as well as serum cofactors. Finally, TLR2(-/-) mice were protected against carbon tetrachloride-induced oxidative tissue damage and inflammation, which was accompanied by accumulation of oxidized phospholipids in livers. Together, our findings demonstrate that TLR2 mediates cellular responses to oxidative tissue damage and they provide new insights into how oxidative stress is linked to acute and chronic inflammation.
Collapse
Affiliation(s)
- Alexandra Kadl
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Poonam R. Sharma
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wenshu Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rachana Agrawal
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Akshaya K. Meher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Swetha Rudraiah
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathaniel Grubbs
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rahul Sharma
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Starosta V, Wu T, Zimman A, Pham D, Tian X, Oskolkova O, Bochkov V, Berliner JA, Birukova AA, Birukov KG. Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine. Am J Respir Cell Mol Biol 2011; 46:331-41. [PMID: 21997484 DOI: 10.1165/rcmb.2011-0153oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations. OxPAPC at a range of 5-20 μg/ml enhanced EC barriers, as indicated by increased transendothelial electrical resistance. In contrast, higher OxPAPC concentrations (50-100 μg/ml) rapidly increased EC permeability, which was accompanied by increased total cell protein tyrosine (Tyr) phosphorylation, phosphorylation at Tyr-418, the activation of Src kinase, and the phosphorylation of adherens junction (AJ) protein vascular endothelial cadherin (VE-cadherin) at Tyr-731 and Tyr-658, which was not observed in ECs stimulated with low OxPAPC doses. The early tyrosine phosphorylation of VE-cadherin was linked to the dissociation of VE-cadherin-p120-catenin/β-catenin complexes and VE-cadherin internalization, whereas low OxPAPC doses promoted the formation of VE-cadherin-p120-catenin/β-catenin complexes. High but not low doses of OxPAPC increased the production of reactive oxygen species (ROS) and protein oxidation. The inhibition of Src by PP2 and ROS production by N-acetyl cysteine inhibited the disassembly of VE-cadherin-p120-catenin complexes, and attenuated high OxPAPC-induced EC barrier disruption. These results show the differential effects of OxPAPC doses on VE-cadherin-p120-catenin complex assembly and EC barrier function. These data suggest that the rapid tyrosine phosphorylation of VE-cadherin and other potential targets mediated by Src and ROS-dependent mechanisms plays a key role in the dissociation of AJ complexes and EC barrier dysfunction induced by high OxPAPC doses.
Collapse
Affiliation(s)
- Vitaliy Starosta
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Office N611, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal 2011; 15:1195-219. [PMID: 21235353 DOI: 10.1089/ars.2010.3542] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The occludin-like proteins belong to a family of tetraspan transmembrane proteins carrying a marvel domain. The intrinsic function of the occludin family is not yet clear. Occludin is a unique marker of any tight junction and is found in polarized endothelial and epithelial tissue barriers, at least in the adult vertebrate organism. Occludin is able to oligomerize and to form tight junction strands by homologous and heterologous interactions, but has no direct tightening function. Its oligomerization is affected by pro- and antioxidative agents or processes. Phosphorylation of occludin has been described at multiple sites and is proposed to play a regulatory role in tight junction assembly and maintenance and, hence, to influence tissue barrier characteristics. Redox-dependent signal transduction mechanisms are among the pathways modulating occludin phosphorylation and function. This review discusses the novel concept that occludin plays a key role in the redox regulation of tight junctions, which has a major impact in pathologies related to oxidative stress and corresponding pharmacologic interventions.
Collapse
Affiliation(s)
- Ingolf E Blasig
- Leibniz-Institut für Molekulare Pharmakologie, Berlin-Buch, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG. Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 2011; 226:2052-62. [PMID: 21520057 DOI: 10.1002/jcp.22543] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 2011; 270:95-102. [PMID: 21679933 DOI: 10.1016/j.cellimm.2011.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/12/2023]
Abstract
This study describes the role of "inflammatory" oxidized (Ox) phospholipids in regulation of rahU (PA0122) expression and biofilm formation in Pseudomonas aeruginosa (383) wild type (rahU(+)) and rahU mutant (rahU(-)) strains. Functional analysis of RahU protein from P. aeruginosa in presence of Ox-phospholipids show: (a) LysoPC modulates RahU gene/and protein expression in rahU(+) cells; (b) rahU promoter activity is increased by lysoPC and inhibited by PAPC, Ox-PAPC and arachidonic acid; the latter inhibitory effect can be reversed by lysoPC, which was enzymatically derived from PAPC; (c) biofilm formation increased in rahU(-) cells as compared to rahU(+); and (d) inhibition of rahU promoter activity by PAPC and AA (but not lysoPC) showed significantly augmented biofilm formation in rahU(+) but not in rahU(-) cells. This study shows that host derived Ox-phospholipids affect P. aeruginosa-rahU gene and protein expression, which in turn modulates biofilm formation. The accompanying paper describes the role of RahU protein in eukaryotic-host cells.
Collapse
|
25
|
Acute Lung Injury: The Injured Lung Endothelium, Therapeutic Strategies for Barrier Protection, and Vascular Biomarkers. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2010. [PMCID: PMC7120335 DOI: 10.1007/978-0-387-87429-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Zimman A, Chen SS, Komisopoulou E, Titz B, Martínez-Pinna R, Kafi A, Berliner JA, Graeber TG. Activation of aortic endothelial cells by oxidized phospholipids: a phosphoproteomic analysis. J Proteome Res 2010; 9:2812-24. [PMID: 20307106 DOI: 10.1021/pr901194x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have shown that oxidized products of the phospholipid PAPC (Ox-PAPC) are strong activators of aortic endothelial cells and play an important role in atherosclerosis and other inflammatory diseases. We and others have demonstrated that Ox-PAPC activates specific signaling pathways and regulates a large number of genes. Using a phosphoproteomic approach based on phosphopeptide enrichment and mass spectrometry analysis, we identified candidate changes in Ox-PAPC-induced protein phosphorylation of 228 proteins. Functional annotation of these proteins showed an enrichment of the regulation of cytoskeleton, junctional components, and tyrosine kinases, all of which may contribute to the phenotypic and molecular changes observed in endothelial cells treated with Ox-PAPC. Many changes in protein phosphorylation induced by Ox-PAPC are reported here for the first time and provide new insights into the mechanism of activation by oxidized lipids, including phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Alejandro Zimman
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1770, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010; 107:737-46. [PMID: 20651288 DOI: 10.1161/circresaha.109.215715] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Macrophages change their phenotype and biological functions depending on the microenvironment. In atherosclerosis, oxidative tissue damage accompanies chronic inflammation; however, macrophage phenotypic changes in response to oxidatively modified molecules are not known. OBJECTIVE To examine macrophage phenotypic changes in response to oxidized phospholipids that are present in atherosclerotic lesions. METHODS AND RESULTS We show that oxidized phospholipid-treated murine macrophages develop into a novel phenotype (Mox) that is strikingly different from the conventional M1 and M2 macrophage phenotypes. Compared to M1 and M2, Mox macrophages show a different gene expression pattern, as well as decreased phagocytotic and chemotactic capacity. Treatment with oxidized phospholipids induces both M1 and M2 macrophages to switch to the Mox phenotype. Whole-genome expression array analysis and subsequent gene ontology clustering revealed that the Mox phenotype was characterized by abundant overrepresentation of Nrf2-mediated expression of redox-regulatory genes. In macrophages isolated from Nrf2(-/-) mice, oxidized phospholipid-induced gene expression and regulation of redox status were compromised. Moreover, we found that Mox macrophages comprise 30% of all macrophages in advanced atherosclerotic lesions of low-density lipoprotein receptor knockout (LDLR(-/-)) mice. CONCLUSIONS Together, we identify Nrf2 as a key regulator in the formation of a novel macrophage phenotype (Mox) that develops in response to oxidative tissue damage. The unique biological properties of Mox macrophages suggest this phenotype may play an important role in atherosclerotic lesion development as well as in other settings of chronic inflammation.
Collapse
Affiliation(s)
- Alexandra Kadl
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
29
|
Tseng W, Lu J, Bishop GA, Watson AD, Sage AP, Demer L, Tintut Y. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res 2009; 51:1010-6. [PMID: 19965598 DOI: 10.1194/jlr.m001099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological evidence suggests that cardiovascular disease is associated with osteoporosis, independent of age. Bone resorptive surface is increased in mice on a high-fat diet, and osteoclastic differentiation of bone marrow preosteoclasts is promoted by oxidized phospholipids. Because osteoclastic differentiation requires cytokines produced by osteoblasts, we hypothesized that the stimulatory mechanism of oxidized phospholipids is via induction of osteoclast-regulating cytokines in osteoblasts. To investigate the effects of oxidized phospholipids on expression of such cytokines, murine calvarial preosteoblasts, MC3T3-E1, were treated with oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (ox-PAPC), an active component of oxidized lipoproteins. Results showed that ox-PAPC increased expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha. IL-6 expression was also elevated in calvarial tissues from hyperlipidemic but not in wild-type mice. Ox-PAPC also induced IL-6 protein levels in both MC3T3-E1 and primary calvarial cells. Promoter-reporter assay analysis showed that ox-PAPC, but not PAPC, induced murine IL-6 promoter activity. Effects of ox-PAPC on IL-6 expression and the promoter activity were attenuated by H89, a PKA inhibitor. Analysis of deletion and mutant IL-6 promoter constructs suggested that CAAT/enhancer binding protein (C/EBP) partly mediates the ox-PAPC effects. Taken together, the data suggest that oxidized phospholipids induce IL-6 expression in osteoblasts in part via C/EBP.
Collapse
Affiliation(s)
- Wendy Tseng
- Department of Physiological Science, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang HJ, Zhu JS, Zhang Q, Guo H, Dai YH, Xiong XP. RNAi-mediated silencing of ezrin gene reverses malignant behavior of human gastric cancer cell line SGC-7901. J Dig Dis 2009; 10:258-64. [PMID: 19906104 DOI: 10.1111/j.1751-2980.2009.00394.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effects of ezrin targeting gene of RNA interference (RNAi) on human gastric cancer cell line SGC-7901 in vitro. METHODS The highly metastatic human gastric cancer cell line SGC-7901 transfected with a small interfering (siRNA) lentivirus vector was selected for this research study. Expressions of ezrin mRNA and ezrin protein in the SGC-7901 cells were detected using RT-PCR and Western blot. Cell apoptosis was observed using flow cytometry. Transwell invasion and the cell adhesion test were used to verify the effect of RNAi on ezrin expression in the human gastric cancer cell line SGC-7901 in vitro. RESULTS Ezrin gene targeting via a RNAi-mediated lentivirus vector had obvious inhibitory effects on ezrin expression in the human gastric cancer cell line SGC-7901. The results of the RT-PCR show the obvious inhibition of ezrin mRNA expression in Eai and Ebi groups (0.22 +/- 0.01 vs 0.95 +/- 0.04, P < 0.05; 0.31 +/- 0.01 vs. 0.95 +/- 0.04, P < 0.05). Western blot analysis revealed a 72.35 +/- 3.74% reduction of the ezrin protein level after interference with the ezrin targeting gene. Moreover, the inhibition of ezrin expression clearly inhibited SGC-7901 cell migration and invasion, and improved cell adhesion as well as increased sensitivity to camptothecin-induced apoptosis. CONCLUSION Ezrin gene targeting by RNAi can inhibit the metastatic growth and migration of SGC-7901 human gastric cancer cells.
Collapse
Affiliation(s)
- Hong Jian Wang
- Department of Gastroenterology, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
31
|
Wang HJ, Zhu JS, Zhang Q, Sun Q, Guo H. High level of ezrin expression in colorectal cancer tissues is closely related to tumor malignancy. World J Gastroenterol 2009; 15:2016-9. [PMID: 19399936 PMCID: PMC2675094 DOI: 10.3748/wjg.15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ezrin expression in normal colorectal mucosa and colorectal cancer tissues, and study the correlation between ezrin expression in colorectal cancer tissues and tumor invasion and metastasis.
METHODS: Eighty paraffin-embedded cancer tissue samples were selected from primary colorectal adenocarcinoma. Twenty-eight patients had well-differentiated, 22 had moderately differentiated and 30 had poorly differentiated adenocarcinoma. Forty-five patients and 35 patients had lymph node metastasis. Forty-five patients were of Dukes A to B stage, and 35 were of C to D stage. Another 22 paraffin-embedded tissue blocks of normal colorectal epithelium (> 5 cm away from the edge of the tumor) were selected as the control group. All patients with colorectal cancer were treated surgically and diagnosed histologically, without preoperative chemotherapy or radiotherapy. The immunohistochemistry was used to detect the ezrin expression in paraffin-embedded normal colorectal mucosa tissues and colorectal cancer tissue samples.
RESULTS: Ezrin expression in colorectal cancer was significantly higher than in normal colorectal mucosa (75.00% vs 9.09%, P < 0.01), and there was a close relationship between ezrin expression and the degree of tumor differentiation, lymph node metastasis and Dukes stage (88.46% vs 50.00%, P < 0.01; 94.28% vs 51.11%, P < 0.01; 94.28% vs 51.11%, P < 0.01).
CONCLUSION: Ezrin expression is obviously higher in colorectal cancer tissues than in normal colorectal mucosa tissues, and the high level of ezrin expression is closely related to the colorectal cancer invasion and metastasis process.
Collapse
|
32
|
Fu P, Birukov KG. Oxidized phospholipids in control of inflammation and endothelial barrier. Transl Res 2009; 153:166-76. [PMID: 19304275 PMCID: PMC3677584 DOI: 10.1016/j.trsl.2008.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/17/2022]
Abstract
The levels of circulating oxidized phospholipids (OxPLs) become increased in chronic and acute pathologic conditions such as hyperlipidemia, atherosclerosis, increased intimamedia thickness in the patients with systemic Lupus erythematosus, vascular balloon injury, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). These pathologies are associated with inflammation and activation of endothelial cells. Depending on the biological context and the specific group of phospholipid oxidation products, OxPL may exhibit both proinflammatory and anti-inflammatory effects. This review will summarize the data showing a dual role of OxPL in modulation of chronic and acute inflammation as well as OxPL effects on pulmonary endothelial permeability. Recent reports show protective effects of OxPL in the models of endotoxin and ventilator-induced ALI and suggest a potential for using OxPL-derived cyclopenthenone-containing compounds with barrier-protective properties for drug design. These compounds may represent a new group of therapeutic agents for the treatment of lung syndromes associated with acute inflammation and lung vascular leak.
Collapse
Key Words
- ali, acute lung injury
- camp, cyclic adenosine monophosphate
- cox-2, cyclooxygenase-2
- cs1, connecting segment 1
- ec, endothelial cell
- enos, endothelial nitric oxide synthase
- erk1/2, extracellular signaling kinase 1/2
- egr-1, early growth response factor-1
- fak, focal adhesion kinase
- gas, gamma-interferon activation sequence
- gpcr, g-protein-coupled receptor
- gpi, glycosylphosphatidylinositol
- gtp, guanosine triphosphate
- ho-1, heme oxygenase-1
- icam-1, intercellular adhesion molecule-1, il-8, interleukin-8
- kodia-pc, 5-keto-6-octendioic acid ester of 2-lyso-phosphocholine
- lbp, lps binding protein
- ldl, low-density lipoprotein
- l-name, n-nitro-l-arginine-methyl ester
- lps, lipopolysaccharide
- mcp1, monocyte chemotactic protein 1
- mlc, myosin light chain
- mm-ldl, minimally modified ldl
- mrna, messenger rna
- nfκb, nuclear factor κb
- oxldl, oxidated ldl
- oxpapc, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
- oxpl, oxidized phospholipids
- paf, platelet activation factor
- papc, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
- pape, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylethanolamine
- paps, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylserine
- pecpc, 1-palmitoyl-2-(5,6-epoxycyclopentenone)-sn-glycero-3-phsphocholine
- peipc, 1-palmitoyl-2-(5,6-epoxyisoprostane e2)-sn-glycero-3-phsphocholine
- pge2, prostaglandin e2
- pgpc, 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine
- pka, protein kinase a
- pkc, protein kinase c
- pla2, phospholipase a2
- povpc, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-phosphocholine
- ppar, peroxisome proliferator-activated receptor
- ros, reactive oxygen species
- sirna, small interfering rna
- srebp, sterol response element binding protein
- tf, tissue factor
- tlr, toll-like receptor
- tnf-α, tumor necrosis factor-α
- upr, unfolded protein response
- vcam-1, vascular cell adhesion molecule-1
- vegf, vascular endothelial growth factor
- vili, ventilator-induced lung injury
Collapse
Affiliation(s)
- Panfeng Fu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill 60637, USA
| | | |
Collapse
|
33
|
Sangle GV, Zhao R, Shen GX. Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab 2008; 295:E1243-54. [PMID: 18796547 DOI: 10.1152/ajpendo.90415.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
34
|
Birukova AA, Alekseeva E, Cokic I, Turner CE, Birukov KG. Cross talk between paxillin and Rac is critical for mediation of barrier-protective effects by oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 2008; 295:L593-602. [PMID: 18676874 DOI: 10.1152/ajplung.90257.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We previously reported that the barrier-protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cells (ECs) delineate the role of Rac- and Cdc42-dependent mechanisms and described the involvement of the focal adhesion (FA) protein paxillin in enhancement of the EC barrier upon OxPAPC challenge. This study examined a potential role of paxillin in the feedback mechanism of Rac regulation by FAs in OxPAPC-stimulated ECs. Our results demonstrate that OxPAPC induced Rac-dependent, Rho-independent peripheral accumulation of paxillin-containing FAs and time-dependent paxillin phosphorylation. Molecular inhibition of Rac decreased association of paxillin with the Rac-specific guanine nucleotide exchange factor beta-PIX. Molecular inhibition of paxillin also attenuated OxPAPC-induced enhancement of adherens junctions critical for the EC barrier-protective response, accumulation of vascular endothelial cadherin in the membrane fractions, and decreased activation of Rac and its effector p21-activated kinase (PAK1). Expression of paxillin with a mutated PAK1-dependent phosphorylation site (S273A) attenuated OxPAPC-induced PAK1 activation and the EC barrier-protective response. These results suggest that PAK1-specific paxillin phosphorylation at Ser(273) is critically involved in the positive-feedback regulation of the Rac-PAK1 pathway and may contribute to sustained enhancement of the EC barrier caused by oxidized phospholipids.
Collapse
Affiliation(s)
- Anna A Birukova
- Dept. of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
35
|
Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N, Garcia JGN, Birukov KG. Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R27. [PMID: 18304335 PMCID: PMC2374596 DOI: 10.1186/cc6805] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 01/03/2008] [Accepted: 01/24/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation resulting in ventilator-induced lung injury. Besides blunting the Toll-like receptor-4-induced inflammatory cascade and lung dysfunction in a model of lipopolysaccharide-induced lung injury, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exerts direct barrier-protective effects on pulmonary endothelial cells in vitro via activation of the small GTPases Rac and Cdc42. To test the hypothesis that OxPAPC may attenuate lung inflammation and barrier disruption caused by pathologic lung distension, we used a rodent model of ventilator-induced lung injury and an in vitro model of pulmonary endothelial cells exposed to pathologic mechanochemical stimulation. METHODS Rats received a single intravenous injection of OxPAPC (1.5 mg/kg) followed by mechanical ventilation at low tidal volume (LTV) (7 mL/kg) or HTV (20 mL/kg). Bronchoalveolar lavage was performed and lung tissue was stained for histological analysis. In vitro, the effects of OxPAPC on endothelial barrier dysfunction and GTPase activation were assessed in cells exposed to thrombin and pathologic (18%) cyclic stretch. RESULTS HTV induced profound increases in bronchoalveolar lavage and tissue neutrophils and in lavage protein. Intravenous OxPAPC markedly attenuated HTV-induced protein and inflammatory cell accumulation in bronchoalveolar lavage fluid and lung tissue. In vitro, high-magnitude stretch enhanced thrombin-induced endothelial paracellular gap formation associated with Rho activation. These effects were dramatically attenuated by OxPAPC and were associated with OxPAPC-induced activation of Rac. CONCLUSION OxPAPC exhibits protective effects in these models of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Stephanie Nonas
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: From molecular properties to disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:718-36. [PMID: 17570293 DOI: 10.1016/j.bbadis.2007.04.009] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
Oxidized lipids are generated from (poly)unsaturated diacyl- and alk(en)ylacyl glycerophospholipids under conditions of oxidative stress. The great variety of reaction products is defined by the degree of modification, hydrophobicity, chemical reactivity, physical properties and biological activity. The biological activities of these compounds may depend on both, the recognition of the particular molecular structures by specific receptors and on the unspecific physical and chemical effects on their target systems (membranes, proteins). In this review, we aim at highlighting the molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids. Firstly, their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form. Secondly, the biological activities of oxidized phospholipids are discussed in terms of their unspecific effects on the membrane level as well as their potential interactions with specific targets (receptors) affecting a large set of (signaling) molecules. Finally, the role of oxidized phospholipids as important mediators in pathophysiology is discussed with emphasis on atherosclerosis.
Collapse
Affiliation(s)
- Gilbert O Fruhwirth
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | |
Collapse
|
37
|
Birukova AA, Malyukova I, Poroyko V, Birukov KG. Paxillin-β-catenin interactions are involved in Rac/Cdc42-mediated endothelial barrier-protective response to oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 2007; 293:L199-211. [PMID: 17513457 DOI: 10.1152/ajplung.00020.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidized phospholipids may appear in the pulmonary circulation as a result of acute lung injury or inflammation. We have previously described barrier-protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on human pulmonary endothelial cells (EC) mediated by small GTPases Rac and Cdc42. This work examined OxPAPC-induced focal adhesion (FA) and adherens junction (AJ) remodeling and potential interactions between FA and AJ protein complexes involved in OxPAPC-induced EC barrier enhancement. Immunofluorescence analysis, subcellular fractionation, and coimmunoprecipitation assays have shown that OxPAPC induced translocation and peripheral accumulation of FA complexes containing paxillin, focal adhesion kinase, vinculin, GIT1, and GIT2, increased association of AJ proteins vascular endothelial-cadherin, p120-catenin, α-, β-, and γ-catenins, and dramatically enhanced cell junction areas covered by AJ. Coimmunoprecipitation, pulldown assays, and confocal microscopy studies have demonstrated that OxPAPC promoted novel interactions between FA and AJ complexes via paxillin and β-catenin association, which was critically dependent on Rac and Cdc42 activities and was abolished by pharmacological or small interfering RNA (siRNA)-mediated inhibition of Rac and Cdc42. Depletion of β-catenin using the siRNA approach attenuated OxPAPC-induced paxillin translocation to the cell periphery, but also significantly decreased interaction of paxillin with AJ protein complex. In turn, paxillin knockdown by specific siRNA attenuated AJ enhancement in response to OxPAPC. These results show for the first time the novel interactions between FA and AJ protein complexes critical for EC barrier regulation by OxPAPC.
Collapse
Affiliation(s)
- Anna A Birukova
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
38
|
Birukova AA, Fu P, Chatchavalvanich S, Burdette D, Oskolkova O, Bochkov VN, Birukov KG. Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2007; 292:L924-35. [PMID: 17158600 DOI: 10.1152/ajplung.00395.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th St., CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Birukova AA, Chatchavalvanich S, Oskolkova O, Bochkov VN, Birukov KG. Signaling pathways involved in OxPAPC-induced pulmonary endothelial barrier protection. Microvasc Res 2007; 73:173-81. [PMID: 17292425 PMCID: PMC1934559 DOI: 10.1016/j.mvr.2006.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 12/20/2006] [Indexed: 11/27/2022]
Abstract
Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th Street, CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
40
|
Birukova AA, Malyukova I, Mikaelyan A, Fu P, Birukov KG. Tiam1 and βPIX mediate Rac-dependent endothelial barrier protective response to oxidized phospholipids. J Cell Physiol 2007; 211:608-17. [PMID: 17219408 DOI: 10.1002/jcp.20966] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibits potent barrier protective effects on pulmonary endothelium, which are mediated by small GTPases Rac and Cdc42. However, upstream mechanisms of OxPAPC-induced small GTPase activation are not known. We studied involvement of Rac/Cdc42-specific guanine nucleotide exchange factors (GEFs) Tiam1 and betaPIX in OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective responses in the human pulmonary endothelial cells (EC). OxPAPC induced membrane translocation of Tiam1, betaPIX, Cdc42, and Rac, but did not affect intracellular distribution of Rho and Rho-specific GEF p115-RhoGEF. Protein depletion of Tiam1 and betaPIX using siRNA approach abolished OxPAPC-induced activation of Rac and its effector PAK1. EC transfection with Tiam1-, betaPIX-, or PAK1-specific siRNA dramatically attenuated OxPAPC-induced barrier enhancement, peripheral actin cytoskeletal enhancement, and translocation of actin-binding proteins cortactin and Arp3. These results show for the first time that Tiam1 and betaPIX mediate OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective response in pulmonary endothelium.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
41
|
Vouyouka AG, Jiang Y, Rastogi R, Basson MD. Ambient pressure upregulates nitric oxide synthase in a phosphorylated-extracellular regulated kinase- and protein kinase C-dependent manner. J Vasc Surg 2006; 44:1076-1084. [PMID: 17098545 DOI: 10.1016/j.jvs.2006.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/27/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Using endothelial cell/smooth muscle cell (SMC) cocultures, we have demonstrated that pressurized endothelial cell coculture inhibits SMC proliferation and promotes apoptosis, and that this effect is transferable through pressurized endothelial medium. We now hypothesized that endothelial nitric oxide synthase (eNOS) plays a significant role in mediating these pressure-induced effects. METHODS Conditioned media from endothelial cells and SMCs exposed to ambient and increased pressure were transferred to recipient SMCs. We counted cells after 5 days of incubation with these media and evaluated eNOS and inducible NOS (iNOS) levels by Western blot. RESULTS Conditioned media from pressurized endothelial cells significantly decreased recipient SMC counts. This effect was sustained when N-nitro-L-arginine-methyl ester (L-NAME) was added to recipient cells but abolished when L-NAME was added to donor cells. SMCs were then exposed to control and pressurized conditions in monoculture or in coculture with endothelial cells. Pressure and coculture caused similar increase in iNOS levels but had no additive effect in combination. Finally, endothelial cells were exposed to control and pressurized environments. Pressure caused a 24% +/- 1.6% increase in eNOS protein (P = .04, n = 12). This effect was sustained when cells were treated with L-NAME (32% +/- 1.6% increase, P = .02) but abolished when endothelial cells were treated with calphostin C or PD98059 to block protein kinase C (PKC) or extracellular regulated kinase (ERK). Pressure also increased endothelial phosphorylated ERK (p-ERK) by 1.8-fold to 2.6-fold compared with control conditions after exposure of 2, 4, and 6 hours (P = .02, n = 4). This increase was sustained after pretreatment with calphostin C. CONCLUSION Pressure modulates endothelial cell effects on SMC growth by increasing eNOS in an ERK-dependent and PKC-dependent manner. CLINICAL RELEVANCE Intimal hyperplasia is the main cause for restenosis that complicates 10% to 30% of all such vascular procedures and 30% to 40% of endovascular procedures. This article provides some novel information about smooth muscle cell/endothelial cell interaction, one of the main regulators of vascular remodeling and intimal hyperplasia. The role of endothelial cell/smooth muscle cell interaction cannot be studied well in vivo because these interactions cannot be distinguished from other factors that coexist in vivo, such as flow dynamics, matrix proteins, inflammatory factors, and interactions with other cells in the vascular wall and in the bloodstream. In this work, we use pressure as a triggering stimulus to alter in vitro endothelial behavior and identify important changes in endothelial regulation of smooth muscle cell biology. The pathways involved in this process and discussed in this article could ultimately be used to manipulate endothelial cell/smooth muscle cell interaction in clinical disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Cell Proliferation
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Enzyme Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- NG-Nitroarginine Methyl Ester/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Rats
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Angela G Vouyouka
- Division of Vascular and General Surgery, John D. Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI 48201-1932, USA.
| | | | | | | |
Collapse
|
42
|
Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JGN, Birukov KG. Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1749-61. [PMID: 16651639 PMCID: PMC1606576 DOI: 10.2353/ajpath.2006.050431] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ventilator-induced lung injury is a life-threatening complication of mechanical ventilation at high-tidal volumes. Besides activation of proinflammatory cytokine production, excessive lung distension directly affects blood-gas barrier and lung vascular permeability. To investigate whether restoration of pulmonary endothelial cell (EC) monolayer integrity after agonist challenge is dependent on the magnitude of applied cyclic stretch (CS) and how these effects are linked to differential activation of small GTPases Rac and Rho, pulmonary ECs were subjected to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of CS. Pathological CS enhanced thrombin-induced gap formation and delayed monolayer recovery, whereas physiological CS induced nearly complete EC recovery accompanied by peripheral redistribution of focal adhesions and cortactin after 50 minutes of thrombin. Consistent with differential effects on monolayer integrity, 18% CS enhanced thrombin-induced Rho activation, whereas 5% CS promoted Rac activation during the EC recovery phase. Rac inhibition dramatically attenuated restoration of monolayer integrity after thrombin challenge. Physiological CS preconditioning (5% CS, 24 hours) enhanced EC paracellular gap resolution after step-wise increase to 18% CS (30 minutes) and thrombin challenge. These results suggest a critical role for the CS amplitude and the balance between Rac and Rho in mechanochemical regulation of lung EC barrier.
Collapse
Affiliation(s)
- Anna A Birukova
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Elevated plasma levels of low-density lipoprotein and generation of oxidized low-density lipoprotein have been directly associated with the pathogenesis of atherosclerosis, and lipid oxidation products have been directly linked with induction and propagation of monocytic subendothelial accumulation and other inflammatory reactions associated with chronic vascular inflammation. However, accumulating data suggest that oxidized lipids may also exhibit anti-inflammatory potential and serve as potent inhibitors of nuclear factor-kappaB-dependent proinflammatory cascade. In addition, we have characterized a group of bioactive components of oxidized phospholipids with barrier-protective effects towards endothelial cells in the models of agonist-induced endothelial permeability and lipopolysaccharide-induced lung dysfunction. This review discusses the role of oxidized lipids in the progression of atherosclerosis as well as the important anti-inflammatory effects of oxidized phospholipids and their potential role in the modulation of vascular barrier integrity.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Department of Medicine, University of Chicago, 929 East 57th Street, W410, Chicago, IL 60637, USA.
| |
Collapse
|
44
|
Abstract
Chronic inflammatory diseases including atherosclerosis are major causes of morbidity and mortality worldwide. However, the factors, which trigger processes that determine the outcome of an inflammatory response, are still poorly understood. Accumulating evidence suggests that certain lipid oxidation products, such as oxidized phospholipids (OxPL), may represent endogenously formed factors that are capable of triggering vascular inflammation. This review will address important questions regarding mechanisms involved in acute and chronic inflammation, and discuss the role of OxPL as key players in triggering the inflammatory response in atherosclerosis. Better understanding of how OxPL contribute to vascular inflammation should lead to new strategies in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Norbert Leitinger
- Department of Pharmacology and Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK. Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2006; 290:H674-83. [PMID: 16172163 DOI: 10.1152/ajpheart.00554.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidized l-α-1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified LDL, induces production of proinflammatory cytokines and development of atherosclerotic lesions. We tested the hypothesis that OxPAPC alters expression, phosphorylation, and localization of tight junction (TJ) proteins, particularly occludin, a transmembrane TJ protein. OxPAPC reduced total occludin protein and increased occludin phosphorylation dose dependently (10–50 μg/ml) and time dependently in bovine aortic endothelial cells. OxPAPC decreased occludin mRNA and reduced the immunoreactivity of zonula occludens-1 at the cell-cell contacts. Furthermore, OxPAPC increased the diffusive flux of 10-kDa dextran in a dose-dependent manner. O2−· production by bovine aortic endothelial cells increased nearly twofold after exposure to OxPAPC. Also, enzymatic generation of O2−· by xanthine oxidase-lumazine and H2O2by glucose oxidase-glucose increased occludin phosphorylation, implicating reactive oxygen species as modulators of the OxPAPC effects on occludin phosphorylation. Superoxide dismutase and/or catalase blocked the effects of OxPAPC on occludin protein content and phosphorylation, occludin mRNA, zonula occludens-1 immunoreactivity, and diffusive flux of 10-kDa dextran. These findings suggest that changes in TJ proteins are potential mechanisms by which OxPAPC compromises the barrier properties of the vascular endothelium. OxPAPC-induced disruption of TJs, which likely facilitates transmigration of LDL and inflammatory cells into the subendothelial layers, may be mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Lucas DeMaio
- Dept. of Biomedical Engineering and Division of Cardiovascular Medicine, DRB 398, USC, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Wilkes DS, Egan TM, Reynolds HY. Lung transplantation: opportunities for research and clinical advancement. Am J Respir Crit Care Med 2005; 172:944-55. [PMID: 16020804 PMCID: PMC2718411 DOI: 10.1164/rccm.200501-098ws] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lung transplantation is the only definitive therapy for many forms of end-stage lung diseases. However, the success of lung transplantation is limited by many factors: (1) Too few lungs available for transplantation due to limited donors or injury to the donor lung; (2) current methods of preservation of excised lungs do not allow extended periods of time between procurement and implantation; (3) acute graft failure is more common with lungs than other solid organs, thus contributing to poorer short-term survival after lung transplant compared with that for recipients of other organs; (4) lung transplant recipients are particularly vulnerable to pulmonary infections; and (5) chronic allograft dysfunction, manifest by bronchiolitis obliterans syndrome, is frequent and limits long-term survival. Scientific advances may provide significant improvements in the outcome of lung transplantation. The National Heart, Lung, and Blood Institute convened a working group of investigators on June 14-15, 2004, in Bethesda, Maryland, to identify opportunities for scientific advancement in lung transplantation, including basic and clinical research. This workshop provides a framework to identify critical issues related to clinical lung transplantation, and to delineate important areas for productive scientific investigation.
Collapse
Affiliation(s)
- David S Wilkes
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
47
|
Lupo G, Nicotra A, Giurdanella G, Anfuso CD, Romeo L, Biondi G, Tirolo C, Marchetti B, Ragusa N, Alberghina M. Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:135-50. [PMID: 15979399 DOI: 10.1016/j.bbalip.2005.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
In immortalized rat brain endothelial cells (GP8.39), we have previously shown that oxidized LDL (oxLDL), after 24-h treatment, stimulates arachidonic acid release and phosphatidylcholine hydrolysis by activation of cytosolic phospholipase A(2) (cPLA(2)). A putative role for MAPKs in this process has emerged. Here, we studied the contribution of Ca(2+)-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family as well as both cPLA(2) and iPLA(2) mRNA expression by RT-PCR in oxLDL toxicity to GP8.39 cells in vitro. The activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH(2)-terminal kinase (JNK) was assessed with Western blotting and kinase activity assays. iPLA(2) activity, which was found as a membrane-associated enzyme, was more stimulated by oxLDL compared with native LDL. The phosphorylation of ERK1/2, p38 and JNKs was also significantly enhanced in a dose-dependent manner. PD98059, an ERK inhibitor, SB203580, a p38 inhibitor, and SP600125, an JNK inhibitor, abolished the stimulation of all three members of the MAPK family by oxLDL. Confocal microscopy analysis and subcellular fractionation confirmed either an increase in phosphorylated form of ERKs, p38 and JNKs, or their nuclear translocation upon activation. A strong inhibition of MAPK activation was also observed when endothelial cells were treated with GF109203X, a PKC inhibitor, indicating the important role of both PKC and all three MAPKs in mediating the maximal oxLDL response. Finally, compared with samples untreated or treated with native LDL, treatment with oxLDL (100 muM hydroperoxides) for 24 h significantly increased the levels of constitutively expressed iPLA(2) protein (by 5.1-fold) and mRNA (by 3.1-fold), as well as cPLA(2) protein (by 4.4-fold) and mRNA (by 1.5-fold). Together, these data link the stimulation of PKC-ERK-p38-JNK pathways and PLA(2) activity by oxLDL to the prooxidant mechanism of the lipoprotein complex, which may initially stimulate the endothelial cell reaction against noxious stimuli as well as metabolic repair, such as during inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biochemistry, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hyvönen MT, Kovanen PT. Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:294-305. [PMID: 15688184 DOI: 10.1007/s00249-004-0455-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 12/05/2004] [Indexed: 11/28/2022]
Abstract
The importance of unsaturated, and especially polyunsaturated phosphatidylcholine molecules for the functional properties of biological membranes is widely accepted. Here, the effects of unsaturation on the nanosecond-scale structural and dynamic properties of the phosphatidylcholine bilayer were elucidated by performance of multinanosecond molecular dynamics simulations of all-atom bilayer models. Bilayers of dipalmitoylphosphatidylcholine and its mono-, di-, and tetraunsaturated counterparts were simulated, containing, respectively, oleoyl, linoleoyl, or arachidonoyl chains in the sn-2 position. Analysis of the simulations focused on comparison of the structural properties, especially the ordering of the chains in the membranes. Although the results suggest some problems in the CHARMM force field of the lipids when applied in a constant pressure ensemble, the features appearing in the ordering of the unsaturated chains are consistent with the behaviour known from (2)H NMR experiments. The rigidity of the double bonds is compensated by the flexibility of skew state single bonds juxtaposed with double bonds. The presence of double bonds in the sn-2 chains considerably reduces the order parameters of the CH bonds. Moreover, the double bond region of tetraunsaturated chains is shown to span all the way from the bilayer centre to the head group region.
Collapse
Affiliation(s)
- Marja T Hyvönen
- Wihuri Research Institute, Kalliolinnantie 4, 00140 Helsinki, Finland.
| | | |
Collapse
|
49
|
Birukov KG, Bochkov VN, Birukova AA, Kawkitinarong K, Rios A, Leitner A, Verin AD, Bokoch GM, Leitinger N, Garcia JGN. Epoxycyclopentenone-Containing Oxidized Phospholipids Restore Endothelial Barrier Function via Cdc42 and Rac. Circ Res 2004; 95:892-901. [PMID: 15472119 DOI: 10.1161/01.res.0000147310.18962.06] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After an acute phase of inflammation or injury, restoration of the endothelial barrier is important to regain vascular integrity and to prevent edema formation. However, little is known about mediators that control restoration of endothelial barrier function. We show here that oxidized phospholipids that accumulate at sites of inflammation and tissue damage are potent regulators of endothelial barrier function. Oxygenated epoxyisoprostane-containing phospholipids, but not fragmented oxidized phospholipids, exhibited barrier-protective effects mediated by small GTPases Cdc42 and Rac and their cytoskeletal, focal adhesion, and adherens junction effector proteins. Oxidized phospholipid-induced cytoskeletal rearrangements resulted in a unique peripheral actin rim formation, which was mimicked by coexpression of constitutively active Cdc42 and Rac, and abolished by coexpression of dominant-negative Rac and Cdc42. Thus, oxidative modification of phospholipids during inflammation leads to the formation of novel regulators that may be critically involved in restoration of vascular barrier function.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Division of Pulmonary and Critical Care Medicine, Center for Translational Respiratory Medicine, Johns Hopkins University School of Medicine, Baltimore, Md, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yeh M, Cole AL, Choi J, Liu Y, Tulchinsky D, Qiao JH, Fishbein MC, Dooley AN, Hovnanian T, Mouilleseaux K, Vora DK, Yang WP, Gargalovic P, Kirchgessner T, Shyy JYJ, Berliner JA. Role for Sterol Regulatory Element-Binding Protein in Activation of Endothelial Cells by Phospholipid Oxidation Products. Circ Res 2004; 95:780-8. [PMID: 15388640 DOI: 10.1161/01.res.0000146030.53089.18] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized phospholipids, including oxidation products of palmitoyl-arachidonyl-phosphatidyl choline (PAPC), are mediators of inflammation in endothelial cells (ECs) and known to induce several chemokines, including interleukin-8 (IL-8). In this study, we show that oxidized PAPC (OxPAPC), which accumulates in atherosclerotic lesions, paradoxically depletes endothelial cholesterol, causing caveolin-1 internalization from the plasma membrane to the endoplasmic reticulum and Golgi, and activates sterol regulatory element-binding protein (SREBP). Cholesterol loading reversed these effects. SREBP activation resulted in increased transcription of the low-density lipoprotein receptor, a target gene of SREBP. We also provide evidence that cholesterol depletion and SREBP activation are signals for OxPAPC induction of IL-8. Cholesterol depletion by methyl-beta-cyclodextrin induced IL-8 synthesis in a dose-dependent manner. Furthermore, cholesterol loading of ECs by either the cholesterol-cyclodextrin complex or caveolin-1 overexpression inhibited OxPAPC induction of IL-8. These observations suggest that changes in cholesterol level can modulate IL-8 synthesis in ECs. The OxPAPC induction of IL-8 was mediated through the increased binding of SREBP to the IL-8 promoter region, as revealed by mobility shift assays. Overexpression of either dominant-negative SREBP cleavage-activating protein or 25-hydroxycholesterol significantly suppressed the effect of OxPAPC on IL-8 transcription. A role for SREBP activation in atherosclerosis is suggested by the observation that EC nuclei showed strong SREBP staining in human atherosclerotic lesions. The current studies suggest a novel role for endothelial cholesterol depletion and subsequent SREBP activation in inflammatory processes in which phospholipid oxidation products accumulate.
Collapse
Affiliation(s)
- Michael Yeh
- Department of Medicine, Geffen School of Medicine at University of California Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|